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Abstract

A new technique for face recognition – Ridgefaces – is presented. The method

combines the well-known Fisherface method with the ridgelet transform and

high-speed Photometric Stereo (PS). The paper first derives ridgelet projec-

tions for 2D/2.5D face images before the Fisherface approach is used to re-

duce the dimensionality and increase the spread of the resulting feature vectors.

The ridgelet transform is attractive because it is efficient at extracting highly

discriminating low-frequency directional features. Best recognition is obtained

when Ridgefaces is performed on surface normals acquired from PS, although

good results are also found using standard 2D images and PS-derived albedo

maps.

Keywords: Face recognition, ridgelet transform, photometric stereo,

dimensionality reduction

1. Introduction

Automatic face recognition is one of the most promising and potentially

widespread areas of computer vision. It has attracted a large amount of re-

search interest due to its non-intrusive nature compared to other biometrics.

Indeed, machines now consistently outperform humans in many face recognition

experiments [1]. However, despite great improvement in recognition accuracy
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for contrived set-ups over recent years, a method that is robust to pose and

illumination changes and is efficient in processing time and memory remains a

major challenge.

In this paper, we make a significant contribution to automatic facial recog-

nition technology by proposing a novel face recognition method which is appli-

cable to both 2D and 2.5D/3D face data. We call this method “Ridgefaces”.

The method uses a combination of the ridgelet transform [2] and the widely

known method of Fisherfaces [3] (using standard implementations of Principle

Components Analysis (PCA) and Linear Discriminant Analysis (LDA)). The

motivation for the use of ridgelets is that they achieve high levels of dimension-

ality reduction while maintaining highly discriminating directional information

and low-frequency data but suppressing the less useful high-frequency features.

While conventional data reduction methods, including PCA and LDA, are sta-

tistically optimised for generic data processing, we show that ridgelets are ideal

for faces specifically, for the above reasons. Combining the methods gives the

best overall data representation.

Our novel method can be summarised as follows. Firstly, albedo and surface

normal data are acquired using Photometric Stereo (PS) [4]. We then apply the

ridgelet transform to each image before the Fisherface algorithm is applied to

the transformed images to further compress the data and maximise the distance

between classes in the new subspace (and minimise the intra-class distance).

Finally, the simple Euclidean distance between test and training images is used

for classification.

The hardware set-up for construction of the testing database (called the

“PhotoFace” database) is described in [5] and [6]. In summary, the device

constructs face models using PS hardware and algorithms [5, 4] in which facial

images are captured from the same viewpoint under different illumination direc-

tions. The albedo and surface normals are then estimated from the raw images

and we experiment with Ridgefaces on both these modalities.

Aside from the novel methodology, the other principal contributions and

advantages of the research are as follows:
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• Our main testing dataset – the PhotoFace database – consists of face im-

ages captured as participants enter a busy workplace. Their presence is

automatically detected by a sensor and the device is automatically trig-

gered. This ensures that the data consists of a range of natural poses and

expressions [5, 6].

• We applied our method to a range of databases including the above Photo-

Face and several older 2D databases. This proves that our technique is

robust to a range of “everyday” poses, illumination conditions and expres-

sions, not just fully frontal faces with neutral expression.

• The paper reports a detailed set of experiments to investigate the per-

formance variation with different algorithm parameters (e.g. coarseness

of the discrete approximation to transforms, number of principal compo-

nents used, etc.). Indeed, one of the key contributions of the paper is the

optimisation of capture and processing methods and parameters.

• We prove that the nature of our ridgelet-based image representation is

able to maintain a near-constant degree of discriminatory information,

regardless of the coarseness of the approximation to the transforms and is

highly robust to image resolution.

• We show that our method is highly competitive to the state-of-the-art in

terms of recognition rate, processing time and storage requirements.

The remainder of the paper is organised as follows. Section 2 summarises

the related work in 2D and 3D face recognition techniques and algorithms,

in addition to relevant 3D reconstruction and representation methods. The

background theory for our novel method is then described in Section 3. Section 4

provides the new methodology of the proposed algorithm. Detailed experimental

results followed by a discussion are presented in Sections 5 and 6 respectively,

before our findings are summarised in Section 7.
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2. Related Work

The development of automatic face recognition systems started in the early

1960s when Bledsoe developed a system based on the geometrical information

of face parts [7]. Since then, a variety of algorithms based on PCA and LDA

have been developed, modified and tested consistently over the years. Turk

and Pentland developed a face recognition method called eigenfaces based on

PCA [8]. Kirby and Sirovich developed a PCA-based technique in which face

images can be efficiently represented using eigenspace. In this method, accurate

face representations can be modelled using a relatively small number of eigen-

vectors, reducing storage and processing time considerably, whilst maintaining

high recognition rates [9].

One drawback of the eigenface method, is that while maximizing variances

along given principle components, it retains unwanted variation due to the light-

ning, facial expressions and other factors. Later, the Fisherface method was

devised [3], which is an extension of the LDA method developed by Fisher for

class discrimination [10]. This method used Fisher discriminants to classify dif-

ferent feature vectors and produced well-separated classes in low dimensional

subspace, giving better performance in varying lightning conditions and facial

expressions. Unfortunately, LDA suffers from the small sample problem and so

is less effective if only a small training set is available [11, 12].

Much more recently, Jadhav and Holambe used a face recognition technique

based on Radon and wavelet transforms [13]. In this technique, directional fea-

tures of the facial images are calculated in different orientations using the Radon

transform which enhances low frequency components in that image. Then, a

wavelet transform is applied in Radon space which produces a multi-resolution

facial image. The ridgelet transform is the result of this 1D wavelet transform

in the Radon domain. Ridgelet transforms are suitable for describing signals

with high-dimensional singularities such as image lines. The Finite RIdgelet

Transform (FRIT) is the discrete form of the continuous ridgelet transform [2].

Jun et al. proposed a new algorithm which digitally implements ridgelet trans-
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forms suitable for images of dyadic length [14]. This method not only retains all

the properties of the traditional FRIT but also extends the application of FRIT

in image processing by improving the sensitivity to direction and increasing

the angular resolution. The advantages of these Radon/ridgelet-based methods

have partly motivated this paper, one of whose aims is to extend the methods

to more general settings and 3D data.

While all the above research has shown promise with 2D images of faces, a

large amount of current research into face recognition is based on the 3D infor-

mation of facial geometry [15]. The motivation for most of this 3D work is that

such geometric information can minimize the detrimental impact of changing il-

lumination conditions and viewing angles, while also providing an overall richer

dataset. The amount of research in the area is vast, so we concentrate on the

most closely related contributions for this review.

An obvious hurdle for 3D methods is the initial need to acquire the 3D

structure of each face – ideally from one or more 2D images. Early attempts

to recover the 3D information of objects were made in 1970s; for example when

Horn invented a technique to recover the shape of an object from its shading

information [16]. A variety of techniques have been developed since then to es-

timate the shape of objects using various cues such as occluding boundaries [17]

or texture [18].

One reconstruction technique that has proven practical for face recognition

is PS [4, 19]. In this method, an object (or face) is imaged several times us-

ing a fixed 2D camera. Each image must be captured using a different light

source direction. Hansen et al. have devised a near-real time PS system for

3D face capture that is easily deployable for many face recognition applications

[5]. Zafeiriou et al. subsequently used this method to acquire a novel 3D face

database with subjects captured under “natural” conditions [6]. A host of varia-

tions to PS for both general usage and faces specifically have also been suggested

in the literature [20, 21, 22, 23, 24, 25, 26].

Blanz and Vetter developed a form of analysis-by-synthesis method for face

shape estimation using a statistical model of human faces captured using a laser
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scanner [27]. Smith and Hancock also use a statistical model, this time based on

surface normals acquired using shape-from-shading [28]. Reiter et al. developed

a method based on Canonical Correlation Analysis (CCA) which reconstructs

3D faces from RGB colour images [29]. They predicted the 3D depth map

of faces using the CCA approach by relating the depth information of a face

image with the appearance of the face. They modelled the combined effect of

illumination direction, albedo and shape with correlated linear features in the

space of depth images and colour images. Kim et al. developed a non-intrusive

3D face data acquisition system which uses an infrared line sensor pattern [30].

Mayo and Zhang developed a face recognition system which uses a 3D point

cloud for recognition. They rotated the face points about the x, y and z axes

and projected them iteratively onto a 2.5D image, thus extracting a small set

of points for recognition [31]. Another method which uses local shape variation

information is proposed by Xu et al. [32]. They also represent faces as 3D point

clouds and construct feature vectors by combining the global geometric features

and the local shape variation information.

Abate et al. developed a simple, fast and accurate recognition method in

which a difference map is calculated from the comparison of normal maps of two

faces [33]. The surface normals and curvature are represented by a polygonal

mesh and then projected as an RGB image which is a 2D representation of

a 3D mesh. Therefore, 3D recognition is effectively posed as a more efficient

2D recognition problem. Lu et al. developed a system in which both shape

and texture information from a 2.5D scan are used [34]. The shapes of the

two faces are matched using a modified Iterative Closest Point (ICP) algorithm

[35]. From this, they select a set of closely matched candidates and apply

LDA which reduces the complexity of the classification. A related approach by

Papatheodorou and Rueckert can be seen in [36].

It is not always the case that 3D recognition will outperform 2D face recog-

nition [37]. Consequently, in order to preserve the advantages of these two

complementary modalities, Xue and Ding developed a multi-model boosting al-

gorithm in which 3D range information is integrated with 2D image data [38].
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This algorithm can detect features including faces, noses, eyes etc., which can

then be used for recognition. Similar fusion of depth and texture information is

used and compared by BenAbdelkader and Griffin [39]. Depth and texture maps

are used separately and together for identification and verification. The best

recognition rate of 100% for their particular dataset is achieved when the the

information is combined. Kusuma and Chua implemented PCA based 2D+3D

multimodal face recognition method which uses texture and shape information

[40]. Both 2D and 3D images are recombined by projecting them into PCA

subspace and then into fisherfaces to maximise the scatter. Related approaches

can be found in [41, 42, 43, 44, 37, 45, 46].

Further reviews on 3D face recognition techniques in general are presented

in [47, 48, 15, 49].

3. Background Theory

This section summarizes the main concepts and background theory used in

the proposed method. This includes ridgelet transforms, subspace methods and

PS.

3.1. Theory of Ridgelet Transforms

In many image processing tasks, a sparse representation of an image is used

in order to compact the data into a relatively small number of samples while

maintaining discriminating information. Wavelets are a good example of sparse

geometrical image representation. But despite the success of wavelets, they

exhibit efficiency limitations when applied in more than one dimension. In

particular, wavelets fail to efficiently represent objects with highly anisotropic

2D elements such as lines or curvilinear structures (e.g. intensity edges). The

reason is that wavelets are non-geometrical and do not exploit the regularity of

the edge curve. Wavelets are therefore good at representing zero-dimensional or

point singularities. However, two-dimensional piecewise smooth signals (such as

face images) have one-dimensional singularities meaning that wavelets will not

accurately represent the smoothness of the image along the curve [50, 2].
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Figure 1: An example ridgelet function [50].

Motivated by the above limitations, Candies and Donoho recently developed

ridgelets to deal with line singularities of the image in 2D [50]. The idea is to

map a line singularity into a point singularity using the Radon transform. A

wavelet transform can then be used to effectively handle the point singularity

in the Radon domain. Their initial proposal was intended for functions defined

in the continuous R2 space [51, 52].

The Continuous Ridgelet Transform (CRT) of a function f (x) in R2 is de-

fined as

CRTf (a, b, θ) =

∫
R2

Ψa,b,θ (x) f (x) dx (1)

where x = (x1, x2)
T

is the position vector and the ridgelets Ψa,b,θ (x) in 2D are

defined from a 1D wavelet-type function, ψ (x), as

Ψa,b,θ (x) =
1√
a
ψ

(
x1 cos θ + x2 sin θ − b

a

)
(2)

In Eqns. (1) and (2), the parameters a, b and θ relate to scaling, shift and

rotation transforms respectively. Fig. 1 shows an example ridgelet function

which is oriented at an angle θ and is constant along the lines x1 cos θ+ x2 sin θ

(the “ridges”). Note that the wavelets appear perpendicularly to the ridges.

In 2D, ridgelets and wavelets are linked by the Radon transform. The Radon

transform of f (x) in R2 space is given by

Rf (θ, t) =

∫
R2

δ (x1 cos θ + x2 sin θ − t) f (x) dx (3)
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where δ is the Dirac distribution which forms projection lines at an angle θ across

the image at perpendicular distance t to the origin. The ridgelet transform is

then equivalent to the application of a 1D wavelet transform to the projection

lines of the Radon transform:

CRTf (a, b, θ) =

∫
R
ψa,b (t)Rf (θ, t) dt (4)

So the ridgelet function can be realised by applying 1D wavelet transforms to

the projections in Radon space.

For image processing applications, we clearly need to apply the various trans-

formations in discrete form. We use the construct known as the Finite RAdon

Transform (FRAT) for this due to its relative ease of implementation [2]. The

2D FRAT uses sums of pixel intensities to represent the integral in Eqn. (4).

The summations are over “projection lines” in the image, as implied by the

above theory. Following the same approach as [2], we define the pixels on a

finite grid Zp = {0, 1, p− 1} and the transform is

rk [l] = FRATf (k, l) =
1
√
p

∑
i,j∈Lk,l

f [i, j] (5)

where Lk,l denotes the pixels that form a projection line in the image, f [i, j]:

Lk,l = {(i, j) : j = ki+ l (mod p) , i ∈ Zp} , 0 ≤ k < p

Lp,l = {(l, j) : j ∈ Zp}
(6)

To complete the ridgelet transform we need to take the discrete wavelet

transform (DWT) on each FRAT projection sequence, rk[0], rk[1], . . . rk[p − 1].

This is called the Finite RIdgelet Transform (FRIT). It is the result of this

FRIT that we later use as the basis of our feature vectors, described in Section

4.

3.2. Subspace methods for data reduction

PCA and LDA are the most commonly used data reduction techniques for

face recognition. Both are data-based techniques and require no prior informa-

tion about the data in the image (except that LDA uses class information). Our
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experiments involve various combinations of PCA and LDA to supplement the

ridgefaces algorithm, so we briefly outline these two powerful methods.

3.2.1. Principle Component Analysis

Also termed the K-L transform, PCA was originally developed for dimen-

sionality reduction and noise reduction. Turk and Pentland developed a method

which captured the variance of the whole face within a given dataset rather than

concentrating on specific facial features [8]. PCA aims to calculate a set of or-

thonormal basis dimensions of the dataset. The first dimension corresponds to

the maximal variance; the second dimension corresponds to the maximal vari-

ance in an orthogonal direction to that of the first, and so on. The dataset can

then be projected onto a subspace where more discriminating features lie in the

lower dimensions.

Written formally, the eigenvectors of the covariance matrix, Ω, of the distri-

bution, spanned by training a set of face images is calculated. The projection

into the subspace is then expressed as an eigenvalue problem:

ΩV = λV (7)

where λ is a diagonal matrix containing the eigenvalues and V contains the

eigenvectors corresponding to the eigenvalues in λ. Each image can be projected

into the eigenspace with the resultant vectors acting as low dimensional person-

specific feature vectors.

3.2.2. Linear Discriminant Analysis

This related technique [3] also involves projecting the image dataset into a

subspace with high discriminating properties. LDA projects the images in such

a way that those of same class are grouped close together in the subspace and

those of different classes are separated from each other. In this respect, LDA

is different to PCA in that it utilises class information to perform this task.

PCA by contrast aims to maximize the overall scatter of all the images in lower

dimensions and makes no attempt to distinguish images in the same class from

images in other classes.
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LDA calculates two matrices: the between-class scatter matrix (Sb) which

captures the variation between the classes of images and the within-class scatter

matrix (Sw) which captures variation in the images of same class. LDA then

solves the generalized eigenvalue problem for Sb and Sw such that

SbV = λSwV (8)

In other words, LDA aims to maximise det|Sb|/det|Sw|. As with the eigenface

method discussed in Section 3.2.1, images can be projected into the new space

and used as low-dimensional feature vectors.

3.3. Photometric Stereo

First introduced by Woodham in 1980 [4], PS is a reflectance map based

technique in which the intensity values from multiple images are obtained from

the same viewpoint under different lightning directions. This intensity informa-

tion is used to determine the surface geometry of the object. Essentially, PS

uses three or more images to solve the under-determined problem of shape-from-

shading [53] to recover surface geometry via the surface normal map. While the

ridgelet-based method we describe in this paper is applicable to any 2D or 3D

database (indeed we perform extensive experiments on several existing methods

in Section 5), one of our key contributions is to show that it is especially effec-

tive when combined with surface normals estimated from PS. Next, we briefly

cover the basic theory of the PS surface normal acquisition procedure used in

this paper.

The standard form of PS (used in this paper) assumes that Lambert’s Law

applies:

I = ρ cos θs = ρ s ·N = ρ


sx

sy

sz


T 

Nx

Ny

Nz

 (9)

where ρ is the albedo, θs is the angle between the surface normal and the

light source direction, N = [Nx Ny Nz]
T is the unit surface normal and s =

[sx sy sz]
T is the unit light source vector.
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Figure 2: System architecture of the Ridgefaces algorithm for face recognition.

For this paper, we have captured a range of face images under four different

light sources so we can re-write Eqn. (9) in matrix form:
I1

I2

I3

I4

 = ρ


sT1

sT2

sT3

sT4

N (10)

where si is the ith light source vector and Ii is the corresponding measured

pixel intensity. The albedo and surface normal components can therefore be

estimated by solving this equation for each pixel [54].

4. Methodology

As explained in Section 2, ridgelets have been proven effective for 2D face

recognition [13]. This paper extends the power of ridgelet transform to 3D

images by using photometric stereo data. It also optimises the data acquisi-

tion, processing and parameter/storage requirements. This section describes

our novel algorithm, which combines the ridgelet transform with linear sub-

space techniques. We call this newly proposed algorithm “Ridgefaces”. The

architecture of this algorithm is shown in Fig. 2.

4.1. Capture and Preprocessing

Our data was acquired using the photometric stereo capture device presented

in [5]. In summary, the hardware used consists of a camera operating at 200fps,

which is synchronised to four separate flash lights as shown in Fig. 3. This

gives four separate images of the face, each with a known light source vector

12



Figure 3: Photograph of the data capture device [5]. The highlighted regions show close-ups

of one of the flash lights and an ultrasound trigger. The trigger detects the presence of a

subject to instruct the device when to capture an image set.

which can be used to estimate the albedo and surface normals using the theory

summarised in Section 3.3.

Aside from a few initial tests with older databases, we use a subset of the

data captured using this device in [6]. The device was placed at the entrance to

a busy workplace and employees we asked to “casually walk through the device”

for their automatic scan. The database therefore contains a multitude of natural

expressions and poses as would be expected in a real-world environment. This

is in contrast to most previous work, which used highly controlled poses and ex-

pressions. Fig. 4 shows an example of both the raw and processed data captured

by the device. Fig. 5 shows the albedo images of a few more challenging faces

that were captured. It is worth noting at this point that our high recognition

rates reported in Section 5 demonstrate that the method is robust to typical

expressions and pose variations expected to be found in real-world applications.

Furthermore, as our method is inherently three-dimensional in nature, we do

not suffer from illumination changes, as in most two-dimensional approaches.

Carefully designed preprocessing can significantly improve the performance

of many face recognition systems. In particular, the method by which the face

part of the images are cropped from the field of view has a major impact on
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Figure 4: Left: example of four raw images captured by the PhotoFace device. Right: pro-

cessed data comprising of x, y and z components of the surface normals and the albedo map.

Figure 5: Examples of typical expressions and pose variations encountered in the PhotoFace

database (albedo images) [6].
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recognition rates. In a similar fashion to other work in the field, we chose to

manually crop the faces using a specific set of rules to include the main facial

features [55]. We do this manually because it means our reported recognition

rates are representative of our actual recognition algorithm, rather than being

influenced by the unrelated face detection and cropping process. Down-sampling

the images can also form a crucial preprocessing step as the resolution can have

a significant effect on the performance of the algorithm, as we show in Section

5. Apart from cropping and (for some of our experiments) rescaling, we do no

further pre-processing.

4.2. Feature extraction

Our feature extraction method essentially consists of applying the FRIT to

the face images in our database to obtain a discriminating feature vector. As

discussed in Section 3.1, the ridgelet transform is the application of a 1D wavelet

transform on Radon space projections of the image, and can be approximated

in discrete space using Eqn. (5). The result of the FRIT is reshaped into a

feature vector for further analysis. The number projection angles (θ in Eqn. (1))

determines the amount of data conserved, and therefore the size of the image

in discrete Radon space. The number of angles is determined by the angular

interval between projections, θinterval. Obviously smaller values for θinterval

correspond to increased computation time, but also the classification accuracy

is affected in a highly nonlinear fashion. The effect of varying the number

of projection angles on recognition accuracy and computational efficiency is

discussed in detail in Section 5.

It is worth noting here, that as points in the Radon space are based on

integrals of real space over a line, the Radon transform of several noise types

is constant for all displacements and directions. This constant is equal to the

mean noise value along the line which is typically zero. This robustness to noise

is a significant advantage of using the Radon transform.

15



4.3. Dimensionality reduction

While the above technique of the ridgelet transform is an effective discrim-

inatory representation of face images (as proven in Section 5), the size of the

feature vectors are still relatively large (e.g. length of image = 23,348 for typical

case of θinterval = 3◦). We therefore apply PCA to further reduce the dimen-

sionality of our feature vectors. This allows us to discard a tunable number of

components depending on specific application requirements.

Belhumeur et al. [3] suggested that the first three principal components

typically capture the image variation due to lighting effects. Discarding these

components therefore may reduce such detrimental effects. Indeed, we test this

in Section 5 of this paper. Note however, that the key results in this paper

are based on surface normal data, not intensity, and so this step should be

unnecessary. This is an important advantage of our method, along with other

3D face recognition techniques.

4.4. Scatter maximisation

In order to maximise scatter between individuals (classes), we apply the

technique of LDA to the selected number of principle components. This has

the effect of projecting training images of identical subjects closer together in

the subspace, while forcing different subjects further apart. This stage of our

method is identical to the standard Fisherface technique [3].

4.5. Classification

Face recognition is carried out by projecting the FRIT of training and probe

images into the PCA then LDA subspaces and computing the Euclidean distance

between the resulting feature vectors and the probe image feature vector. The

identity of the probe is simply taken as the closest matching feature vector in

the training set. In our experiments, we also show classification results without

applying all the stages of the method. For example, we compare the results of

the full method to those without projecting the feature vectors into LDA space.

We also compare the results to standard PCA and Fisherfaces (i.e. without

applying the FRIT).

16



Table 1: Size of different databases and image format in each database.

Size

Database (No. of subjects × Image dimensions

No. of samples per subject)

ORL 40× 10 112× 92

Yale 15× 13 243× 320

faces94 152× 20 200× 180

PhotoFace 60× 6 273× 273

5. Results

In this section, we present experimental validation of our method and op-

timise the recognition procedure. Our experiments consist of (1) applying our

methods to existing 2D databases, (2) applying the methods to the albedo im-

ages from our own PhotoFace database [6], and (3) application to the surface

normals in the PhotoFace database. Note that we would generally expect better

results using the albedo image compared to raw 2D images since the albedo map

is inherent to the subject, while the raw images are illumination dependent. For

the existing databases, we use ORL [56] (uniform lightning condition, different

poses with no expression variations), Yale [57] (frontal images, varying light-

ning conditions, single pose with strong expression changes) and faces94 [58]

(frontal images, uniform lightning conditions, single pose with little expression

variation). Table 1 summarises the size and format of these databases. N.B. We

only use the subset of the available PhotoFace data described in [6] as we select

the subjects with sufficient training images only.

5.1. Experiments on 2D databases

5.1.1. Experiment 1: Variation of number of projections

Our first experiments relate to the application of the ridgelet transform on

standard 2D face databases. The ridgelet-transformed data are not projected
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Figure 6: Recognition rates as a result of varying the number of projections. Equal number

of projections marked on x-axis indicates projections taken at different angles.

into PCA subspace, but used directly for classification. The recognition results

are shown in Fig. 6, which also presents the effect of the number of projections on

performance. For 180, 45 and 26 projections, we get almost the same accuracy,

suggesting that a low-resolution representation of the faces in Radon space is

sufficient to maintain reasonable recognition. The faces94 database has the

best overall results due to the inclusion of less expression, lightning and pose

variation as mentioned in the descriptions above.

For the cases where only two or three projections are used (for which it is

debatable whether or not “Radon space” is a suitable name), the recognition rate

depends on which specific projection angles we choose. Clearly some projections

are better in capturing directional features than others. A few variations of

projection angles are shown in Fig. 6 to illustrate this.

5.1.2. Experiment 2: Variation of angle of projection

Motivated by the decreasing recognition rates to the right-hand-side of Fig. 6,

we next present results of a simple experiment that uses only one Radon pro-

jection to obtain the feature vector. This allows us to specify which projecting

angle best extracts the most discriminating information. The graph shown in

Fig. 7 shows that the maximum accuracy occurs at a projection angle of 90◦
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Figure 7: Recognition rates as a result of varying a single projection angle.

(horizontal). As the ridgelet transform specifically extracts the directional fea-

tures of the face images, this result suggests that directional features of faces

along horizontal lines such as eye brows, lips and eyes offer useful information

to effectively distinguish faces. This result is conducive to the findings of Dakin

and Watt [59] who show through psychological experiments that human ob-

servers rely more on horizontal features that other directions. In addition, it

may be that pose variation (the most common in practice is yaw) is cancelled

out best with such horizontal integrations (sums). Confirmation and expansion

of this point remains the focus of future work. Finally of note for Fig. 7 is that

a surprisingly high recognition rate is possible from just a single projection.

5.2. Experiments on the PhotoFace database – albedo images

The PhotoFace database [6] consists of grayscale albedo images as well as

a dataset of surface normals, [px, py, pz]
T . Various experiments are performed

using the dataset and different algorithm combinations are compared to each

other (by comparing the effects of omitting various blocks from Fig. 2).

5.2.1. Experiment 3: Preliminary tests

To commence, we tested standard PCA and Fisherfaces on the PhotoFace

database to set a benchmark for Ridgefaces algorithm. The results are presented

in Table 2. The table also shows the first result of the ridgefaces algorithm using
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Table 2: Result of testing standard algorithms and ridgefaces on the PhotoFace database.

Algorithm Recognition Rate

PCA 63%

Fisherfaces 78%

Ridgefaces 90%

60 Radon projections and 300 principle components. The ridgefaces algorithm

vastly outperforms the classical methods here.

5.2.2. Experiment 4: Effect of discarding principle components

As mentioned in Section 4.3, discarding several first principle components

(PCs) can significantly reduce effects due to lightning variation in some circum-

stances. However, one would expect this to have little effect on our data since

the albedos and surface normals should be illumination invariant (one of the

strengths of our method). To verify this, we have plotted the recognition rates

resulting from the various algorithms, with several PCs discarded, in Fig. 8. The

results are as expected, with the exception of a significant increase in recognition

for the ridgefaces algorithm when the first PC is discarded. The precise reason

for this is not clear at present. Figs. 9 and 10 shows the result of discarding

PCs and using fewer projections.

5.2.3. Experiment 5: Effect of scaling images

This section demonstrates the effect of image resolution on the algorithms.

Fig. 11 shows this effect by plotting the recognition rate for each method af-

ter the albedo images have undergone a linear subsampling. In order to make

the comparisons fair, we use the number of projections and discarded PCs that

gave best overall results for each algorithm. The number of projections for

Ridgelet-PCA is 15 and for ridgefaces is 30. The number of principle compo-

nents discarded are 1 for PCA, 3 for Fisherfaces, 5 for Ridgelet-PCA and 1 for

Ridgefaces.
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Figure 8: Result of discarding PCs on recognition rate using different algorithms (ridgelet-

PCA refers to the ridgeface algorithm with the omission of LDA projection). N.B. number of

projections = 60, full resolution images, total number of PCs = 300.
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Figure 9: Result of discarding PCs on recognition rate (Ridgelet-PCA).
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Figure 10: Result of discarding PCs on recognition rate (Ridgefaces).
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Figure 11: Comparison of algorithms for best recognition rate versus scale factor.
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Figure 12: Result of varying number of projections on recognition accuracy (Ridgefaces).

From the plots, it can be observed that the Ridgefaces algorithm gives the

consistently best recognition accuracy. It can also be seen that for PCA and

Fisherfaces, the recognition accuracy increases as the images are scaled down.

However, the Ridgefaces and ridgelet-PCA algorithms show little of this ef-

fect. This effect may be due to PCA and Fisherfaces benefiting from the high-

frequency suppressing effects of the downsampling, while the other two methods

have already filtered out the high-frequencies during the ridgelet transform pro-

cedure.

5.2.4. Experiment 6: Effect of varying the number of projections

The number of projections has a significant effect on the performance of

the algorithms. The effect of varying the number of projections on recognition

accuracy for the Ridgefaces algorithm is shown in Fig. 12 at various resolutions.

Not surprisingly, a larger number of projections results in higher recognition

accuracy. At the same time however, a very high recognition rate is possible

using a relatively small number of projection angles. This result is conducive to

the results in Fig. 6.

5.2.5. Experiment 7: Computation time

In this experiment, the computation time of the various algorithms are com-

pared. For this test, the number of PCs discarded, the scaling factors and

23



Table 3: Time taken to recognize a single albedo probe image for different algorithms (using

optimum parameters).

Algorithm Time Recognition Rate

Fisherfaces 19.34 ms 90%

PCA 27.36 ms 83%

Ridgefaces 27.93 ms 93%

Ridgelet-PCA 34.25 ms 85%

the number of projections are set to give the best recognition rate for each al-

gorithm as before. The computation time to recognise a single probe image

is measured for different algorithms. The corresponding recognition accuracy

is also calculated and both are shown in Table 3. The Fisherfaces algorithm

shows the best speed performance for this test, followed by PCA, Ridgefaces

and ridgelet-PCA. Note however, that all four computation times are competi-

tive and that the Ridgefaces algorithm gives best recognition rate. The purpose

of this experiment was to give a relative time, rather than absolute. For refer-

ence however, these tests were carried out on a Windows 7 PC with dual core

1.67 GHz processor under MATLAB v7.10.

5.3. Experiments on the PhotoFace database – surface normals

Surface normals provide orientation information of the surface at each pixel

location. This experiment is carried out to examine the contribution of ori-

entation information to the face recognition accuracy and performance. We

experiment on each of the x, y and z components of surface normals (px, py

and pz respectively) as well as their `n-norms. Recognition rates for individual

components are shown in Fig. 13 and Table 4. Referring to these results, we

note that the surface normals yield better results compared to the albedo data.

Note that the most suitable combination of surface normal components to use

was the `1-norm of [px, py]
T

or py alone. Indeed, the best case was able to attain

100% recognition. Note also that the superior performance using py compared
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Figure 13: Plot of recognition rate vs. scale factor for individual components of surface nor-

mals.

Table 4: Recognition rates for different combinations of px, py and pz

Recognition rate

(px, py) (py, pz) (px, pz) (px, py, pz)

`1-norm 100% 98.67% 95.33% 98.33%

`2-norm 93.33% 90% 80% –

`∞-norm 98.33% 93.33% 96.67% 96.67%

to px is conducive to the results in Section 5.1.2.

6. Discussion

The controlling parameters for the ridgelet algorithm are the number of

projections and angle of projections (the latter is only significant if there are

just few projections used). We adjusted these parameters to test how they affect

the recognition accuracy and computation time. The results showed that even

with a relatively small number of projections, the system can be very accurate to

give high recognition rate. Indeed, the recognition rate was almost identical for

the cases where 180, 60 and 30 projections were used. The number of projections

is directly proportional to the size of the transformed image in Radon space and

it has direct consequences on the system performance. For the faces94 database,
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we attained a very high recognition rate (97%), even with a single projection

of the ridgelet transform. A single projection therefore has a great deal of

information content to correctly recognise a face. This is an important aspect

of the ridgelet transform for face representation which has been largely ignored

until now. We also attained different recognition rates using the same number

of projections but at different angles. However, we are not yet certain about the

causes of this behaviour and so we reserve further discussion for future research.

The experiments on varying the number of discarded PCs for albedo images

confirmed little variation as expected. The performance of PCA and ridgelet-

PCA however, did show significant improvement when the first PC was dis-

carded. On the other hand, Fisherfaces and Ridgefaces algorithms showed little

effect of this variation. Scaling the image was another crucial parameter in the

tests, showing major effect on the recognition accuracy for the classical methods

of PCA and LDA. For these cases, lower resolution images yielded significantly

better recognition accuracy than higher resolution images. This is perhaps due

to poor image alignment having a greater effect on high-frequency features.

However, when the ridgelet transform was used, this effect did not manifest.

Our final experiments showed that surface normals recovered from PS provide

convincingly better recognition rate than any other form of data we considered.

The computation times were competitive to state-of-the-art for all methods,

although the ridgelet methods were slightly slower than standard Fisherfaces.

Finally, we showed that our method is highly robust to low resolution images

and fewer projections. This permits flexibility in our algorithm, providing a

useful trade-off between accuracy and efficiency.

From all the results and the overall discussion, we defined the best system

parameters as shown in Table 5. We have compared this to another state-of-

the-art method that has shown great promise for our type of data: that of

Elastic Graph Matching (EGM) [60]. Specifically, we have applied the Elastic

Bunch Graph Map [61] where the face is represented as a graph and the nodes

are feature vectors generated via Gabor filters or, as in our case, morphological

features [62]. This alternative approach was also able to attain 100% accuracy.
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Table 5: Optimum system parameters.

Parameters Value

Algorithm Ridgefaces

Modality px and py (`1-norm)

Recognition accuracy 100%

Scale factor 0.1

Number of projections 30

Number of PCs discarded 0

Indeed, the EGM approach has the advantage that image registration is built

into the algorithm, diminishing the need for image cropping. However, this

advantage comes at the expense of processing time: the EGM method requires

sequential face matching, taking approximately 1.5 seconds per comparison (or

90 seconds to compare to our gallery of 60 faces).

7. Conclusion

This work has made several major contributions to existing technologies for

automated face recognition. The paper has proposed a novel technique that

combines the classical method of Fisherfaces, the modern concept of ridgelet

transforms and the 2.5D shape estimation technique of photometric stereo. De-

tailed experiments have been conducted to test the algorithm under different

critical conditions. The results showed the superiority of the algorithm over the

standards methods. We considered the ridgelet transform, PCA and LDA as

separate blocks and integrated them into one complete system. Each block has

its own advantages which contribute to the overall performance: the ridgelet

transform is able to represent the face image data in such a way as to maximise

its discriminating features; PCA allows large-scale dimensionality reduction;

LDA maximises the feature vector difference between subjects; and photomet-

ric stereo renders the data illumination invariant and provides a richer dataset
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than greyscale images alone. In future work, we hope to study the fusion of

albedo and surface normals in more detail and consider the effects of pose and

how integrating the surface normals may help to correct for its detrimental

effects.

In summary, our Ridgefaces algorithm, combined with the PS “PhotoFace”

capture device, offers a competitive face recognition technology. The system

works at low dimensionality, is computationally efficient, is deployable in the

real world and provides high recognition rate. Furthermore, since we are using

3D data, there is potential for pose correction in future work. The primary

weakness of the method is the need for highly controlled illumination to facilitate

the PS process.
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