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Abstract: Scientific communities are actively developing services to exploit  
the capabilities of service-oriented distributed systems. This exploitation 
requires services to be specified and developed for a range of activities such as 
management and scheduling of workflows and provenance capture and 
management. Most of these services are designed and developed for a particular 
community of scientific users. The constraints imposed by architectures, 
interfaces or platforms can restrict or even prohibit the free interchange of 
services between disparate scientific communities. Using the notion of 
‘Platform as a Service’ (PaaS), we propose an architectural approach that 
addresses these limitations so that users can make use of a wider range of 
services without being concerned about the development of cross-platform 
middleware, wrappers or any need for bespoke applications. The proposed 
architecture shields the details of heterogeneous Grid/Cloud infrastructure 
within a brokering environment, thus enabling users to concentrate on the 
specification of higher level services. 
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1 Introduction 

Scientific communities are increasingly building high-level distributed services such as 
analysis services, workflow and scheduling services, monitoring services and provenance 
services. These services or applications help scientific users to analyse their data, to 
manage, to monitor and optimise computational infrastructure, to extract knowledge and 
to share it with other users. Most of these services are designed and developed for a 
particular computing platform [such as the gLite Grid middleware; Kretsis et al. (2009) 
or the OpenStack Cloud platform; OpenStack (2011)] and for a specific community of 
scientific users, for example molecular or biomedical analysis (Koehler et al., 2010). It is 
often difficult to share or re-use services from one community with another community 
due to architecture, interface or platform limitations. Similarly, the services developed 
for one platform such as Microsoft Azure (Microsoft Windows Azure Platform, 2011) 
cannot be deployed in another computing environment such as Amazon Web Services 
(2011a) due to stack mismatch and interoperability issues between the service providers. 
This has become particularly critical in the case of distributed infrastructures such as 
Grids and Clouds that host a number of high-level applications. 

An application designed and developed for one Grid middleware, despite resource 
sharing, is often challenging to run on another platform thus limiting the wide scale 
adoption of this technology. This is particularly prevalent for Cloud providers, since 
there is a tendency to adopt proprietary standards for service implementation, which 
inhibits the generalisation of service specifications, and leads to a consequent Cloud 
platform lock-in. As Grid technologies evolve onto Cloud platforms the situation 
worsens further since either the applications need to be redeveloped for the emerging 
platforms or significant changes are required to adapt the applications for the newer 
platforms. This is further compounded when Cloud stacks offer almost similar features, 
and services cannot cooperate due to technical or architectural limitations. Choosing a 
Cloud infrastructure or platform means a commitment for the whole application execution 
life. As such, an application is bound to a platform and users have limited choice if they 
intend to change an infrastructure provider in future. The potential wasted effort as well 
as the added investment required presents a significant barrier to the adoption of Cloud 
technologies. Since applications for Grids and Clouds are relatively tightly coupled to the 
underlying platform and we are presented with two significant issues. Firstly, typical 
Grid and Cloud services such as resource management, scheduling, monitoring and 
security policy management are specific to the platform and therefore users must acquire 
and maintain specific expertise related to the Grid or Cloud infrastructure used. 
Secondly, an application that itself exhibits heterogeneity before deployment to a Grid or 
Cloud requires a specific implementation that further increases the coupling of the 
application to a particular infrastructure. Grid and Cloud infrastructures and platforms are 
designed in such a way that an application has to be horizontally as well as vertically 
integrated with the underlying platform to achieve the desired performance guarantees, 
throughput and optimisation. Isolation, encapsulation, ad hoc communication and 
transparent contract negotiation between the platform and applications has generally not 
been considered in the design and development of the Cloud as well as Grid platforms. 

As a result of these design practices, any changes in platform middleware, or a desire 
to move from one Grid or Cloud provider to another, will require a significant amount of 
application re-development (Uehara, 2011). Consequently users have a fundamental 
dilemma in terms of weighing-up the eventual value of the system against fundamental 
application re-development costs. Though most Grid and Cloud platforms claim to 
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follow a service-oriented paradigm, the current stacks only partially implement Service-
Oriented Architectures (SOA), and most of the time any benefits of SOA cannot be 
exploited due to the architectural choices that have been followed to implement the 
Cloud and Grid platforms. This clearly does not enable the benefits of a service-oriented 
approach to be realised, whereby users should be concentrating upon their core business, 
rather than the engineering requirements of their underlying infrastructure. 

Whilst the marketing hype surrounding Grid and Cloud computing often promises 
elasticity of resources, ubiquitous access and abstraction from heterogeneity (Jeffery and 
Neidecker-Lutz, 2010), the reality is often somewhat different, and as long as application 
portability, compatibility and interoperability with underlying infrastructures remain a 
challenge (Kertész and Kacsuk, 2009), the true potential of the Grid and Clouds 
platforms cannot be realised. For instance, if an application’s needs cannot be addressed 
by a local Grid/Cloud infrastructure, the ability to add capability on demand by calling 
upon third party Grid or Cloud services, irrespective of where and how they are hosted, is 
still problematic and far from the promise of ‘utility computing’. As described earlier, 
service-based infrastructures tend to be constrained by the suppliers of the platforms, thus 
acting as a disincentive towards the wider utilisation of Grid and Cloud platforms. If an 
application is built upon a combination of local resources and commercial resources 
(such as Amazon Web Services, 2011b; Rack Space Cloud Hosting, 2011), any future or 
emerging business requirement to adapt or transfer to other platforms will require 
application re-development, which does not faithfully follow a service-based model of 
computing. A purer form of Platform as a Service (PaaS) and IaaS should enable the 
users to run their applications as a utility consumption, without being concerned with 
whoever is providing the infrastructure, what platform or protocol has been used or how 
to switch to a different computing infrastructure provider. The non-availability of such an 
environment is therefore a fundamental barrier towards the pervasive adoption of Grid 
and Cloud platforms demanding concrete steps to be taken to address the limitations. 

This is far from ideal for users, who not only have preferences in using tools and 
technologies for their analysis, but also may resist the introduction of new interfaces or 
attempts to customise their applications. This takes up significant time and resources in 
understanding the platforms and technologies, which should be spent on solving the 
scientific or business challenge. Essentially, this trend drives users away from their core 
business and discourages them from exploiting Grid or Cloud resources. If a decision is 
made to exploit these alternative platforms, then users must invest considerable time to 
understand the platform, its interfaces, underlying protocols and technologies before 
high-level applications to exploit the computer and data resources available can be 
written. There is no platform or service available that can enable users to abstract these 
details so that they only focus on the application level, with the underlying complex 
infrastructure details remaining hidden (unless, of course, it is important for increasing 
the performance of an application or for other users’ needs). The problem is exacerbated 
by frequently changing platforms, technologies and interfaces, which force users to re-
design and re-implement their applications. This restricts the adoption of computing 
platforms made available through Grid and Cloud technologies, which are anticipated as 
deployment platforms for better performance, scalability and serviceability of applications. 

In this paper, we propose a platform that addresses the limitations stated above. We 
extend the notion of PaaS to address platform, interface and technology limitations, to 
ensure that users do not need to worry about the lower level details of a platform for 
cross-community applications. Using a service-oriented platform, a brokering environment 
is offered which shields the heterogeneity of distributed resources present in Grids and 



   

 

   

   
 

   

   

 

   

    Glueing grids and clouds together    
 

    
 
 

   

   
 

   

   

 

   

       
 

Clouds. This platform (referred to as the Glueing Platform (GP) thereafter) supports 
applications by allowing concurrent access to a number of platforms, by shielding the 
underlying infrastructure details from users and applications, thus enabling users to 
implement higher level services. The platform provides features such as workflow 
enactment, execution control and monitoring, provenance and tracking, concurrency 
management at the application level, scalability to support a number of applications and 
users, and security. The GP exposes the Cloud Data Management Interface (CDMI) 
(SNIA, 2011), Open Cloud Computing Interface (OCCI, 2011; OGF Working Group, 
2011), Open Virtualization Format (OVF) (Wikipedia, 2011) and Simple API for Grid 
Applications (SAGA) (Jha et al., 2007) implementations as a distributed service using the 
service-oriented paradigm. Briefly, the key advantages of the GP are: 

 It provides (using OCCI and SAGA) a standard way of accessing Cloud and Grid 
services without tying down services and applications to a particular Cloud or Grid 
middleware. 

 It enables access to any deployed Grid or Cloud middleware through a service-
oriented brokering environment. 

 It offers a solution that enhances re-usability of existing services across disparate 
domains and applications. 

 It facilitates development productivity by offering a service-based approach to shield 
users from complex Grid and Cloud functionality. 

 It offers an easy to use approach for enabling clients to port their applications to 
Grids or Clouds (or both), without installing and maintaining too many Grid and 
Cloud specific libraries. 

The paper proceeds as follows. Section 2 discusses the GP architecture and describes the 
considerations that went into the design of the platform. Section 3 presents the role  
of Cloud standards in the Glueing Platform and Section 4 describes an exemplar case 
study about the usage of the platform. Section 5 describes the enactment and execution 
details of the platform. The services and components in the platform are then described  
in Section 6. These are the core APIs that enable the user to access the platform 
functionality. Section 7 concludes the paper and identifies opportunities for future work. 

2 The Glueing platform architecture 

The high-level architecture for the Glueing Platform (GP) is shown in Figure 1. The GP 
sits between the infrastructure and the applications and provides the required 
independence from the underlying platforms. A user does not need to know about the 
lower level APIs or protocols, as components and services are provided to enable access 
to the underlying compute and data resources in a Grid or Cloud. The services in the 
platform include authentication and authorisation services, scheduling and resource 
management services, monitoring and provenance services, data access and browsing 
services and enactment and execution services. To interact with heterogeneous middleware, 
an adapter-based approach has been followed, that implements middleware for each 
supported Grid or Cloud in the GP. The GP enables applications to be platform agnostic 
by exposing suitable interfaces that can be accessed to run an application, to browse data, 
to monitor the execution details or to retrieve the provenance history. The user side 
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interfaces remain the same irrespective of the underlying platform or infrastructure and 
the GP takes care of the evolving interfaces and components at the platform and 
infrastructure levels. The API details are described in the following sections. 

Figure 1 The Glueing Platform architecture (see online version for colours) 

 

The GP exposes the OCCI as a web service in order to achieve interoperability and 
portability across the Cloud platforms. The OCCI interface provides an API specification 
for remote management, monitoring, scaling and deployment of Cloud computing 
infrastructure. All aspects of virtualised service life cycle management have been 
considered in the OCCI specification and its implementations. The OCCI specification 
depends on the CDMI standard, developed by Storage Network Industry Association 
(SNIA), to create, update, retrieve and delete data from Cloud. The CDMI manages all 
aspects of data movement and migration between storage services in Clouds through 
standard interfaces. There are some overlaps between CDMI and OCCI interfaces but in 
general the consensus is that data and storage operations come under CDMI and 
compute, security and infrastructure issues are dealt with OCCI. Further details on how 
OCCI and CDMI are integrated and how data and virtual machines are exported using 
OVF are discussed in Section 3. 

The GP exposes the SAGA implementation as a web service to address the objectives 
described previously. SAGA is an open standard that is defined and maintained by the 
Open Grid Forum (OGF, 2011), which describes a high-level interface for easy 
programming of Grid/Cloud applications. SAGA is not designed for middleware 
developers; rather it provides APIs for developing applications using different Grid or 
Cloud middleware. The SAGA API permits a job to be executed on a particular middleware 
by the runtime loading of a middleware adaptor. SAGA middleware adaptors pass jobs to 
the middleware as its clients and are responsible for low-level communication with it. 

The high-level interfaces, provided by SAGA, for communicating with different 
middlewares, remove the need for the use of middleware specific APIs. For example, if 
an application intends to use three different middlewares, then the application has to use 
a different API set for interacting with each middleware. SAGA, on the other hand, 
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provides a single generic API to interact with every middleware whose adaptor is loaded 
in the application. Thus, the GP, using SAGA, ‘glues’ a number of client applications 
together with different middleware using the relevant adaptors. The GP wraps the SAGA 
API and provides a WSDL binding for client applications. There are numerous advantages 
of this approach, compared to more traditional means whereby the client applications 
directly use the SAGA API implementation. The most important reasons for adapting a 
web service-based approach to SAGA are now detailed.  

SAGA implementations come packaged in two parts: middleware adaptors and the 
API. The client uses the API to communicate to the Grid middleware via the appropriate 
adaptor. In order for the adaptor to communicate with the Grid middleware the client 
application, SAGA API and the adaptor must be deployed on a system which has the 
core middleware packages installed, deployed and configured. For instance, consider a 
user who wants to submit a job to a Condor (Thain et al., 2005) cluster deployed as part 
of an OMII (Distributed Systems Technology Centre, 2004) middleware Grid. The client 
application must be deployed on a node, which has the OMII middleware client installed, 
and Condor installed and configured in submit only mode. If in future the application is 
ported to another middleware, the client application must be deployed on a machine 
which has the new middleware installed. This increases porting costs and introduces 
complex installation and deployment procedures for applications which make the life of 
common users quite difficult. SAGA is an evolving standard. Currently, there are 
numerous things which are not provided by the SAGA API. Workflows are one of them 
and discovery is another. The Glueing Platform can be used as a means to providing 
functionality, which is not currently provided by SAGA. In this scenario, the Glueing 
Platform would expose all of SAGA’s capabilities. In addition it would also expose 
higher level functions which SAGA does not provide; however, they deal with the Grid 
middleware and are required by client services. 

The GP shields users from these highlighted difficulties, and deploys the adaptors and 
middleware at the location of the GP host. Clients interact with the GP via a standard 
web service-based infrastructure. In this scenario, if the middleware needs to be changed, 
all that the clients require a new end point to an appropriately deployed GP. In order to 
make the GP SAGA compliant, two separate WSDL descriptions have been provided, 
one of which points to the full SAGA implementation, and the other describes the 
extended functionality (which is not currently supported by SAGA). Both WSDL 
descriptions map to the GP. Additionally, the GP exposes SAGA API functions as web 
service methods and provides a one-to-one correspondence to the SAGA API functions. 
Client applications can transparently access the GP by using a SAGA SOAP adaptor, 
which is an implementation of the adaptor API provided by SAGA. The clients can 
include the SAGA SOAP adaptor and can write applications using the standard SAGA 
API classes. The SAGA API calls, generated on the client side, are passed to the GP by 
the SAGA SOAP adaptor, which is responsible for all communication with the GP. The 
SAGA SOAP adaptor is a middleware between the client applications and the GP. The 
client applications define, create and submit jobs according to the standard specification 
of SAGA (Goodale et al., 2008). These instructions are then translated into SOAP 
requests by the SAGA SOAP adaptor. SOAP requests are used for communication with 
the Glueing Platform. The Glueing Platform actually executes the client instructions 
using SAGA APIs and middleware adaptors. The SAGA SOAP adaptor has methods to 
discover the GP and to retrieve its end point URL. The end point URL is used to access 
the service WSDL, which is then used for service invocation. The WSDL describes the 
definition of all the exposed methods. The SAGA SOAP adaptor calls the published 
methods using SOAP requests and the Glueing Platform sends back the SOAP response 
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to the SAGA SOAP adaptor. The SAGA SOAP adaptor then translates the SOAP 
response and returns the execution results to the client in the form of Java or SAGA 
specific objects. Figure 2 shows a scenario where a SAGA SOAP adaptor interacts with 
the GP. The SAGA SOAP adaptor passes the middleware and job information to the 
Glueing Platform using SOAP objects and the SOAP response is sent back to the SAGA 
SOAP adaptor from the GP. 

Figure 2 A sample use case (see online version for colours) 

 

3 Cloud standards and the Glueing platform 

As stated earlier, the standard specifications have been developed to achieve interoperability, 
portability and to provide elegant communication and integration between heterogeneous 
components and services that access various features from different Cloud platforms. 
Cloud platforms are proprietary and vendors have implemented their own interfaces  
and access mechanisms, and without standard interfaces and specifications, it will be 
impossible to achieve infrastructure interoperability and application portability across 
various Cloud platforms. Sensing the gravity of the situation, organisations have worked 
together to develop industry and community standards for seamless communication, 
integration and interoperability of Cloud stacks and platforms. The three most important 
issues that have been addressed include the following: 

 OCCI: monitoring, management, scalability and deployment of Cloud infrastructure. 
This allows runtime management of compute infrastructure.  

 CDMI: creation, retrieval, removal and updating of data sets. This allows runtime 
management of storage infrastructures. 

 OVF: exchange of data and virtual machines in a standard machine readable format. 
This provides a means to package virtual infrastructures that can be imported or 
exported based on the service deployment requirements. 

Figure 3 shows the communication that happens between the Glueing Platform and  
these standard implementations to achieve application portability and infrastructure 
interoperability. 
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Figure 3 Clouds standards and the Glueing Platform (see online version for colours) 

 

For example, a user may plan to deploy a Cloud service for a scientific analysis. The first 
thing the user should do is to create the service, test it and provide the necessary 
resources to make the service scalable so that it can cope with the user demand. Once the 
basic building blocks have been made available and the scalability issues have been 
resolved, the next important thing is to make the deployment exportable so that the same 
deployment can be made available in case of a failure or if more than one sites need  
to commissioned for fault tolerance or another infrastructure providers need to be 
considered for cost savings. 

The service deployment, availability management and scalability are addressed by the 
OCCI. The Glueing Platform will trigger the OCCI interface to deploy the service and 
carry out the scalability and management operations. The storage management is a 
function of the CDMI and the Glueing Platform invokes the CDMI interface to store, 
retrieve, update and remove files from the Cloud storage devices. In case the service was 
already deployed and a new instance of the service needs to be created, the Glueing 
Platform will call the OVF interface to export or import the service instances. The virtual 
machine instances can be migrated between the resources within or between the data 
centres using the Distributed Management Task Force (DMTF) based specification  
and implementations of the OVF standard. The Glueing Platform, using the standards 
specifications and tools, offers platform and infrastructure portability. Users are free to 
move their applications and services across different Cloud platforms and infrastructures.  

The Glueing Platform is the first point of contact for users and applications to deploy 
or use services and to manage and monitor the infrastructures. The applications do not 
have to access platform specific libraries or components to provide the service and are 
free to move to another infrastructure or a Cloud platform. The Glueing Platform takes 
care of all the low-level details that deal with the standards interfaces and components. 
The Glueing Platform architecture is flexible enough to accommodate new requirements 
and standards such as audit and security from Cloud Security Alliance (CSA). The 
Glueing Platform brings all these into a single framework and users are provided a 
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simple to access service and in return they get benefits from all the standard-based 
implementations of tools and technologies for deploying, operating and managing the 
infrastructures. This approach makes the applications and services to be widely deployed 
on a number of platforms, avoids vendor lock-ins and promotes interoperability and 
application portability. 

4 Case study 

The architecture diagram (Figure 4) shows how an application contacts the GP. The 
pipeline service, as shown in Figure 4, is one of the potential applications of the GP. This 
service uses the SAGA APIs and SAGA SOAP adaptors to communicate with the GP. 
The SAGA SOAP adaptor accesses different methods of the GP by getting its WSDL. 
The methods published in the WSDL execute the actual instructions which are generated 
on the client side. Thus, the pipeline service initiates a Grid activity which is then 
forwarded to the GP by the SAGA SOAP adaptor. The GP, as shown in Figure 4, can 
communicate with different Grid middleware such as OMII/GridSAM (Lee et al., 2005) 
or gLite, etc. This allows client applications, such as pipeline service, to use Grid 
resources provided through different middleware. The GP uses the JavaGAT (van 
Nieuwpoort et al., 2007) middleware, which is a SAGA implementation, and OMII 
adapters to communicate with the OMII middleware. 

Figure 4 Glueing Platform and grid middleware (see online version for colours) 

 

GP client applications, such as the pipeline service in the neuGrid project (Redolfi et al., 
2009), allow clinicians and neuroscientists to create neuro-imaging pipelines, in a user 
friendly environment, for a series of automated transformations on brain images. Once 
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the pipelines are constructed, the neuro-imaging pipeline service parallelises them. The 
processes defined in the pipelines are usually very compute-intensive and deal with large 
amounts of data. Therefore, in the next step the workflows are modified for their optimal 
execution over the Grid. 

The neuro-imaging pipeline service, using the GP, submits the workflows to the Grid 
for their execution and the results of execution are returned to the client interface of 
pipeline service. A simplified design of the pipeline service is shown in Figure 5. 

Figure 5 Pipeline service (see online version for colours) 

 

The neuro-imaging pipeline service passes workflows, or sequences of processes, to the 
Glueing Platform. The Glueing Platform exploits the SAGA system and executes the 
processes in the workflows on the Grid using appropriate Grid middleware. The results 
of execution are passed over to a provenance service and eventually reach back to the 
client. 

5 Execution and enactment in the Glueing platform 

The Glueing Platform offers an environment where workflows and applications can be 
executed in a platform neutral manner. The components of the Glueing Platform to 
achieve a platform-agnostic enactment are shown in Figure 6. The Platform treats every 
user activity, whether it may be an application, user query or series of actions, as a 
workflow. This enables the platform to perform a series of actions on the queries or 
users’ steps to plan and orchestrate the execution for a maximum throughput. This also 
enables the users to optimise their queries and workflows by performing a number of 
intelligent actions based on the concepts described by Cho et al. (2011) during the 
planning phase to save costs and times. 

Every user query or job is charged by the Cloud providers; minimising the number of 
jobs will save costs. Similarly, by planning their activities, users can remove redundant 
tasks, group similar tasks or schedule their activities on resources in Clouds which can 
provide users improved throughput. Considering the consequence of these actions, 
queries or workflows can do more in less time, and can lead to intelligent and adaptive 
practices in Clouds (Sun et al., 2011). Users can select resources on which they can 
execute their workflows or jobs and they also have control on the choice of the authoring 
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environment. They can author their queries or workflows in an environment such as 
Kepler, or they may use a simple command line tool, as their actions can be passed on to 
the planning component in a structured format. As shown in Figure 6, the architecture  
of the Glueing Platform is flexible and any suitable authoring environment can be 
accommodated. 

Figure 6 Enactment in the Glueing Platform (see online version for colours) 

 

After authoring a query or workflow, the users invoke their submission. At this stage, 
several things can happen: firstly, the authored query, process or workflow that is 
represented in a format which is native to the authoring environment can be translated 
into a common platform model. This model can be an object-oriented model of the query 
or workflow or this can be translated into another format which is convenient to the 
planning engine. After workflow translation, architecturally the workflow should be 
planned for its execution. In the planning stage, a number of intelligent strategies can be 
evaluated for an optimal execution of the workflows or processes. The planned 
workflows or jobs can then be submitted to a Cloud or Grid for execution. The execution 
can be task based or there could be pre-deployed service instances to support the 
execution. In both cases, an appropriate enactor prepares the environment for execution 
by discovering suitable resources and scheduling the jobs/workflow onto these resources 
by performing matchmaking and mapping processes. Once appropriate resources have 
been shortlisted; the enactor component schedules the jobs/workflows for execution. A 
monitoring component keeps track of the execution process and a status update is 
reported to the user in intervals. The results, execution traces and their provenance logs 
are sent to the users to make it a transparent execution. 
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6 Platform components and functionality 

The SOAP adaptor as described in Section 5 requires a service end point URL to 
communicate with the Glueing Platform. The end point URL is used to access the service 
WSDL, which is then used for service invocation. The WSDL describes the definition of 
all the exposed methods. The SOAP adaptor calls the published methods using SOAP 
requests and the Glueing Platform sends back SOAP responses to the SOAP adaptor. The 
SOAP adaptor then translates the SOAP response and returns the execution results to the 
client in the form of Java or SAGA specific objects. 

Figure 7 shows a scenario where the SOAP adaptor interacts with the Glueing 
Platform. The SOAP adaptor passes the middleware and job information to the Glueing 
Platform using SOAP objects and the SOAP response is sent back to the SOAP adaptor 
from the Glueing Platform. The exposed functions of the Glueing Platform are 
specifically discussed in detail in the following sections. 

The GP exposes SAGA APIs in the form of a web service (or web services) which 
allows client applications to create, run and monitor jobs transparently from the 
underlying Grid middleware. The client applications, using the SAGA SOAP adaptor, 
pass job and middleware information to the Glueing Platform. The platform loads  
the appropriate middleware adaptor, based on the middleware information. For example, 
if a client wants to run jobs or access data on an OMII-based infrastructure, the  
client specifies an OMII/GridSAM middleware; the GP sets a system property 
“JobService.adaptor.name” equal to “javaGAT”. This system property behaves like an 
environment variable for the SAGA engine to narrow down the selection of middleware 
adaptors. The GP then makes sure that JavaGAT loads a Grid SAM adaptor by creating 
an appropriate session and context for SAGA. The context is a specific piece of 
information that is shared with a particular session. An application may associate 
different contexts with a particular session in order to perform different functions in that 
session. 

Figure 7 Information flow between SOAPAdapter and the Glueing Platform (see online version 
for colours) 
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The GP creates a preferences context for JavaGAT to make sure that it loads the 
GridSAM adaptor. This is done by setting the context property “ResourceBroker. 
adaptor.name” equal to “Gridsam”. This context is then added to the application session 
for further reference during the lifetime of the application. Once the session is created the 
GP creates a job, based on the job information sent by the client application. The GP uses 
SAGA job management APIs for creating a job, submitting it to the available Grid 
resources and retrieving its status. The SAGA job management API covers four classes: 
JobService, JobDescription, Job and JobSelf. The order in which the GP uses this job 
management and other APIs is as follows:  

6.1 Selecting a resource manager 

The JobService API is used to select a resource manager. An instance of JobService 
represents a resource manager backend. A resource manager is an end point where the 
job is submitted by the client application. This resource manager can also be an execution 
service if it executes the job. 

Input parameter: To create an instance of JobService class an end point URL of 
resource manager is required as input parameter to create JobService method. 

Example: The GP uses an end point URL for submitting the job to resource manager. 
For example, if resource manager is Grid SAM then an instance of JobService is created 
as: <JobService> js = JobFactory.createJobService (new URL (“https://HOST:PORT/ 
Gridsam/services/Gridsam”). 

6.2 Job definition 

The JobDescription API defines the job using a well-defined set of attributes such as the 
application executable and associate arguments. The JobDefinition attributes behave like 
tags in JSDL/JDL and thus these attributes mimic JSDL for the middleware and are 
passed to it internally by SAGA.  

Input parameters: The JobDescription API needs two essential parameters in order to 
define the job, i.e. the application executable path and the exact application parameters. 

Example: If the application execution is “/bin/echo” which takes a string as input 
parameter i.e. “hello” then the GP, using JobDescription, defines a job as: <JobDescription> 
jd.setAttribute (JobDescription.EXECUTABLE, “/bin/echo”) and <JobDescription> 
jd.setVectorAttribute (JobDescription.ARGUMENTS, new String[] {“hello”}).  

6.3 Data stage-in/-out 

The job execution results can be stored in an output file as: <JobDescription> 
jd.setAttribute (JobDescription.OUTPUT, “outputFile”). The JobDescription class also 
defines resources for data staging. For example, the results of execution can be staged out 
at a remote location using FTP as: <JobDescription> jd.setAttribute (JobDescription. 
FILETRANSFER, “file://HOST:PORT/outputFile < outputFile”). The execution results 
are staged, once execution is complete. The results can be copied by calling the copy 
function of the GP and by passing it source and target URL parameters. 
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6.4 Job creation 

The GP creates an instance of the Job class using createJob function of JobService, which 
takes an instance of the JobDescription class as input parameter. Instances of both 
JobService and JobDescription classes are a pre-requisite for creating a job.  

Example: A job is created as: <Job> j = <JobService> js.createJob ( <JobDescription> 
jd ). The GP executes jobs by <Job>j.run() and an implementation of CallBack interface 
allows it to get monitoring information of job during the course of execution.  

6.5 Asynchronous job execution  

The GP also allows the client applications to run different independent jobs at the same 
time. The feature of running jobs asynchronously is provided by the SAGA 
TaskContainer API. An instance of TaskContainer may contain multiple tasks. A task is a 
SAGA API call, whereas a job is a remotely running application. The SAGA job class 
extends task interface; therefore, a TaskContainer can also contain multiple jobs. The 
jobs are executed asynchronously when the instance of TaskContainer calls its run() 
method. 

Example: If there are two different jobs, j1 and j2 and both copies a file from one 
URL to another then the TaskContainer will add both jobs as: <TaskContainer> T.add(j1); 
<TaskContainer) T.add(j2). The task container will execute these jobs asynchronously as: 
T.run(). 

6.6 Replica management  

The GP also allows client applications to replicate files over Grid resources using FTP or 
GridFTP. If client wants to replicate a file to a Grid resource using GridFTP, he/she can 
do this by calling replicate function of the GP by providing it the location of GridFTP 
server and the source file. 

Example: If the location of the source file is /home/test.txt, the replica is generated by 
first creating an instance of for the source file as: LogicalFile lf = new LogicalFile 
(“/home/test.txt”) and then this file is replicated to a remote server at the server URL as: 
lf.replicate (new URL(“ftp://server:port/test.txt”)). 

6.7 Job monitoring 

The GP monitors a job during its lifetime using callbacks, and it provides two methods of 
retrieving monitoring information. One is to use the higher level implementation, by 
which the client application can invoke the monitor (String jobId) function of the GP to 
get complete monitoring information, associated with a particular job id. In this 
implementation, the GP stores the monitoring information of the job in a string and it is 
returned to the client when (s)he invokes the monitor. The other method of monitoring a 
job is to use a SAGA API function. In this implementation the client first gets the job 
metric and it can then be used to get the metric name and value.  

Example: A job metric can be obtained by using a job instance and the metricName. 
If j is an instance of job as created in Section 6.4 and metricName is Job.JOB_ 
MEMORYUSE then the job metric can be obtained as: Metric m = getMetric 
(j, Job.JOB_MEMORYUSE). This job metric contains the information of memory used 
by the particular job j, while it is in execution. The metric value can be obtained by 
m.value.  
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6.8 Data querying  

The GP also provides a mechanism for querying the data, staged out or replicated at the 
remote locations. The staging end points may contain a number of execution results in 
the form of files. A client may want to query a particular pattern to see the list of files 
present at the remote location. This can be achieved by calling the find(NSDirectory 
nsDir, String pattern) function, exposed by the GP. 

Example: The GP queries a particular pattern using the instance of NSDirectory. The 
instance of NSDirectory points to a remote directory. If the client queries a pattern 
“*.jpg” to list all the jpg files, staged out at the remote directory then the GP fetches the 
list as: nsDir.find(“*.jpg”). 

7 Conclusions and future directions 

The Glueing Platform addresses some major requirements of users who wish to adopt a 
flexible approach to accessing the Grid and Cloud. The heterogeneity of distributed 
resources and details of Grid or Cloud middleware architectures will be obscured from 
users. The GP also hides complexities of interfacing with different Grid and Cloud 
middleware, which will allow access to Grid and Cloud resources through a set of high-
level functions. This is achieved by exposing CDMI, OCCI, OVF and SAGA APIs, all 
communication being achieved through middleware adaptors. This shields the low-level 
middleware difficulties from the user and assists them in using resources with little 
knowledge. The design of the GP is based on service-oriented architecture principles, 
which will help different services and applications to use service functionalities through 
standardised interfaces. This will also allow other client applications to use the Platform 
features by inspecting its WSDL, available online at the service end point URL. 

Future work includes the provision of support for resource discovery [building on the 
work reported by Chuang and Kao (2011)] and improving it to a level so that it may be 
used for production quality needs. Support for workflow composition and enactment is 
another major issue that needs to be addressed (Hasham et al., 2011). The support for 
Cloud platforms such as OpenStack and EUCALYPTUS (Nurmi et al., 2009) also needs 
to be provided, along with support for application hosting, job distribution and 
concurrency. The infrastructure interoperability across disparate platforms also needs a 
solution for semantic interfaces in Clouds and Grids (Flahive et al., 2009; Flahive et al., 
2011) and this is one of the services that we need to integrate in the Glueing Platform in 
future. 
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