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1. Introduction

Adaptive modulation and coding (AMC) is an effective way for improving the spectral
efficiency in wireless communication systems. By increasing the size of the modulation
scheme constellation, the spectral efficiency can be improved, generally at the cost of a
degraded error rate. A similar trade-off is possible by using a higher rate channel code. By an
appropriate combination of the modulation order and channel code rate, we can design a set
of modulation and coding schemes (MCSs), from which an MCS is selected in an adaptive
fashion in each transmission-time interval (TTI) in order to maximize system throughput
under different channel conditions. The use of AMC yields a rich variety of scheduling
strategies [25]; [12]. In practice, a commonly encountered constraint is that the probability
of erroneous decoding of a Transmission Block should not exceed some threshold value [11].

Multiple orthogonal channelization codes (multicodes) can be used to transmit data to a
single user, thereby increasing the per-user bit rate and the granularity of adaptation [11, 16].
In Wideband Code-Division Multiple Access (WCDMA), the channelization codes are often
referred to as Orthogonal Variable Spreading Factor (OVSF) codes. The number of OVSF
codes per base station (BS) is quite limited due to the orthogonality constraint [11] and thus
OVSF codes and transmit power are scarce resources. Fig. 1 shows the number of OVSF codes
as a function of the spreading factor for WCDMA. Note that a lower value of spreading factor
corresponds to a higher bit rate and vice versa. According to Fig. 1, if a spreading factor of
2 is needed, the system can allocate at most two such OVSF codes. On the other hand, if
a spreading factor of 4 is required, a total of 4 such codes can be allocated. In High Speed
Downlink Packet Access (HSDPA), a fixed spreading factor of 16 has been specified, thereby
limiting the number of OVSF codes to 161.

The allocation of the number of OVSF codes (or multicodes) and the MCS level for each user
depends on the strength of the received signal at the user, which, in turn, depends on 1) the
quality of the wireless channel, and 2) the level of the transmit power to the respective user.

1 In principle, 16 OVSF codes can be used. However, one code is allocated for other purposes such as signalling. Thus,
a maximum of 15 codes can be allocated for data traffic [11].
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As shown in Fig. 2, if the spreading factor and the number of OVSF codes are fixed, one way
to increase the user bit rate is to increase the MCS level. As each MCS level is associated with
a specific signal quality requirement, the highest MCS level that can be allocated depends on
the channel quality at the user receiver, which is stochastic by nature. Thus, at a given channel
quality at the receiver, the MCS level can be increased by increasing the transmit power to
the user. Another way to increase the user bit rate at a fixed spreading factor is to fix the
MCS level while increasing the number of OVSF codes allocated to the respective user, as
shown in Fig. 3. In order to achieve a given signal quality requirement for each OVSF code,
a higher power level is required to be allocated to this user. Thus, the general problem of
HSDPA resource allocation boils down to the joint allocation of user-specific MCS, number of
OVSF codes, and power level over all users connected to a given base station, subject to the
constraints of code and power resources as shown in Fig.4. It is important to note that this
allocation is done very rapidly (on the order of two or more milliseconds) in order to exploit
the channel diversity of the users. HSDPA is based on a shared channel concept, in which
multiple users share the channel in a time-multiplexed fashion, and the process of resource
allocation is performed at regular time intervals. Note that in HSDPA, as shown in Fig. 5, the
shared channel is a dual to the dedicated channel in which the bit rate for each user is kept
constant over a relatively long time period by appropriate closed-loop power control.

Figure 1. Orthogonal Variable Spreading Factor (OVSF) code tree.

For simplicity, the downlink transmit power is normally held constant (or slowly changing)2

in HSDPA [11]. A number of scheduling algorithms have been proposed for HSDPA [7]. The
most commonly encountered ones are (1) round-robin in which users are allocated resources
in turn, regardless of channel conditions (2) Max C/I in which resources are allocated to the
user with the best channel condition (3) proportional fair in which resources are assigned to
the user with the relatively best channel condition. Other schedulers include minimum bit rate
(MBR), MBR with proportional fairness and minimum delay (MD).

In exploiting multiuser diversity, a common way to achieve the best network throughput is to
assign resources to a user with the largest signal-to-noise ratio (SNR) among all backlogged

2 In some cases, the specification stipulates a slight power reduction for a mobile with an exceptionally good channel
quality [22].
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Figure 2. Bit rate and channel quality requirement trade-off for HSDPA.

Figure 3. Bit rate and channel quality requirement trade-off for HSDPA.
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Figure 4. Resource allocation in HSDPA.

users (i.e. users with data to send) at the beginning of each scheduling period [5]. However,
due to limited mobile capability, a user might not be able to utilize all the radio resources
available at the BS. Thus, transmission to multiple users during a scheduling period may be
more resource efficient. In [2, 15], the problem of downlink multiuser scheduling subject to
limited code and power constraints is addressed. It is assumed in [15] that the exact path-loss
and received interference power at every TTI for each user are fed back to the BS. This would
require a large bandwidth overhead.

In this chapter, the problem of optimal (maximum aggregate throughput) multiuser
scheduling in HSDPA is addressed3. The MCSs, numbers of multicodes and power levels
for all users are jointly optimized at each scheduling period, given that only limited CSI
information, as specified in the HSDPA standard [22], is fed back to the BS. This problem
corresponds to a general resource allocation formulation for HSDPA, as compared to those
in the existing literature, where resources are typically not allocated jointly among users
for simplicity. Due to the inherent complexity, an integer programming formulation is
proposed for the above problem. Due to the complexity of obtaining an optimal solution, an

3 The materials presented here are mostly based on the contents in [14].
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Figure 5. Resource allocation for shared and dedicated channels.

evolutionary simulated annealing (ESA) approach is explored. It is shown that ESA can provide
a near-optimum performance with significantly reduced complexity.

2. System model

In a communication system, the quality of the channel is often quantified by the Signal to
Interference and Noise Ratio (SINR), which is defined as the ratio of the received signal power
relative to the power contribution from interference and noise. A better channel quality is
represented by a higher received signal power and a smaller interference and noise power.

We consider downlink transmissions from a BS to a number of mobile users. Let Pi denote
the downlink transmit power to user i, hi denote the link gain from the BS to user i, and Ii be
the total received interference and noise power at user i. The received SINR for user i is then
given by

γi =
hiPi

Ii
, i = 1, . . . , N, (1)

where N is the number of users and

N

∑
i=1

Pi ≤ PT (2)

where PT is the total HSDPA power constraint. Ideally, the user would measure the received
SINR, and report its value back to the BS. Upon receiving the SINR value for this user, the
BS would decide what MCS and the number of multicodes that the user can be allocated,
taking into account all the resource constraints that the BS has. However, if each user i were to
send back its exact SINR value γi to the BS, the required feedback channel bandwidth would
be impractically large. As specified in [22], the channel quality information fed back by a
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mobile, also known as the channel quality indicator (CQI), can only take on a finite number of
non-negative integer values {0, 1, . . . , K}. According to [22], the CQI is provided by the mobile
via the High Speed Dedicated Physical Control Channel (HS-DPCCH). Each CQI value maps
directly to a maximum bit rate4 that a mobile can support, based on the channel quality and
mobile capability [23], while ensuring that the block error rate (BLER) does not exceed 10%.
Finally, upon receiving the CQIs from all the users, the BS decides on the most appropriate
combination of MCS and number of multicodes for each user.

Although the mapping between the CQI and the SINR is not specified in [22], it has been
discussed in various proposals [18]; [13]. In [8], a mapping is proposed in which the system
throughput is maximized while the BLER constraint is relaxed. Let γ̃i = 10 log10(γi) be the
received SINR value, in dB, for user i and let qi be the CQI value that user i reports back to the
BS via HS-DPCCH. The mapping between qi and γ̃i can generally be expressed as a piece-wise
linear function [6, 8, 18]

qi =

⎧⎨
⎩

0 γ̃i ≤ ti,0
�ci,1γ̃i + ci,2� ti,0 < γ̃i ≤ ti,1
qi,max γ̃i > ti,1

(3)

where the terms {ci,1, ci,2, ti,0, ti,1} are model and mobile capability dependent constants, and
�.� denotes the floor function. Due to the quantization operation implied in (3), γ̃i cannot
generally be recovered exactly from the value of qi alone. It should be noted that the region
ti,0 < γ̃i ≤ ti,1 is the operating region for the purpose of link adaptation. This region should
be chosen large enough to accommodate the SINR variations encountered in most practical
scenarios [11], i.e. the probability that γ̃i falls outside this region should be quite small. As
part of our proposed procedure, γ̃i is approximated as

γ̃†
i = γ̃

(l)
i +

(
γ̃
(u)
i − γ̃

(l)
i

)
ξ, (4)

where

γ̃
(l)
i =

qi − ci,2

ci,1
, (5)

γ̃
(u)
i =

qi + 1 − ci,2

ci,1
, (6)

and ξ is a uniformly distributed random variable, i.e. ξ ∼ U (0, 1). In a more conservative
design, the value of ξ could be set to 0. Note that this approximation assumes that γ̃i is

uniformly distributed between γ̃
(l)
i and γ̃

(u)
i for a given value of qi.

For qi = 0 and qi = qi,max, γ̃i could be approximated as ti,0 and ti,1 respectively, or more
generally as ti,0 − ξi,0 and ti,1 + ξi,1 respectively, with ξi,0 and ξi,1 following some pre-defined
probability distributions. Finally, the estimated value of γi is given by γ̂i = 10γ̃†

i /10. We refer
to the mapping from SINR to qi in (3) as the forward mapping, and the approximation of SINR
based on the received value of qi in (4) as the reverse mapping.

4 In this chapter, the bit rate refers to the transport block size, i.e. the maximum number of radio link control (RLC)
protocol data bit (PDU) bits that a transport block can carry, divided by the duration of a TTI, i.e. 2 ms [11].
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3. Joint optimal scheduling
Note that the value of the channel quality, qi, reported by user i indicates the rate index that is
associated with the maximum bit rate that the user can be supported by the BS, and is related
jointly to a required number of OVSF codes (multicodes) and MCS. The number of multicodes
and MCS assigned to each user as well as the estimated SINR values of the users determine
the transmit power required by the BS. Since the number of multicodes and transmit power
are limited, the BS might not be able to simultaneously satisfy the bit rate requests for all users
as indicated by {qi, i = 1, . . . , N}. Therefore, for a set {qi, i = 1, . . . , N}, the BS must calculate
a set of modified CQIs, {Ji, i = 1, . . . , N}, for all users by taking into account the transmit power
and number of multicodes constraints.

From the forward and reverse mappings in (3) and (4), the modified CQIs are chosen as

Ji = min
(

max
(

ηi(γ̃
†
i , φi), 0

)
, qi,max

)
, i = 1, . . . , N (7)

where φi is the power adjustment factor for user i, i.e. γ̂i �→ φiγ̂i, and

ηi(γ̃
†
i , φi) = �ci,1

(
γ̃†

i + 10 log10 φi

)
+ ci,2�, (8)

0 ≤ φi ≤ 10

(
qi,max−(ci,1γ̃†

i +ci,2)
10ci,1

)
. (9)

Fig. 6 summarizes the conversion process from the received CQI, qi, to the final assigned rate
index, Ji.

Figure 6. The conversion process from the received CQI, qi, from the mobile to the assigned rate index Ji
at the base station. ([14]©IET)

The multiuser joint optimal scheduling problem P1 can be expressed as

P1 : max
A,φ

N

∑
i=1

Ji

∑
j=0

ai,jri,j (10)

subject to (7)-(9) and

Ji

∑
j=0

ai,j = 1, ∀i, (11)

N

∑
i=1

Ji

∑
j=0

ai,jni,j ≤ Nmax, (12)

ai,j ∈ {0, 1}, (13)
N

∑
i=1

φi ≤ N. (14)
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In (10), Ji is the maximum allowable CQI value for user i and ri,j denotes the achievable bit
rate for user i and CQI value j [22]; the decision variable ai,j is equal to 1 if rate index j is
assigned to user i; otherwise, ai,j = 0. In (12), Nmax is the maximum number of multicodes
available for HSDPA at the BS and ni,j is the required number of multicodes for user i and
CQI value j [22]. Depending on multicode availability, the assigned combination of MCS and
the number of multicodes may correspond to a bit rate that is smaller than that permitted by
Ji . The constraint in (14) can be obtained by substituting Pi = φiPT/N into (2). The objective
in the optimization problem P1 is to choose A = {ai,j} and φ = {φi} at each TTI so as to
maximize the sum bit rate for all users, subject to (7)-(9) and (11)-(14).

4. Linearization

It is important to note that the quantity Ji, which appears in the upper summation index in
(10), is itself a function of the decision variable φi. On the other hand, φi is related to Ji via a
non-linear relationship (9). Thus, the problem P1 is not a standard linear integer programming
problem. As such a problem is highly non-linear, a global optimal solution is very difficult to
obtain. To solve problem P1 with linear integer programming methods, the problem needs
to be appropriately transformed into a linear problem by introducing additional auxiliary
variables. The first step is to re-formulate the model as follows:

P1′ : max
A,φ

N

∑
i=1

qi,max

∑
j=0

bi,jai,jri,j (15)

subject to

qi,max

∑
j=0

bi,jai,j = 1, ∀i, (16)

N

∑
i=1

qi,max

∑
j=0

bi,jai,jni,j ≤ Nmax, (17)

together with (7)-(9),(13)-(14), where the new variable bi,j

bi,j =

{
0 , j > Ji

1 , j ≤ Ji
(18)

is introduced to limit the rate index j to no higher than Ji .

After the above re-formulation, Problem P1′ is still non-linear due to terms involving the
product ai,jbi,j, and the presence of the floor function �.� and the logarithm in (7). Subsequent
linearlization of Problem P1′, involves introducing a new decision variable mi,j = ai,jbi,j and
re-writing the problem as follows:

P1′′ : max
A,B,φ

N

∑
i=1

qi,max

∑
j=0

mi,jri,j (19)
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subject to

qi,max

∑
j=0

mi,j = 1, ∀i, (20)

N

∑
i=1

qi,max

∑
j=0

mi,jni,j = ≤ Nmax, (21)

mi,j ≤ bi,j, ∀ i, j (22)

mi,j ≤ ai,jM, ∀ i, j (23)

mi,j ≥ bi,j − (1 − ai,j)M, ∀ i, j (24)

ei,j − φi ≤ (1 − ωi,j)M, ∀ i, j, (25)

φi − ei,j+1 ≤ (1 − ωi,j)M, ∀ i, j, (26)

Ji =
qi,max

∑
j=0

jωi,j, ∀ i, (27)

j − Ji ≤ (1 − bi,j)M, ∀ i, j (28)

Ji + 1 − j ≤ bi,jM, ∀ i, j (29)
qi,max

∑
j=0

ωi,j = 1 (30)

bi,j, ai,j, mi,j, ωi,j ∈ {0, 1} (31)

together with (14), where

ei,j =

⎧⎪⎪⎨
⎪⎪⎩

−M if j = 0

10

(
j−(ci,1γ̃†

i +ci,2)
10ci,1

)
if 1 ≤ j ≤ qi,max

M if j = qi,max + 1,

(32)

and M is a large number. In this new formulation, constraints (22)-(24) model the product
ai,jbi,j, while (25)-(27) models the floor and the max functions in (7) and the constraint in
(9). The constraints (28)-(30) are used to linearize the expression defined in (18). Note
that the introduction of auxiliary variables increases the size of the model, and, thereby,
increases the complexity of the problem. The linearized Problem P1′′ was solved using
a commercial optimization software package implementing the branch-and-bound method
[19]. An alternative method to solve Problem P1 is to use meta-heuristics and is discussed in
Section 5.

5. Simulated annealing

Meta-heuristic approaches attract much attention with their success in solving hard
combinatorial and optimization problems. One of these successful approaches is Simulated
annealing (SA) [24], which is proven to be a powerful meta-heuristic approach used for
optimization in many combinatorial problems. In SA, a probabilistic decision making process
is typically involved, in which a control parameter, often known as temperature τ, is used
to control the probability of accepting a poorer solution in the neighborhood of the current
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solution. The idea is to provide the possibility of reaching a better solution by diversifying the
search within search space, redirecting the search in a new neighborhood when the chance of
discovering a better solution within the old neighborhood is not high. The algorithm explores
the solution space through a simulated cooling process from a given initial (hot) temperature
to a final (frozen) temperature. At a higher temperature, the probability of selecting the poorer
solution is higher, and thereby allowing the search to be more extensive within the solution
space. However, as the temperature decreases, the search becomes more confined in the region
near the desirable solution within the solution space, and thereby providing a refinement to
the existing solution. Essentially, the search is conducted through two nested loops; the outer
one decreases the temperature using a particular cooling schedule, while the inner one repeats
the search at the same temperature. Within the inner loop, a sequence of solutions are obtained
by manipulating the current solution. Each solution is the result of one iteration.

Let xn be the solution at iteration n, and xn
′ = N(xn), where N(xn) is some neighbor function

of xn. The next solution in the search process is a probabilistic function of xn, and is given by
[24]

xn+1 =

⎧⎨
⎩

x′n , if s(x′n) > s(xn)
x′n , if r < e−Δs/τk

xn , otherwise
, (33)

where τk corresponds to the kth temperature level, s(·) is the objective function to be
maximized, Δs = s(xn)− s(x′n), and r is the outcome of a random variable which is uniformly
distributed in [0,1]. This method for choosing a new solution is commonly referred to as the
Metropolis rule [24]. The motivation is to diversify the search process, thereby reducing the
possibility of locally optimal solutions. As the temperature decreases, so does the probability
of accepting a worse solution.

SA has become a basis which inspires different algorithmic variations for solving a large
variety of optimization problems. Evolutionary Simulated Annealing (ESA) is one of these
recently developed population-based SA algorithm enhanced with evolutionary operators [3].
Instead of manipulating a single solution, ESA makes use of a population of solutions in order
to combine the advantages of both SA and population-based approaches. A single instance of
SA is devised to act as an evolutionary operator and is invoked successively starting at a fixed
initial temperature each time. Each invocation of SA is commonly referred to as a generation.
ESA evolves the population of solutions with the SA operator alongside the selection and
replacement operators generation-by-generation. The idea is to decrease the temperature during
each SA operation and raise it back to the fixed initial value whenever the SA operator is
invoked. These artificially induced fluctuations in temperature allows the solution space to
be explored more thoroughly, ad thereby reducing the possibility of being trapped in local
optima. Recently, a comprehensive study on implementing ESA for facility location problems
has been reported in [26].

In this chapter, we propose to use the ESA algorithm to solve the multiuser scheduling
problem as outlined in (7)-(14) due to its ability to cope with the highly non-linear nature
of the problem. Our ESA implementation consists of two components - an initial solution,
and an SA operator. The SA operator is invoked once per generation for G generations. For
each SA operation, a search is conducted over Nτ different temperatures. Starting with an
initial temperature τhot, the k-th temperature level is given by

τk = τhotθ
k−1, k = 1, 2, . . . , Nτ, (34)
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where θ ∈ (0, 1) is the cooling coefficient. The Nτ-th temperature level is also referred to as
the frozen temperature τf rozen. Note that the combined use of (33) and (34) corresponds to a
variant of simulated annealing known as the Simulated Quenching (SQ) [9].

In the proposed scheme, each temperature level is associated with U iterations. For each
iteration, a user i is randomly selected, resulting in a solution to the problem of the form

xn = (φ1, . . . , φi, . . . , φN , a1, . . . , ai, . . . , aN), (35)

at iteration n ∈ {1, . . . , U}, where ai = (ai,1, ai,2, . . . , ai,Ji
).

By applying function f (.) to the current value of φi, new solutions can be generated. Each
new value, φ′

i , is obtained by applying the function f (.) successively until φ′
i satisfies (9)

and (14). Once a suitable φ′
i is available, the corresponding Ji is then obtained using (7).

Subsequently, the value of ai,Ji
is set to 1 while the remaining elements are set to 0, i.e.

ai = {
Ji+1︷ ︸︸ ︷

0, 0, ..., 1}. If constraint (12) is violated, ai is cyclically shifted to the left by one position,

i.e. ai = {
Ji+1︷ ︸︸ ︷

0, 0, ..., 1, 0}. This process is repeated until (12) is satisfied, resulting in an updated
vector a′i. Subsequently, the new solution is given by

x′n = (φ1, . . . , φ′
i , . . . , φN , a1, . . . , a′i , . . . aN). (36)

The computational complexity of ESA in terms of the number, N, of users at given values of
G and Nτ is discussed as follows. The number of iterations, U, of solutions explored at each
temperature is chosen to be N. Thus, the time required to check whether a solution x′n in (36)
satisfies constraints (12) and (14) has a complexity of O(N). Subsequently, due to the fact that
the time to verify these constraints grows linearly with N, the complexity of ESA is O(N2).

As both SA and ESA are heuristic algorithms, solutions obtained by these methods may not
necessarily be optimal, but are generally close to optimal. The “temperature” parameter
determines trade-off between the speed of convergence towards the optimal value, and
how far the solution is relative to that of the optimal. Generally, a higher temperature
allows the optimal value to be approached faster, while a lower temperature provides
improved fine-tuning, and thereby improving the solution quality. ESA converges faster than
conventional SA since the search is diversified by periodically re-increasing the temperature.
As with any heuristic algorithm, a detailed convergence study requires the determination of
appropriate parameter values through experimentation.

6. Simulation results

A number of different simulation cases were used to illustrate the effectiveness of ESA for
the multiuser HSDPA resource allocation problem. The first case involves N = 2 users, and
the following values ti,0 = −4.5, ti,1 = 25.5, ci,1 = 1, di,1 = 4.5, and qi,max = 30 for i = 1, 2
are used for the parameters in (3). These values are obtained from [18], assuming that the
mobiles are of category 10 (i.e. have a wide CQI range) as defined in [22]. Values for ni,j and
ri,j are obtained from [22]. The fading channel following the general Nakagami model [21]
is assumed so that {γi, i = 1, 2} in (1) are outcomes of Gamma distributed random variables
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{Γi, i = 1, 2} with pdfs given by

fΓi(γ) =

{(
αi
Γi

)αi γαi−1

Γ(αi)
exp

(−αiγ

Γi

)
γ ≥ 0

0 γ < 0
, (37)

where Γ(.) is the Gamma function, αi is the fading figure, and Γi is the mean of Γi. The
parameter values are listed in Table 1. Let Γ = {Γ1 Γ2}, and let the aggregate transport
block size (TBS), T, per TTI be

Scenario User i Γi (in dB) αi

1 5 6.5I
2 6 3
1 12 6.5II
2 10 3
1 17 6.5III
2 16 3

Table 1. List of parameter values used ([14]©IET)

T =
N

∑
i=1

Ji

∑
j=0

ai,jri,j. (38)

The performance improvements of the proposed Joint Global Optimum (JGO) and ESA
approaches, as discussed in sections 4 and 5 respectively, are compared to that of a simple
greedy (SG) algorithm. The idea behind the SG algorithm is to allocate resources to users
in decreasing order of their estimated SINR values, γ̂i. In other words, the user with the
highest γ̂ is first allocated as much resources as it can possibly use. Subsequently, remaining
resources that can be productively used are then assigned to the user with the next highest γ̂.
This allocation of resources continues until resources are exhausted.

Fig. 7 shows the cumulative distribution function (CDF) of T for the three different scenarios
in Table 1. The results in this figure are obtained based on two thousand channel realizations.
It can be seen that ESA can achieve a performance that is close to the optimal. A summary
of the average performance, i.e. EΓ [T], for all three schemes is presented in Table 2. It can be
seen that both JGO and ESA can provide a good throughput improvement over SG.

The second study involves the comparison of performance among the three algorithms by
increasing the number of users from 2 to 5. The average computation times per TTI required
by JGO, ESA, and SG on a personal computer with an Intel CoreTM 2 Duo T5500 processor
are plotted as a function of the number of users in Fig. 8. As expected, SG is the fastest and
JGO is the slowest. The running for ESA is about 0.1 s per TTI and increases slowly with the
number of users. With the use of parallel dedicated processors at the BS, ESA becomes a viable
alternative to SG. Fig. 9 shows the average computation time, normalized to the 2-user case, as
a function of the number of users; the average is taken over only twenty channel realizations
due to the long simulations times needed for JGO. The following parameter values are used:
α1 = α2 = . . . = αN = 5 and Γ1 = Γ2 = . . . = ΓN = 8.45 dB. It can be seen clearly that even
though JGO provides a globally optimal solution, the complexity increases very rapidly with
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Figure 7. CDF of the aggregate bit rate in TBS per TTI. ([14]©IET)

Scenario Scheme ATBS/TTI (kbits) Gain (%)

SG 2.151 0

I ESA 2.588 20.03

JGO 2.591 20.42

SG 6.031 0

II ESA 6.492 7.64

JGO 6.507 7.88

SG 12.472 0

III ESA 14.587 16.95

JGO 14.944 19.82

Table 2. Average rate (in TBS per TTI) for the three different algorithms under the three scenarios.
([14]©IET)
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Figure 8. Average computation time per TTI as a function of the number of users. ([14]©IET)
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Figure 9. Average computation time per TTI, normalized to the 2-user case, as a function of the number
of users. ([14]©IET)
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the number of users. On the other hand, ESA offers a very similar performance at a much
reduced complexity.

Fig. 10 shows the CDFs of T for SG and ESA for different numbers of users. As in Fig. 9,
α1 = α2 = . . . = αN = 5 and Γ1 = Γ2 = . . . = ΓN = 8.45 dB. The CDF curves for JGO are
not shown due to the excessively long running times but are expected to be close to those for
ESA. Table 3 shows the average aggregate TBS per TTI values for SG and ESA. It can be seen
that the performance improvement of ESA over SG increases with the number of users.
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Figure 10. CDF of the aggregate bit rate in TBS per TTI for SG and ESA with different number of users.
([14]©IET)

No. of Users Scheme ATBS/TTI (kbits) Gain (%)

ESA 4.324 12.212
SG 3.853 0

ESA 6.676 14.753
SG 5.818 0

ESA 8.865 15.414
SG 7.681 0

ESA 10.651 20.005
SG 8.877 0

Table 3. Average rates (in TBS per TTI) for the ESA and SG algorithms with different number of users.
For each user, α = 5 and Γ = 8.45 dB. ([14]©IET)
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The CDFs of T for ESA, SG, max C/I, and Round Robin (RR) with five users are plotted
in Fig. 11. Note that max C/I is a special case of SG in which, for each TTI, resources are
allocated only to the user with the best channel condition. On the other hand, RR refers to a
base-line scheduling scheme, whereby each user is scheduled one at a time in a round robin
fashion. Under such a scheme, the respective channel quality of the users are not used during
the scheduling. The corresponding values of EΓ [T] for ESA, SG, max C/I, and RR are 10.6, 8.8,
2.8, and 1.9 bits per TTI respectively. The prominent steps in the CDFs for RR and max C/I are
due to the coarse quantization resulting from allocation of resources to only one user in each
TTI. It can be seen that RR has the lowest bit rate as it does not take into account user channel
conditions.
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Figure 11. CDF of the aggregate bit rate in TBS per TTI for ESA, max C/I, and Round Robin (RR) with
five users. ([14]©IET)

7. Conclusion

In this chapter, the issue of allocating resources to multiple users simultaneously in HSDPA
has been examined via a number of optimization methods. The problem formulation
based on the channel feedback scheme specified in the WCDMA standard has been
presented. Simulation results have shown that both the global optimal and the simulated
annealing-based methods can provide a substantial throughput improvement over a more
simple greedy algorithm. It has been observed that the method based on simulated annealing
can achieve a bit rate that is very close to that of the global optimal, with a much lower
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computational complexity. The advantage of simulated annealing-based method relative to
the simple greedy method increases with the number of users. In this chapter, it was assumed
that the user SINR values, on which the channel quality indicators are based, can be accurately
estimated. One research direction would be to study the performance degradation due to
noisy SIR estimates and methods in reducing this degradation. Another potential study item
is to investigate the benefits and trade-offs of other heuristic optimization methods for the
same problem.
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