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Abstract This paper describes the distributed self-assembly of a multi-robot ‘or-
ganism’ from a swarm of autonomous heterogeneous modular mobile robots. A
distributed self-assembly strategy based on a symbol sequence representation is pro-
posed. Constructed from a tree representation of an organism, the symbol sequence
is presented as a well organised nested structure in a compact format. It includes
not only information on the topology of the organism but also how the organism
will be self-assembled. The proposed approach has been tested with real robot pro-
totypes. Results show that robots can successfully self-assemble to required target
body plans within certain time frames.

1 Introduction

Self-reconfigurable modular robots has became a popular research topic since late
1980’s. From the CEBOT [1] to the SYMBRION project [2], more than 30 systems
have been developed over 2 decades. Although earlier studies focused mainly on
solving the mechanical engineering challenges for designing the hardware, recent
research has paid more attention to high level algorithms toward greater controlla-
bility of self-assembly, self-reconfigurable and self-repair of the system. The com-
plexity of the modules and the architecture of the system vary in different studies.
Some use a lattice architecture where docking/undocking can only occur at points
within some virtual cells. The lattice architecture requires a simpler mechanical de-
sign and simplifies the computational representation, thus the reconfiguration plan-
ning is more achievable and scalable. Some other systems do not use the virtual
cell as the docking point for their units. Instead, a number of modules can form a
chain to reach any point in the operating space; the so called chain architecture. To
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get to a specific point and carry out reconfiguration, the chain architecture requires
a more complicated design with additional sensing. To overcome the limitation of
both approaches, a hybrid architecture is favoured by many recent designs. Among
these, a singular design of individual module is normally used, i.e. a homogeneous
design. Apart from the essential functionality requirement of the modules, e.g. me-
chanical docking, some degree of freedom of rotation, robots have been provided
with a very limited range of sensors as appropriate to the design challenge and
research interests. Also, few designs have considered providing individual robots
with autonomous motion capabilities. This typically requires that modules have to
be manually attached to each other prior to any reconfiguration process. The lack
of sensing and mobility limits the possibility of re-assembling after pre-assembled
structures have fallen apart either purposely or accidentally.

To close the gap between the modular robotic systems and multiple/swarm
robotic systems, more recently researchers are seeking new designs that are capa-
ble of autonomous self-assembly and self-reconfiguration. The SamBot [3] project
consists of a group of identical robots. Each robot is equipped with two differential
driven wheels and several IR sensors for autonomous self-assembly. As with many
other modular robotic systems, a rotation arm is used in SamBot to provide one
extra degree of rotation freedom thus enabling the self-reconfiguration capability.
In contrast, the SYMBRION project (www.symbrion.eu) takes a heterogeneous ap-
proach, and robots with more sensing, computation and actuation. Various modules
with complementary motion capabilities have been developed for this project. The
main focus of SYMBRION is to investigate the controllability and evolvability of
artificial multi-cellular organisms from both engineering and scientific perspectives.
The SYMBRION robots can either work fully autonomously with their own sens-
ing and locomotion capabilities to explore the environment, or physically dock with
each other forming different organism structures to accomplish more complex tasks
that a single robot is not capable of, for example, climbing a wall or moving over a
gap.

One of the fundamental requirements of the SYMBRION project is that robots
must be able to self-assemble into a given structure (body plan) starting from a sin-
gle module. To achieve this, apart from the autonomous docking/undocking capa-
bilities, we need the right morphology control mechanism. A bio-inspired gradient
based process has been widely used to study the pattern growth problem in agent-
based cell systems [5, 4, 6], and later adapted to the modular robotic systems [7].
This approach has however been tested only in simulation and for homogeneous sys-
tems. In addition, the uncertainty of the final generated body shapes imposes another
challenge for controlling the macro-locomotion of the whole structure at later stage.
An alternative is to build the target shapes, which are known to be controllable,
from some stored pre-defined body shapes. A SWARMMORPH-script language has
been proposed by Christensen for arbitrary morphology generation for a group of
s-bot robots in a 2D environment [8]. The morphologies are pre-specified as sets
of rules stored in scripts which can be communicated and subsequently executed
on the newly connected robot. Note that unlike the s-bot robots, the SYMBRION
robots will initially form a 2D planar structure and then lift itself from 2D planar
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configuration to 3D configuration and, with respect to locomotion, will function as
a macroscopic whole. The aggregated organism will also be able to disassemble and
reassemble into different morphologies to fit the requirements of the task.

In our previous work, an ID-based strategy was proposed to self-assemble the
SYMBRION robots into certain predefined 2D structures [9]. The ID-based ap-
proach assumed that all robots in the swarm are identical and each robot stores the
same set of predefined structures information. In addition, this strategy allows only
one robot to join the organism at a time, using a fixed docking face, more specif-
ically, the Front side, which constraints the toplogy of the shapes the swarm can
self-assemble to. This paper will extend the previous work by removing all these
assumptions and limitations. A new strategy will be developed to enable the parallel
recruiting and any-side-docking in order to improve the efficiency and robustness
of the self-assembly strategy. In particular, the new propsed strategy will take the
heterogeneity of the system into account.

The rest of the paper is organised as follows: Section 2 introduces the robots of
the SYMBRION project and the hardware configuration for autonomous docking.
Section 3 proposes the internal representation of organism body plan for the self-
assembly process. Section 4 outlines the controller framework and discusses the
morphology control strategy. The proposed approach is validated in Section 5 using
simulation and real robot experiments. The paper ends by drawing some conclusions
and further work in Section 6.

2 The Robots

Figure 1 shows three types of robots developed in the project. These robots have
different shapes and are equipped with different locomotion actuators. The Back-
bone robot has two specially designed wheels which allow the robot to move for-
wards, backwards and sideways; this robot requires a flat surface. With its tracked
locomotion the Scout robot can move across uneven surfaces and is suitable for ex-
ploration tasks. Like many other modular robots, both Backbone and Scout robots
have cubical shapes with four docking faces and one degree of freedom of bending.
The ActiveWheel robot is designed to carry and transport an organism consisting
of several Scout or Backbone robots in the most energy-efficient way. It consists of
two symmetrically arranged arms, connected via a 180◦ turning hinge, and 4 omni-
wheels. Two docking elements are placed on the same axis of the hinge for docking
with other robots.

Some unified docking elements are placed on all three types of robots to allow
stable physical connections between robots. In addition, electrical contacts next to
the docking units can be coupled automatically to provide inter-robot communica-
tion and power sharing busses between two connected robots. As shown in Figure 2,
two versions of docking elements are installed on robots: an active docking unit and
a passive docking unit. By removing the locking mechanism, passive docking units
can reduce the size of the assembly while still providing all other mechanical and
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(a) BackBone robot (b) Scout Robot

(c) ActiveWheel Robot

Fig. 1: Robot prototypes. The BackBone robot has 4 active docking faces. The Scout
robot has 2 active docking faces and 2 passive docking faces, while the ActiveWheel
has only 2 passive docking faces.
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Fig. 2: Unified docking mechanisms: A – IR receivers, B – IR LEDs, C – IR sensors,
D – docking mechanics, E – electrical docking contacts, F – locking motor.
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electrical features. Note that for any valid robot-robot connection, at least one active
docking unit needs to be present so that two docking units can be locked securely.

Infrared(IR)-based sensing - including proximity detection, docking alignment
detection and local communications circuits - has been developed for the SYM-
BRION robot to achieve autonomous docking in a 2D planar environment [10].
These sensors have similar placement on each docking face of the robot. More
specifically, two IR sensors have been placed symmetrically above and on either
side of the docking unit; one IR LED is placed directly above the docking unit,
while the other two LEDS are located on either side of the docking unit. These
LEDs are used to emit different frequency signals for obstacle detection, docking
alignment and communication. The IR sensors work for both obstacle detection and
docking alignment detection. IR remote control receivers are placed next to the IR
LED on each docking face for communications.

3 Internal representation of organism body plan

To investigate how specified organism shapes can be self-assembled from a swarm
of freely mobile robots, a common representation of the target shape must first be de-
fined. The representation is also essential for the topology exploration of the organ-
ism in the macro-locomotion and the self-reconfiguration tasks. This study assumes
that the self-assembly process always occurs in a 2D planar environment between
a partially formed organism and a group of freely moving robots where individual
robots join the growing organism using their own locomotion. The hardware con-
straints of the robot platform indicate that at any time one robot can attach to the
partially formed organism using only one docking port. Thus no circular paths can
appear among several connected modules in the target organism shapes. The body
plan of an organism in a 2D planar environment can therefore be represented as a
tree structure T . If let T = (V,C), then V is a set of nodes and C represents a set
of connections. Each node v ∈ {r1,r2, ...,rm} corresponds to a robot module in the
organism, where ri is the type of robots and m is the total number of types in the
system. Each connection c = ((v1,o1),(v2,o2)) includes a pair of nodes (v1,v2) and
the orientation of corresponding connection ports, o1 and o2. Note that each type of
robot ri can have ki connection ports. Clearly, unlike the common representation of
a tree, there is no root node in the organism body plan and each node may have a
different type.

There are many different ways to represent trees in a computer system. The de-
sign of data structures depend on the algorithm used for the tree. As there is no
central control module in the complete organism, information on the body shape
will have to be transferred and stored across all modules. Besides a smaller memory
requirement, a data structure which can be easily manipulated and transferred via
common robot-robot communication means is preferred. To satisfy these require-
ments, this paper proposes a well formatted parenthesis symbol sequence to repre-
sent the body plan of the organism. Let T be a tree representation of an organism
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with n robots, a symbol sequence S of tree T is defined as a sequence of 2(n− 1)
symbols s generated from a depth first traversal of T . There are two kinds of sym-
bols in a sequence, sc and sp, where sc = f (c) is a “connection” symbol, which
corresponds to a connection c = ((v1,o1),(v2,o2)) in T using a mapping function
f (), while sp is a special “pairing” symbol. The size of “connection” symbol |sc|
equals (∑ki)

2 and “pairing” symbol |sp| is 1.
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Fig. 3: An example of organism body plan and its tree representation. ‘K’ represents
BackBone robot, ‘A’ for ActiveWheel robot and ‘S’ for Scout robot. ‘F’, ‘R’, ‘B’,
‘L’ denotes the Front, Right, Back and Left docking ports of a robot respectively.

KFKL KFSR 0 0 0 0 KRSF 0 0 0 0 KBSL 0 0 0 0 0 0 0 0 KBAF ARKF KBSF 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4: An example symbol sequence of the organism. Each pair of sc and sp sym-
bols, annotated and connected with dashed lines, represent one edge in its tree rep-
resentation.

To obtain a symbol sequence from a tree representation, a node, denoted as vo,
must first be chosen as the starting point of the traversal. Depending on the starting
node, different symbol sequences can be generated for the same tree. Compared to
the general tree representation, a symbol sequence representation is encoded with
the information where the organism starts to grow, which is indeed desirable for the
morphology control mechanism introduced in the next section. Take the organism
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body plan shown in Fig.3(a) as an example. There are 3 Backbone, 4 Scout and 1
ActiveWheel robots in the organism where the headings are indicated with triangles
and the rotation axes are marked with a bar. Its corresponding tree representation
is shown in Fig.3(b) and all connected docking ports are labelled along the edges.
Starting from a node marked with dark colour, Fig.3(c) depicts the order of each
edge being visited in a depth first traversal, which follows the travel order of “Front
→ Right → Back → Left” for each node. Through the traversal, a sc symbol is
added to a symbol sequence if an edge is first traversed and a sp symbol is added
each time an edge is traversed in the opposite direction. For simplification, let sc to
be a string in a format of “parent node type | parent connection side | child node type
| child connection side”, where each node type or connection side is denoted with
one character, and sp to be a string of “0000”, then the generated symbol sequence
can be presented as shown in Fig. 4. Here the node types are abbreviated as ‘K’, ‘S’
and ‘A’ for Backbone, Scout and Activewheel robot respectively, while connection
sides ‘F’, ‘R’, ‘B’ and ‘L’ stand for Front, Right, Back and Left respectively. For
instance, a symbol of “KFKL” can be read as a traversal along the edge from a
Backbone robot’s front side to another Backbone robot’s left side. Also shown in
4, the symbol sequence can be annotated as a nested structure. For each sc symbol,
there is a corresponding pairing symbol sp in the sequence. Each pair of sc and sp
symbols corresponds one edge in the tree representation. Their relative positions
then depict the topology of the tree structure.

A symbol sequence can be obtained recursively from a depth first traversal of the
tree. By carefully choosing the mapping function f (c) and pairing symbol sp, the
generated symbol sequence requires only a small amount of memory to be stored
and transferred. For example, in this study each sc symbol is constructed using only
1 byte, with every two bits storing the robot type or the orientation of the connected
docking port as shown below. If let 1 - 3 denote the robot type ‘K’, ‘S’ and ‘A’

7 6 5 4 3 2 1 0

parent node

type

parent node

docking port

child node

type

child node

docking port

respectively and 0 - 3 correspond to the connection ports ‘F’, ‘R’, ‘B’ and ‘L’ re-
spectively, then a symbol of “KFKL” can be depicted as 0b01000111 = 0x47, while
symbol sp can be identified using 0.

Because of the well organised format and nested structure of a symbol sequence,
its tree representation can be reconstructed using Algorithm 1. This is important as
the topology information can be more easily accessed from a tree representation
for macro-locomotion control of a complete organism, while the symbol sequence
representation is more convenient to be shared among the robots. Meanwhile, it
provides a trival way to check any geometrical confliction of the body shape that a
symbol sequence stands for. Fox eample, if the geometrical distance between any
two non-neighbouring robots in the reconstructed tree is less than certain value, the
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body plan can not be self-assembled because of the physical interference between
robots.

Algorithm 1 symbol sequence to graph representation
Precedure: OgSequenceTraversal (symbol sequence S, tree T , node v)
1: for each branch sequence Sb in S do
2: create new node w from Sb.symbols[0];
3: insert w to T
4: if v is not empty node then
5: connect w with v;
6: end if
7: create a new symbol sequence S1 by removing the first and last symbol of Sb;
8: OgSequenceTravelsal( S1, T , w);
9: end for

4 Self-assembly strategy

In SYMBRION scenarios, depending on whether physically connected to other
robots, a robot works in one of two modes: swarm mode and organism mode, and
switches between them accordingly. The transition from swarm mode to organism
mode is determined by the morphology control strategy. In general, successful dock-
ing requires the collaboration between two robots: one remains stationary, called the
recruiter, which emits some guiding signals; the other moves and aligns along these
signals and then docks to the recruiter. To build an organism shape, the process needs
to be initialised by a robot, called the seed. During the self-assembly process, one
freely moving robot can dock and join to the partially formed organism only when
it is signalled. To grow the correct body shape, it is critical that the right robots in
the organism mode become recruiters at the right time, and the right type of freely
moving robots respond to the recruiters.

DockingRecruiting
12 3

4

Organism Mode Swarm Mode

Fig. 5: Controller framework for the SYMBRION robots. Transition conditions: 1
– recruiting signals are received and request type matches; 2 – recruiting is required
as per morphology control strategy; 3 – docking is accomplished; 4 – disassembly
is required.
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This paper adopts a finite state machine as the controller framework for all robots.
Figure 5 shows part of the controller which focuses on the topic of this paper, a com-
plete version can be found in [9]. Once the self-assembly process starts, the seed
robot becomes the first recruiter in the organism and thus moves to state Recruit-
ing. Assuming that the target organism shape has been already stored as the symbol
sequence in its memory, the seed robot extracts the branch symbol sequences from
the complete symbol sequence. A branch symbol sequence Sb of S is defined as a
sub symbol sequences between one of the starting node vo associated sc symbol and
corresponding paired sp symbol. The number of branch symbol sequences equals
the number of associated sc symbols of S. For example, the symbol sequence shown
in Fig.4 has two branch symbol sequences: “KFKL KFSR 0000 KRSF 0000 KBSL
0000 0000” and “KBAF ARKF KBSF 0000 0000 0000”. Each branch sequence is
in fact endowed with connection information to its descendants in the target organ-
ism body shape. The seed robot can therefore use this information to decide which
types of robot need to be recruited from which docking port. The behaviours in the
Recruiting state can be grouped into different stages:

stage 1 broadcast recruiting message from corresponding docking ports, indicat-
ing the types and connection side of the robot recruited;

stage 2 emit guiding signals to help docking robots to align to them;
stage 3 synchronise the locking process if required, as both active docking unit

and passive docking unit may be involved;
stage 4 send the branch symbol sequences to newly docked robots.

Any robots in swarm mode may become docking robots when recruiting mes-
sages are received and their type matches with that requested. The docking robot
then moves close to the recruiter guided by the signals and docks to it using the
correct docking port. Upon receiving the branch symbol sequence Sb from the re-
cruiter, it extracts a new symbol sequence S1 by removing the first sc symbol and
the last sp symbol in Sb. This new symbol sequence represents the sub tree which
is rooted from itself. If there are branch sequences in the symbol sequence S1, the
newly joined robot becomes a recruiter and moves into state Recruiting to recruit
more robots into the organism. Otherwise it changes state to organism mode and
hence stops any further growth of the organism from itself. A recruiter exits the
Recruiting state once all its required docking ports are joined by other robots. Al-
gorithm 2 outlines the behaviours for the recruiter and docking robots. Note that the
exact behaviours in each state can have different implementations because of the
heterogeneity of robots.

The morphogenesis process completes when all recruiters exit the Recruiting
state. As the self-assembly process is fully distributed and no single module acts
the coordinator for the growth of the organism, once the process has been initialised
by a seed robot, it is important that all robots are aware of completion of the mor-
phogenesis process and then behave accordingly to transform the organism from
2D to 3D then initialise the macro-locomotion controller. One solution to check the
self-assembly process is to pass a message token across the developing organism pe-
riodically to request all robots to register if they are recruiters or not. This message
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Algorithm 2 Self-assembly strategy for recruiter and docking robots
Behaviour: in state Docking
1: if docking is NOT accomplished then
2: locate and align to the recruiter;
3: else if new symbol sequence information received then
4: extract the branches from received symbol sequence;
5: if branches exisit then
6: enable the corresponding docking ports;
7: start to emit beacon signals;
8: move to state Recruitment;
9: else

10: issue a message token to check progress of self-assembly;
11: if message token is returned then
12: if No recruiters are presented then
13: notify the completion of self-assembly;
14: end if
15: move to organism mode;
16: end if
17: end if
18: end if
Behaviour: in state Recruitment
19: if All required docking port is docked then
20: move to organism mode;
21: else
22: for Each recruiting docking port do
23: if new robot is docked then
24: send branch symbol sequence;
25: stop emitting guiding signals;
26: else if currenttime % RECRUITMENT SIGNAL INTERVAL then
27: broadcast recruiting message;
28: end if
29: end for
30: end if

token travels across the organism following some rules, for example in the same way
a symbol sequence is generated, and back to the original sender. Once it shows no
recruiters are present in the organism, the self-assembly process is assumed finished
and the sender will issue another message to notify the success of morphogenesis
to all robots. The selection of such a sender remains open. It can be any robot in
the organism. A good candidate is however the most recently joined robot that has
no other robots to be recruited, i.e. a leaf node robot in the tree representation. In
other words, whenever a leaf node robot joins the organism, a progress check of
self-assembly will be performed.

Communications, both wireless (IR) and wired (Ethernet), are very important
in synchronising the high level self-assembly strategy and also the low level au-
tonomous docking process between two robots. Due to the interference of IR signals
and low bandwidth, messages are more likely to get lost when transferred wirelessly.
To address this issue, IR messages should normally be kept as simple (short) as pos-
sible. Meanwhile, each IR message may need to be repeated several times until it
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been acknowledged. A full analysis of effect of communication failures on the al-
gorithm is presented in [11].

5 Experiments and discussion

The proposed controller and self-assembly strategy has been implemented and
tested with a small number of real prototype SYMBRION robots. Each robot runs
the same controller framework as described in the paper and utilises the IR signals
for recruiting and docking alignment. Autonomous docking between the recruiter
and a docking robot is synchronised via local sensing and wireless communication.
The locomotion control for each type of robots has been carefully designed accord-
ing to their unique hardware specification. As the initialisation of the self-assembly
process is out the scope of this study, each time a seed robot is chosen manually
with a predefined symbol sequence to start the self-assembly process. Fig. 6 shows
the progress of autonomous self-assembly of an organism with 2 ActiveWheel and 2
BackBone robots. The approach was successfully and repeatably demonstrated for a
number of configurations and seed robot positions. In all cases we see that the target
organism shape is formed within a certain time frame and all robots in the organism
are notified of the success of the process using the progress checking mechanism.
Videos of different experiments are available online at http://goo.gl/VPGGm.

.......

the seed

.

(a) 24s (b) 32s (c) 36s

....

(d) 1m32s (e) 1m44s (f) 1m56s

Fig. 6: Self-assembly experiment with 2 Backbone and 2 ActiveWheel robots. The
experiment is initialised by the ActiveWheel in the middle with a symbol sequence
of “AFKF0000ABKFKBAF00000000”.

Since a symbol sequence representation includes also the location information of
the seed robot in the organism, a selection of different locations for the seed, thus
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different symbol sequences, do indeed result in building the same organism. Al-
though robots have to join the organism one after another, the potential for multiple
recruiters in the self-assembly process shows that the growth of the organism is in
fact a parallel process. It follows that the position of the seed robot (in the organ-
ism) can affect the completion time of the self-assembly process. To evaluate this,
experiments are performed in Robot3D [12] simulator, instead of real robots as only
4 SYMBRION robots were availabe for testing at the time of writing, for growing
the same body plan as shown in Fig.7a. In all cases, 25 robots are initially deployed
uniformly in an arena sized 4 m × 4 m, and the pre-selected seed is always located
in the centre of the arena with varying headings in 10 repeated runs.
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Fig. 7: Comparison of completion time for self-assembly initialised by seed robots
in different positions in the organism. Each box in the plot represents the first to the
third quartile of the data from 10 experimental runs.

Fig. 7b compares the completion time for self-assembly with seed robots in dif-
ferent positions. We see clearly that the completion time varies with different seed
robot positions. It is obvious that the more parallel recruitment in the developing
organism, the quicker the growth process. As expected, a seed located in the centre
of the organism, i.e. postion 6, leads to the fastest growth with an average com-
pletion time of 330 seconds. The further the seed from the centre of the organism,
the longer the completion time; for example, a seed from postion 1 has an average
completion time of 539 seconds. Since the tested target organism shape has a sym-
metrical topology, the completion time is very close when the position of the seed
robots are similar. For example, the seeds next to the centre of the organism, posi-
tion 5 and 7, give average completion times of 415 and 425 seconds respectively. In
order to optimise the efficiency of the self-assembly process, we therefore require
that the process needs to be initialised by a seed robot located as close as possible to
the centre of the target body shape. To check whether a seed robot with a particular
symbol sequence could result in the most efficient self-assembly process, we can
count the number of edges in each branch sequence for this symbol sequence, if all
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of them are less than half of totel number of edges of the parent symbol sequence,
then the associated seed robot is located in the center of the body shape that this
symbol sequence represents.

6 Conclusion and future work

This paper presents a fully distributed algorithm for morphology control in a group
of heterogeneous modular self-assembling robots. Each robot in the system is fully
autonomous with its own sensing and locomotion, and able to physically join with
others using a unified docking mechanism in a 2D planar environment. This study
focuses on how specific organism body shapes can be built, starting with a seed
robot. A well organised symbol sequence structure has been proposed to represent
the target organism body plan and also to form the basis of the self-assembly strat-
egy. The symbol sequence representation encodes not only the topology of the target
body shape but also information on how the shape should grow from one robot. Its
compact nested structure allows the target body shape to be stored and transferred
among robots with minimum memory and low bandwidth communication, which is
a requirement of robots with limited resources. Depending on the topology of the
body plan, multiple robots may join the partially formed organism from different
positions simultaneously. Each time a robot joins the partially formed 2D organism,
it receives a branch symbol sequence from its recruiter. Thus, during self-assembly,
only the seed robot stores the entire body plan of the target organism; other robots
store only parts of the body shape, including itself and its branch. There is a big
advantage compared to the ID-based single entry self-assembly strategy proposed
in [9]. In case there are failures in the self-assembly process, for example, a newly
joined robot malfuctions, only that branch of body shape will be affected, and organ-
ism growth from other points will still go on. If proper fault detection and recovery
mechanisms are introduced to detect the faults and remove the malfuction robot, the
self-assembly from that point can continue as the shape information can be retrieved
directly from the parent recruiter robot.

Since no complex communication protocols and conflict resolution mechanisms
are present in the recruitment-docking process, more than one robot can be attracted
to the same docking port of a recruiter at the same time. Competition among these
robots can inevitably increase self-assembly completion time. We have tested a sim-
ple “expelling” message, broadcast by the docking robot as a way of reducing the
possible competition; however this has only been tested in simulation with idealised
local communication. How efficient this conflict resolution mechanism is and how
robustly it works with a large swarm of real robots need to be further investigated.
Note that there are many ways in which faults on hardware might disrupt the self-
assembly process including, for instance, mechanical failure of the docking mech-
anism or failure of the power or communications buses across the docking mech-
anism. Extending and adapting the algorithm to compensate for such faults during
self-assembly is ongoing work as presented in [11].
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