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Abstract 

Kinematic pile-soil interaction is investigated analytically through a Beam-on-

Dynamic-Winkler-Foundation model. A cylindrical vertical pile in a homogeneous 

stratum, excited by vertically-propagating harmonic shear waves, is examined in the 

realm of linear viscoelastic material behaviour. New closed-form solutions for 

bending, as well as displacements and rotations atop the pile, are derived for different 

boundary conditions at the head (free, fixed) and tip (free, hinged, fixed). Contrary to 

classical elastodynamic theory where pile response is governed by six dimensionless 

ratios, in the realm of Winkler analysis three dimensionless parameters suffice for 

describing pile-soil interaction: (1) a mechanical slenderness accounting for geometry 

and pile-soil stiffness contrast, (2) a dimensionless frequency (which is different from 

the classical elastodynamic parameter 0a / sd V ), (3) soil material damping. With 

reference to kinematic pile bending, insight into the physics of the problem is gained 

through a rigorous superposition scheme involving an infinitely-long pile excited 

kinematically, and a pile of finite length excited by a concentrated force and a 

moment at the tip. It is shown that for long piles kinematic response is governed by a 

single dimensionless frequency parameter, leading to a single master curve pertaining 

to all pile lengths and pile-soil stiffness ratios. 
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Notation 

Latin symbols  

acutoff  cutoff frequency 

0a  dimensionless frequency 

a s  soil acceleration 

pA  pile cross-sectional area 

A , B , C , D  integration constants 

c  Winkler dashpot coefficient 

d  pile diameter 

pE  pile Young’s modulus 

,s sE G  soil Young’s modulus, soil shear modulus  

H  thickness of soil layer 

pI  pile cross-sectional moment of inertia 

uI  translational kinematic response factor 

,I I   rotational kinematic response factors 

*k  complex-valued Winkler modulus 

k  dynamic Winkler stiffness 

L ( )H  pile length, soil thickness 

M  bending moment 

pm  mass per unit pile length 

Q  shear force 

q  soil wavenumber 

zCR  pile-soil curvature ratio at depth z 

0CR  pile head curvature over soil surface curvature (z=0) 

LCR  pile tip curvature over soil surface curvature (z=L) 

ffu  free-field displacement 
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0ffu  free-field displacement amplitude 

gu  base displacement 

0gu  base displacement amplitude 

*

sV  complex-valued soil shear wave propagation velocity  

w  pile displacement 

z  vertical coordinate 

 1/
c

R  complementary curvature at depth z 

 1/
p

R  pile curvature at depth z 

 
0

1/
p

R  pile curvature at head (level 0z  ) 

 
0 ,

1/
p static

R  static pile curvature at head (level 0z  ) 

 1/
s

R  soil curvature at depth z 

  

Greek symbols  

  Winkler damping coefficient 

s  soil material damping coefficient 

Γ  dimensionless response coefficient 

δ  Winkler stiffness coefficient ( / sk E ) 

  Winkler wavenumber 

static  static Winkler “wavenumber” 

s  soil Poisson’s ratio 

,s p   soil, pile mass density 

  soil shear stress 

  cyclic excitation frequency 

 

Keywords: pile, kinematic interaction, subgrade reaction, Winkler model, closed-

form solution 
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1 Introduction 

It is well known that the passage of seismic waves through soft soil causes 

deformations in the soil mass that excite dynamically embedded bodies such as piles. 

As a result, a pile foundation will, even in the absence of a superstructure, be 

subjected to a spatially-variable displacement field imposed by the surrounding soil 

which gives rise to a dynamic interplay known as “kinematic interaction” [1, 2, 3]. 

The ensuing deformations naturally coexist with motions transmitted onto the pile 

through the pile cap due to structural dynamics, an effect commonly referred to as 

“inertial interaction” [1, 2, 3]. Note that inertial interaction is affected by kinematic 

interaction as the input motion to the former problem is the output motion of the  

latter [4, 5, 6, 7]. 

Starting with the pioneering work by Blaney et al [8], a large number of analytical 

studies have demonstrated the importance of kinematic effects on piles [9, 10, 11, 12, 

13, 14]. In addition to the theoretical work, post-earthquake investigations [15, 16, 17] 

have highlighted the vulnerability of pile foundations (even in non-liquefied soil) by 

revealing damage at the pile head and/or depths where inertial forces are negligible. 

Seismic regulations [18, 19] have acknowledged the accumulated evidence, enforcing 

the evaluation of kinematic effects in design of deep foundations, even though only in 

the presence of a layered profile. Note in this regard that a wealth of research results 

have demonstrated that significant kinematic bending can develop at the pile head 

even in perfectly homogeneous soil [12, 20, 21, 22, 23]. 

The simplest approach for computing kinematic bending along a pile is to neglect 

pile-soil interaction and assume that pile and soil movement coincides at all times. 

This procedure has been suggested by Margason [9] and yields the following 

predictive equation for pile bending moment: 
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    s
p p p p p p 2p s

s

a
M E I 1/R E I 1/R E I

V
    (1) 

where pE  and pI  are the Young’s modulus and the cross-sectional moment of inertia 

of the pile,  1/
p

R  and  1/
s

R  are the pile and soil curvature, respectively, 

a a ( , )s s z t  or a a ( , )s s z   is the depth-varying horizontal ground acceleration and 

sV  is the shear wave propagation velocity in the soil. A drawback of this approach 

lies clearly in the inability of Eq. (1) to handle layered soil (as soil curvature is infinite 

at interfaces separating soil layers of different stiffness) and boundary conditions at 

the pile head and tip. For instance, Eq. (1) would always predict maximum bending at 

the pile head even in the absence of a restraining cap (free head conditions). 

To account for pile-soil interaction and, thereby, stiffness mismatch between pile and 

soil as well as different boundary conditions at the ends of the pile, various analytical 

techniques have been developed over the past decades. A particularly attractive family 

of methods are the Winkler models which consider the pile as a beam connected to a 

bed of independent springs and dashpots distributed along its axis, to simulate the 

restraining and dissipative action of the soil. On the basis of this approach, Flores-

Berrones & Whitman [10] derived (implicitly) the ratio of pile and soil curvature for a 

fixed-head pile embedded in a homogeneous halfspace under harmonic excitation 

consisting of vertically-propagating S waves. In this case, pile-to-soil curvature ratio 

was found to be always smaller than unity and to decrease with frequency, thus 

reflecting the inability of the pile to follow short wavelengths in the soil.  

Further studies by Dobry and O’Rourke [11], Mylonakis [13], Nikolaou et al [16] and 

de Sanctis et al [20], resulted in a number of analytical solutions and empirical 
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formulas for bending of piles embedded in homogeneous or two-layer soil, showing 

that pile curvature may exceed soil curvature under certain conditions. Other 

contributions [17, 24, 25, 26, 27, 28, 29, 30] have investigated the behaviour of piles 

in two- and multi-layer soil deposits under both harmonic and transient excitation. 

Despite these efforts, certain fundamental mechanisms governing the development of 

bending along kinematically-loaded piles remain poorly understood, even for 

idealized conditions such as homogeneous soil and low-frequency seismic excitation. 

Of particular interest are counterintuitive cases where pile curvature is larger than soil 

curvature and the role of boundary conditions at pile head and tip. The work at hand 

aims at offering insight into these aspects by: (1) presenting a new set of analytical 

solutions pertaining to different boundary conditions; (2) introducing new 

dimensionless parameters governing static and dynamic pile response to vertically-

propagating SH waves. 

 

2 Problem definition 

The problem considered is depicted in Fig. 1: a single vertical cylindrical pile of 

length L , diameter d , mass density p  and Young's modulus pE  is embedded in a 

homogeneous soil layer of thickness ( )H L  resting on a rigid base. Soil is modelled 

as a linear elastic material of Poisson's ratio s , mass density s  and frequency-

independent material damping s , expressed through a complex-valued shear 

modulus 
* (1 2 )s s sG G i  . The pile is loaded by vertically propagating shear waves 

expressed in the form of a harmonic horizontal displacement 
0

( ) exp[ ]g gu t u i t  

applied at rock level. Considering different boundary conditions at the pile head 
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(fixed, free to rotate) and pile tip (fixed, hinged, free to displace and rotate), provides 

six distinct cases to be examined (Fig. 1). Positive notation for stresses and 

displacements is provided in Fig. 2. 

The problem at hand is governed by seven dimensional parameters ( L , d , pE , sE , 

 , p , s ), in addition to the inherently dimensionless ratios s  and s . Given that 

three fundamental dimensions are involved (Mass, Time, Length), Buckingham’s 

theorem [31] suggests that the interaction problem can be fully described by six 

 7 2 3    dimensionless ratios (e.g., /L d , /p sE E , s , /p s  , s  and / sd V ). 

As will be shown in the ensuing, the adopted Winkler model leads to a drastic 

reduction in the number of governing independent variables. In particular, response in 

the static regime is found to be controlled by a unique dimensionless variable, 

whereas in the dynamic regime two parameters are generally sufficient for describing 

the interaction problem. It will also be shown that in the realm of the Winkler model, 

pile-soil interaction for long piles can be described through a single backbone curve, 

depending solely on a novel frequency parameter. 

Solutions from such analyses can be conveniently expressed through the so-called 

kinematic response factors Iu and Iφ. These are defined, respectively, as the translation 

and rotation amplitudes at the pile head normalized by the corresponding 

displacement amplitude at the surface of the free-field soil i.e. [8],  

 
(0, )

(0, )
u

ff

w
I

u




  (2) 
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'(0, )

(0, )ff

w d
I

u





  (3) 

( , )w z   and ( , )ff ffu u z   is the frequency- and depth-dependent displacement of the 

pile and the free-field soil, respectively, and d   pile diameter. 

Likewise, the following curvature ratios between pile and soil can be defined as 

 
 

 

2
0

0

0

1/ | ''(0, )

1/ | (0, )

zp s

z ss

R w V
CR

R a









   (4) 

 
 

 

2

0

1/ | ''( , )

1/ | (0, )

z Lp s
L

z ss

R w L V
CR

R a









   (5) 

 
 

 

2

0

1/ ''( , )

1/ | (0, )

p s
z

z ss

R w z V
CR

R a





   (6) 

corresponding to the pile head 0( )CR , pile tip ( )LCR  and an arbitrary elevation ( )zCR

. In the above equations ( ) ''  denotes double differentiation with respect to depth. 

 

3 Model development 

Following earlier studies, the problem is treated in the context of two modular 

problems, namely the analysis of free-field soil response and the response of the pile. 

Each sub-problem is addressed separately below. 
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 Free-field response 3.1

In one-dimensional analysis, the linear stress-strain law is according to the notation of 

Fig. 2 

 * ff

s

u
G

z



 


 (7) 

where 
*

sG  is the complex soil shear modulus,   is the shear stress and ( , )ff ffu u z t  is 

the time- and depth-dependent displacement in the free-field soil. 

Considering forced harmonic oscillations of the type ( , ) ( )ff ff

i tu z t u z e  , the 

equilibrium of forces in the horizontal direction acting upon an arbitrary soil element 

yields the familiar second-order differential equation 

 

2

2

2
0

ff

ff

du
q u

dz
   (8) 

where * 1 2s ss iV V   and 
*/ sq V  is the complex shear wave propagation 

velocity in the soil and the corresponding wavenumber, respectively. 

Solving Eq. (8) and imposing the boundary condition of a traction-free soil surface, 

the following simple solution is obtained [32] 

 
0

( , ) cos( ) i t

ff ffu z t u qz e   (9) 

which describes a standing wave of amplitude 
0ffu  at soil surface  0z  . Assuming 

that the amplitude of motion at base level ( z H ) is known, the familiar 

amplification function is recovered [32, 33] 
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 

0

0

*

1

cos /

ff

g s

u

u H V
  (10) 

 Pile response 3.2

In the realm of the approach at hand, free-field displacements are applied at the base 

of the Winkler supports, which constitute the dynamic excitation that forces the pile to 

deflect. The equilibrium of horizontal forces acting on an arbitrary pile segment yields 

the governing equation (Fig. 2) 

 
2

*

2
( ) 0ff p

Q w
k w u m

z t

 
   

 
 (11) 

where ( , )Q z t  is shear force, p p pm A  mass density per unit pile length and 

( , )w w z t  pile displacement. *k k i c   is the complex-valued Winkler modulus, 

k  being the stiffness of the Winkler springs and c  the corresponding dashpot 

coefficient [3, 34, 35]. 

Considering forced harmonic oscillations of the type ( , ) ( ) exp[ ]w z t w z i t  and 

given that shear force is related to displacement through the strength-of-materials 

expression [36] 

 
3

3
( , ) p p

w
Q z t E I

z


 


 (12) 

the equation governing pile motion can be rewritten in the Navier form [10, 16, 35] 
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4 *

4

4
4 ff

p p

d k
w u

dz E I

w
   (13) 

where      is the characteristic wavenumber governing the attenuations of pile 

displacement with depth 

 

1/4
2

4

p

p p

k i c m

E I

 


 
 





 

 
 (14) 

Note that even though   is complex-valued, no superscript ()* is used to distinguish 

it from real-valued counterparts for the sake of simplicity. 

The general solution to the above equation is 

( , ) cos sin cos sin ( , )( ) ( )z z

ffw z A z B z e C z D z e Γ u z            (15) 

where A , B , C , D  are integration constants dependent on the boundary conditions; 

Γ  is a dimensionless response coefficient given by [10] 

 
4 4( 4 )p p

k i c
Γ

E I q








  (16) 

 Pile-soil curvature ratio 3.3

Enforcing the boundary conditions at the pile tip, the ratios of pile curvature at the 

pile head and the corresponding soil curvature at the same elevation, 0CR , for a fixed-

head pile are obtained as (Eq. (4)): 
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 

0

cos( ) cos( )sinh( ) cosh( )sin( )

sin( )sinh( )sin( )

1 2
sin(2 ) sinh(2 )

qL L L L L

q
L L qL

CR Γ
L L

   

 


 

 
 
 
 
 
 
 
  





 


 

(17) 

2

0

cos( ) cos( )cosh( ) 2(1 1/ ) sin( )sinh( )

1 2
cos(2 ) cosh(2 )

qL L L Γ L L
q

CR Γ
L L


   

 

  
   

    

 
 
 
 
 
 
 



  

(18) 

 

0

2

2(1 1/ ) cos( )sinh( ) cosh( )sin( ) cos( )

2 cos( )cosh( )sin( )

1 2
sin(2 ) sinh(2 )

Γ L L L L qL
q

L L qL
q

CR Γ
L L


   


 

 

 
   

 
 
 
 


 
 
 


 
 
 
 
 





 (19) 

corresponding to free-tip, hinged-tip and fixed-tip conditions, respectively. Equation 

(18) has been reported in Reference [16]. 

For a fixed-tip pile, pile curvature at pile tip over soil curvature at surface, LCR , for 

fixed- and free-head conditions is respectively (Eq. (5)): 
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     

 

2

cos sin 2 sinh 2 2 1 1/ sin 2 sinh 2

2 cos 2 cosh 2 sin

sin 2 sinh 2
L

qL L L LΓ L
q

L L qL
q

CR Γ
L L


   


 

 

   
       
    
 

  
   

  


 (20) 

     

 

2

cos 2 cos 2 cosh 2 2 1 1/ cos 2 cosh 2

2 sin 2 sinh 2 sin 4cos cosh

2 cos 2 cosh 2
L

qL L L L L
q

L L qL L L
q

CR Γ
L

Γ

L


   


   

 

   
        
    
 

  
    

  
 

(21) 

where Γ  is given by Eq. (16). 

 

 Translational kinematic response factor 3.4

For the aforementioned case of a fixed-head pile, corresponding expressions for the 

kinematic response coefficient uI  in Eq. (2) (ratio of pile head absolute displacement 

to free-field surface absolute displacement) under free-tip, hinged-tip and fixed-tip 

conditions are, respectively 

 2 cos( ) cosh( )sin( ) cos( )sinh( ) cos( )cosh( )sin( )

1
sin(2 ) sinh(2 )

u

q
qL L L L L L L qL

q
I Γ

L L

     


  

 
 
  
  

  
 

 


 (22) 
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2

2
cos( ) 2(1 1/ ) cos( )cosh( ) sin( )sinh( )

1
cos(2 ) cosh(2 )

u

qL Γ L L L L
qq

I Γ
L L


   

  

   
    
         

  
 
  

 

  (23) 

 cos( ) cos( )sinh( ) cosh( )sin( ) (1 1/ )

sin( )sinh( )sin( )

1 2
sin(2 ) sinh(2 )

u

qL L L L L Γ

q
L L qL

I Γ
L L

   

 


 

   
 
 
 

  
 
 
  

 (24) 

Note that for the limit case of an infinitely-long pile, all the above relations converge 

to the simple solution of Flores-Berrones & Whitman [10] 

 uI Γ  (25) 

a result which is also valid for curvature ratios. Note that Eq. (22) has been derived 

(yet inadvertently referred to as curvature ratio 0CR ) in Reference [16]. 

With reference to free-head piles, kinematic response coefficients for free-tip, hinged-

tip and fixed-tip conditions are, respectively 

 3 sin( ) cos( )sinh( ) cosh( )sin( ) 2 sin( )sinh( )cos( )

1
cos(2 ) cosh(2 ) 2

u

qL L L L L L L qL
q q

I Γ
L L


     

  








  

  
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 

 


 (26) 
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 

 

 

2

2

2(1 1/ ) cos( )sinh( ) cosh( )sin( ) cos( )

sin( ) cosh( )cos( ) cos( )

sinh( ) cos( )cos( ) cosh( )
1

sin(2 ) sinh(2 )
u

Γ L L L L qL
q

L L qL L

L L qL Lq
I Γ

L L


   

  

  

  

 
 
 
 
 
  
  

  


 
   

 

  

 
 


 
 
 
  



(27) 

 

 

2

2

4(1 1/ ) cos( )cosh( )cos( ) cosh(2 ) cos(2 ) / 2

sin( ) cos( )sinh( ) cosh( )sin( )

1
cos(2 ) cosh(

2

2 ) 2
u

Γ L L qL L L
q

qL L L L L
qq

I Γ
L L


   


   

  

 
 
 
 

  
 

    
  

  
 
 
 


 
     

 

 

 









(28) 

 Rotational kinematic response factor 3.5

To quantify pile head rotation, a second interaction coefficient can be defined as 

 

0

(0,ω)

ff

w΄
I

u



  (29) 

It should be noticed that the above definition is different from the ordinary coefficient 

I  (note the different subscript) in Eq. (3) invariably employed in the literature [4, 6, 

16], as in this way pile head rotation depends solely on dimensionless frequency and 

Winkler parameter ( / sV  ) and L , respectively. 
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Expressions for I  
pertaining, respectively, to free-tip, hinged-tip and fixed-tip 

conditions are: 

 

2

2cos( ) cosh( )sin( ) cos( )sinh( ) sin(2 ) sinh(2 )

2 sin( )sinh( )sin( )

cos(2 ) cosh(2 ) 2

qL L L L L L L

q
L L qL

q
I Γ

L L


     

 


  

    
 
 
  




 
  



 (30) 

2
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   

 

  

   
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




 



 

 
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 (31) 

 
2

2

4(1 1/ ) cos( )sinh( ) cosh( )sin( ) cos( )
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L L L L qL
q

I Γ
L L

q



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
   

  
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    

  
 
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 
 


  
 

 (32) 

Discussion of the above analytical developments is provided in the remainder of the 

article. 

 

4 Interpretation of results & comparison with other solutions 

For comparison purposes, rigorous Finite Element (FE) analyses were performed by 

means of the commercial computer platform ANSYS [37]. Given that the geometry is 

axisymmetric and the load anti-symmetric, stresses and displacements were expanded 

in Fourier series along the circumferential direction, following the technique 

introduced by Wilson [38] and later employed by Blaney et al. [8] and Syngros [39]. 
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For the problem at hand, only the first term of the series is relevant and, thereby, 

solving a single FE configuration is sufficient. Owing to this procedure, the original 

three-dimensional problem is conveniently reduced to a two dimensional. The domain 

was discretised using 4-noded axisymmetric elements; following a sensitivity 

analysis, the lateral dimension of the model was set equal to 200d, to ensure that soil 

response close to the boundaries is not affected by outward-spreading waves emitted 

from the pile-soil interface. Likewise, vertical displacements were restrained along the 

lateral boundary of the mesh to simulate 1-dimensional conditions for S-waves at 

large distances from the pile. In addition, nodes at the base of the model were fully 

restrained to represent the rigid bedrock. Vertical size of the elements was kept 

constant, equal to / 4d  which was found to be sufficiently accurate and economical. 

The analyses were carried out in the frequency domain [8, 21, 37], the load being 

applied in the form of a harmonic horizontal body force in each element. 

 Static Response 4.1

It is well-known that in Winkler models pile-soil interaction is controlled by the key 

dimensionless parameter [10, 35] 

 

1/4 1/41/4
16 δ

4

p

p p s

Ek L
L L

E I d E





      
          


  

  (33) 

being the product of   (evaluated for 0  ) in Eq. (14) and pile length L . In such 

models L  is a unique parameter controlling static response, which can be interpreted 

as a “mechanical slenderness” (as opposed to the familiar geometrical slenderness 

L/d) as it encompasses both geometry  /L d  and pile-soil relative stiffness ( /p sE E ). 

In addition, L  is function of the Winkler stiffness coefficient δ / sk E , the value of 
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which lies in the core of the Winkler representation. The effect of δ  on kinematic 

response is examined in Figs. 3 and 4, where pile-soil curvature ratio is plotted against 

pile slenderness /L d  for two values of pile-soil stiffness contrast. It is evident by 

inspecting Figs. 3 and 4, that the predictions of Winkler models employing the 

commonly used value δ 1.2  pertaining to inertial interaction analyses [40, 41], are 

not in good agreement with the FE results for certain cases examined. In Figs. 3a and 

3b the value of δ  that matches the FE results seems to decrease with increasing pile 

slenderness and with decreasing pile-soil stiffness ratio. Moreover, different values 

for “optimum” δ  are obtained depending on boundary conditions at the tip as shown 

in Figs. 3c and 3d. In addition, optimum δ  clearly depends on the parameter to be 

matched. For instance, it is evident from Figs. 4a and 4b that values of δ  matching 

LCR  (ratio of pile curvature at tip over soil curvature at soil surface) differ from those 

in Fig. 3, referring to 0CR , and are independent of pile slenderness /L d . In light of 

this observation, results for static pile-soil curvature ratio presented in Figs. 5 to 14 

are plotted in terms of L . 

In Fig. 5, static pile-soil curvature ratio at the pile head is plotted against L  for 

different boundary conditions at the pile tip. Naturally, all curves start from zero since 

for 0L   the pile degenerates into a rigid disk, thus experiencing zero moment 

regardless of restraints at the tip. With increasing L  curvature ratio gradually 

increases attaining unity at points A1,2 and A3, and reaching a maximum, above unity, 

at points M1, M2, M3 depending on the conditions at the tip. A further increase in L  

causes pile curvature to drop and gradually converge to soil curvature (B1,2, B3, T), as 

the pile becomes sufficiently flexible to follow soil deformation, regardless of tip 

conditions.  
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A better understanding of the above trends, which may explain the counterintuitive 

values of curvature ratios larger than one, may be achieved through a simple 

mechanistic approach, which interprets the curvature of a fixed-head pile of length L  

as the superposition of: (1) the curvature of an infinitely-long pile ( 1CR   at any 

depth) and (2) a “complementary” curvature profile accounting for finite pile length 

and the specific boundary condition at the tip. As an example, for a fixed-head pile 

the expression for static pile-soil curvature ratio at any depth can be cast in the form: 

 
(1/ ) (1/ )

1
(1/ ) (1/ )

p c

s s

R R

R R
   (34) 

where 1 in the right side is the curvature ratio for an infinitely-long fixed-head pile in 

static regime [for which    1/ 1/
p s

R R ], and  1/
c

R  is a “complementary” 

curvature at depth z  as defined above. This interpretation is schematically shown in 

Fig. 6 for the case of a floating pile (free-tip condition): an infinitely-long pile 

embedded in homogeneous soil is conceptually separated from the underlain material 

at depth z L  (Fig. 6a). The curvature pattern of the upper part of the pile in Fig. 6a 

is tantamount  to the superposition of the curvature along a free-tip pile of length L  

(Fig. 6b) and the complementary curvature of the same pile subjected at its tip to an 

action  1/p p s
E I R  (Fig. 6c), due to the “detached” lower part in Fig. 6a. For this 

particular case, substituting the expression for  1/
c

R  (see [42]), Eq. (34) duly 

reduces to Eq. (17) for 0z  . 

The above procedure can be extended to account for the more general case of a 

restrained pile tip. This can be achieved by introducing in Fig. 6b the pertinent 

restraining actions at the tip. To ensure equilibrium, the opposite actions must be 
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applied at pile tip in Fig. 6c. For hinged-tip condition a horizontal force must be 

applied at the tip, whereas for a fixed-tip both a force and a moment are required. 

Note that because of the statically indeterminate nature of the problem in Fig. 6b, the 

values of these restraining actions are not known a priori. 

An alternative interpretation of the trends observed in Fig. 5 is possible by means of 

the aforementioned superposition approach. Indeed, the complementary curvature at 

the pile head may possess different signs depending on the value of L . Specifically: 

for a very short pile the complementary moment at the pile head will be equal to soil 

curvature, thus leading to a zero overall moment at the top. On the other hand, for an 

infinitely-long pile curvature at the head will be equal to soil curvature, as the external 

moment in Fig. 6c will not be transmitted to the pile top. For short piles the moment 

transmitted to the head has the same sign as the applied moment. This results in pile-

soil curvature ratios lower than unity. For longer piles, the complementary moment 

becomes negative leading to a curvature ratio higher than unity. 

The profile of pile curvature with depth over soil curvature at surface, zCR , is 

presented in Figs. 7 to 9 for various head and tip conditions and the values of L  

shown at the insert of Fig. 5. For fixed-head, free-tip conditions (Fig. 7a) the bending 

moment along a short pile ( L   5.49, Fig. 5) attains its maximum value at the top, 

decreasing monotonically with depth. For long piles ( L  5.49, Fig. 5) the maximum 

curvature ratio develops at depth and attains the value of 1.04. The depth maxz  

corresponding to maximum curvature ratio may be related to L  by means of the 

aforementioned superposition scheme through the easy-to-derive expressions valid for 

free-tip conditions 
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 max 3.14, 5.49z L L      (35) 

For free-head, free-tip piles (Fig. 7b) all curves are symmetrical. Specifically, for 

0 2L    (short piles) pile bending attains its peak value at mid-depth. For 

2L   (long piles) a maximum is observed at two symmetric distances maxz   

from the head and tip. 

Pile-soil curvature ratio for hinged-tip piles is presented in Fig. 8. The behaviour of 

fixed-head piles depicted in Fig. 8a is similar to the one shown in Fig 7a: bending 

moment attains its maximum at the top for short piles ( L   4.71, Fig. 5), whereas for 

long piles ( L  4.71, Fig. 5) maximum curvature ratio develops at depth and attains 

a constant value of 1.07 . In the same fashion, depth maxz  corresponding to the 

maximum curvature ratio is related to L  through the expression 

 max 2.4, 4.71z L L      (36) 

The hinged-tip pile in Fig. 8b experiences a curvature pattern analogous to that in  

Fig. 7b. The maximum value of curvature ratio is observed at 0.58z L  for 

0 5.49L   (short piles), whereas for higher values of L  the maximum is 

observed at the depth given by Eq. (36) 

For fixed-tip piles, the maximum curvature is always observed at the tip and has an 

opposite sign compared to the one at the top (Fig. 9). It is noted in passing that a quick 

estimate of the curvature ratio at the pile base can be obtained using the expression of 

Dobry & O'Rourke [11] derived for an infinitely-long pile in two-layer soil, 
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considering an infinitely-stiff bottom layer. This leads to an overestimation of 

curvature ratio at the pile tip equal to 2 L . 

 

 Dynamic Response 4.2

Employing the approximate relations for the distributed dashpot coefficient along the 

pile 
1/4

06 δ2 /s ss sc a V Ed     derived using planar wave-propagation analysis 

[34], the complex-valued wavenumber  can be related to its static value through 
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 (37) 

where   and static  are obtained from Eqs. (14) and (33), respectively, and acutoff  

stands for a characteristic frequency (termed “cutoff frequency”) below which no 

stress waves can be emitted from the pile-soil interface to propagate horizontally in 

the soil medium and, thereby, no radiation damping is generated. The cutoff 

frequency is, therefore, associated with a sudden increase in damping and coincides 

with the fundamental frequency of the soil layer in shearing and is expressed in 

dimensionless form as 

 
1a ( / 2) ( / )cutoff H d   (38) 

Note that for the range of frequencies relevant to earthquake engineering, the term 

related to pile density in Eq. (37) may be neglected without significant error. 



 24 

In the same spirit as in static analysis, dynamic pile response can be described by a 

unique dimensionless parameter. This is achieved by using the static value of   in 

Eq. (33) in the dynamic regime. The validity of the approximation is explored in Fig. 

10, in which pile-soil curvature ratio at the head is plotted against frequency 

0a / sd V  for selected pile-soil configurations. Predictions using the static value of 

  in Eq. (33) are compared to those obtained from the complete formulation in Eq. 

(37) and to FE results. Different values for δ  are used for each case, based on an 

optimal selection according to Fig. 3. A convergence of all curves below cutoff 

frequency is observed. Beyond cutoff, however, the static assumption leads to a better 

agreement with the more rigorous FE results. This is probably due to the approximate 

description of radiation damping employed in Eq. (37) which was based on inertial 

interaction considerations [34]. Nevertheless, even under a more realistic 

representation of geometric energy dissipation, the benefit stemming from the 

simplified approach cannot be overstated. It is also worth noting that optimum δ  

exhibits only a weak dependence on frequency. Accordingly, optimum δ  for static 

analysis (Fig. 3) can be employed in the dynamic regime (Fig. 10). 

Additional comparisons of the proposed model against FE results obtained as part of 

this study [37] and from the literature [6] are presented in Figs. 11 and 12 in terms of 

translational and rotational kinematic response factors uI  and I . It is evident that the 

predictions of the model are in satisfactory agreement with the results of the more 

rigorous solutions for all configurations examined. 

In the remainder of the article, dynamic effects are discussed in terms of pile 

curvature and kinematic response factors uI  and I . In light of the analytical 

developments in Eqs. (22)-(32), it can be readily recognized that the adoption of 0a  
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(which is independent of mechanical slenderness) as an independent frequency 

variable would not allow ( L ) to be the main parameter controlling the response. It is 

observed that the excitation frequency appears in the solutions only in dimensionless 

terms qH  / sH V  and /q   / sV  , thereby, these frequency parameters can 

be used for expressing results in the dynamic regime. 

For an infinitely-long fixed-head pile, pile-soil curvature ratio at all depths, CR , and 

kinematic response factor uI  can be cast in the form 
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1
1

4
u

s

CR I
V


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

  
     
   

 (39) 

Which coincides with factor Γ  in Eq. (16) and clearly indicates that the response of 

long piles depends solely on the unique frequency parameter  / sV   and soil 

material damping s , not on dimensionless frequency 0a . 

In Fig. 13, the dynamic de-amplification of curvature ratio at the pile head is plotted 

against  / sV   for fixed-head piles under different boundary conditions at the tip. 

Dynamic pile curvature decreases with frequency for all piles of finite length, as the 

pile is unable to follow short wavelengths in the soil. For the trivial case 0L   

dynamic de-amplification is equal to one, as dynamic pile curvature is always zero. 

With increasing L  all curves approach the one corresponding to the infinitely-long 

pile regardless of tip conditions. The threshold value of L  beyond which a pile 

behaves as an infinitely-long beam depends on end condition  

and is strictly related to the static behaviour depicted in Fig. 5. Indeed,  

if a pile behaves as an infinitely-long beam under static conditions  
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( L   4.71, 5.49 - Fig. 5), it behaves the same way in the dynamic regime. Note that 

with increasing L  the curves do not evolve in a monotonic manner. Interestingly, 

the lower curve corresponds to the value of L  for which the curvature ratio is 

maximum in static conditions ( L  corresponding to 2.57, 2.31, π - Fig. 5).  

Similar observations can be made for the kinematic response factor uI  (Fig. 14), 

except for that the threshold values of mechanical slenderness are lower than in the 

previous case. This pattern may reflect that strains are more sensitive to boundary 

conditions than displacements. 

For free-head piles kinematic response factors uI and I  are plotted in Figs. 15 and 

16. A common trend is observed: both factors increase with increasing frequency up 

to a certain value of  / sV  . Beyond this value the trend is reversed with uI  and 

I  decreasing with frequency. This behaviour can be explained in light of 

wavelengths developing in the soil at different frequencies. With increasing 

frequency, wavelengths become shorter forcing the pile to experience stronger 

rotations along its length. This also leads to higher displacements atop free-head piles. 

Note that the maximum rotation at the pile head is equal to the ratio of free-field 

displacement  

at the soil surface, 
0ffu , and the characteristic wavelength of the  

pile,  1/  . 

 

5 CONCLUSIONS 

A Beam-on-Dynamic-Winkler-Foundation model was employed to investigate the 

behaviour of kinematically stressed piles of finite length embedded in a homogeneous 
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soil layer, for different boundary conditions at the head and tip. Analytical solutions 

for pile response were provided in closed form. 

The main conclusions of the study may be summarized as follows: 

1) Owing to its simplicity, the adopted analytical model can shed light on certain 

fundamental mechanisms controlling pile-soil interaction. Its performance, 

however, is related to a proper selection of stiffness coefficient δ  which depends 

on a number of parameters such as pile slenderness, pile-soil stiffness ratio, 

boundary conditions, as well as on the parameter to be matched (i.e., pile 

curvature, pile displacement, etc). Nevertheless, it is observed (Fig. 3) that δ  

attains higher values for small pile slenderness and large pile-soil stiffness ratios, 

and appears to be independent of frequency (Figs. 3 and 10). 

2) In Winkler models, pile-soil kinematic interaction is governed by a unique 

dimensionless parameter, L , (Eq. (33)) which can be interpreted as a 

“mechanical slenderness”, encompassing key problem parameters namely pile 

slenderness, pile-soil stiffness ratio and Winkler coefficient δ . A unique 

parameter ( L ) governs the response at static conditions. The same parameter 

controls the behaviour in the dynamic regime if pile inertia and radiation damping 

are neglected. This simplification allows for a better understanding of the 

interaction phenomenon and leads to a better agreement of the closed-form 

solutions with rigorous numerical results. 

3) Pile curvature may be decomposed into the sum of soil curvature and a 

complementary curvature that develops along the pile subjected to pertinent forces 

and moments at the two ends. These forces depend on the specific boundary 
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conditions and are responsible for the counterintuitive phenomenon of pile 

curvature higher than soil curvature for certain values of pile slenderness. 

4) A new dimensionless frequency factor  / sV   was introduced for normalizing 

response in the dynamic regime. It was shown that this allows long piles to exhibit 

the same response regardless of actual length and pile-soil stiffness ratio. This can 

be understood, since the dimensionless frequency is expressed as ratio of 

characteristic pile wavelength  1/   and soil wavelength  /sV   at a given 

frequency. As a follow up, a new kinematic response factor was introduced to 

describe pile head rotation (Eq. (29)). In this way, the interaction is function only 

of the aforementioned frequency factor and mechanical slenderness. 
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FIGURES 

 

 

 
 

Fig. 1. Problem considered and associated boundary conditions at pile head and tip. 

 

 

 

 
 

Fig. 2. Positive notation for forces and stresses on pile and soil, respectively. 
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Fig. 3. Variation of pile-soil curvature ratio at pile head under static conditions (ω=0), 

as function of pile slenderness for selected values of Winkler stiffness parameter δ. 
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Fig. 4. Variation of pile-soil curvature ratio at pile tip under static conditions (ω=0), 

as function of pile slenderness for selected values of Winkler stiffness parameter δ. 

 



 37 

 
 

Fig. 6. Kinematic bending along an infinitely-long pile as a superposition of a 

kinematic and an external load on two piles of finite length (Hatched areas denote 

bending moment). 
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Fig. 7. Variation of static pile-soil curvature ratio with depth for free-tip piles, for 

different geometric and material configurations. 
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Fig. 8. Variation of static pile-soil curvature ratio with depth for hinged-tip piles, for 

different geometric and material configurations. 
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Fig. 9. Variation of static pile-soil curvature ratio with depth for fixed-tip piles, for 

different geometric and material configurations. 
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Fig. 10. Variation of dynamic pile-soil curvature ratio at pile head with frequency for 

fixed-head free-tip piles, for different geometric and material configurations: 

comparisons of rigorous elastodynamic FE results with Winkler solutions obtained 

using the optimum static δ value in Fig. 3. βs=0.10 
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Fig. 11. Variation of kinematic response factor Iu for free-head free-tip piles: 

comparisons of rigorous elastodynamic FE results with Winkler solutions obtained 

using the optimum static δ value in Fig. 3. βs=0.05 
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Fig. 12. Variation of kinematic response factor I  for free-head free-tip piles: 

comparisons of rigorous elastodynamic FE results with Winkler solutions obtained 

using the optimum static δ value in Fig. 3. βs=0.05 
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Fig. 13. Variation of dynamic pile curvature ratio at pile head with frequency for 

fixed-head piles under different tip conditions. 
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Fig. 14. Variation of kinematic response factor Iu with frequency for fixed-head piles 

under different tip conditions. 
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Fig. 15. Variation of kinematic response factor Iu with frequency for free-head piles 

under different tip conditions. 
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Fig. 16. Variation of kinematic response factor Iθ with frequency for free-head piles 

under different tip conditions. 

 


