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Abstract

In [10], Busenberg & Huang (1996) showed that small positive equilibria can

undergo supercritical Hopf bifurcation in a delay-logistic reaction-diffusion

equation with Dirichlet boundary conditions. Consequently, stable spatially

inhomogeneous time-periodic solutions exist. Previously in [5] Badii, Diaz

& Tesei (1987) considered a similar logistic-type delay-diffusion equation,

but differing in two important respects: firstly by the inclusion of nonlin-

ear degenerate diffusion of so-called porous medium type, and secondly by

the inclusion of an additional ‘dominating instantaneous negative feedback’

(where terms local in time majorize the delay terms, in some sense). Suf-

ficient conditions were given ensuring convergence of non-negative solutions

to a unique positive equilibrium.

A natural question to ask, and one which motivated the present work,

is: can one still ensure convergence to equilibrium in delay-logistic diffusion

equations in the presence of nonlinear degenerate diffusion, but in the absence

of dominating instantaneous negative feedback? The present paper considers
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this question and provides sufficient conditions to answer in the affirmative.

In fact the results are much stronger, establishing global convergence for a

much wider class of problems which generalize the porous medium diffusion

and delay-logistic terms to larger classes of nonlinearities. Furthermore the

results obtained are independent of the size of the delay.
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1. Introduction

Let Ω be a bounded domain in Rn with boundary of class C2+α for some

α ∈ (0, 1). Define QT = Ω × (0, T ], ST = ∂Ω × (0, T ] and Γr = Ω × [−r, 0].

We consider the following nonlinear degenerate diffusion equation with delay

(D)


∂tu = ∆φ(u) + f(u(x, t))h (u(x, t− r)) in QT ,

u = 0 in ST ,

u = ηs ≥ 0 in Γr,

where r > 0 is the delay and ηs(x) := η(x, s) the initial data. As usual ∆

denotes the Laplacian operator and ∂tu denotes the partial time derivative

∂u/∂t. Throughout we will write Q instead of Q∞ and we will sometimes

abuse notation slightly by writing u(t) instead of u(·, t), for a function u(x, t).

The associated time-independent stationary problem for (D) is given by

(DS)

 ∆φ(u) + f(u)h(u) = 0 in Ω,

u = 0 in ∂Ω.

This paper is concerned with the large-time behaviour of non-negative solu-

tions of (D) and their convergence to solutions of (DS) as t→∞. Its novelty

lies in the combination of three distinct types of nonlinearity: degenerate
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diffusion φ(u), local source term f(u) and time delay h(u(x, t − r)). Such

problems are often considered as models in population dynamics where φ(u)

represents movement of individuals to avoid over-crowding, f(u) an intrinsic

growth rate and h(u(x, t − r)) a delayed response due to gestation periods,

resource conversion, incubation periods, etc.

There is a large literature relating to problem (D) when delays are absent

(r = 0), see [3, 23, 27] for an overview and extensive bibliographies. We will

make use of several key results from this literature on degenerate parabolic

equations, using it mainly to provide suitable comparison solutions for the

solutions of (D). Several authors have considered the non-delay degenerate

parabolic case in the presence of periodic forcing terms and established ex-

istence and attractivity properties of periodic solutions [14, 26]. There are

also many works dealing with the case of linear diffusion and nonlinear delay

terms (r > 0), see [19, 24, 29] for an overview and references. More recently

researchers have considered problems incorporating degenerate diffusion, de-

lay and periodic forcing [28, 30].

In [10] the authors considered the following linear diffusion case φ(u) = u

with logistic delay h(u) = 1− u and local source term f(u) = ku (k > 0):

∂tu = uxx + ku(x, t)(1− u(x, t− r)), x ∈ (0, π), t > 0, (1)

u = 0, x = 0, π, t > 0. (2)

It is well known that (1-2) possesses a unique positive equilibrium Uk for all

k > 1, and only the trivial equilibrium U = 0 when k < 1, with ‖Uk‖∞ → 0 as

k → 1+. In the case of no delay (r = 0) it is also well known that Uk attracts

all non-negative non-trivial solutions for k > 1; when k < 1 the trivial

equilibrium U = 0 attracts such solutions. In [10] the authors fixed k slightly
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greater than, sufficiently close to, 1 and showed that Uk undergoes Hopf

bifurcation as r increases through an infinite sequence of positive values 0 <

r0(k) < r1(k) < r2(k), . . .. In particular they showed that the first bifurcation

at r0(k) is supercritical, giving rise to stable, spatially inhomogeneous, time-

periodic solutions of (1-2). Consequently, there exist values of k and of the

delay parameter r for which the (small) positive equilibrium Uk is not locally

attractive. The present work was motivated in part by asking whether this

kind of ‘delay-induced instability’ can occur when linear diffusion is replaced

by nonlinear degenerate diffusion, such as ∆(um) for m > 1 (the so-called

porous medium slow diffusion operator).

No comprehensive literature exists for degenerate parabolic equations in-

cluding delay terms (and without periodic forcing). To the best of the au-

thor’s knowledge the only paper in a similar spirit to the present one is [5].

There the authors considered the equation

∂tu = ∆um + u

(
a(x)− b(x)u−

∫ t

−∞
u(x, s)K(x, t− s) ds

)
, (3)

where b and k are non-negative functions and the positivity set of a in Ω is

non-empty. Crucially, and in contrast to the present paper where b ≡ 0 ,

it was assumed in [5] that b > 0 on Ω. Furthermore, in order to guarantee

convergence to a unique positive equilibrium, b was assumed [5, Theorem

2.5] to satisfy the stronger condition

b(x) ≥
∫ ∞

0

K(x, s)ds, ∀x ∈ Ω. (4)

Assumptions such (4) are sometimes referred to as ‘diagonally dominant’ or

having ‘negative instantaneous feedback’ in the delay-differential equation
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literature and in the theory of competitive population dynamics. Mathemat-

ically this property is often used to overcome the absence of a comparison

principle in situations where the delay term has a negative response effect,

corresponding to h′ < 0 in our context. See [16, 15, 17, 19].

Such terminology refers to the assumption that the local, instantaneous

term bu dominates the non-local, delayed term K ? u (the convolution term

in (3)). The work of [5] provides a second motivation for the present paper,

namely to obtain sufficient conditions for global convergence of non-negative

solutions in the absence of negative instantaneous feedback (i.e. with b = 0.)

The remainder of the paper is structured as follows. In Section 2 we de-

fine the solution concepts for the problems encountered and establish prelim-

inary existence-uniqueness results. In Section 3 we summarize and extend

some known results from the literature concerning sign-indefinite degener-

ate parabolic equations. Section 4 contains the main results of the paper.

Sufficient conditions will be given which ensure global convergence of non-

negative solutions of (D) to a positive equilibrium, see Theorem 4.1. The

class of problems for which the results are applicable include the logistic-

type reaction term described above as a special case. The final Section 5

contains some examples and discussion.

2. Global existence and uniqueness for the delay problem

Let R+ = [0,∞). We begin with the following assumptions:

(A1) φ ∈ C1(R+), φ(0) = φ′(0) = 0, φ′ > 0 on (0,∞), φ−1 exists and

φ−1 ∈ Cα(R+), there exist γ, δ > 0 such that φ is convex on (0, δ) and

uφ′(u) < γφ(u) on (0,∞).
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(A2) f ∈ C1(R+) and f(0) = 0.

(A3) lim
u→∞

f(u)/φ(u) = 0.

From here onwards g : R+ → R+ will denote the function given by

g(u) = f(φ−1(u)). (5)

We observe that g has the following properties: g ∈ C1(0,∞) ∩ Cα(R+),

g(0) = 0 and g(u)/u→ 0 as u→∞ (sublinearity at infinity).

Let us introduce the inhomogeneous, degenerate parabolic problem

(Π)


∂tu = ∆φ(u) +H(x, t)f(u) in QT ,

u = 0 in ST ,

u = η0 ≥ 0 in Ω,

where H ∈ C(Q) and η0 ∈ C(Ω). Such problems appear as a special case of

those studied in [2].

Definition 2.1.

(a) (i) A non-negative weak solution u of problem (Π) is a function

u ∈ C([0, T ], L1(Ω)) ∩ L∞(QT ) satisfying∫
Ω

u(τ)ζ(τ)− η0ζ(0) dx −
∫
Qτ

u∂tζ + φ(u)∆ζ dxdt

=

∫
Qτ

H(x, t)f(u)ζ dxdt (6)

for all τ ∈ [0, T ] and ζ ∈ C2(QT ) with ζ ≥ 0 and ζ = 0 on ST . A

weak subsolution v (respectively supersolution w) of problem (Π)

is defined similarly, but with equality replaced by ≤ (respectively

≥) in (6).
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(ii) A non-negative classical solution u of problem (Π) is a function

u ∈ C(QT ) for which the partial derivatives ∂tu and ∆φ(u) exist

and are continuous in QT and satisfies (Π) pointwise. A classical

subsolution v (respectively supersolution w) of problem (Π) is de-

fined similarly but with equality replaced by ≤ (respectively ≥) in

(Π).

(b) Non-negative weak and classical solutions of problem (D) are similarly

defined, with H(x, t) replaced by h(u(x, t− r)).

(c) (i) A non-negative weak solution u of problem (DS) is a function

u ∈ L∞(Ω) satisfying∫
Ω

φ(u)∆ζ + f(u)h(u)ζ dx = 0 (7)

for all ζ ∈ C2(Ω) with ζ ≥ 0 and ζ = 0 on ∂Ω.

(ii) A non-negative classical solution u of problem (DS) is a function

u ∈ C(Ω) for which ∆φ(u) ∈ C2(Ω) and satisfies (DS) pointwise.

In order to prove existence and uniqueness for the delay problem (D)

we will first need the result for the non-delay problem (Π), which is non-

autonomous and inhomogeneous. We prove only that which is sufficient for

our analysis of the delay problem.

Lemma 2.1. Let H ∈ C(Q) and 0 ≤ η ∈ C(Γr), η0(x) = 0 in ∂Ω. If

(A1-A3) hold, then for all T > 0 there exists a unique, non-negative weak

solution u of problem (Π). Moreover, u ∈ C(QT ).
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Proof. By [2, Theorem 2.1 and Theorem 2.3], there exists a T > 0 such that

(Π) has a unique weak solution on [0, T ), and either T = ∞ or, T < ∞

with lim sup
t→T−

‖u(t)‖∞ =∞. We show that T =∞ via a standard comparison

argument.

Let e1 denote the principal eigenfunction of −∆ on B with homogeneous

Dirichlet boundary conditions, where B is any open ball such that Ω ⊂ B.

Let µ1 > 0 denote the corresponding principal eigenvalue and suppose e1 is

normalized such that ‖e1‖∞ = 1. Since g(u)/u → 0 as u → ∞ and e1 > 0

on Ω, we can choose c > 0 sufficiently large such that

‖H‖L∞(QT )g(ce1(x)) ≤ µ1ce1(x)

for all x ∈ Ω. Setting w(x) = φ−1(ce1(x)), we have

∂tw −∆φ(w)−H(x, t)f(w) ≥ −∆(ce1)− ‖H‖L∞(QT )g(ce1)

≥ −c (∆e1 + µ1e1) = 0

in QT . Taking c > 0 sufficiently large so that also ce1 ≥ η0 in Ω ensures that

w is a classical supersolution of (Π). It follows by comparison [2, Theorem

2.3] that u ≤ w almost everywhere in QT and so u ∈ L∞(QT ). Thus T

cannot be finite.

The continuity result is well-known [12, Theorem 6.1 and its Corollary].

�

Corollary 2.1. Let 0 ≤ η ∈ C(Γr) and η0(x) = 0 for all x ∈ ∂Ω. If

h ∈ C(R+) and (A1-A3) hold, then for any T > 0 there exists a unique

non-negative weak solution u of (D). Moreover, u is continuous on QT for

all T > 0.
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Proof. The method of proof mirrors that used for delay-differential equations

[13] or delay reaction-diffusion equations [29].

Let u1 be the unique, non-negative and continuous weak solution on [0, r]

of the problem

∂tu = ∆φ(u) +H1(x, t)f(u) in Qr,

u = 0 in Sr,

u0 = η0 in Ω,

where H1(x, t) = h(η(x, t− r)) is continuous in Ω× [0, r]. Such a solution is

guaranteed to exist by Lemma 2.1. Clearly, u1 is the unique weak solution of

(D) on [0, r]. Now extend u1 (but still denoting the extension by u1) such that

u1 = η on Γr. Again by Lemma 2.1 there then exists a unique, non-negative

and continuous weak solution u2 on [0, 2r] of the problem

∂tu = ∆φ(u) +H2(x, t)f(u) in Q2r,

u = 0 in S2r,

u0 = η0 in Ω,

where H2(x, t) = h(u1(x, t − r)) is continuous in Ω × [0, 2r]. Clearly u2 is

then the unique weak solution of (D) on [0, 2r]. Continuing in this manner

inductively we obtain a unique, non-negative and continuous weak solution

uj of (D) on [0, jr] for any positive integer j. For any T > 0 we may choose j

such that jr ≥ T and obtain the unique, non-negative and continuous weak

solution u on [0, T ] as the restriction u = uj|[0,T ], yielding the required result.

�
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3. Some auxiliary degenerate elliptic and parabolic problems

In proving the main convergence results for the delay problem (D) we will

construct a contracting sequence of ordered upper and lower solutions of some

related equations. We first require some additional assumptions, recalling

that the function g is given by equation (5).

(A4) f is strictly increasing on (0,∞);

(A5) G(x) :=

∫ x

0

ds

g(s)
exists for x > 0 and lim

x→0
G(x) = 0;

(A6) g is strictly concave on (0,∞).

Remark 3.1. The following properties of g follow easily from (A1-A6):

(g1) g ∈ C1(0,∞) ∩ Cα(R+), g(0) = 0 and g is strictly increasing;

(g2) g(s)/s→∞ as s→ 0;

(g3) g(s)/s→ 0 as s→∞.

Following [6], for a ∈ Cα(Ω) we now consider the degenerate parabolic

problem

(P )


∂tz = ∆φ(z) + a(x)f(z) in Q,

z = 0 in S∞,

z = z0 ≥ 0 in Ω

and its associated stationary problem

(PS)

 ∆φ(z) + a(x)f(z) = 0 in Ω,

z = 0 in ∂Ω,
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where a(x) may change sign in Ω. Problems like (P) and (PS) have been

studied by several authors, see [5, 20, 21, 22]. The main interesting feature

of (PS) is the existence of non-negative, non-trivial solutions vanishing on

open subsets of Ω, so-called ‘dead cores’. It can be shown that there exists a

unique maximal solution of (DS) in the class of non-negative functions, but

no such minimal solution exists and the situation is much more complicated

than the case where a(x) is positive. We describe the main features of the

solutions of (P) and (PS) sufficient for our purposes.

The positivity set of a is defined by

Ω+(a) = {x ∈ Ω : a(x) > 0}

and Ω+
i (a) denote the connected components of Ω+(a), for i ∈ M , where

M is an indexing set which is at most countable (due to the regularity of

Ω and a). The stationary solution set S(a) is defined to be the set of all

non-negative weak solutions u of (PS) satisfying u > 0 on Ω+(a).

We now observe that if a > 0 on ∂Ω, then ∂Ω ⊂
⋃
i∈M

Ω+
i (a) and so

Ω+(a) =
⋃
i∈M

Ω+
i (a) =

⋃
i∈M

Ω+
i (a) ∪ ∂Ω ⊂

⋃
i∈M

Ω+
i (a) ∪ ∂Ω.

This allows us to apply [6, Theorem 2.1] (in the special case where I = M

and SM = NM , in the notation of that paper) to deduce that (PS) has at

most one solution with the property of being positive on Ω+(a). Then [6,

Theorem 2.2(i)] guarantees the existence of such a solution (again taking

I = M). We summarize this and related results from [6] as follows:

Lemma 3.1. Let a ∈ Cα(Ω) and suppose Ω+(a) is non-empty. If (A1-A6)

hold, then:
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(i) Maximality ([6, Theorems 2.1 and 2.2]): there exists z∗ = z∗(a) ∈

Cα(Ω) such that S(a) = {z∗(a)}. Moreover, z∗(a) is maximal with

respect to the set of non-negative solutions of (PS).

(ii) Monotonicity ([6, Lemma 2.4]): if a1 ≥ a2 in Ω then z∗(a1) ≥ z∗(a2)

in Ω.

(iii) Convergence ([6, Theorem 3.1] or [22, Theorem 8]): if z0 ∈ L∞(Ω)

and z0 > 0 on some open subset of Ω+
i (a) for every i ∈M , then the

solution z of (P) converges to z∗(a) in Lp(Ω), for any p ≥ 1, as t→∞.

If n = 1, or n ≥ 2 and z is uniformly continuous on Ω × [ε,∞) for

some ε > 0, then convergence to z∗(a) is in L∞(Ω).

Remark 3.2. The conditions on the initial data z0 in Lemma 3.1 (iii) are

clearly satisfied if z0 is continuous and z0 > 0 in Ω or, more generally, if

z(x, T ) > 0 in Ω for some T > 0 since problem (P) is autonomous.

The proof of Lemma 3.1 can be found in the references given, but for

exposition purposes we briefly outline the ideas here. Setting v = φ(z), (PS)

is equivalent to

∆v + a(x)g(v) = 0 in Ω, v = 0 in ∂Ω. (8)

As in the proof of Lemma 2.1, (g3) guarantees the existence of supersolutions

v(x) of (8) with arbitrarily large minimum over Ω. Similarly, (g2) ensures

that arbitrarily small (weak) subsolutions v(x) of (8) exist such that v 6≡ 0 on

Ω+
i (a), for every i ∈ M , again by using a principal eigenfunctions of −∆ on

a small ball contained within the interior of each Ω+
i (a). Each subsolution
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(respectively supersolution) then generates a monotonically increasing (re-

spectively decreasing) solution z(t; z0) of (P) in time, (respectively z(t; z0))

where z0(x) = φ−1(v(x)) (respectively z0(x) = φ−1(v(x))). See [11, 22] for

example. The limiting functions z∗(x) and z∗(x) are then weak solutions

of (PS) satisfying z∗ ≥ z∗ > 0 on Ω+(a) and the interval [z∗, z∗] attracts

(in Lp(Ω)) all solutions of (P) having initial data in [z∗, z∗]. The assump-

tions (A5-A6) ensure uniqueness via a maximum principle argument (see

[6, Theorem 2.1 ]), so that z∗ = z∗ = z∗(a), say. For any initial data z0

satisfying (iii), z and z can then be chosen such that z0 ∈ [z, z], so that

z(t; z0)→ [z∗, z∗] = {z∗(a)} in Lp(Ω) as t→∞.

Corollary 3.1. Let z∗ : Cα(Ω) → Cα(Ω), a 7→ z∗(a) be defined as in

Lemma 3.1.

(a) Suppose a(m) ∈ Cα(Ω) is a monotonically increasing sequence such that

a(m) → a ∈ Cα(Ω) pointwise as m → ∞. If Ω+(a(m)) 6= ∅ for all

m ≥ 1, then z∗(a(m))→ z∗(a) pointwise as m→∞.

(b) Suppose b(m) ∈ Cα(Ω) is a monotonically decreasing sequence such that

b(m) → b ∈ Cα(Ω) pointwise as m→∞. If Ω+(b) 6= ∅, then z∗(b(m))→

z∗(b) pointwise as m→∞.

Proof. (a). By Lemma 3.1 z∗(a(m)) is an increasing sequence with z∗(a(m)) ≤

z∗(a). Hence (z∗(a(m)))(x) converges pointwise for x ∈ Ω as m → ∞, with

limit v(x) ≤ (z∗(a))(x) say. Hence φ(z∗(am)(x)) → φ(v(x)) pointwise for

x ∈ Ω as m → ∞. Lebesgue’s dominated convergence theorem then allows

one to pass to the limit as m → ∞ in the definition of weak solution for
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(PS), so that v ∈ L∞(Ω) satisfies

∆φ(v) + a(x)f(v) = 0 in Ω, v = 0 in ∂Ω.

By elliptic regularity it then follows that v ∈ Cα(Ω) and φ(v) ∈ C2+α(Ω).

It remains to show that v = z∗(a). But for any x ∈ Ω+(a) (i.e. a(x) >

0) there exists j such that a(j)(x) > 0, and so x ∈ Ω+(a(j)) and 0 <

(z∗(a(j)))(x) ≤ v(x). Since x ∈ Ω+(a) was arbitrary we have v > 0 in

Ω+(a) and so v = z∗(a), by definition of z∗. This proves part (a).

Part (b) follows in an identical way, until one has to show v = z∗(b). But

for any x ∈ Ω+(b) (i.e. b(x) > 0), (z∗(b(m)))(x) ≥ (z∗(b))(x) > 0 and so

(letting m → ∞), v(x) ≥ (z∗(b))(x) > 0. Since x ∈ Ω+(b) was arbitrary we

have v > 0 in Ω+(b) and so v = z∗(b). �

In the special case where a is a positive constant, a(x) ≡ k > 0 say,

problem (PS) becomes

(PSk)

 ∆φ(z) + kf(z) = 0 in Ω,

z = 0 in ∂Ω.

In what follows we denote the unique positive solution of (PSk) by ψk (i.e.

ψk = z∗(k)) and write Ω+
k for Ω+(h◦ψk), i.e. Ω+

k = {x ∈ Ω : h(ψk(x)) > 0}.

4. Main results: global convergence for the delay problem

The methods of this section are similar in spirit to those in [5, 11, 21, 22].

The main difference however is that, unlike the non-delay cases considered

in these references, solutions of (D) are not generally monotonic in time re-

gardless of any specific choice of initial data (such as sub- and supersolutions

of the associated elliptic problem).
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For v, w ∈ C(Ω) satisfying v ≤ w in Ω we define the interval subset [v, w]

by

[v, w] :=
{
u ∈ C(Ω) : v(x) ≤ u(x) ≤ w(x) ∀x ∈ Ω

}
.

We will say that u(t)→ [v, w] in C(Ω) as t→∞ if

v(x) ≤ lim inf
t→∞

u(x, t) ≤ lim sup
t→∞

u(x, t) ≤ w(x)

uniformly for x ∈ Ω.

We now make the following assumption concerning the delay function h:

(A7) h ∈ Cα(R+) ∩ C1(0,∞), h′ < 0 on (0,∞) and k := h(0) > 0.

It follows from (A7) and the boundary conditions on ψk that Ω+
k 6= ∅.

Proposition 4.1. Suppose (A1-A7) hold and define the sequences vn and wn

inductively by: v1 = 0, w1 = ψk, vn+1 = z∗(h(wn)) and wn+1 = z∗(h(vn+1)).

Then the sequences vn and wn are well-defined and have the following prop-

erties:

(i) vn, wn ∈ Cα(Ω) for all n ≥ 1 and v2 > 0 in Ω+
k ;

(ii) vn ≤ wn and [vn+1, wn+1] ⊂ [vn, wn] for all n ≥ 1;

(iii) vn, wn converge pointwise to limits v∗, w∗ ∈ Cα(Ω), respectively, as

n→∞ (with v∗ ≤ w∗) and v∗, w∗ satisfy

∆φ(v∗) + h(w∗)f(v∗) = 0 in Ω,

∆φ(w∗) + h(v∗)f(w∗) = 0 in Ω,

v∗ = w∗ = 0 in ∂Ω.
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Proof. One observes that since Ω+(h(w1)) = Ω+(h(ψk)) = Ω+
k it follows that

v2 = z∗(h(w1)) = z∗(h(ψk)) > 0 in Ω+
k .

Now, vn+1 is defined to be the maximal solution of

∆φ(v) + h(wn)f(v) = 0 in Ω, v = 0 in ∂Ω (9)

and wn+1 is defined to be the maximal solution of

∆φ(w) + h(vn+1)f(w) = 0 in Ω, w = 0 in ∂Ω. (10)

By the boundary conditions, h(wn(x)) = h(vn(x)) = h(0) = k > 0 for any

x ∈ ∂Ω and n ≥ 1. Hence Ω+(h(vn)) and Ω+(h(wn)) are non-empty and

so z∗(h(wn)) and z∗(h(vn+1)) are well defined. Elliptic regularity then yields

part (i).

We show first by induction that vn ≤ wn for all n ≥ 1. The case n = 1 is

trivially true. Suppose that vn ≤ wn. Then

0 = ∆φ(vn+1) + h(wn)f(vn+1) ≤ ∆φ(vn+1) + h(vn)f(vn+1),

so that vn+1 is a subsolution of the problem satisfied by wn, namely,

∆φ(wn) + h(vn)f(wn) = 0 in Ω, wn = 0 in ∂Ω.

Hence vn+1 ≤ wn. But then

0 = ∆φ(vn+1) + h(wn)f(vn+1) ≤ ∆φ(vn+1) + h(vn+1)f(vn+1),

so that vn+1 is a subsolution of (10) and hence vn+1 ≤ wn+1 as required.

Next we show by induction that [vn+1, wn+1] ⊂ [vn, wn] for all n ≥ 1. For

n = 1 we trivially have 0 = v1 ≤ v2 and

0 = ∆φ(w2) + h(v2)f(w2) ≤ ∆φ(w2) + kf(w2),
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so that w2 is a subsolution of problem (PSk), and hence w2 ≤ ψk = w1.

Suppose now that vn ≤ vn+1 and wn+1 ≤ wn. Then

0 = ∆φ(vn+1) + h(wn)f(vn+1) ≤ ∆φ(vn+1) + h(wn+1)f(vn+1),

so that vn+1 is a subsolution of the problem

∆φ(v) + h(wn+1)f(v) = 0 in Ω, v = 0 in ∂Ω

and hence vn+1 ≤ vn+2. Similarly,

0 = ∆φ(wn+2) + h(vn+2)f(wn+2) ≤ ∆φ(wn+2) + h(vn+1)f(wn+2),

so that wn+2 is a subsolution of the problem

∆φ(w) + h(vn+1)f(w) = 0 in Ω, w = 0 in ∂Ω

and hence wn+2 ≤ wn+1, as required. This completes part (ii) of the proof.

Since vn and wn are bounded monotonic sequences, the pointwise limits

vn(x) → v∗(x) and wn(x) → w∗(x) exist for all x ∈ Ω as n → ∞, and

v∗ ≤ w∗. By Lebesgue’s monotone convergence theorem we may pass to the

limit as n→∞ in the definition of weak solution, to obtain v∗, w∗ ∈ L∞(Ω)

as weak solutions of

∆φ(v∗) + h(w∗)f(v∗) = 0 in Ω, (11)

∆φ(w∗) + h(v∗)f(w∗) = 0 in Ω, (12)

v∗ = w∗ = 0 in ∂Ω. (13)

Elliptic regularity then yields part (iii).

�
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Remark 4.1. Assumption (A1) and [18, Theorem 2.5] ensure that solutions

of (P) are in fact precompact in C(Ω). In this case the Lp-convergence re-

ferred to in Lemma 3.1 (iii) can be strengthened to convergence in C(Ω).

Proposition 4.2. Let 0 ≤ η ∈ C(Γr) and η0(x) = 0 for all x ∈ ∂Ω. Suppose

that the solution u of (D) satisfies u(x, t) > 0 in Ω × [T,∞), for some

T > r and let v∗ and w∗ be as in Proposition 4.1. If (A1-A7) hold, then

u(t)→ [v∗, w∗] in C(Ω) as t→∞.

Proof. We first prove that u(t) → [vn, wn] in C(Ω) as t → ∞ for all n ≥ 1,

where vn, wn are as in from Proposition 4.1.

By classical regularity theory for uniformly parabolic equations, the so-

lution u of (D) is a classical solution for t > T , and so from (A7) we have

∂tu − ∆φ(u) = h(u(x, t − r))f(u) ≤ kf(u) for t > T . Consequently, u is a

classical subsolution of Problem (P) with a(x) ≡ k and z(x, T ) = u(x, T ).

Hence, by comparison, u ≤ z1 where z1 is the solution of

∂tz = ∆φ(z) + kf(z) in Ω× (T,∞),

z = 0 in ∂Ω× (T,∞),

z(x, T ) = u(x, T ) in Ω.

Since Ω+(k) = Ω and z(x, T ) > 0 in Ω, it follows from Lemma 3.1 (iii) and

Remark 4.1 that z1(t) → ψk in C(Ω) as t → ∞. Hence u(t) → [0, w1] in

C(Ω) as t→∞.

We now proceed by induction. We have just shown that u(t) → [v1, w1]

in C(Ω) as t → ∞, where v1 = 0 and w1 = ψk. If u(t) → [vn, wn] in

C(Ω) as t → ∞ then, for any m ∈ N, there exists τn > T + r such that
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u(x, t− r) ≤ wn(x) + 1/m for all x ∈ Ω and t > τn. Hence for t > τn we have

∂tu−∆φ(u) ≥ h(wn(x) + 1/m)f(u) and so u is a supersolution of (P) with

a(x) = a
(m)
n (x) := h(wn(x) + 1/m) and z(x, τn) = u(x, τn) > 0 in Ω. Hence,

u ≥ z
(m)
n , where z

(m)
n is the solution of

∂tz = ∆φ(z) + a
(m)
n (x)f(z) in Ω× (τn,∞),

z = 0 in ∂Ω× [τn,∞),

z(x, τn) = u(x, τn) > 0 in Ω.

By Lemma 3.1 (iii) and Remark 4.1, z(m)
n (t) → z∗(a

(m)
n ) in C(Ω) as t → ∞.

Hence

lim inf
t→∞

u(x, t) ≥ z∗(a(m)
n )

uniformly in x for all m ≥ 1. Clearly, a
(m)
n is monotonically increasing in m

and a
(m)
n → an ∈ Cα(Ω) as m → ∞, where an(x) := h(wn(x)). For any x ∈

∂Ω, a
(m)
n (x) = h(1/m) > 0 for m sufficiently large, and so Ω+(a

(m)
n ) is non-

empty for such m. By Corollary 3.1(a), limm→∞ z
∗(a

(m)
n (x)) = z∗(an(x)) =

z∗(h(wn)) = vn+1. Thus,

lim inf
t→∞

u(x, t) ≥ vn+1

uniformly in x.

Similarly it now follows that, for anym ∈ N, there then exists tn > τn such

that u(x, t− r) ≥ [vn+1(x)− 1/m]+ := max{vn+1(x)− 1/m, 0} for all x ∈ Ω

and t > tn. Hence for t > tn we have ∂tu −∆φ(u) ≤ h(vn+1(x) − 1/m)f(u)

and so u is a subsolution of (P) with a(x) = b
(m)
n (x) := h([vn+1(x)− 1/m]+)
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and z(x, tn) = u(x, tn) > 0. Hence, u ≤ z(m)
n , where z(m)

n is the solution of

∂tz = ∆φ(z) + b
(m)
n (x)f(z) in Ω× (tn,∞),

z = 0 in ∂Ω× [tn,∞),

z(x, tn) = u(x, tn) > 0 in Ω.

Again by Lemma 3.1 (iii) and Remark 4.1, z(m)
n (t) → z∗(b

(m)
n ) in C(Ω) as

t→∞. Hence

lim sup
t→∞

u(x, t) ≤ z∗(b(m)
n )

uniformly in x for all m ≥ 1. Clearly, b
(m)
n is monotonically decreasing in

m and b
(m)
n → bn ∈ Cα(Ω) as m → ∞, where bn(x) := h(vn+1(x)). For

any x ∈ ∂Ω, bn(x) = h(0) = k > 0 and so Ω+(bn) is non-empty. By

Corollary 3.1(b), limm→∞ z
∗(b

(m)
n (x)) = z∗(bn(x)) = z∗(h(vn+1)) = wn+1 and

thus

lim sup
t→∞

u(x, t) ≤ wn+1

uniformly in x. Hence u(t)→ [vn+1, wn+1] in C(Ω) as t→∞ and so u(t)→

[vn, wn] in C(Ω) as t→∞ for all n ≥ 1, by induction.

Finally, since vn and wn are bounded sequences in Cα(Ω), there exist

subsequences vnj and wnj such that vnj → v∗ and wnj → w∗ in C(Ω) as

j →∞. Hence u(t)→ [v∗, w∗] in C(Ω) as t→∞.

�

Remark 4.2. Eventual positivity of solutions of (D) is by no means obvious

in the general case and we do not pursue this interesting question here. See
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[8] for results in this direction in the non-delay case. However, under the

assumptions of Theorem 4.1 below, such positivity is guaranteed. Positivity

can also be ensured when the initial condition η0 is assumed positive in Ω.

The reason is as follows. By Lipschitz continuity of f and the boundedness

of u, u is a supersolution of the problem

∂tz = ∆φ(z)−Mz in QT ,

z = 0 in ST ,

z(x, 0) = η0(x) > 0 in Ω

(14)

for M sufficiently large. By (A1) (in particular, using uφ′(u) < γφ(u))

one can then show that φ−1(ε exp (−ct)e1(x)) is a subsolution of (14) on any

compact subset of Ω, for ε > 0 sufficiently small and c > 0 sufficiently large.

It follows that u ≥ z > 0 in QT for all T > 0.

We are now in a position to establish the main result of this paper, that

of global convergence of solutions of (D) to a unique positive equilibrium of

(DS). This requires all of the assumptions (A1-A7), which we now summarize

in a more convenient, but equivalent form.

(Hφ) φ ∈ C1(R+), φ(0) = φ′(0) = 0, φ′ > 0 on (0,∞), φ−1 exists and

φ−1 ∈ Cα(R+), there exist γ, δ > 0 such that φ is convex on (0, δ) and

uφ′(u) < γφ(u) on (0,∞);

(Hf ) f ∈ C1(R+), f(0) = 0 and f is strictly increasing.

(Hh) h ∈ Cα(R+) ∩ C1(0,∞), k := h(0) > 0 and h′ < 0 on (0,∞).

(Hg) g is strictly concave on (0,∞), lim
s→∞

g(s)/s = 0, G(x) :=

∫ x

0

ds

g(s)
exists

and lim
x→0

G(x) = 0.
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(Hη) 0 ≤ η ∈ C(Γr), η0(x) = 0 in ∂Ω and η0 6≡ 0.

Theorem 4.1. Let (Hφ), (Hf), (Hh), (Hg) and (Hη) hold and let ψk denote

the unique positive solution of problem (PSk). Suppose also that

(A8) there exists β > 0 such that
φ(u)h(u)

f(u)
is non-decreasing on (0, β).

If ‖ψk‖∞ < β, then

(i) there exists a time T0 = T0(η) ≥ 0 such that the solution u of the delay

problem (D) satisfies u(x, t) > 0 in Ω× [T0,∞);

(ii) there exists a unique non-negative, non-trivial solution ϕ of problem

(DS) and ϕ > 0 in Ω;

(iii) the solution u of the delay problem (D) converges in C(Ω) to ϕ as

t→∞.

Proof. We first claim that h(u) > 0 on (0, β). For if not, then by (Hh) there

exists q ∈ (0, β) such that h(q) = 0 and h′(q) < 0. But then

(φh/f)′(q) = [f(q)h′(q)φ(q) + f(q)h(q)φ′(q)− f ′(q)h(q)φ(q)]/f 2(q)

= h′(q)φ(q)/f(q) < 0,

contradicting the assumption that φ(u)h(u)/f(u) is non-decreasing on (0, β).

We already know that lim sup
t→∞

u(x, t) ≤ ψk(x), uniformly in x. Hence,

since ψk < β in Ω, there exists T1 such that u(x, t) < β in Ω× [T1,∞). For

t ≥ T1 + r, h(u(x, t − r)) > 0 and so u is a supersolution of the generalized
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porous medium-type equation

∂tz = ∆φ(z) in Ω× (T1 + r,∞), (15)

z = 0 in ∂Ω× (T1 + r,∞), (16)

z(x, T1 + r) = u(x, T1 + r) in Ω. (17)

From (Hφ), and in particular the convexity of φ near zero, the well-known

positivity result [9, Theorem 5] ensures the existence of a time T0 ≥ T1 + r

such that the solution z of (15-17) satisfies z > 0 in Ω× [T0,∞). This yields

the required positivity result (i). In particular this now allows us to make

use of Proposition 4.2.

Since ψk < β we also have that Ω+
k = Ω since h(ψk) > 0 in Ω. Hence

v∗ ≥ v2 > 0 in Ω by Proposition 4.1 (i). Multiplying (11) by φ(w∗), (12) by

φ(v∗) and integrating, we obtain

0 =

∫
Ω

f(v∗)f(w∗)

[
φ(w∗)h(w∗)

f(w∗)
− φ(v∗)h(v∗)

f(v∗)

]
dx. (18)

Since 0 < v∗ ≤ w∗ ≤ ψk < β in Ω, it now follows from the monotonicity of

φh/f on (0, β) that v∗ = w∗. Consequently the solution u of (D) converges

in C(Ω) to v∗ as t→∞, where v∗ is a positive solution of problem (DS). It

remains only to show that v∗ is the unique, non-negative, non-trivial solution

of (DS).

Setting z = φ(u), problem (DS) is equivalent to

∆z + F (z) = 0 in Ω, z = 0 in ∂Ω (19)

where F (z) := h(φ−1(z))g(z). By (Hh) and (Hg), lim sup
z→∞

F (z)/z ≤ 0 and

lim
z→0

F (z)/z = +∞. It follows from standard results for sublinear elliptic equa-

tions [1, 7] that there exists a maximal positive solution ẑ of (19). Equiv-

alently, there exists a maximal positive solution ϕ := φ−1(ẑ) ≥ v∗ > 0 of
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(DS). By (Hh), ϕ is a subsolution of (PSk) and so ϕ ≤ ψk < β in Ω. Now,

for any non-negative non-trivial solution U of (DS) we have U ≤ ϕ and so

h(U) ≥ h(ϕ) > 0. Thus U > 0 in Ω by the maximum principle. In the

obvious way, from (DS) we also have

0 =

∫
Ω

φ(U)φ(ϕ)

[
f(ϕ)h(ϕ)

φ(ϕ)
− f(U)h(U)

φ(U)

]
dx. (20)

From (Hh) and (A8) we now have that[
f(u)h(u)

φ(u)

]′
=

2h′(u)f(u)

φ(u)
− f(u)2

φ(u)2

[
φ(u)h(u)

f(u)

]′
< 0

on (0, β) and so fh/φ is strictly decreasing on (0, β). Hence, by (20), U = ϕ

and so ϕ is the unique, non-negative, non-trivial solution of (DS), proving

part (ii). In particular it follows that v∗ = ϕ, proving part (iii).

�

Remark 4.3. The requirement that ‖ψk‖∞ < β in Theorem 4.1 can obviously

be weakened to ‖w∗‖∞ < β, where w∗ is as in Proposition 4.1. The choice

of ψk in the statement of the Theorem 4.1 has been made for the sake of

explicitness and applicability, since it is more easily obtained via solution of

(PSk) only.

5. Some special cases and discussion

In this final section we consider the power law nonlinearities φ(u) = um and

f(u) = up where m > p ≥ 1 so that (D) becomes

∂tu = ∆um + uph(u(x, t− r)),
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with Dirichlet boundary conditions and initial data η satisfying (Hη). Hy-

potheses (Hφ), (Hf ) and (Hg) are easily seen to be true. It is also known

(see [4]) that ψk = k1/(m−p)ψ, where ψ is the unique positive solution of

∆ψm + ψp = 0 in Ω, ψ = 0 in ∂Ω.

For suitable h, the hypotheses of Theorem 4.1 will then hold for all k satis-

fying

0 < k <

(
β

‖ψ‖∞

)m−p
. (21)

In the case of a one-dimensional domain Ω = (0, π) one easily obtains by

quadrature that

‖ψ‖∞ =

(
(m+ p)π2

8mI2

) 1
m−p

, I :=

∫ π/2

0

sin
m+p
m−p θ dθ.

We now consider some specific forms for h satisfying (Hh).

Example 5.1 (A generalized logistic). Consider the degenerate parabolic

delay problem

∂tu = ∆um + kup (1− uq(x, t− r))

with appropriate boundary and initial conditions, k > 0 and q > 0. Here,

h(s) = k(1− sq) clearly satisfies (Hh). Now, φ(u)h(u)/f(u) = kum−p(1−uq)

is non-decreasing for all u ∈ (0, β), where β = [(m−p)/(m−p+ q)]1/q. From

(21) the hypotheses of Theorem 4.1 will be satisfied provided that

k < k0(m, p, q) :=

(
m− p

(m− p+ q)‖ψ‖q∞

)(m−p)/q

. (22)

Hence for k < k0 solutions of (D) converge to the unique positive solution of

∆ϕm + kϕp(1− ϕq) = 0 in Ω, ϕ = 0 in ∂Ω

as t→∞.
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Example 5.2 (The logistic case). For p = q = 1 we have the logistic term

considered in [10], but here with nonlinear degenerate diffusion φ(u) = um

for m > 1. Hence we have global convergence to ϕ as t→∞ if

k < k0(m, 1, 1) =

(
1− 1

m

‖ψ‖∞

)(m−1)

.

where ϕ is the unique positive solution of

∆ϕm + kϕ(1− ϕ) = 0 in Ω, ϕ = 0 in ∂Ω. (23)

When Ω = (0, π),

k0(m, 1, 1) =

(
8mI2

(m+ 1)π2

)(
1− 1

m

)m−1

. (24)

One observes that k0(m, 1, 1) → 0 as m → 1+ and k0(m, 1, 1) → 8/(eπ2) as

m→∞.

Example 5.2 shows that the destabilization caused by the Hopf bifurcation

(as r increases) of small positive solutions in [10] for the case m = 1, does

not occur in the degenerate diffusion case m > 1. The reason is as follows.

For m > 1, it is known (see [11]) that the unique positive equilibrium of

(23), ϕ = ϕk, is increasing in k and ‖ϕk‖∞ → 0 as k → 0+. Thus for m > 1,

small positive solutions corresponds to small k. But since k0 is independent

of r, all non-trivial solutions converge to the equilibrium ϕk as t → ∞, for

all k ∈ (0, k0), regardless of the size of the delay r.

The question of convergence to equilibrium for values of k larger than k0

in the logistic problem remains open. The restriction on k in Theorem 4.1

is imposed in order to guarantee uniqueness of solutions (v∗, w∗) of (11-13)

satisfying 0 < v∗ ≤ w∗ ≤ ψk. The author has been unable to determine
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whether such uniqueness holds for all k > 0 and is unaware of any results in

the literature that guarantee uniqueness for such k. The only other results

the author is aware of appear in [25, Proposition 5.4, Corollary 5.6], and are

equivalent to requiring that

k <

(
1− 1

m

)m−1

‖e0‖∞
(25)

where e0 is the unique positive solution of −∆e0 = 1 in Ω with zero Dirichlet

boundary conditions. For the case where Ω = (0, π) the bound in (25)

becomes k < 8(1 − 1
m

)m−1/π2; compare with (24). However, one would still

need to check whether the condition in (25) is sufficient to guarantee that

the attracting interval [v∗, w∗] has v∗ > 0 in Ω, as opposed to v∗ merely being

non-negative and non-trivial (called semi-coexistence states in [25]).

Example 5.3. In this example we demonstrate that condition (A8) may

hold with β = ∞ and therefore can be sufficient for global convergence of

solutions of (D) for all k > 0. We consider the problem

∂tu = ∆um +
kup

c+ uq(x, t− r)
for c, q > 0 with Dirichlet boundary conditions. Here, h(s) = k/(c+ sq) for

s ≥ 0. If m ≥ p + q then φ(u)h(u)/f(u) = kum−p/(c + uq) is increasing on

(0,∞) and so we may take β = ∞ in Theorem 4.1 to conclude that ϕ is

globally attractive for all k > 0, where ϕ is the unique positive solution of

∆ϕm +
kϕp

c+ ϕq
= 0 in Ω, ϕ = 0 in ∂Ω.

If m ∈ (p, p + q) however, then φ(u)h(u)/f(u) is only increasing on (0, β),

where

β =

(
c(m− p)
p+ q −m

)1/q

.
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Thus, in the latter case, we can only ensure global attractivity of ϕ for non-

negative solutions of (D) if

k < k0(m, p, q, c) :=

(
c(m− p)

(p+ 1−m)‖ψ‖q∞

)(m−p)/q

.
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