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Outline

x Network analysis
= Data mining and Networks approach
= Computational issues
= Parallel network algorithms
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Large-scale data analysis

Graph abstractions are very useful to analyze complex data sets.

Social Networks  Biolhformatics Climate?? ...

Application: e.g., identify patterns?
analyze spatio-temporal interaction
of climate data

Application: e.g., identifying Application: e.g., identifying drug
communities, information spread target proteins
modeling

e Sources of data: simulations, experimental devices, the Internet, sensor networks
* Challenges: data size, heterogeneity, uncertainty, data quality
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Large-scale data analysis

Graph abstractions are very useful to analyze complex data sets.

Towards better understanding of our
climate system

"Complex network theory provides a powerful framework to
statistically investigate the topology of local and non-local
statistical interrelationships, i.e. teleconnections, in the
climate system. Climate networks constructed from the
same global climatological data set using the linear
Pearson correlation coefficient or the nonlinear mutual
information as a measure of dynamical similarity between
regions, are compared systematically on local, mesoscopic
and global topological scales.”

J.F. Donges, Y. Zou, N. Marwan and J. Kurths, “Complex Networks in Climate
Dynamics”, Eur. Phys. J. Special Topics 174, 157-179 (2009).
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Computer science,

Scientific and Combinatorial Scientific Computing,

High Performance Computing

“Combinatorial problems

[T eviati e 1L 1 generated by challenges in data

L Anprane fon mining and related topics are now

central to computational science.

Combinatorics in Cs )I]]l')lll,il]g‘ Finally, there’s the Internet itself,

probably the largest graph-theory
problem ever confronted.”

- |sabel Beichl & Francis
Sullivan, 2008
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Qingyi Cherry Feng 1
Dear LINCers, ’

Welcome to NL soon!

e U S T

Some tips for you to plan your trip here. Sorry for not being able
to post it earlier, just came back from ECU in Vienna directly after
my first exchange in PIK, quite tiring months )

The conference place just in the middle between two cities
Amersfoort and Utrecht. For the people who travel from Germany
by train, it is better to go there from Amersfoort because the train
will stop at Amersfoort; for the people who travel by flight, there
are more choices, please use this link for checking the
transportation in NL:

L ————

http://9292.nl/en#

- —~——

Just type the name of the place, like "Schiphol" (the airport)
"Utrecht Centraal” (Utrecht central station) "Amersfoort central”
(Amersfoort central station) or postcode "3769 AS" (the conference
place), and the time you wish to departure or arrival, it will give
you detailed information.

-

| think | will cycle there, only 40 mins from Utrecht University, But
if you need any help, please contact me before 17:00 on Sun 21
Apr, | will stay in Utrecht by then.

- —

Have a nice trip here and see you very soon!

! Cheers,

\

\ Qingyi

2 9292 your travel partner

9292.nl

With a My 9292 you can save journey advices. These
are saved for future use. You can also access saved
journeys on your tablet or mobile phone.
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Qingyi Cherry Feng
Dear LINCers,

Welcome to NL soon! Combinatorial problems arise in many

Some tips for you to plan your trip here. Sorry for not being able appllcatlons:
to post it earlier, just came back from ECU in Vienna directly after
my first exchange in PIK, quite tiring months ;)

The conference place just in the middle between two cities @ find shortest/cheapest round trips (TSP)
Amersfoort and Utrecht. For the people who travel from Germany . .
by train, it is better to go there from Amersfoort because the train @ Plannmg’ schedullng, etc
will stop at Amersfoort; for the people who travel by flight, there @ internet data Packet routing
@ protein structure prediction

are more choices, please use this link for checking the
transportation in NL

http://9292.nl/en#
Combinatorial problems involve finding a

grouping and ordering of a discrete finite set of
objects, satisfying a given set of conditions..

Just type the name of the place, like "Schiphol” (the airport)
| "Utrecht Centraal” (Utrecht central station) "Amersfoort central"
(Amersfoort central station) or postcode "3769 AS" (the conference
‘ place), and the time you wish to departure or arrival, it will give
you detailed information.

Candidate solutions: solution components that
might be encountered during a solutions
attempt, but need not satisfy given conditions..

| think | will cycle there, only 40 mins from Utrecht University, But
if you need any help, please contact me before 17:00 on Sun 21
Apr, | will stay in Utrecht by then.

Have a nice trip here and see you very soon!

Cheers, Solutions are candidate solutions that satisfy all

Qingyi given conditions...

9292 your trave| partner
9292.nl

With a My 8292 you can save journey advices. These
are saved for future use. You can also access saved

journays on your tablet or mobiie phone.
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Qingyi Cherry Feng
Dear LINCers, @
-y Sprinter (direction Roosendaal) NS
Welcome to NL soon! 07:14 > 08:51
changes 2 0744  Station Delft Platform 2
Some tips for you to plan your trip hel B R 137
to post it earlier, just came back fromn 07:28 Station Rotterdam Centraal Platform 7
my first exchange in PIK, quite tiring
07:20 » 08:51
The conference place just in the midd  changes 4 . 3 o
Amersfoort and Utrecht. For the peop total time 1:34 o |ﬂt9l'0lty (direction Leeuwarden) NS
by train, it is better to go there from | . Phatform 14
will stop at Amersfoort; for the peopl 07:35 Station Rotterdam Centraal e
are more choices, please use this lini 07:28 & 09:13
g ; s : : : Platform 2
transportation in NL: . X 08:34 Station Amersfoort
http://9292.nl/en# total tme. 145 .
x Walk (4 minutes) Show the route to walk on the map v

Just type the name of the place, |ike]
"Utrecht Centraal” (Utrecht central st

7:31 2 09:1
ol A 08:34 Station Amersfoort

(Amersfoort central station) or postcg changes 3
place), and the time you wish to depal  total time 1:46 .
you detailed information. 08:38 Bus stop Centraal Station, Amersfoort

| think | will cycle there, only 40 mins| Later options bt g
if you need any help, please contact r Q Bus 56 (direction Wijk bij Duurstede) Connexxion
Apr, | will stay in Utrecht by then.

08:38  Bus stop Centraal Station, Amersfoort

Have a nice trip here and see you ver)

08:50  Bus stop Kontakt Der Kontinenten, Soesterberg

Cheers,
.
Qingyi
S x Walk (1 minute) Show the route to walk on the map v
9292 your travel partne :
9292.n 08:50  Bus stop Kontakt Der Kontinenten, Soesterberg
With a My 5292 you can §
are saved for future use. :
9 s dinplnyag 08:51 Amersfoortsestraat 20, Soesterberg

@ Like - Comment - FO”OW Post - Share A‘m
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Qingyi Cherry Feng
Dear LINCers, @ Sori
: . w  Sprinter (girection Roosendaal) NS
Welcome to NL soon! 07:14 5 08:51
Changes 2 07:44  Station Delft Platform 2
Some tips for you to plan your trip he total time 1:37
to post it earlier, just came back from 07:28 Station Rotterdam Centraal Platform 7
my first exchange in PIK, quite tiring
07:20 » 08:51
The conference place just in the midd  changes 4 . 7
Amersfoort and Utrecht. For the peof]  iaifime  1:34 @ Intercity (direction Leeuwarden) NS
by train, it is better to go there from | .
will stop at Amersfoort; for the peopl 07:35 Station Rotterdam Centraal Platform 14
, : - . 2
¢h Miguel Angel Bermejo, Gelival Lauieg, Victor o Seenby 11 h
Rodriguez and 5 others like this.
|map v
Brt ilg thanks a lot!!!
April 15 at 3:38pm - Like
Qingyi Cherry Feng My pleasure ()
April 15 at 3:38pm - Like pron
Veronika Stolbova Thank you!=)
April 15 at 9:49pm - Like iﬂ
minute Show the route to walk on the map v
9292 your | n
2 9292.:10 i 08:50 Bus stop Kontakt Der Kontinenten, Soesterberg

With a My 9292 you can §

are saved for future use. 08:51 Amersfoortsestraat 20, Soesterberg

journays on your tablet o

9

ﬂ Like - Comment - Follow Post - Share AM
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Graph Analysis
“from Domain-Specific requirements, to Computation...”

Application Area Problems Graph Algorithms
4 D [ a
Social Network Analysis | community detection,
4 central entities Traversals,

Shortest paths

WWwW marketing
social search data size

Centrality measures

Computational Biology | metabolic pathways,
gene regulation

Connectivity

graph partitioning,
coloring, matching

Scientific Computing complexity

Community detection
community detection,

Climate Data analysis super nodes (BC)
(U AN )
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Graph Analysis

“from Domain-Specific requirements, to Computation...”

Graph Algorithms + Architecture

Traversals,

Shortest paths * Single processing

unit

Centrality measures |/® Parallel machines

- GPUs

- x86 multicore servers

- Massively multithreaded
clusters, ....

- Multicore clusters,

Connectivity

- Distributed memory clusters,

Application Area Problems
4 aYs )
Social Network Analysis || community detection,
central entities
WWwW marketing :
social search data size
Computational Biology | metabolic pathways,
gene regulation
. . . graph partitioning, :
Scientific Computing Coloring, matching complexity
community detection,
Climate Data analysis super nodes (BC)
(U DA )

- Clouds

Community detection
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Graph Analysis
“from Domain-Specific requirements, to Computation...”

Input data
@ Which algorithm?
Graph kernel factors.....
* traversal « static/dynamic nature
* shortest path * weighted/unweighted, weight
O algorithms <::| distribution
, * flow algorithms * vertex degree distribution
Find .. * spanning tree * directed/undirected
algorithms * simple/multi/nyper graph
o * topological sort * problem size
paths p J * granularity of computation at
* clusters |:> nodes/edges
s parﬁtions * domain-specific characteristics

* matchings @ ﬁ
* patterns
)i orderings Computing architecture




Graph Theory: Review

= Began in 1735
= Bridges of KOnigsberg (today’s Kaliningrad)

walk all 7 bridges without crossing each of them ONCE ‘Leonard Buler

%

Euler's solution of the Konigsberg bridge problem is considered to be the first
theorem of graph theory.
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Graph Theory: Review

Graph — mathematical object consisting of a set of:
V = nodes (vertices, points).
E = edges (links, arcs) between pairs of nodes.
Denoted by G = (V, E).
Captures pairwise relationship between objects.
Graph size parameters: n=|V|, m = |E|.

V={1223,456,78}

E={{1,2}, {1,3}, {2,3}, {2.4}, {2,5}, {3,5}, {3,7}, {3.8}, {4,5}, {5,6} }
n=28

m=11




Graph Theory: Networks and Analysis

° Types (Topological features)

* degree distribution

e clustering coefficient

® assortativity, comm. structure,
* hierarchical structure

a) “Simple” networks

* |attices, random graphs, ....

b) Complex networks

e Scale-Free: power-law degree distribution
(heavy-tailed DD )

® Small-World: small diameter and a high
clustering coefficient.
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* Analysis

1-Element-Level

* degree, betweenness,
closeness centralities.

2-Group-Level

* network clustering
(communities)

3-Network-Level

e small world effect
(network diameter),
transitivity
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Graph Theory:
Graph (Network) Representation: “Data Structure”

Adjacency matrix. n-by-n matrix with A, = 1 if (u, v) is an edge.

Two representations of each edge (symmetric matrix for undirected
graphs; not for directed graphs).

space! ' Space: proportional to n?.

12345678
101100000
2 2 O IR 0N0E0
32121001011
401011000
501110100
600001000
700100001
800100010




Graph Theory: Review
Graph Representation: “Data Structure”

Adjacency list. Node indexed array of lists.

Two representations of each edge.
space! Space proportional to m + n.

1 |[2]|e] 3]0
A - ExHE
3 [1]er*2|er*5|er*7]|°o8]°
4 Eo—afsj °
> 5 |2|ot—>3|ot—>4|01>6]0
6 [5]0
7 S8 ©
8 3|07 |°
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“Data Structure”: Why it matters??

space and complexity tradeoffs?

Adjacency matrix Adjacency list
12345678 T . ©
101100000 2 eS| R "IS8|°

231 0:1 13100 0 3 |1]|ot—>2|ot—>5|et>T7|0—>8]0
331001 01 1 4“0-—.50
401011000 s (B -

50 11.1010:0 - [EE

600001000 N K
700100001

800100010 ° NS ©

= Adjacency lists use memory In
proportion to the number edges, which
might save a lot of memory if the graph
IS sparse. It is fast to iterate over all
edges, but finding the presence or
absence of specific edge is slower than
with the matrix.

= An adjacency matrix uses O(n*n)
memory. It has fast lookups to
check for presence or absence of
a specific edge O(1), but slow to
iterate over all edges.



“Data Structure”: Why it matters??

space and complexity tradeoffs?

Adjacency matrix Adjacency list
123458678 1 |[2]8—[8]°
101100000 2 |1|of—>{3|ol>FWM ot 5|0

e 40131000 3 |[1]|ot+—>2|ot—5|et+>7|o|—>8]|0
3310031 011 s Bo3—[5]o
401011000 5 |23 |4 |91—*6|°
5011210100 . [ETe

600001000 — R
700100001 '

800100010 6 SN ©

There is often a time-space-tradeoff involved in such problems, that is, it
cannot be solved with few computing time and low memory consumption. One
then has to make a compromise and to exchange computing time for memory
consumption or vice versa, depending on which algorithm one chooses and
how one parameterizes it.
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Algorithm Complexity
Running Time for Algorithms: e.g.,

Give me the number of edges in a graph using the adjacency
matrix as a data structure!!

Adjacency matrix A

Algorithm
01100001100000
edges = 0; 10111010111000
11001011001011
for (i = 0; i < n; i++) { 01011001011000
. - . | 01100001100000
or (3 =0; J < nj J++) { 10111010111000
1f (Rsj - 1) 11001011001011
edges=edges+1; 01011001011000
} 0011301011301 00
} 00001000001000
e edocs 0010000010000T1
il 00100000100010

Runtime = O(nZ) (5 no of nodes=N



Algorithm Complexity
Running Time for Algorithms: e.g.,

Complexity using big-O notation (run time). For a problem of size N:
e a constant-time method is "order 1": O(1)
e a linear-time method 1s "order N": O(N)
e a quadratic-time method is "order N squared": O(N?2)

n n log, n n? n3 1.57 2" n!
n=10 < 1 sec < 1 sec < ] sec < 1 sec < 1 sec < | sec 4 sec
i n=30 < | sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 10 years
n=>50 < 1 sec < 1 sec < | sec < 1 sec 11 min 36 vears very long
n = 100 <lsec <lsec <1sec 1sec 12,892 years 107 years  very long
n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long  very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

The running times (rounded up) of different algorithms on inputs of increasing size, for
a processor performing a million high-level instructions per second, in cases
where running time exceeds 10% years,“very long time” is recorded.
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Algorithm Complexity
Running Time for Algorithms: e.g.,

Complexity using big-O notation (run time). For a problem of size N:
e a constant-time method is "order 1": O(1)

e a linear-time method 1s "order N": O(N)

e a quadratic-time method is "order N squared": O(N?2)

n n log, n n? n3 1.5 21 n!
n=10 < 1 sec < 1 sec < ] sec < 1 sec < 1 sec < | sec 4 sec
i n=30 < | sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 10 years
n=>50 < 1 sec < | sec < | sec < | sec 11 min 36 vears very long
n = 100 <lsec <lsec <1sec 1sec 12,892 years 107 years  very long
n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long  very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 31,710 years very long very long very long

The running times (rounded up) of different algorithms on inputs of increasing size, for
a processor performing a million high-level instructions per second, in cases
where running time exceeds 10% years,“very long time” is recorded.
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Algorithm Complexity
Running Time for Algorithms: e.g.,

Complexity using big-O notation (run time). For a problem of size N:
e a constant-time method is "order 1": O(1)

e a linear-time method 1s "order N": O(N)

e a quadratic-time method is "order N squared": O(N?2)

n n log, n n? n3 1.5 21 n!
n=10 < 1 sec < 1 sec < ] sec < 1 sec < 1 sec < | sec 4 sec
i n=30 < | sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 10 years
n=>50 < 1 sec < | sec < | sec < | sec 11 min 36 vears very long
n = 100 <lsec <lsec <1sec 1sec 12,892 years 107 years  very long
n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long  very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2sec 3hours ___ 32vears  verylong very long very long
n = 1,000,000 1 sec 20 sec 31,710 years ??| wverylong  verylong  very long

The running times (rounded up) of different algorithms on inputs of increasing size, for
a processor performing a million high-level instructions per second, in cases
where running time exceeds 10% years,“very long time” is recorded.
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Algorithm Complexity

Network “Shortest Paths”: Floyd-Warshall algorithm

Initialization (stop condition for the recursion):
DO =W
If no intermediate vertices are allowed, the best path

between any two vertices is either the weight of the edge
(if it exists) or INF

-

w

-

Recursive formulation:
DI, j] = min(D®Y[i, j], D*[i, k] + DYk, |])
Choose between:

+ The shortest path between i and j that contains intermediate
vertices in {1, 2, ... , k-1}

» The sum of the shortest paths from i to k and from k to j that
contain intermediate vertices in {1, 2, ... , k-1}

-

-

For k=1 to n {
For i=1 to n {
For J=1 to n
D[i,j] = min(D[i,3],D[i,k]+D[k,3])

}
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Graph Analyzing Algorithms:
Network “Shortest Paths”: Floyd-Warshall algorithm

For k=1 to n {
For i=1 to n {
For jJ=1 to n
D[i,3] = min(D[i,3],D[1,k]+D[k,3])

0 4 7 0 4 7 : :
po| | 0 2 DO 1 0 2 CS&SE?Z'B'&"{" )x+1b<1,2)
6 0 0 6 100
) ‘ O 4 <§> Consider Vertex 2:
D | O D(1,3) = D(1,2) + D(2,3)
6 10 O
time: O(n’) - —
) 2 DG 0 4 6 Consider Vertex 3:
SPGCC. O(n ) I6 |OO (2) Nothing changes.




Graph Analyzing Algorithms:
Network “Shortest Paths”: Floyd-Warshall algorithm

For k=1 to n {
For i=1 to n {
For j=1 to n
D[i,3] = min(D[i,3],D[i,k]+D[k,]])

0 4 7 0 4 7 : :
po| | 0 2 DO 1 0 2 Cg(r:asg‘:géﬂf )x+1b(1,2)
6 © 0 6 10 0
) ‘ O 4 @ Consider Vertex 2:
D | O D(1,3) = D(1,2) + D(2,3)
6 10 O
time: O(n’) - —
) 2 DG 0 4 6 Consider Vertex 3:
SPGCC. O(n ) I6 |OO (2) Nothing changes.




Algorithm Complexity
Betweenness Centrality

(same as shortest paths?? )
e Time: O(N?)
e Space: O(N?)

For k=1 to n {
For i=1 to n {

For j3j=1 to n D(O)

D[i,3j] = min(D[1,3],D[1,k]+D[k,]])

; ? 03 8 -4
w () =1 7

D(0)=°°4 0 © o

2 © 50 =

00 ©0 o 6 0.



Algorithm Complexity
Betweenness Centrality

(same as shortest paths?? )
e Time: O(N?)
e Space: O(N?)

For k=1 to n {
For i=1 to n {

For J=1 to n D(O)
D[i,j] = min(D[1,3],D[1,k]+D[k,]])
} P[1,]]= Kk (if less) 03 8 » -4
: ©Q w1 7
D(0)= 0 d () o o
2 o 50 =
00 ©0 o 6 0.

nil 1 1 nil 17
nil nil nil 2 2
PO)=|nil 3 nil nil nil
4 nil 4 nil nil
Lnil nil nil 5 nil-




Algorithm Complexity
Graph Analyzing Algorithms

Betweenness Centrality
e Time: O(N?)

e Space: O(N?) D( | )
03 8 x -4 03 8 « -4
®0 =1 7 0 1 7
D=| 4 0 « 00 D = oo(g) 0 -
2% =50 e 2 50 -2
Lo 0 o0 @[ () 3 4 2 4 Lo 0o o B (-
8
D(0), P(0) ] & D(1), P(1)
4 2 \| /s
nil 1 1 nil 1 5 ——4 nil 1 1 nil 17
nil nil nil 2 2 nil nil nil 2 2
P=|nil 3 nil nil nil P=|nil 3 nil nil nil
4 nil 4 nil nil 4@?4 nil 1
_nil nil nil 5 nil _nil nil nil 5 nil-




Algorithm Complexity
Graph Analyzing Algorithms

Betweenness Centrality

e Time: O(N?
* Space: (§(NZ) D(Z)
(03 8 « -4 03 8 -4’
o o 1 7 o w1 7
D=l ©4 0 = « D=|w4 0 5 11
25 50 -2 5 25 50 -2
o0 ©0 o 6 0. 3 d 4 o0 o0 o B 0 _
D(1), P(1) ‘ . : D(2), P(2)
4 2 1 5
il 11 nil 1] ©—Xg [nil 1 1(2)1°
nil nil nil 2 2 nil nil nil 2 2
P=|nil 3 nil nil nil P=[nil 3 nil 2 2
4 1 4 nil 1 4 1 4 nil 1
Lnil nil nil 5 nil- nil nil nil 5 nil-




Algorithm Complexity
Graph Analyzing Algorithms

Betweenness Centrality

e Time: O(N?
* Space: (§(NZ) D(S)
0 3 -1 4 -4 0 -4‘
30 4 1 -1 3 0 -4 1 -1
D=7 4 0 5 3 D=7 4 0 5 3
2 & 1 2 54 =5 <2
85 16 0J 3\, L85 16 0-
7 8
D(4), P(4) : 1 3 D(5), P(5)
4
il 1 4 21 B 45"ni|1'
4 nil 4 2 1 4 nil 4 2 1
P=(4 3 nil 2 1 P=(4 3 nil 2 1
4 3 4 nil 1 4 3 4 nil 1
L4 3 4 5 nil 4 3 4 5 nil-




Parallelism and HPC: “type with both hands, and ten fingers”

instructions

=l | -

~ il | |-E

~ il | 1-E=2

-~ | -
N 13 12 1

sustranson by Ders Cungeas (YA (11005 S3NQUE1HWRN 000N )
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HPC: “Where?”

—
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HPC and graph analyzing algorithms

= Different parallel architectures = Different programming models

= Different levels of fit to irregular
problems & graph algorithms




Parallel Algorithms for network analysis
Challenges

Critical to consider graph size and topology in application

to architecture mapping

* Can achieve high performance on GPUs if the graph + data structures fit in device
memory (memory size wall).

e Reasonably good performance on distributed memory clusters if the graph has low
conductance (can be partitioned w/ low edge cut).

Latency: (memory wall) as most of memory is hundreds or

thousands of cycles away from the processor that wants it.

e Computations that follow the edges of irregular graphs are unavoidably
latency-limited (worst cases with poor locality)...



Designing fast parallel graph algorithms
System requirements: High (on-chip memory, DRAM, network, 10) bandwidth.
Solution: Efficiently utilize available memory bandwidth.

Improve Algorithmic innovation

. locali to avoid corner cases.
“RandomAccess”-like T\ ty

Locality

Data reduction/
Compression

-

“Stream”-like

Problem
Complexity

Faster
methods
constant 104 106 108 1012 Peta+
log n
# of passes i Data size (n: # of vertices/edges)
over data



Example: Parallel “Shortest Paths”: Floyd—Warshall algorithm

’ 03 8« -47 03 8= -4
e Sl e Bl I 4
D(0)={ =4 0 = = Dlos 50 -2
2 © 50 = @i 58 B
k [
For k=1 to n { Time > N3/P
For i=1 to n { Parallel
For jJ=1 ton
D[i,3] = min(D[1i,3],D[1,k]+D[k,]])
}
}
(8) (b)
k
k ::'E'_E:::::_::::
For k=1 to n { A
For i=1 to n { Parallel Ei
For j=1 to n Parallel Time > N3/P'
D[i,]J] = min(D[1,]],D[1,k]+D[k,3]) J
} :
} 3
(a) (h)
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= How Is it being developed: “SE”
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Parallel Algorithms for network analysis
Requirements:

Fast and Correct

* Local metrics (include):

o Degree centrality, calculates the number of first neighbors of a vertex v, it is used
to identify those vertices with high degree of centrality, which are called hubs or
super-nodes.

o Hamming distance, a Hamming distance of the graphs A, B, H(A,B), where
both graphs has have the same number of nodes n, measures the fraction of
edges that have to be changed to transform one graph into the other.

* Mesoscopic metrics (include):

o Local clustering coefficient, for a certain vertex v in a graph, this coefficient gives
the probability, that two randomly chosen first neighbors of v, are also neighbors.
o Global clustering coefficient, which is the mean of the local coefficient.

* Global metrics (include):

o Closeness centrality, which measures the inverse average topological distance
or shortest path of vertex v to all others vertices in the network, this metric
describes whether vertices are topologically close to each other in a network.

o Betweenness centrality, which measures the importance of mediator vertices, as
such, vertex v would have a high betweenness if it is traversed by a (relatively)
large number of all existing shortest paths.

o Average path length, which defines the average topological distance between all
pairs of vertices in a graph (normally, disconnected pairs of vertices are out of
the average calculation).

J.F. Donges, Y. Zou, N. Marwan and J. Kurths, “Complex Networks in Climate
Dynamics”, Eur. Phys. J. Special Topics 174, 157-179 (2009).
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Parallel Algorithms for network analysis
Design

= Start from scratch "= Parallelize an existing library

Igraph — by Gabor Csardi et al.

JUNG (Java Universal Network/Graph Framework) — by Joshua
O’'Madadhain et al.

GraphStream - Stefan Balev et al.

The Boost Graph Library (BGL) — by Jeremy Siek et al.
JGraphT - Barak Naveh et al.

Ruby Graph Library (RGL) — by Horst Duchene
LEMON - Alpar Juttner et al.

NetworkX — Hagberg et al.

NG4J - Bizer et al.

N -

NN e, W
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Parallel Algorithms for network analysis
Design

= Start from scratch "= Parallelize an existing library

Selection Criteria 1. lgraph — by Gabor Csardi et al.
} 2.  JUNG (Java Universal Network/Graph Framework) — by Joshua
O’'Madadhain et al.
Data Structure flexibility 3. GraphStream - Stefan Balev et al.
Language 4. The Boost Graph Library (BGL) — by Jeremy Siek et al.
Implementation of alternative algorithms| = JGraphT - Barak Naveh et al.
Documentation 6. Ruby Graph Library (RGL) — by Horst Duchene
7. LEMON - Alpar Juttner et al.
Acc.ep.t'flnce 8. NetworkX — Hagberg et al.
Reliability 9. NG4J - Bizer et al.
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Parallel Algorithms for network analysis
Design

= Start from scratch "= Parallelize an existing library

Selection Criteria 1. Igraph — by Gabor Csardi et al.
} 2. JUNG (Java Universal Network/Graph Framework) — by Joshua
O’Madadhain et al.
Data Structure flexibility 3. GraphStream - Stefan Balev et al.
Language 4. The Boost Graph Library (BGL) — by Jeremy Siek et al.
Implementation of alternative algorithms| JGraphT - Barak Naveh et al.
Documentation 6. Ruby Graph Library (RGL) — by Horst Duchene
7. LEMON - Alpar Juttner et al.
Acc.ep.t'flnce 8. NetworkX — Hagberg et al.
Reliability 9. NG4J - Bizer et al.
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Design: Parallel “Shortest Paths”: Floyd—Warshall algorithm

" [03 8w -4] @8 % &
o el D=:2 Sl »
D0)=| 24 0 = (k-1)
2 o0 -s 0 o 2 5 '5 0 "2
| Lo 0 w0 G (0.
For k=1 to o { k [
— . 3
For i=1 to n { Parallel Time > N /P
For J=1 to n
D[i,]J] = min(D[1,]],D[1i,k]+D[k,]])
}
}
() (b)
k
or k=1 to n { N
For i=1 to n { Parallel k [23a]Z2Z7mm
For j=1 to n Parallel Ei : 3
D[,3] = min(D[L,3],D[i,k]1+D[k,3]) : Time > N%/p
} i
} i
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SNAP: Small-world Network
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1. Traversal step: visit adjacent vertices, update distance
and path counts.
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Design
Parallel Design BC Algorithm lllustration

SNAP: Small-world Network
Analysis and Partitioning (adduri and Bader 2009)

1. Traversal step: visit adjacent vertices, update distance
and path counts.
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Parallel Algorithms for network analysis
Design

Parallel Design BC Algorithm lllustration
SNAP: Small-world Network
AIlﬂlYSiS and Partitioning (Madduri and Bader 2009)

1. Traversal step: visit adjacent vertices, update distance
and path counts.
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Parallel Algorithms for network analysis
Design

Parallel Design BC Algorithm lllustration

SNAP: Small-world Network
Analysis and Partitioning (adduri and Bader 2009)

1. Traversal step: at the end, we have all reachable vertices,
their corresponding predecessor multi-sets, and D values.

S D P
0
6
1 0
2 1 2.7
1 1318
source : 3
vertex 1 + 010
2 t517

Level-synchronous approach: The adjacencies of all vertices
in the current frontier can be visited in parallel
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Parallel Algorithms for network analysis
Design

e Implementation

e C --OpenMP “threads”

e Incremental + Versioning
(igraph-ori -->vo0.1, v0.2 )

e Testing
Parallel “1Graph” B.C.

590 G Gl-Random (V-392K, E-143M )
300 Q ¢ G2-SF WWW (V=392K, E=1.43M )
250
200
150

100

Documentation

Computational time (minutes)
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e Network Construction

e network size?
e time?

e Testing....

Documentation

e More algorithms




