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Abstract

Computer music researchers dream of the perfect algorithm, in which the music generated

is indistinguishable from, or even superior to, that composed by the world’s most talented

composers. However, the fulfilment of this aim remains ambitious. This thesis pursues a different

direction, proposing instead that computer-generated music techniques can be used as tools to

support human composers, acting as a catalyst for human creativity, rather than a replacement.

Computer-generated music remains a challenge. Techniques and systems are abundant, yet

there has been little exploration of how these might be useful for end-users looking to compose

with generative and algorithmic music techniques. User interfaces for computer-generated

music systems are often inaccessible to non-programmers as they frequently neglect established

composition workflow and design paradigms that are familiar to composers in the digital age.

For this research, the Interactive Generative Music Environment (IGME) was developed for

studying interaction and composition; building on the foundations established in modern music

sequencing software, whilst integrating various computer-generated music techniques.

Three original studies are presented, based on participatory design principles, and evaluated

with amix-methods approach that involved studying end-users engaged with the IGME software.

Two studies were group sessions where 54 participants spent an hour with IGME, in either a

controlled (lab) environment or remotely as part of a conference workshop. The third study

provided users more time with the software, with interactions studied and analysed with the use

of screen recording technologies. In total, over 80 hours of interaction data was captured.

It was discovered that users need to understand several threshold concepts before engaging

with computer-generated music, and have the necessary skills to debugmusical problems within

the generative output. The ability to do this requires pre-existing knowledge of music theory.

The studies support the conclusion that computer-generated music is used more as a catalyst for

composition than as a replacement for it.

A rangeof recommendations and requirements for building computer-generatedmusic systems

are presented, and summarise the contributions to knowledge, along with signposts for future

work.
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Glossary

Term Definition
Computer-generated
music

Music generated by a digital computer based processes.

Generative music Music generated by a stochastic processes.
Algorithmic music Music generated by a deterministic processes.
IGME The Interactive Generative Music Environment.
IGMESynth A sub-application for synthesising sound sent from IGME.
Seed The music sequence edited by the user.
Result Themusic auditioned by the user once any computer-generated

processes have been applied.
Parameters Collection of computer-generated processes.
SPR Collectively contains a seed, an arbitrary number of parameters,

and a result. Seed, parameter, and result (SPR) model.
VCS Version control system.
Iteration A single output created by a computer-generated processes.
Part Collective name for a container holding a SPR model and a list

of edits (VCS). Similar to a clip in most existing music software.
Track A collection of parts placed on a timeline.
Render The processes of sequencing together multiple parts and tracks

to produce a single output sequence.
Plug-in A process that takes an input sequence and produces an output.
Note properties A specific process that applies per-note stochastic processes.
Human part A part with only human created music.
Human-computer part A part with human created music and computer-generated

processes.
Computer part A part with only computer-generated processes.
Reference part A part whose seed is taken from the seed or result of another

part.
Iterator part A part whose result is computed from iterating another part.
Repeater part A part whose result is copied from a given range of bars.
Seed generator A specific process that generates a seed dynamically.
Two-stage editing IGME’s editing paradigmwhereby themusical output is created

in two stages: an editor and a set of computer-generated
processes.

xv
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1. Introduction

The potential formachines to compose novel, interesting and ‘human-esque’music is an important

and recurring theme in the history of computer music. Despite the abundance of flexible

computer-based music sequencers, possible ways of incorporating computer-generated music

techniques into such systems and subsequent composer workflow are seldom explored. This

thesis explores and develops both theoretical and practical models for studying interaction inside

an end-user computer-generated music system.

As detailed inChapters 3 and 4, few tools exist for examining computer-generatedmusic (CGM)

inside established compositionworkflowsusing commondigital designmetaphors. Most tools for

CGM exist as either programming base interfaces (textual or visual) or through novel graphical

interfaces, using unfamiliar compositional workflows.

CGM has a rich history and remains an exciting field for researchers, but little work has been

undertaken on howCGM can be adopted, appropriated, and authored by a human operator. This

research seeks to answer the following two questions:

• “What are the interfaces, tools and, workflows needed for engendering interactive

computer-generated music composition?”

• “What role can computer-generated music take within composition?”

1.1. Computer-Generated Music and Technological Context

Computermusic, defined asmusic that cannot be createdwithout the use of computers (Cope and

Mayer, 1996), is an umbrella term for all activities that combine music and computers. Generative

music, automated composition, and algorithmic music are often interchangeable terms referring

to a formal process wherebymusic is composed with minimal human intervention (Alpern, 1995).

2



1. Introduction

Wooller et al. (2005) define generative music as a process where the output of an operation

generally has more musical predisposition than the input data (e.g. parameters) and the size of

such data (e.g. notes) increases. Generative music is used primarily in one of two contexts:

• In a live context, where each recital is different from the next, e.g. Terry Riley’s in C (Potter,

2002).

• For a fixed composition, where generative processes are used to create a static composition,

performed bymusicians, or synthesised by a computer, that is the same for each recital, e.g.

Melomics (Quintana et al., 2013).

This research focuses on the latter.

Although automated composition, generative music, and algorithmic music are

interchangeable terms within the existing literature, generative music is defined in this research

as music created and sequenced by an automated stochastic process, whereas algorithmic music

is a method for generating deterministic music using a set routine.

For example, a simple generative process is onewhere a computer program generates 8 random

notes in theC4-C5 range. This process is considerednon-deterministic as each completed iteration

canproduce adifferent output. Thenumberof unique sequences that canbeproduced is extensive

but finite (in this instance). By contrast, an algorithmic process might take all notes in an existing

sequence and reverses their order. This process is deterministic because, for each iteration, the

output is predictable and will always be the same.

Historically both processes described above have been utilised in regular music practice.

Mozart’s dice game (Ruttkay, 1997) is an example of a generative process, while techniques such

as inversion and retrograde have been used for algorithmic composition for centuries (Todd,

1978). Furthermore, McAlpine, Miranda, and Hoggar (1999) observe that, even in the earliest

history of composition, there is evidence of many composers using Fibonacci sequences to create

algorithmic music.

While this research focuses on music composed with digital computers, generative and

algorithmic music techniques have also been realised mechanically, and extensively detailed

in (Cope and Mayer, 1996; Ariza, 2005; Miranda, 2001). Computer-assisted composition (Assayag

et al., 1999) is used to describe systems that facilitate composition using a computer. Many

existing tools can be grouped like this, including: digital audio workstations e.g. Logic (Apple,

2020b); score-editing programs e.g. Sibelius (Avid, 2020a); programmable environments, e.g. Max
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1. Introduction

(Manzo, 2016); and live coding interfaces, e.g. Sonic Pi (Aaron, 2016). Computer-aided composition

(Buxton, 1977; Bouche et al., 2017) is a similar term used to describe software that allows composers

todesign computer processes for generatingmusical structures anddata. This label canbe applied

to many music programming systems.

Computer-generated music produces two different types of output: sequenced music events

and digital audio. Research into both applications is extensive. This research focuses on the

output of a computer-generated process that produces a sequence of music events, such as MIDI.

A framework for categorising different techniques for computer-composed music is explored in

Chapter 3.

Existing computer-generated music systems and languages often require the expression of

musical structure using programming language syntax. This is a skill that must be developed

by composers in addition to learning digital music sequencing. For example, Sonic Pi (Aaron and

Blackwell, 2013), Impromptu (Sorensen andGardner, 2010) and Supercollider (Wilson, Cottle, and

Collins, 2011) provide tools supporting computer-generated music but require expert knowledge

of the system and a transition into a different style of composition workflow. Although these

systems have obvious merits, such as micro-detailed timing and pitch, they are often alien to

formally-trained musicians and composers. Many other systems, such as neural networks and

evolutionary techniques (Chapter 3), require a composer to be competent with the underlying

mathematical models before being able to utilise those models as tools for music composition. In

essence, such systems are often designed primarily for computer scientists, not musicians.
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1. Introduction

1.2. Project Aims and Contribution to Knowledge

This thesis explores and aims to answer the following research questions:

• What tools do music practitioners require for working with computer-generated music?

• How do these tools differ from existing systems and interfaces?

• Howcan computer-generatedmusic processes be appropriated in a co-collaborative creative

process?

The contributions to the field of computer-generated music are:

• A set of design heuristics for building end-user computer-generated music systems.

• How are computer-generated music techniques used in real-world practice.

• The types of userswhowill engagewith computer-generatedmusic and the knowledge they

require to do so.

• The role of the computer in co-collaborative music practice.

Beforedesigning end-user computer-generatedmusic systems, four overarchingproblemsmust

be discussed and explored through the literature. These are:

• How can automated techniques for generatingmusic be categorised, andwhich of these are

most suited for composition?

• What design metaphors can be borrowed from existing music sequencing software?

• How can a workflow for using interactive generative music be modelled?

• How can the interaction between composer and computer be studied and evaluated?

1.3. Methodologies

This thesis takes a mixed-methods approach for studying interaction, notably, the end-user tools

are underpinned by participatory design (Muller and Kuhn, 1993). Qualitativemethods, including

descriptive video analysis and user surveys, are the primary methods for evaluating end-user

experiences in this thesis, supported by quantitative interaction logging techniques (detailed in

Chapter 8). All studies received approval from the university’s ethics committee and were GDPR

compliant.
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1. Introduction

The Interactive Generative Music Environment (IGME) software (Figure 1.1) was specifically

developed using iterative design and evaluation, as a platform for studying user interaction.

Through the research (Chapter 4), the features of existing music sequencers were identified

and used as the foundations to build IGME. Studying existing computer-generated music

techniques (Chapter 3) revealed those that were most suitable for end-user interaction, and

through developing various models (Chapter 5), allowed these to be integrated into IGME.

The IGME software was designed to support composition in a range of genres and styles within

the scope of “Western music” (within the affordances of common practice notation) and permitted

the enactment of computer-generated processes upon them.

IGME was built purely to test research theories and is a means to an end, rather than a

research contribution, and demonstrates one way in which end-user computer-generated music

composition can be made more accessible (discussed at length in Chapter 7). Some technical

details of the implementation and functionality are given in the development section (Chapters 5

- 7), and these are intended to give a vocabulary for discussing specific features in context during

the evaluation section.

Fundamentally, IGME was a probe for gathering broad knowledge about how music

practitioners use computer-generatedmusic software. Its extended iterative development process

created an opportunity for reflecting on both the design and use of related tools, leading to a

set of empirically evaluated design heuristics (part of this work’s contribution to knowledge -

see Chapter 11) for future end-user computer systems. To this end, several chapters focus on

the evaluation of IGME interaction, to develop and test specific aspects of the proposed design

heuristics.
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1. Introduction

Figure 1.1.: IGME, the softwarebuilt to study end-user interactionwith computer-generatedmusic.

1.4. Thesis Structure

The remaining Chapters of this thesis are divided into three main parts: background (Chapters

2-4), development (Chapters 5-7), and evaluation (Chapters 8-10).

Part II: Background

The project draws upon many fields that inform the overall research. Chapter 2 investigates

the psychology of creativity in order to understand how a music composition workflow can be

computerised or automated. Understanding this generates an appreciation of which elements of

creativity a computer can realistically replicate. TheChapter also examines fundamental concepts

in human-computer interaction (HCI).

Chapter 3 reviews the broad history of computer-generated music techniques, with Chapter

4 presenting a survey of existing popular music sequencing software, programming packages,

and specific generative systems. Together, these two Chapters highlight the lack of support for

CGM techniques inside existing music software, and the disparity of workflows found between

mainstreammusic software, generative music systems, and music programming environments.

7



1. Introduction

Part III:Development

Chapter 5 draws together the fields of computer-generated music, HCI, and creativity; defining

a set of design requirements for supporting computer-generated music composition. This work

creates the foundations to develop IGME. Chapter 6 uses the Cognitive Dimensions of Notations

framework to compare existing interfaces for CGM and uses this to help define a set of design

guidelines for building end-user CGM systems. Through this process, the development and

rationale behind IGME’s features are detailed. A full technical description of IGME is then

presented in Chapter 7.

Part IV: Evaluation

An overview of the studies and methodologies employed is detailed in Chapter 8, along with two

informal pilot studies conducted using a participatory design-based approach. IGME is further

evaluated empirically with formal user studies spread across both controlled and uncontrolled

conditions. Chapter 9 presents the findings of twoworkshopswhere 54 participants used IGME to

compose music. Chapter 10 discusses a longitudinal study in which four participants used IGME

for 4 hours each. The session was captured with a screen recorder and analysed to depict themes.

Chapter 11 (part V) reviews the project’s aims and reveals the contributions to knowledge.
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2. Computational Creativity and Human
Computer Interaction

Music composition supported by digital technologies combines two disciplines: creativity and

human-computer interaction (HCI), each forming a section in this chapter. Music is the

expression of creativity, and HCI encompasses many aspects of a musician’s interactions with a

computer.

2.1. Computational Creativity

Creativity is difficult to define, evaluate and model; and is surrounded by subjectivity and

mystery. The purpose of its study is to determine whether generative music can simulate

established aspects of creativity, and the roles it can takewithin existing compositional workflows.

Papadopoulos and Wiggins (1999) propose that artificial intelligence (AI) researchers should aim

to answer: “Do we want to simulate human creativity itself or the result of it?”. Both concepts produce

different types of systems; the first is more difficult to develop than the latter.

It can be argued that for a computer to be an artist of creative media, it should follow existing

models and theories of creativity. In addition, there are parallels between music composed by

computer, music composed with the assistance of a computer, and music composed purely using

traditional methods. Jacob (1996) makes similar notes, relating the incremental revisions of the

creative process to those of the iterative tasks undertaken by computer algorithms, further arguing

that this element is realisable by the computer. Gartland-Jones (2002) puts forward a generative

algorithm that is able to model part of the creative process of composition. Fernández and Vico

(2013) considers automated composition systems as oneswhereby theuser is not themain source of

creativity, but whose purpose is to set model parameters, encodemusical knowledge, and provide

human-composed examples from which the system can learn.

10



2. Computational Creativity and Human Computer Interaction

Boden (2004) studies and identifies three core types of human creativity: unfamiliar

combinations of familiar ideas; exploration of an existing conceptual structural space; and

transforming this conceptual space. For example, combining a known harmonic progression

in an unfamiliar way with a familiar melodic progression relates to the first type of creativity.

Some composers explore the limits of a genre or structured form of music (second type), whereas

others attempt to fragment the conceptual space altogether (third type). All three concepts can be

simulated with automated music processes.

For the first type, a program could blend a randomly generated sequence with an existing

user-defined sequence. The second type could be modelled by a neural network trained on

‘familiar-pieces’, which explores the limits of the created conceptual space. The third type can

bemodelled bymany computermusic techniques, for example even a simple stochastic processes

can break all the ‘rules’ of a genre.

Sternberg (2003) states that creativity is the ability to produce novel, high quality, and

task-appropriate work. Current generative music techniques easily meet the originality criteria

but struggle to meet quality requirements. Automatically measuring ‘appropriateness’ is both

difficult and subjective. The work in this thesis focuses on an interactive context, wherein the

user ultimately chooses whether or not the created content is an appropriate addition to their

composition. If however, the composer is writing music for a third party rather than themselves,

this requirementmay differ. Many researchers state that evaluating the output of generativemusic

serves little purpose. Sorensen and Brown (2008) note “objective measurement of music composition

is impossible; it is dangerous as it can lead to rational explanations that do not bear experiential scrutiny.”

Sternberg (2003), in reference to work by Finke, Ward, and Smith (1992), discusses two

main phases in cognitive creative thoughts: generative and exploratory. The generative phase

creates structures with properties for promoting creative discoveries, while the exploratory phase

manipulates these parameters, producing creative ideas. Relating this to a computer-generated

music application, the generative phase creates the structures (for example an interactive Markov

model) and then the user becomes the explorer.

Csikszentmihalyi (1996) argues that creativity is as much a cultural and social event as it is a

psychological event. The author states that “Original thought does not exist in a vacuum. It must

operate on a set of already existing objects, rules, representations, or notations... Without rules, there cannot

be exceptions, and without tradition, there cannot be novelty.” Such an observation may explain why

11



2. Computational Creativity and Human Computer Interaction

simple stochastic music lacks widespread audience appeal. Therefore, CGM techniques should

be ‘educated’ on the nuances of the genre or type of music they are trying to simulate.

2.1.1. Knowledge, Motivation and Flow

Sternberg (2003) suggests that creativity is limited in that there may be a threshold beyond which

creativity cannot happenwithout prior knowledge of the field. McIntyre (2008) supports this idea,

stating that songwritersmust acquire specific knowledge for creative practice, referred to as domain

acquisition.

The ability to create, is at the highest level of the revised Blooms Taxonomy (Krathwohl, 2002),

implying the need to fully comprehend the subject before being able to synthesise new material

within that domain. Hanna (2007) specifies that creativity is the most complex cognitive process,

requiring the need to remember, understand, apply, analyse, and evaluate musical knowledge

before engaging with creative cognitive processes. On the contrary several styles and genres

of music (and more wider creative artefacts) have appeared without necessarily following the

aforementioned steps, as if stumbled upon by accident. This still however poses the question, can

music practitioners be expected to use computer-generatedmusic techniques effectively if they do

not fully understand the domain? While it is unclear as to what degree any software envisioned

by this thesis should educate users on techniques, it could be argued that generative techniques

aremost suited to experiencedmusic practitioners, because to use them and evaluate their output

requires knowledge of music theory1.

There is considerable anecdotal and empirical evidence that creative production requires a high

level of motivation (Collins and Amabile, 1999) often categorised as ‘extrinsic’ and ‘intrinsic’. An

extrinsically motivated individual is motivated by external factors, such as money or recognition.

With intrinsic motivation, the output of the task, e.g. writing a song, is its own reward. As stated

by Crutchfield (1962) “the person is motivated by the intrinsic value in the attaining of the creative

solution itself”. The author believed greater creativity would result when a person was primarily

intrinsically motivated to do a task. In some cases, extreme levels of extrinsic motivation and

tight deadlines – for example, in life-saving situations – provoke creative solutions (Amabile,

Hadley, and Kramer, 2002). However, the presence of extrinsic motivators does not preclude that

of intrinsicmotivation, and the relative valence of each or synergy of both is rarely clear for a given

1This is discussed again in the conclusion, and found to be mostly true.
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moment or agent – in the previous example, saving lives is as profound a personal experience as

it is social. However, in summarising the field’s findings, Collins and Amabile (1999) note that, in

general, extrinsic motivation and external deadlines are detrimental to creativity.

Echoing similar thoughts, Csikszentmihalyi (1990b) suggests that high levels of intrinsic

motivation, accompanied by relatively low levels of extrinsic motivation, may help creative

individuals bemore independent of their field because they are unlikely to conform. Alternatively,

creating noteworthy and stand-out creative artefacts in the pursuit of large extrinsic (fame and

money) rewards, are also possible avenues in which creativity may flourish.

A number of factors influence intrinsic motivation, which is a crucial element in creative

endeavours, including ‘flow’; which can be simply defined as a state where by a person is fully

immersed in an activity to the exclusion of external factors. Notable work in defining the theory

was proposed by Csikszentmihalyi (1996) and there is evidence to suggest that composers often

find themselves in a flow state (Nash, 2011). Csikszentmihalyi (1990a) argues that people involved

in creative pursuits actively seek flow experiences and that creativity is more likely to result from

such experiences.

When it comes to flow, as researched by Nash (2011), a balance has to be struck between the

challenge facing a user and their skill in the area. Too much challenge combined with low skill

can result in anxiety, whereas the opposite can induce boredom. When the challenge matches a

user’s skill, a high level of intrinsicmotivation is achieved, resulting in a state of flow, creating both

opportunities and difficulties for computer-generatedmusic. For example, a computer generating

complexmaterial for noviceusers is unlikely tobe rewarding; the samewouldbe trueof generating

simplisticmaterial for adept composers. Using certain techniques, such asneural networks, which

requires knowledge of maths, computer science, and music, might be overly complex. Moreover,

in an ideal world in which a computer generates music better than any composer would have no

challenge. In summary, to harmonise a user’s skill with challenge, a compromise between easy

and complex techniques is required, potentially leading to higher occurrences of flow states.

2.1.2. Modelling Composition and Creative Problem Solving

While current literature includes little exploration of formal models for defining a generative

composition workflow, notable work has been done on modelling ordinary human-led music

composition.
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Alty (1995) presents work in which the composition process is modelled as a journey through

a series of state spaces, where each state represents a possible direction in which the music can

go. Constraints are often applied to these states, limiting the choice of direction and morphing

the task into a problem-solving exercise. Many existing systems aim to reduce the search space by

cutting the number of options available to the composer, creating an abstraction of the musical

domain (Nash, 2015). For example, Sibelius (Avid, 2017) supports all the actions that can be

performed with pen and paper, but the scale mapper (discussed in Chapter 4) prevents the user

from entering certain notes, creating tension between ease of use and unconstrained composition.

In general, systems emphasising usability create abstractions of the musical domain (Nash, 2015),

reducing the problem-solving search space. For example, a step sequencer can be filtered to allow

notes only from a certain scale or key. Existing devices exhibiting these types of abstractions

include Ableton Push (Ableton, 2020), Numerology (Five12, 2020), and the Novation Launchpad

Pro (Ampify-Music, 2020). Creating abstractions of musical data is commonly used in machine

learning applications within the context of music, to reduce the search space (Choi, Fazekas, and

Sandler, 2016; Todd, 1989; Papadopoulos and Wiggins, 1999), for example using MIDI instead of

RAW audio.

A framework for modelling open-ended creative activities, such as music, is presented by

Holland (2000). This is based on choosing a goal, selecting constraints, and then iterating through

solutions. A result is generated throughout each step and the constraints and goals are adjusted

until some acceptance criteria are met. The model is built on a framework that presents sets

of modular but interacting components: a module for applying and planning constraints; an

interactive interface; an existing corpus of reference material; and a series of plans for generative

prototype musical material.

Holland (2000) defines music composition as ripe with ‘problem seeking’. Unlike other fields,

there is often no generic goal or problem to be solved; rather, the problems composers set

themselves to solve are ill-defined and open-ended, with few (if any) criteria for completion.

Such concepts are at odds with computer music algorithms which, by definition, are often

‘problem-solvers’. Music composition is also full of ‘wicked problems’ with no clear goals, no criteria

for testing correct answers, andno comprehensive set ofwell-definedmethods (Rittel andWebber,

1973). Nash (2011), in reference to Rittel andWebber (1973), highlights the parallels between artistic

expression and “wicked problems”.
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2.1.3. Unison of Human-Computer Creativity

Human-computer co-creation can be defined as creativity in which both a human and a computer

take responsibility for the generationof a creative artefact (Kantosalo et al., 2014). Adapting creative

software for supporting human-computer co-creation often requires redesigning major aspects

of the software. Lubart (2005) puts the computer’s role when supporting creativity, into four

categories:

• As a management aid (nanny).

• As a communication enabler (pen-pal).

• As a creativity enhancer (coach).

• As a co-creator in the creative act (colleague).

Most of the categories above canbeusedas a label, inmusic compositionactivities. For example,

digital audio workstations can be used to collate and manage fragments of musical ideas (nanny).

Ohm-studio (2020) enables users to collaborate on musical projects (pen-pal). Few music tools

can be considered as coaches, especially with automated music techniques that assume domain

specific knowledge, whereas many generative music tools are co-creators (colleagues), generating

music automatically (but often not collaboratively). Kantosalo et al. (2014) notes how co-creative

systems can transform the lives of professionals and lay people alike by increasing their creative

potential. Focusing on user-centred design principles can transform computer creativity software

into tools that enable human-creativity co-creation.

2.2. Human Computer Interaction and Usability

Human-computer interaction (HCI) focuses on the design and usability of interaction systems

and employs a range of disciplines (Card, 2018). The term ‘interaction design’ is concerned with

the theory, research and practice of designing user experiences, for technologies, systems and

products (Preece, Sharp, andRogers, 2015), and a subset of thewiderHCI field. Historically, before

graphical user interfaces (GUI) became common, most computing was done on terminal-based

consoles, with commands executed in text. As GUIs became more widespread, so did research

interest in HCI (Card, 2018).

Usability is about the effectiveness, efficiency and satisfaction of a task, whereas user experience

(UX) encompasses all aspects of the experience when interacting with the system. Different
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types of software generally emphasise one over the other, however considering both is important.

Notably, effectiveness and efficiency are less of a focus in software built for creativity than one purely

for productivity.

Usability, as defined by Nielsen (1994), generally has five components: learnability, efficiency,

memorability, errors, and satisfaction. All systems have to be learned (learnability), but there is a

trade-off between the skills and motivation of envisioned users, the time needed to learn the

software, and the overall complexity of the software. A low-entry threshold (easy to get started)

and high ceiling (difficult to master) are desirable characteristics for music software (Wessel and

Wright, 2002). Efficiency is not a label meaningfully applied to creative tasks, such as music

composition, given its open-ended, problem-seeking domain. However, certain aspects, such as

transcribing a score from paper using notation software, can be measured in terms of efficiency.

Most music software shares common interfaces and design metaphors, such as the sequencing

and arranging of clips upon a timeline. The ubiquitous copy-and-paste is an ideal illustration of

memorability that is almost universally implemented in software. In general, errors encountered

when interacting with software should be avoided, although music is sometimes an exception, as

errors can result in happy accidents, in which a mistake is accepted, leading to surprising musical

directions. Satisfactionwithmusic software ismeasurable in twoways: how satisfying the software

is to use, and the satisfaction derived from the quality of the work produced. The first is relatively

easy to assess, but evaluating perceived satisfaction with musical output remains challenging.

2.2.1. DesignMethods

Formal methods for designing software are extensive in current literature (Budgen, 2003). The

focus of this research is on the ‘borrowing’ of existing music sequencing workflows, paradigms,

and design metaphors. Therefore, much of the groundwork has already been done.

This thesis primarily deploys participatory design (discussed in Chapters 7 and 8), which

involves engaging users as agents in designing the software, and continuous evaluation (Muller

and Kuhn, 1993). The aim is to produce an artefact that fits the needs and desires of the usersmore

effectively than other methods. However, it is unlikely that notable technological breakthroughs,

such as touchscreen devices, would have emerged through a participatory approach since the

technology would have been too alien to users. Irrespectively, participatory design has become

increasingly prevalent and accepted, even though, as Nielsen (1994) notes, users do not always
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know what they really want2. In summary, revolutionary designs need not always consult an

existing group of users.

User-centered design differs from participatory design, in that the user is not a member of

the design team but their needs are researched and evaluated by the designers. The shift from

user-centered to participatory design, reflects a change in attitude from one of designing for

users to one of designing with users (Sanders, 2002). Participatory design has been used for

music-based research, including developing piano practice tools (Sanders, 2002), and for music

interfaces (Geiger et al., 2008). Originally IGME was developed using a user-centred approach,

before transitioning to participatory design, which was necessitated through the use of several

pilot studies (Chapter 7).

2.2.2. User Requirements

Different users can have vastly different requirements when it comes to software, so it is

paramount to consider who the users are. This is often the first step in designing for usability

(Nielsen, 1994). Software such as ProTools (Avid, 2020a) is targeted at experts familiar with studio

workflow, emphasising shortcuts and time-saving features, and consequently has a reasonably

high entry threshold. By comparison, GarageBand (Apple, 2020a), a simplified version of Logic,

(Apple, 2020b) with minimal features represents a ‘first-sequencer’ for novices.

Who the users of computer-generatedmusicmight be is a difficult question to answer, given the

lack of research on the subject. As such, a cursory survey was undertaken to find out who a user

of generative music might be, with the results discussed in Chapter 5.

2.2.3. Cognitive Dimensions of Notations Framework

A key aim of this project is to find out how computer-generated musical processes can be

integrated into established composition workflows3. Several notable frameworks (Carroll, 2003)

exist for designing interfaces for task-oriented traditional computer software. Carroll (2003)

describes a task in terms of goals, operators, methods, and selection rules, in relation to the user’s

knowledge of how to complete tasks. This particular model is used for tutoring purposes and, for

2As automotive pioneer Henry Ford once stated, “If I had asked people what they wanted, they would have said faster
horses” (Vlaskovits, 2011).

3methods for understanding current composition workflow are explored in more detail in section 4
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many, is the go-to model for designing software. However, Liikkanen et al. (2012) notes that music

interaction research has become marginal in HCI.

Green and Petre (1996) and Nash (2015), observe that creative tasks, such as music, are not

well-suited towards conventional, goal-oriented HCI design. For example, Nash (2011) presents

work that shifts the design focus fromusability frameworks to virtuosity4. Nash’s research observes

over 1000 users interacting with music composition software, finding correlations between user

action and evidence of flow experiences. In doing so, Nash (2011) suggests that more holistic HCI

frameworks, for example, the Cognitive Dimensions of Notations (CDN) framework, are needed

to design tools to support creativity, rather than more formal HCI frameworks.

Green and Petre (1996) proposed the CDN framework as an evaluation technique for visual

programming environments, interactive devices and non-interactive notations. Nash (2015) has

adapted this framework for use in designing and analysing music notations and user interfaces

for digital and traditionalmusic practice and study. Bellingham, Holland, andMulholland (2014a)

present similar work, using the dimensions’ approach for analysing a representative selection of

user interfaces for algorithmic composition software. Finally, the cognitive dimensions can also

be thought of as discussion tools for designers (Bellingham, Holland, and Mulholland, 2014a).

Each dimension and its description is set out in Table 2.1. The descriptions are adapted from

Nash’s (2015) work. Chapter 6 discusses the CDN in detail, focusing on both existing systems

and research and on evaluating the end-user software developed for this thesis. Furthermore,

evaluation methods for the user studies later in this thesis (Chapter 8) are also built upon the

CDN.

2.2.4. Methodologies and Evaluation

Aside from the CDN framework, numerous methods for evaluating user-facing software exist

in the literature. Many prioritise traditional usability goals where there are defined objectives,

for example, Preece, Sharp, and Rogers (2015) DECIDE framework. Computer-generated music

systems are often evaluated through listening tests, asking users to evaluate objectively the audible

quality of a generated artefact(Hsu and Sosnick, 2009). Few studies evaluate the software interface

itself, as evidenced in Chapters 3 and 4. The goal of computer-generated music systems remains

4The user masters the software, instrument or notation.
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Dimension Description
1. Visibility How easy is it to view and find elements of the music

during editing?
2. Juxtaposabillity How easy is it to compare elements within the music?
3. Hidden Dependencies How explicit are the relationships between related

elements in the notation?
4. Hard Mental Operations How difficult is the task to work out in your head?
5. Progressive Evaluation How easy is it to stop and check your progress during

editing?
6. Conciseness How concise is the notation?
7. Provisionality How easy is it to experiment with ideas?
8. Secondary Notation How easy is it to make informal notes to capture ideas

outside the formal rules of the notation?
9. Consistency Where aspects of the notation mean similar things, is the

similarity clear in the way they appear?
10. Viscosity Is it easy to go back and make changes?
11. Role Expressiveness Is it easy to see what each part of the notation means?
12. Premature Commitment Do edits have to be performed in a prescribed order,

requiring you to plan or think ahead?
13. Error Proneness How easy is it to make annoying mistakes?
14. Closeness of Mapping Does the notation match how you describe the music

yourself?
15. Abstraction Management How can the notation be customised, adapted, or used

beyond its intended use?

Table 2.1.: Terms of the CognitiveDimensions ofMusic Notations framework used in this research
taken from Nash (2015).

focused on creatingmusic indistinguishable from traditional human-led composition, attempting

to pass the famous Turing Test (Ariza, 2009).

Brown, Nash, and Mitchell (2017) summarise methodologies used within NIME5 and ICMC6

conferenceproceedings and found that askingusers to complete a ‘specific task’ is themost common

method followed by ‘open exploration’. In addition, questionnaires are the most popular way to

collect data as they permit quantitatively analysing otherwise qualitative elements of interaction.

The authors observe a move from traditional user experience to subjective evaluation, such as

measuring engagement, enjoyability and reward. Frustration is rarely assessed.

5New interfaces for musical expression.
6International computer music conference.
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2.3. Conclusion

This chapter reviewed computational models of creativity and methods for designing and

evaluating tools to support creative activities. The chapter highlights the factors that catalyse

creative endeavours, focusing on intrinsically rewarding tasks, ensuring that users have enough

knowledge of the domain, and promoting a state of flow in which the challenge encountered by

the user is in balance with their skill. Users’ knowledge of the domain will influence the degree

of challenge enabled by the software, ideally resulting in a low barrier to entry but a high ceiling.

This promotes the idea that any end-user system proposed by this research should be familiar

enough to get started easily, but different enough to make mastering it challenging, emphasising

that there is no linear way of working through it. Crucially, this research does not consider

computer processes as a replacement for human creativity, but rather as means for enhancing

human creativity.

There is no single solution for supporting creative tasks, nor amagical algorithm that can act as

a replacement. The definitions of creativity explored in this chapter have demonstrated applicable

routes in which computer-generated music can mimic certain behavioural characteristics found

in creative activities. Such generative processes have not yet been discussed, but the knowledge

needed to relate such processes to definitions of creativity has been defined by this chapter.
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There is extensive literature on generative and algorithmic music systems covering everything

from 10th Century mechanical composition methods (Ariza, 2005) to supercomputer systems

(Quintana et al., 2013) capable of album-length composition. Modern approaches utilise

breakthrough deep-learning techniques (Sturm et al., 2019). Only systems using a ‘digital computer’

for music are explored in this research; for more in-depth discussions of mechanical systems see

Cope (1991) and Ariza (2005). This thesis focuses on the noteworthy, novel, popular, and most

appropriate computer-composed techniques1. The work in this chapter was heavily influenced

byWooller et al. (2005), Cope (1991), Miranda (2001), Papadopoulos andWiggins (1999), Fernández

and Vico (2013), and Liu and Ting (2017). A recent synopsis of the field summarising the strengths

and weaknesses of different techniques is given by Siphocly, El-Horbaty, and Salem (2021), and a

in depth discussion of the state-of-the-art for music and AI is summarised in Miranda (2021).

Brown (2004) notes that, historically, artificial intelligence had the incredible potential for

improving generative music, but the techniques were limited by poor computational power.

Musical history is heavily aligned to technological breakthroughs such as those for the piano,

electric guitar, turntable, and MIDI sequencer, with each leading to the development of new

music genres (Katz, 2010). Just as instruments have brought monumental shifts in popular music,

advances in computing power have led to the development of new computer music techniques.

For example, deep learning technologies (supported by near limitless computing power) permit

the development of exemplary tools such as Aiva (Zulić, 2019).

Most techniques discussed in this section use probabilistic methods2. Temperley (2007)

emphasises how interwoven music and probability are, with the author demonstrating and

modelling many musical concepts. For example, a musical key defines a likely distribution of

pitcheswithin a piece ofmusic, such as pitchC ismore likely thanC# in apiece conforming strictly
1A complete analysis and description of the vast history of generative music would merit a thesis on its own.
2This section assumes the reader is familiar with elementary statistics and probability, although an overview of
statistic and probabilist models (including advance concepts) in music examples is given by (Lorrain, 1980).
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toC-Major. Moreover, Antoine andMiranda (2016) note the strong links betweenmaths andmusic

in their summary of algorithmic composition.

3.1. Categorising Computer-Generated Music Techniques

Technique Type
Feature-space
{Music,
Parameters}

Reproducible Appropriate
hierarchal level

Random number
generation Generative {None, None} No Note - Phrase

Deterministic
Rules Transformational {None, Simple} Yes Note - Global

Probabilistic rules Transformational {None, Simple} No Phrase - Section
N-grammodels Analytical {Dataset, None} Yes Phrase - Section
Markov chains Analytical {Dataset, None} Yes Phrase - Section
Simple grammars
(type 3) Transformational {Fractional,

Simple} Yes Note - Phrase

Complex
grammars (type 0)

Transformational
or Analytical {Dataset, Complex} No Phrase - Section

L-Systems Transformational {Dataset, Complex} No Section
Neural networks Analytical {Dataset, Simple} Yes Section
RNN and LTSM Analytical {Dataset, Simple} Yes Global
Deep learning Analytical {Dataset, Complex} Yes Global
Evolutionary and
genetic algorithms Generative {Fractional,

Complex} No Section - Global

Cellular automata Generative {None, Simple} No Section - Global

Arpeggiators Transformational {Fractional,
Simple} Yes Phrase

Harmonisers Transformational {Fractional,
Simple} Yes Note

Table 3.1.: Various computer-generated techniques categorised using the framework discussed in
this section.

Although there are many techniques for CGM, they are difficult to group and categorise.

Wooller et al. (2005) defines a framework for comparing CGM processes that allow systems to be

related and contrasted. Techniques are grouped into three categories:
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• Analytic: reduce the size of input (or training) data to extract specific features by, for

example, obtaining a set of notes from a database of sequences.

• Transformational: transform a structural element of the music by, for example, modifying

pitches without altering rhythm.

• Generative: produces music from input data, or rules, resulting in an increase in data size,

for example, a random note generator.

These elements are also considered in terms of their contextual breadth, which is defined by

Wooller et al. (2005) as the size of the surrounding data that can influence the computation of the

algorithm. For example, aCGMprocess that is controlled by 8 parameters has a broader ‘contextual

breadth’ than a simple process controller by a single parameter. The authors further note that

future research might focus on how ‘contextual breadth’ might be measured.

Developing onWooller et al. (2005) work, this research establishes a ‘feature space’ category, that

defines for a given computer-generated process what external inputs are required. For example,

applying retrograde, a transformational algorithm that reverses an input sequence, requires no

parameters but needs the entire music sequence. In contrast a machine-learning model requires

a vast dataset and complexparameters. This researchdefines a two-dimensional feature space: with

music and parameters as separate dimensions. For music, the input is considered to be either none,

fractional (a small music sequence), full (the entire sequence), or data set. For parameters, the input

is either none, simple, or complex. Examples of these applied to various CGM techniques are given

in Table 3.1. Some techniques, for example a Markov model, could be fed a continuum of music

data from fractional to dataset, however the model becomes more ‘generalisable’ with a dataset.

The level of reproducibility (deterministic versus stochastic) is a further consideration for

creating a framework to define generative applications. Simple transformations, such as

retrograde, are both reproducible and exact for the same input data, and therefore deterministic.

Simple neural network systems (Todd, 1989) and seed-based random models have similar

properties, whereas stochastic and evolutionary systems, which use random seeds (Myhill, 1979;

Biles, 2002), produce a different output for the same input, making it impossible to perfectly

reconstruct the results from the model.

Finally, each technique works on a different level of musical hierarchy or structure. Influenced

by Jackendoff and Lerdahl (1996) (who approach the analysis of music in terms of hierarchical

levels also) this thesis defines 5 levels: single note; phrase (a small sequence); bar; section
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(several bars); and song. To maximize each algorithm’s efficiency, it is paramount to consider

its hierarchical level. For example, simple probabilistic models such as Markov chains, are more

suited to the note level than to the section level. This research hypothesises that algorithmicmusic

systems are less suited to be used at a global level (the entire composition) than to be used at the

lower levels (note and phrase), and is evaluated through user studies in later chapters.

The framework in this thesis used to categorise music algorithms, extended fromWooller et al.

(2005), consists of four dimensions:

• Type: analytic, generative or transformation.

• Feature space (two-dimensional):

– Music: none, fractional, full, or dataset.

– Parameters: none, simple, or complex.

• Reproducibility: reproducible or non-reproducible.

• Appropriate hierarchical level: note level, phrase level, bar level, section level, or song level.

This framework is discussed again in Chapter 5.

3.2. EarlyWork in Computer Music

The following outlines early experiments in probability, and music programming systems. Many

of the experiments used largemainframe computer systems, inaccessible to the average composer.

During the 1950s and 1960s, computers remained mainly the property of large businesses, the

military, and universities. The operators of such machines were computer scientists rather than

musicians. Such systems permitted only rudimentary text-based interfaces (as GUI had not been

invented), requiring competency with primitive programming languages. The growth of personal

computers during the 1980s democratised access to computers for the average person, supported

further by the invention of graphical user interfaces (Webster, 2002).

Early work in computer music was influenced by Shannon’s information theory (Shannon, 1948;

Shannon, 1953) and Chomsky’s work on linguistics and formal grammars (Chomsky, 1957). Hiller

and Isaacson (1959) created rule-based programs that could generate various forms of music

(producing the Illiac Suite for String Quartet), which is often cited as the earliest example of

automated computer composition 3.
3A comprehensive history of early computer music systems is detailed by Cope (1991).
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The Iliac Suite consisted of four experiments (Hiller and Isaacson, 1979), with each focusing

on a different musical style: first species counterpoint; counterpoint rules to random white notes;

rhythmic elements with chromaticism; and Markov models (discussed shortly). In summary, the

authors concluded that “Digital computers are readily programmed to perform deductive reasoning, but

their ability to draw generalizations from special cases is extremely limited” (Brooks Jr et al., 1957).

3.2.1. N-GramModels

An N-gram model is used to describe the splitting of a continuous sequence into smaller

sub-sequences. For example, the word ‘music’ contains the bigrams (2nd order N-gram) mu, us,

si, and ic (Doraisamy, 2004). Such processes can be applied to a simple monophonic sequence,

whereby the next note is computed based on the previous N notes. Using a bigram model, the

probability of an event is given only by its previous event - how likely is C# when the last event

was C? The earliest example of this, as applied to computer-generated music, is the work of

Brooks Jr et al. (1957), who created varying length N-gram models of sequenced notes. Using a

table to store the data, each series from 1 through to 8 was collated, sorted numerically and tallied.

Some constraints, including limitingmusic to incorporate onlymonophonic lines, andmusicwith

the same rhythmic measure, governed which data was used for building the N-gram models.

Music was then re-synthesised by sampling randomly from the pre-collected data. Therefore,

the sequences with high occurrence in the training data would more likely be chosen for output.

Certain rules were applied to ensure the processes operated uniformly. General observations by

the author suggest that varying the N-gram’s size produced different results. With an order of 1,

the program produced music that was chromatic and not in keeping with training data, whereas

larger orders produced sequences that could be easily heard in the training data.

3.2.2. Markov Models

AMarkovmodel is a stochastic model in which the probability of an event depends on the state of

previous events. In music, this could be illustrated as the probability that a sequence will produce

a pitch G following a previous pitch C , notated as P (G|C). When states are combined, they are

referred to as a chain of states. For example, the probability of the pitch sequence [A,C,D]would

be given by P (D|AC) using a 2nd-order Markov, which defines the probability of pitchD given

the previous two pitches [A,C]. The probability of such transitions have been both artificially
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Output note
Input Note C E G
C 0.7 0.1 0.2
E 0.4 0.6 0
G 0.5 0.25 0.25

Table 3.2.: A transition table (single order Markov model) that lists the probability of transitions
between two notes.

composed andobtained throughanalysis of existingwork (Ames, 1989). Table 3.2 illustrates a simple

Markovmodel, inwhich there are three possible states (or three notes). For example, if our current

note is a C , then there is a 70% chance that the next note in our sequence will be a C again, or

a 10% chance to go to E, or a 20% chance to go to G. Markov models are often referred to as

transition tables. A zero-order Markov model would be the same as an arbitrary random number

generator. A drawback of Markov models is the inherent exponential complexity of working with

larger order models (Mochihashi and Sumita, 2008), and with longer chains require considerable

memory requirements. Despite their age, Markov models are still explored in modern literature

(Van Der Merwe and Schulze, 2010; Antoine andMiranda, 2016).

3.2.3. Other EarlyWork

In the mid-1950s, Xenakis (1971) infused mathematical techniques in music composition using

computerised techniques from Markov chains, game theory and stochastic music composition.

Myhill (1979) later extended Xenakis’ stochastic music language (SML), as well as proposing that

generative music should be balanced in terms of stochastic and deterministic music, to avoid the

loss of stylistic coherence.

Brooks Jr et al. (1957), created a tool that re-synthesised music through the analysis of existing

musical structure. A novel idea presented in this work was for programs to determine rules using

conclusions formed through analysis of music, to synthesise new music. Contrary to other work,

the data model used here for generative music is constructed through a real-world dataset. Such

ideas form the basis of manymoremodern techniques, such as those based onmachine learning.

Olson and Belar (1961)’s work in computer music focused on analysing and creating

distributions of musical elements from a database of existing songs. A limitation of computer

hardware meant that pitch and rhythm combinations were kept separately. An unforeseen side

effectwas thatmusical fragments thatwerenot in the originalworks couldbe output. For example,
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the output may contain a (C4, 1/8) → (C5, 1/16)4 transition, a combination not present in the

original dataset. This is permissible, as transitions from C4 → C5 and 1/8 → 1/16 are found in

both independent sets. Although this work is fairly primitive, its application is both noteworthy

and useful5.

After creating several compositions with their music programming language MUSICOMP,

Hiller and Baker (1964) acknowledged that the computer is more compiler than composer, with

most of the music structure predefined by the user. The system employs ordinary music

terminology, so is accessible to composers, but still requires domain-specific knowledge of

mainframe programming. The basis of this work led to the development of the Digital-Alternate

Representation of Musical Scores System (Cope, 1991).

Other work from this era included the automation of serialist style composition (Gill, 1963;

Koenig, 1970; Koenig, 1971). Serialism itself is a genre that is fundamentally built on rules and

procedures. This is one genre ofmusic that canbe realised eithermanually by ahumanor through

an automated computer process.

4This notation refers to a C4 (MIDI note 60) quaver followed by a C5 (MIDI note 72) semi-quaver.
5This process is used in IGME’s distribution sample plugin, see appendix item D.
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Grammar Language Computer Type
Type-0 Unrestricted grammar Turing machine
Type-1 Context sensitive grammar Linear bound Automata
Type-2 Context free grammar Push down Automata
Type-3 Regular grammar Finite state machine

Table 3.3.: Types of Chomsky Grammars.

3.3. Grammars

Grammars are the structural rules of language. Prominent work by linguistics expert Noam

Chomsky (1957) formalised grammar into 4 hierarchical levels. Grammar is used widely in music,

both for modelling existing musical structure (Jackendoff and Lerdahl, 1996) and in systems for

generating it (Holtzman, 1981). The components of grammar are formally described as:

V = A set of non-terminal nodes, written as upper case letters: (A,B).

T = A set of terminal nodes, written as lower case letters: (a, b).

S = A starting symbol (S).

P = And a set of rules for transforming non-terminal nodes into both terminal and

non-terminal nodes: (S → aA), (A → Bb), (B → b).

A production rule has the form α→ β where α and β are strings in either the set V or T , and at

least one symbol of α belongs to V . The arrow symbol (→) denotes an instruction to replace the

string of symbols on the left side of the arrow with those on the right (Holtzman, 1981).

Using the grammar defined above, each iteration (rewrite) of this process gives the following

output:

0 : S

1 : aA

2 : aBb

3 : abb

After the 3rd iteration, no further transforms can be computed as the sequence contains all

terminal nodes. To createmusic from this, each character could bemapped to amusical event, for

example, a =C4 and b =C5. This kind of grammar is defined as regular or type-3. More complex

mappings and examples of grammars mapped to music are discussed by Miranda (2001).
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A type-2 grammar (context-free grammar) introduces variables in production rules meaning

that, for example, the rules A → aA, A → AB, are both applicable. Therefore, a probabilistic

decision ismade over which rules should be followed. Unlike type 3 grammar, this often produces

stochastic output.

Type-1 grammars introduce context in their production rules. For example, in a sequence of

symbols aBc, the production rule a < B > c → D applies only to symbolB when the previous

symbol is a and the proceeding symbol is c. Type-0 grammars have no limit on permissible

production rules, making them the most complex and powerful grammar. Table 3.3 shows a

summary of grammar types.

Although grammars were utilised in early computer music work, more formal utilisation did

not start until the late 1970s with the work of Lidov and Gabura (1973). More prominent work

by Holtzman (1981) utilised the Generative Grammar Definition Language (GGDL) for exploring

grammars applied to automatic music composition.

Holtzman (1981) analysed various pieces of music to produce both mappings and production

rules, creating serialist style compositions. (Kohonen, 1989) used a context-sensitive grammar that

learns its production rules from analysing examples of existing music. These grammar types are

referred to as Kohonen grammars and have been used in other related fields of generative music,

both as benchmarks for new techniques (Mozer, 1994) and fitness evaluation tests (discussed in

evolutionary algorithms). More recent work using grammars is detailed by Gillick, Tang, and

Keller (2010).

3.3.1. L-Systems

Lindenmayer systems (L-Systems) are a type of formal grammar originally designed to model the

growth of plants and other biological organisms (Prusinkiewicz and Lindenmayer, 2012), but have

been used to generatemusic. Worth and Stepney (2005) use such techniques to search for ‘pleasing’

graphical andmusical renderings output by L-systems. By default, an L-system produces tree-like

structures as an image, mappingmust take place for themusical output to occur; there are several

ways of achieving this (Worth and Stepney, 2005). Prusinkiewicz (1986) uses a lookup table to map

y-coordinates to notes and line lengths to note durations. Soddell andSoddell (2000)maps branch

angles to changes in pitch and the distance between lines to a note’s duration. McCormack (1996)

maps L-system grammars directly to pitch, duration and timbre (terminal symbol to music event).
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Standard grammars are processed in a linear fashion, so the resulting string can be re-written

as the grammar is processed; whereas L-systems employ parallel rewriting, with all the rewriting

done at once, and is a defining feature (Togelius, Shaker, and Dormans, 2016). L-Systems have

been implemented as formal, context-sensitive, and stochastic grammars. Examples of these are

given by Togelius, Shaker, and Dormans (2016).

Lim et al. (2017) present an L-system framework for generating music scores, designed for

non-experts. The authors extended the system so production rules could be altered with genetic

operators (see next section). The research presents an overview of different applications and their

ability to work as interactive music generators, indicating potential applications for exploring

L-systems in existing music composition software.

Fractals are mathematical models that produce interesting mathematical shapes and share

similarities with L-Systems. Sukumaran and Thiyagarajan (2009) define fractals as “an irregular

and fragmented geometric shape that can be subdivided into parts, where each part appears to be the

same in all ranges of scale”. Fractals have been used as tools to generate music, normally achieved

through mapping each x/y position (pixel) to a MIDI event (as fractals are normally images). A

comprehensive overview is given by Madden (1999).

3.4. Neural Networks

ANeural Network (NN) is a type of computermodel inspired by the biological neural connections

of the brain, which are successful in languagemodelling, pattern recognition, and predicting time

series data (Liu and Ramakrishnan, 2014). Early work in applying NNs to music generation was

conducted by Todd (1989), but it was not until computing power developed sufficiently that the

field was explored more thoroughly. As noted byMozer (1994) such techniques offer the potential

to overcome the various limitations of transition table approaches and musical grammars.

Themain task of anNN is tomodel an existing dataset or problem space given labelled training

data. In a musical context, this could result in a system that predicts the next note in a sequence,

having been trained on a series of existing melodies. As the complexity of the musical structure

increases, so does the overall size of the network and type. Simple NN implementations have

been superseded several times by more complex models, including recurrent networks (Mozer,

1994), long short-term memory networks (Eck and Schmidhuber, 2002; Liu and Ramakrishnan,

2014), and generative adversarial networks (Kolokolova et al., 2020). A more in-depth explanation
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of suchnetworks is beyond the scope of this research. Many frameworks, for example, TensorFlow

(Abadi et al., 2016), abstract the complex implementation details for doing machine learning, and

in general provide a low entry threshold for users.

Deep learning networks are large-scale neural networks suited to elaborate problems, such as

natural language processing. Deep learning has been applied in many domains as well as for

generatingmusical sequences (Sturm et al., 2016; Liang, 2016). An overview of this is given by Briot,

Hadjeres, and Pachet (2020).

There are several reasons for not pursuing deep learning (and otherNNbased techniques)more

in this thesis, as discussed further in the next chapter, but in summary, such systems are designed

to replace the composer entirely, require vast datasets, and long training times, so present many

technical headaches. Furthermore, using the computer to generate entire pieces ofmusic conflicts

with the purpose of this research, which is to look at howhumans and computers can createmusic

collaboratively.

3.5. Evolutionary Algorithms

The application of evolutionary computing to music started in the early 1990s (Loughran and

O’Neill, 2020) with the work of Horner and Goldberg (1991). However, the field itself began

development in the 50s (Eiben and Schoenauer, 2002). Evolutionary computing attempts to

solve computing problems by modelling them on the theory of evolution, which in summary:

given a population of individuals and environmental constraints, which of these individuals are

the strongest and survive through natural selection (Eiben and Schoenauer, 2002). The best

candidates seed the next generation, with mutations optionally applied to each candidate.

Generally, evolutionary processes can be defined by four characteristics (Brabazon, O’Neill, and

McGarraghy, 2015):

1. A population of entities.

2. A mechanism for selection (fitness).

3. A method for creating offspring (crossover).

4. A method for inserting variety (mutation).

Within a musical context, an evolutionary algorithm (EA) can be applied to generate a simple

monophonic sequence. To illustrate this consider the following example. First, a populationof 100
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1-bar sequences, each containing 8 evenly spaced 1/8 (quaver) notes, could be randomly created.

The selection process could simply correlate the pitch distribution, with that of an ideal C-Major

key6. The top 50 1-bar phrases, with the highest fitness value (i.e. the ones most likely to be in

C-major) are then selected asparents to create anewpopulation. Two randomly selected examples

are then combined by taking a note from each sequence in an alternating order to produce a child

(crossover). From this, a mutation process is applied that randomly increments a pitch in each

sequence by± a semitone7. Finally, these 50 new children replace the lowest-scoring 50 examples

from the population. This process could be repeated until a single example has a high enough

fitness value. Although this example is simple, it illustrates the foundation concepts of an EA.

The two main methods for creating the initial population are either randomly or through

rule-basedprocesses. Brown (2004) defines rules formelodygenerationbyanalysing text designed

for teaching novice composers. Those rules were then evaluated against existing melodies in

Westernmusic to determine theirmerit. The research applied the rules to the initial generation in

an evolutionary process, noting that the quality of music was generally improved in comparison

with a random population initialisation. A downside of this rule-based approach is that it limits

the search space of the evolutionary process and guides it in a predefined direction.

Three problems are specifically applicable to music and evolutionary computing: the problem

domain, individual representation, and fitness measure (Loughran and O’Neill, 2020). Music has

many individual components that could be considered the problem domain. For example, the

algorithmmight be trying to createmelodies. Themusic itself could be represented asMIDI, binary

or raw audio. In general, music is a difficult subject to evaluate (fitness measure) objectively. The

difficulty is exacerbatedwhen giving that role to a computer, although the issuemight be as simple

as determining how well a generated melody fits within a given key profile, using a statistical test

(Temperley, 2007). Loughran and O’Neill (2020) in summary explicitly state that “no single fitness

measure can autonomously, objectively and reliably determine what is good music”.

GenJam (Biles, 1994; Biles, 2002) is a prominent generative system for generating jazz solos over

predefined chord progressions. Despite using a genetic (binary) representation, the systemmakes

use of musical mutation operators for reversing, rotating, and sorting the note order. The output

is mapped from binary into one of 14 MIDI pitches. The evaluation stage (fitness) requires the

6For example using Temperley’s (2007) key detection method.
7Other simple mutations in the literature (Sheikholharam and Teshnehlab, 2008) include: swapping adjacent notes,
reversing a group of notes, and transposing a note’s pitch by an octave
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user to rate iterations, which are then fed back into the evolutionary process. Biles’ notes that

it is difficult to judge each instance because the piece of music must be auditioned from start to

finish, making such a process time-consuming comparedwith an automated fitness evaluation. In

conclusion, Bile’s notes that a different technique (with different fitness, mutation and crossover

operators) could be used to create a specialisation for the task at hand by, for example, creating a

melody or chord progression.

Instead of evolving a musical output, Sulyok, McPherson, and Harte (2016) evolve the musical

composition process itself. The fitness test evaluated statistical similarities between output and

a corpus of Bach keyboard exercises. In reviewing music produced by the system, they praised

repetition and variation but criticised other musical properties such as harmony and melody. In

similar work by Sheikholharam and Teshnehlab (2008), the fitness function is established with

deterministic rules obtained by analysing existing music and modelled using a Kohonen musical

grammar.

Unehara and Onisawa (2003) present an interactive music system that generates music by

allowing the user to rate the output of a Genetic Algorithm (GA). In turn, this feeds back into the

computation of future musical output, operating as a human-in-the-loop system. The example

demonstrates users listening to each 4-bar musical part and evaluating it on a 4-point scale. The

time taken just to listen to all the generations is a minimum of 24 minutes (12 phrases, 8 seconds

long, 15 iterations), assuming one full listen of each example. In reality, users of the systems spent

an average of 64 minutes on the task and listened to 576 iterations, just to create 4 bars of music,

which is unlikely to be practical or useful in the real world.

A recent and noteworthy development for EAs is the Melomics program (Diaz-Jerez, 2011).

The system does not replicate any musical genre, but rather generates its own style based on

thousands of generalisedmusical rules. Output from themachinewas realised in an album-length

composition called Iamus. It is unclear how many outputs the system created and how these

were selected, so it is difficult to assess how adaptable the system is musically. Comments on

performance videos of the piece suggested people admired what had been achieved, although

they also cited a lack of both artistic value and musical progression. The system is difficult to

reconstruct due to its proprietary and commercial nature.

In summary, evolutionary computing can produce musical fragments that make sense at

the phrase level but is perhaps less suitable for producing larger musical structures. Unlike
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other generative techniques, evolutionary techniques allow a user to remain a co-author, through

human-in-the-loop concepts, something that is considered crucial for this research. A conclusive

overview of evolutionary music is given by Loughran and O’Neill (2020).

3.6. Cellular Automata

Cellular automata (CA) are discrete dynamical systems (often expressed as a 2D grid of cells) that

modulate their features over time (McAlpine, Miranda, andHoggar, 1999). In general, they consist

of two elements: a matrix of cells that are in some kind of state, and a rule defining how the state

of a cell modulates over time (Reiners, 2004). John Conaway’s game of life is a canonical example of

cellular automation (Adamatzky, 2010), in which cells ‘live’ or ‘die’ as time progresses, illustrated

as a culture moving across a 2D plane. Despite seemingly mostly unrelated to music, researchers

have used such concepts for music composition (Miranda, 1993). In a simple implementation,

Reiners (2004) uses a single dimension CA (array). At each iteration, the row becomes a binary

representation (each cell has a binary state). This representation is then converted into a MIDI

note number8, therefore producing a sequence that modulates over time. CA implementations

include 1D, 2D, and 3Dmethods (McAlpine, Miranda, and Hoggar, 1999).

Due to the limited scope of this research, CAs are not explored further in this research. For

overviews of the field, as applied to music, see Burraston and Edmonds (2005) and for MIDI

implementations see Burraston et al. (2004).

3.7. Evaluating Computer-Generated Music and Usability

In summarising findings from the field of computer-generated music research, there remain

several issues with musical output. Todd (1989) notes that generative programs can easily get

stuck in cyclic loops. Existing theories, as observed by Pearce (2007), focus on certain musical

elements in isolation, whereas in reality music is an exotic combination of these elements. Pearce

and Wiggins (2007) suggest that some computational models often fail to meet the intrinsic

stylistic constraints of the genre. The computer can easily make music that hits the extremes of

ranges, or group notes all in the same register (Sorensen and Brown, 2008), therefore becoming

inappropriate for the instrument, or performer. Finally, many of the systems reviewed are

8The modulo 128 operator is used to ensure the notes remain in range.
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isolated into scientific research projects (Quintana et al., 2013) without conforming to existing

compositional practice, requiring domain-specific knowledge (Nash, 2015) and competency with

the notation (Sorensen and Gardner, 2010). The most prominent of all issues is the lack of

high-level structure (Sorensen and Brown, 2008; Mozer, 1994; Wiggins et al., 1998) in musical

output. Repetition is one of the most important characteristics of structured music (Rahn, 1993),

and much of computer-generated music is devoid of it. Original research, conducted alongside

this thesis, on repetition in music and computer-generated systems9 was produced in (Hunt,

Mitchell, and Nash, 2019; Hunt, 2020). In summary of this work, computer-generated music lacks

structured repetition and has an imbalance of novel ideas.

As a general observation, many complex generative music systems set themselves the goal of

automating human-esque composition, and such systems are not designed towork in unisonwith

composers. As set out by the thesis inChapter 1, computer systems should seek to aid the composer

(for example providing inspiration), not to replace or remove them from the process. Fernández

and Vico (2013) note that any method that automates the generation of creative work can be used

as a tool to aid composers.

Several researchers using evolutionary computation have reported promising results using

human-in-the-loop processes (Jacob, 1995; Takagi, 2001; Bryden, 2006). Sorensen and Gardner

(2010) emphasises the need to include humans as part of the system, as an active agent in a

cyber-physical world. Biewald (2015) suggests that human-in-the-loop computing is the future of

machine learning, with Zanzotto (2019) noting that such systems reward users. Creating a system

that acknowledges the strengths of both the human composer and the generative process enables

effective collaboration.

Techniques vary considerably in terms of difficulty of implementation, comprehension by

users, and integration into composition workflow. McAlpine, Miranda, and Hoggar (1999)

state that simple stochastic algorithms are some of the easiest techniques to implement and

comprehend. Despite much of the early work making use of probabilistic models, research on

the application of algorithmic models to music is still an area of exploration over 50 years later

(Chapel, 2003), with simple models found in modern music sequencing software (discussed in

Chapter 4).

9Included in appendix item G
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3.8. Conclusion

In conclusion, many techniques exist for generatingmusic using a digital computer. It is apparent

that certain techniques are better than others for a given composition task, but it is unclear

what the most suitable technique is. Loughran and O’Neill (2020) notes there is no single best

evolutionary method with which to approach music composition, and such an observation can

be applied to most generative techniques. After experimenting with GAs, Wiggins et al. (1998)

suggests that harmonization is better suited to a rule-based (expert) system. Biles (1994) advocates

the use of genetic algorithms for creating specific elements of music, such as chord progressions

and voicing or bass lines, in collaboration with the composer. In addition, Sorensen and Brown

(2008) note that trivial systems that make use of probability, linearity, periodicity, set theory and

recursion can be superior to complex systems. Instead of trying to establish the best processes for

variousmusical activities, this research aims to leave this role to theusers of anyproposed end-user

music system.

From studying this field, it remains unclear what purpose computer-generated music takes

within composing music. This can be attributed to the fact that much of the work in this

section has not been evaluated with users, as it has focused instead on musical quality. However,

notable observations made by Edwards (2011) state “Formalisation of compositional technique in

software can free the mind from musical and cultural clichés and lead to startlingly original results”.

Likewise, McAlpine, Miranda, and Hoggar (1999) comment that “Considered thus, it is apparent

that the computer is merely a tool for the realisation of abstract design constructs, and is best employed

as a labour-saving device to free the composer from performing menial calculations by hand”. Formal

definitions of the uses of generative music are theorised in Chapter 5 and evaluated in the later

chapters of this thesis.
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While, the previous chapter detailed techniques for computer-generated music, this chapter

explores, in three sections, different interfaces for end-users. The first section takes a broad look

at popular sequencers, digital audio workstations, and score editors, identifying features that

might aid computer-generated music. The second section considers generative music systems

that are more informal and perhaps less well-known (than the first section), while the third

section considers systems that functionprimarily as programming environments, both textual and

graphical. The three systems are loosely grouped as popular, experimental and programmable.

A computer-generated system differs from a specific technique, in that it is a holistic approach to

music composition via an interface.

The purpose of this chapter is to identify features that might enable interaction with

computer-generated music. Many purpose-built generative music systems and more

general-purpose programming environments inherently allow this, but this section attempts

to prove how different these are in comparison with popular music sequencing software.

Additionally, this section provides an overview of the common features and terminology found

in music software.

4.1. Popular Music Software

A recent survey Sethi (2018), asked over 30,000 musicians and producers what their favourite

digital audio workstations were, with the results shown in Figure 4.1, giving a broad overview of

themost commonly used software. A list of software analysed for this section is shown inTable 4.1.

This research did not look at linear audio editing and sequencing tools, such as Pro Tools, Ardour

and Acid Pro, that replicate the studio workflow of using tape and are arguably more suited to

recording, sequencing and editing linear audio than to composing music. The purpose of this

section is to assess the feasibility of generative music within existing software, and the features
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Figure 4.1.: A visualisation of the most popular digital audio workstations. Reproduced from
(Sethi, 2018).

deemed necessary for supporting it. The software was analysed through lenses such as notation,

workflows, plug-ins, andmusicology. This chapter focuses on systems for composing andnotating

western music, in general, there is often limited support for working with non-western music and

notations.
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Name Summarised Reference Version
Ableton Live Yes (Ableton, 2020) 9
ACID Pro No (MAGIX, 2020) 10
Ardour No (Davis, 2020) 5.12
Audiotool Yes (AudioTool, 2020) 2020
Bitwig Studio Yes (Bitwig, 2020) 3.1.2
Cubase Yes (Steinberg, 2020a) 10.5
Digital Performer Yes (MOTU, 2020) DP10
Dorico Yes (Steinberg, 2020b) 3.1
FL Studio Yes (Image-Line, 2020) 20
GarageBand Yes (Apple, 2020a) 10.3.4
Guitar Pro Yes (Arobas-Music, 2020) 6/7
Logic Pro X Yes (Apple, 2020b) 10
Numerolgy Yes (Five12, 2020) 3
Pro Tools No (Avid, 2020a) 2020
REAPER Yes (Cockos, 2020) 6.07
Reason Yes (Reason-Studios, 2020) 10.4
Renoise Yes (Renoise, 2020) 3.2
Sibelius Yes (Avid, 2020b) 2020
Studio One Yes (Electronics, 2020) 4.6
Tracktion Yes (Tracktion-Software-Corporation, 2020) 10

Table 4.1.: A list of music composition software and digital audio workstations that were analysed
in the first half of this chapter. To aid with narrative when discussing the systems listed
in the above Table throughout this section, the citations are omitted (please refer to the
ones listed in the table), specific systems not listed are cited ordinarily.
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4.1.1. Notations

Figure 4.2.: The piano roll notation editor in Logic Pro.

Figure 4.3.: The guitar pro tabulature notation.

Music software has fourmain notations: piano roll, western score notation, step sequencer, and

tracker. Piano roll (Figure 4.2) is dominant in most software. A note’s pitch is represented by its

on-screen y-position fixed incrementally to a discrete value, while its on-time is represented by the

x-position. A note’s length is represented by its on-screenwidth. On-time and length are generally

quantised, because, in theory, the resolution is infinite.

Western score notation remains the most common notation for learning and performing

western music. Score notation is supported in many sequencers, but specific notation programs

(e.g Sibilies, Dorico) are required when notating more complex musical arrangements. Score

notation can be more restrictive than other notations when editing and has a high literacy

threshold (Nash, 2015). Tablature (Figure 4.3) based notation programs (e.g. Guitar Pro) extend

traditional notation for stringed instruments such as guitar.
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Figure 4.4.: Renoise’s tracker notation.

Figure 4.5.: Repear’s event list.

Trackers (Figure 4.4) provide a special type of notation, withmany similarities to a spreadsheet.

The flow of time runs top to bottom and is evenly divided into rows, which can contain a range of

information fromsimplenotes to programchanges. Other thanRenoise, few such applications are

popular. Logic Pro and Reaper offer a similar alternative notation, in which events can be edited

in a rudimentary list (Figure 4.5).

The step sequencer (Figure 4.6) is a unique notational interface that is provided in a number

of DAWs and took its influence from early digital electronic instruments. Steps sequencers are

similar to piano roll editors, but partition the available notes into discrete rows and divide time into

fixed steps - therefore resembling a grid. For each position (step) in the grid, the note is usually

either on or off. The notation has a low barrier to entry, but a shallow ceiling compared to other

types of notation.
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Figure 4.6.: Studio one’s step sequencer.

4.1.2. Workflows

A workflow is generally defined as a series of interaction events that produces (or edits) a

musical sequence when using software 1. The way in which composers interact with different

music software (workflows) are generally similar, supported though broadly homogeneous design

metaphors (see Figure 4.7). Notably, clips of arbitrary length music are arranged on a timeline, in

which time flows from left to right and tracks from instruments proceed vertically. Score editors

are similar in this respect, although the spacing of musical markings is not linear. The clip’s

content is edited by tools and notations or recorded in real-time through aMIDI instrument. Most

of the software discussed also supports clips of recorded audio, although the only clipswe consider

are those that process sequenced notes (i.e. MIDI). Specific score editing software (Sibelius) are

mostly suited for engraving music (i.e. preparing for publication).

FL Studio differs slightly in thatmusical patterns are created primarily in a step-sequencer with

the patterns then painted on a timeline (Figure 4.8). Editing the original pattern will propagate

changes through all instances of it on the timeline, creating hidden dependencies, whereby changing

one variable inadvertently updates another. Patterns can be created without fixing them to a

timeline, encouraging provisionality2.

Bitwig Studio and Ableton Live are similar and allow the development of clips independent

of a timeline. These clips can be triggered and sequenced in real-time or placed back on the

timeline. Studio One has a novel scratchpad feature for adding virtual timelines for experiments

1Workflows also exist in non-digitally mediated composition, i.e. on paper notation.
2“Is it possible to sketch things out and play with ideas without being too precise about the exact result?”, from Nash (2015).
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Figure 4.7.: Logic Pro X’s timeline.

Figure 4.8.: FL Studio’s step sequencer.
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Name Input Summary Is deterministic
Chords Single note For a single note, this process outputs

a chord, creating a one-to-many
mapping.

Yes

Transposer Single note Transposes all incoming notes by a
given value.

Yes

Arpeggiator Sequence Sequences the input notes into a given
pattern, with various parameters
controlling the order and timing of
events.

Yes/No

Randomiser Sequence Randomises the ordering of a
sequence of notes, or applies
randomisation to various elements
(pitch and time).

No

Quantisers Single note Ensures the input note is within a
given scale, transposing the value to
the nearest scale division.

Yes

Repeater Single note Sequences an input note into a
repeating pattern so that it echoes.

Yes/No

Table 4.2.: A summary of the various computer-generated effects found in common music
software.

with different arrangements without affecting the master timeline. The user is free to copy clips

between timelines.

4.1.3. Plug-ins

A range of MIDI effects are found within music sequencer applications, which generally perform

algorithms on a sequence of input notes. The effects can be deterministic (e.g. transpose) or

stochastic (e.g. randomiser). Table 4.2 summarises these common processes and Appendix C

further discusses them individually with specific examples. The majority of these effects work

in real-time synthesising their resultant effect during playback. However, FL studio’s arpeggiator

transfers the output back into the note editor. The effect is destructive once the user hits ‘confirm’

and the initial notes and settings are lost. The majority of these effects are simplistic in nature,

with more noteworthy processes summarised at the end of this section.
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Figure 4.9.: Three effects (the arpeggiator, randomiser and scale quantiser) chained together in
Live,

Chaining effects

Certain applications support the chaining together of effects. For example, in Figure 4.9, an

arpeggiator, randomiser and scale quantiser in Live have been concatenated. The arpeggiator

provides a repeating pattern that is then slightly randomised. To prevent unnecessary

stochasticism, the scale quantiser is used to ensure the output stays in themajor scale (and also in

key).

4.1.4. Specific Effects

As well as general plug-ins/effects, some novel and noteworthy processes are also available.

Ableton Live can be integrated withMax for Live, which gives access to a low-level API that can be

customised to provide a plethora of extensions, including generative applications. However, Max

for Live is a visual programming language (notation) that requires expert knowledge to use (Nash,

2015). Maxpatches can access low-levelAPIs for close integrationwithLive, thus allowing anybody

to utilise the power of Live, permitting all sorts of generative and experimental applications. Max

for Live is a domain-specific language for Ableton and is incompatible with other mainstream

software. Max is further explored in section 4.3.2.

FL Studio contains a complex riffmachine, with 8 steps for generating a riff from scratch (Figure

4.10). At each stage, the output is rendered directly back into the clip, so can be evaluated visually

and audibly.

The script editor (Figure 4.11) in Logic Pro X offers a range of options for complex editing

of note events in real-time, but the user needs to be familiar with programming notation, thus

alienating traditional composers without this domain-specific knowledge. Furthermore, building
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Figure 4.10.: FL Studio’s complex riff generator.

more complex effects, such as the inbuilt 4-step algorithmic drum sequencer example, creates

an unwieldy interface with 64 sliders. The main limitation is the inability to generate and store

sequences, as events are computed in real-time while auditioning the piece. In theory, the user

could set up complex MIDI routing, to route outgoing messages to another track for recording,

however, this is needlessly complicated.

Numerology has inbuilt generative effects and a simple interface for ‘evolving’ variants of

a user-defined sequence, such as swapping two pitches, transposing notes, or modifying

gates/velocities (Figure 4.12). Several rules can be chained up with a discrete probability for each.

These can be evolved at a given point, such as at every beat or every bar.

Reason includes the BeatMap effect, which constructs an algorithmic drum machine by

synthesising the contents of a metaphorical map, with each drum part relating to a certain

geological feature (Figure 4.13). The user is encouraged to ‘scroll’ the map, searching for drum

patterns.

When exploring computer-generated music, it is important to consider how the interactive

processes and workflow are modelled. The closest example of a computer-generated technique

being integrated inside an existing workflow is Logic Pro X’s smart drummer, which creates
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Figure 4.11.: Logic Pro’s script plug-in.

‘computer-generated’ clips. Each clip has parameters, which are evaluated when moved, to create

music content. The content will remain the same until a parameter changes, so the piece can

be repeatedly auditioned with identical and replicable results. The notes themselves are not

specified, but instead, the parameters and techniques used to create them are (Figure 4.14). For

example, the amount and complexity of the hi-hat pattern in each section is controlled by a single

slider. The overall pattern for each part (kick, snare, hats, toms, cymbals, and percussion) is

controlled by two contrasting parameters on a 2D grid, with simple-complex on one axis and

Figure 4.12.: Numerolgy’s evolver settings window.
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Figure 4.13.: Reason’s beat map.

Figure 4.14.: Logic Pro X’s Smart Drummer plug-in

loud-soft on the other (left in Figure 4.14). Upon loading the session fromdisk, the previous pattern

will be recalled, but only moving a parameter results in iteration. This can produce errors, as

moving a slider causes the previous content to be lost, although the ‘undo’ command would still

apply. A smart drummer section is defined as a phrase N-number bar(s) in length with a series of

parameters. An entire piece can therefore be made up of sections with differing parameters.

Importantly, the system is controlled with a designmetaphor similar to that of a plug-in, which

would alreadybe familiar to theuser. Secondly, theparameters themselves are labelledwithwords

that closely map to the features of the music. Visualisation is used to model the various parts of

the kits, showing exactly what the user is controlling or whether or not the part is active. Finally,

this approach distinguishes between deterministic drum parts and those with stochastic effects

applied to them (Figure 4.15).
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Figure 4.15.: Logic Pro X’s timeline showing clearly the distinction between computer-generated
and normal parts.

4.1.5. Computer Assisted Musicology, Editing, and Analysis

Sequencing software contains techniques that use the computer as an editing assistant. The

computer can play several roles, including increasing editing efficiency, applying composition

routines, and analysing the user’s work for structural elements and to suggest scales, chords or

loops. This suggests that the computer is already an active participant in some elements of music,

digital creativity, and composition, but these techniques fundamentally remain optional - which

is an important consideration for the design of future end-user CGM systems.

Editing

Computer-based techniques for editing are loosely categorised as tools for efficiency or creativity.

Generally, tools that increase efficiency, simply automate tasks that could be done manually,

albeit more slowly, or with an increased chance of error. Many software pieces have a transpose

tool (different from the transpose plug-in discussed previously) that will transpose a selection

of notes (Figure 4.16). Dragging notes up or down to transpose manually is error-prone and

can be physically difficult to align to a specific division. Note duration tools modify selected

notes by either a fixed amount (i.e. double their length) or through increasing by a percentage,

highlighting how tedious such a task would be manually. More advanced tools, such as Digital

Performer’s Humanizer (Figure 4.17), can apply a large range of processes for modifying onset,

velocity, duration, tempo, and pitch mapping.

Similarly, tools for creativity can also be seen as tools for efficiency, for example, adding a note

on every beat, or applying retrograde inversions andnote rotations. Whereasmany randomisation

techniques, previously discussed, can be applied to notes in the editor which have the potential to

elicit creativity in the user (through novelty).
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Figure 4.16.: Bitwig’s note editing menu.

Figure 4.17.: Digital Performer’s humanizer.
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Music Theory

Some sequencers contain tools that aid musical theory by, for example, analysing notes to

compute the likely chord or scale (Guitar Pro and Logic Pro). Other tools allow chords to be

inserted fromapredefined library. It is unclearwhether this is usedbynovices experimentingwith

unusual or complex chords, or by experienced practitioners as workflow improvements. It can be

argued that such features promote the use of chords based on how a user perceives their sound

rather than on their logical relationship, or based upon the rules of harmony and key. Studio One

can automatically detect the key of a MIDI sequence, helping those with limited music theory

knowledge.

Cubase has a feature for automatically adding chord patterns to a piece. A user can place chords

on a timeline or map them to keyboard keys. When triggered in real-time, these features enable

rapid experimentation with chord types.

Guitar Pro has a library of built-in scales that can be browsed, with a feature that suggests the

best scale for a given selection of notes (Figure 4.18), although it remains unclear how the best

scale is determined. Once selected, a scale can be applied to a virtual fretboard viewer (Figure

4.19), allowing the user to more easily select notes in that scale. FL Studio allows a scale pattern to

be added to the piano editor, so this can be visualised and auditioned.

Logic Pro X contains a vast metadata tagged loop library that provides compatibility scores,

rating a sample with those already in the piece, allowing appropriately-composed material to be

modified, arranged and experimented with in a narrow search space. Many systems and third

party sample pack libraries have curated content, i.e. content that sounds good together. The user

is free to arrange the content and order their playback. Novation’s Launchpad app (Ampify-Music,

2020) encourages the user to work within a predefined soundpack. Although perhaps limited

in scope, this offers some protection against making music with jarring musical clashes, whilst

remaining sensitive to the style/genre in which the content pack is intended (i.e. rock or pop).

The chord track feature in Studio One (Figure 4.20) keeps track of harmonic structure and can

be populated either by analysing existing tracks or manually. Other tracks can be set to follow

the chord track. Updating the chord track will propagate changes to any tracks following this,

therefore offloading detailed compositional elements and editing to the computer. Similarly, the

online composition platform,HookTheory (HookPad, 2020), encourages composition through the

use of chord blocks, with colour coding helping users to stay in key (Figure 4.21).
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Figure 4.18.: Guitar Pro’s scale analyser.

Figure 4.19.: Guitar Pro’s fretboard viewer.
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Figure 4.20.: Studio One’s chord track.

Figure 4.21.: Hook Theory’s colour coded interface.
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4.2. Existing Computer-Generated Music Systems

This section looks at generativemusic systems that are informalmusic sequencers. Unlike general

computer music systems, the systems discussed here employ more than one technique.

An early generative music system, famously used by avant-garde composer Brian Eno, is

Koan (Intermorphic, 2018b; SSEYO, 1995) by SSEYO. Although the original program has been

discontinued, and little technical or academic information regarding it is available, the software

has been absorbed by later systems3. Koan, used by Eno for several installations (Föllmer,

2005), included a playback feature enabling composers to prepare a generative music system for

distribution to listeners who could choose from numerous permutations. Albums released in this

way give listeners a unique experience Intermorphic (2018a). In collaboration with Chilvers, Eno

has created a range of generative music systems and applications (Eno and Chilvers, 2017).

Figure 4.22.: Noatikl 3 software. Image used with permission of Intermorphic (Intermorphic, 2021).

3A timeline of the specifics of Koan and its successors is given by Intermorphic (2018a).
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Figure 4.23.: Nodal software. Image used with permission of Nodal music (Nodal, 2021).

Noatikl (Brown and Kerr, 2009) is considered a development of Koan (Figure 4.22). The

environment is made up of objects that are patched into sound outputs. Parameters control the

synthesis ofMIDI events, including pitch range, phrase length, and the note/rest ratio. Noatikl can

be used as a plug-in, so its output can be piped directly into existing music sequencers, however it

has limited capacity for creatingmore structured forms of composition and is perhaps best-suited

to creating ambient styles.

Intermorphic (2021) continue to develop accessible generative music systems for both desktop

andmobile throughWotja. The systems are primarily patch-based and offer little control over the

musical structure. Minimal academic work has been published on these systems.

FractMus (Diaz-Jerez, 2011) provides a graphical interface for exploring fractals as tools for

creating musical structure. The author of the software, Peters (2010), notes that “you are the

composer, FractMus will create no masterpiece for you, nor it was designed for that. Think of it as a

tool which gives you raw material that you can later use in your compositions”. Peters (2010) also

notes that output from FractMus should be placed into a score-editing program for playback,

visualization and fine editing. Such a system provides a simple method for exploring the power
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Figure 4.24.: Aiva’s song configuration panel.

of generative music but has a paucity of meaningful ways to create a fully-realized composition

within the system. Similarly, Tunesmithy (Bellingham, Holland, and Mulholland, 2014a; Walker,

2008) provides a graphical interface for the exploration of fractals.

Nodal (McCormack et al., 2007; Nodal, 2021) is a generative system (Figure 4.23) that creates

music through a user-defined network of objects, consisting of nodes (musical events) and edges

(connections between events). Nodal can be integratedwith existing sequencers through a plug-in

interface. Signal flow in Nodal allows both sequential and parallel paths through the network.

No direct order is enforced, so signals can flow left/right or up/down without restriction, unlike

Max, which has a strict right-left, up-down execution order. Control flow is difficult to predict, as

many conditions are only revealed once the user inspects the individual elements. Unlike other

systems, Nodal offers finite control over events and flow, and also provides an effective notation

for a generative system, which other stochastic systems often fundamentally fail to achieve.

The Continuator, developed by Pachet (2003), is a prominent interactive generative music

system that works in unison with a composer. It uses Markov models to learn musical structure

either through existingmaterial, or in real-time from a performer, and reproducesmusic in either

a standalone mode or in collaboration with the user. Intended for performance rather than

traditional composition, the system shows that complex Markov models for composition can be

made accessible to musicians who lack domain-specific knowledge.

4.2.1. Deep Learning

Cutting-edge machine learning technologies are often presented as tools capable of composing

human-esque music autonomously with minimal direction from humans. While overcoming

some of the limitations of computer-generated music, they mostly focus on replacing the
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Figure 4.25.: Magneta Studio’s plug-in collection.

composer altogether. Most of the systems discussed here are commercial, therefore little, if any,

technical information about them is publicly available.

Jukedeck (Langkjær-Bain, 2018) is an AI system that can generate music in styles that sync up

to film. It requires little or no input from the user other than configuring a few parameters, such

as genre and tempo. Similar systems include AmperMusic (2020), in which tracks can be created

and features and sound assets can be customised; andMelodrive (Collins, 2018), an adaptivemusic

generation platform, specifically built to run inside a video game engine, generating music in

real-time using deep learning models.

Aiva (Zulić, 2019) is another deep learning system and has a wider range of customisation

options (Figure 4.24), including the ability to upload an influence track that can create music in

the style of the upload. Such systems are undoubtedly useful for those with little or no experience

in composition, but perhaps not for experienced practitioners. Recent updates to the software

permit the user to regenerate specific sections of the pieces and apply manual edits.

The Magneta Studio (Roberts et al., 2019) project is a collection of music generation tools

that run either as standalone applications or are integrated within Ableton Live (Figure 4.25).

Significantly, the software can read existingMIDI clips on the timeline and generate new ones, as

enabled through a complex set of tools built around the Max for Live API. Although the authors

assert that it would not be possible to achieve similar results in other music software through
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standard plug-in architecture, it does however demonstrate that it is possible to integrate complex

computer-generated processes in an existing music composition workflow. The authors note that

little deep learning technology hasmade itsway into the hands ofmusicians, attributing this to the

fact that applied creativity anddeep learning research speak different languages, both literally and

figuratively. In evaluating the software, users did not find the generative plug-ins that useful for

creating ‘desirable’ music but reported that they made them feel more productive in their creative

process.

4.3. Music Programming Systems

This research aims to avoid using generative systems that require the user to be a programmer.

Nonetheless, they are briefly explored below.

4.3.1. Text Based

Sonic Pi (Aaron, 2016) is a live coding program for making music. It provides a way to write

code similar to common programming languages and to generate audio output. The code can be

modified in real-time and updated. Manipulation of lists provides similar generative capabilities

to lisp programming (Cope and Mayer, 1996). Difficulties arise in writing more nuanced and

complex structurewith lots ofmusical lines. Althougheasy topickup, thenotation is alien to those

familiarwith commonmusic sequencerworkflow. Similar systems to Sonic Pi include Impromptu

(Sorensen andGardner, 2010) andExtempore (Sorensen, 2018). Live coding is gearedmore towards

performance than composition. The process of live coding supports rapid content creation but not

necessarily more complex, nuanced forms of composition.

ChucK (Wang, Cook, and Salazar, 2015) is a more generalisedmusic programming language for

real-time sound synthesis, music creation and real-time interactive music. Its syntax is similar

to common high-level languages. Similar systems (Figure 4.26) include Supercollider (Wilson,

Cottle, and Collins, 2011), CSound (Vercoe and Ellis, 1990), and JFugue (Kartika, 2010).

Nash (2014) has extended music tracker notation with a programming-like syntax to enable

generative and algorithmic music applications. The system uses familiar spreadsheet-like cell

programming,which ismore familiar to a commonuser than that of a specificmusic programming

language; and creates inroads to making generative music (and music programming in general)
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Figure 4.26.: A collectionof differentmusic programming systems, (Chuck, Superclolider, Csound,
and JFugue).

integrated into an existing composition workflow. As discussed previously, the tracker interface

on which the system is built is not as commonly used as other music interfaces/notations.

4.3.2. Visual Programming

Visual programming (Figure 4.27) is an alternative to textual programming, replacing text with

GUI components. Notably, MaxMsp (Manzo, 2016) and Puredata (Pd-community, 2018) use

objects and patch cables to create a plethora of interactivemusic systems. Max offers a reasonably

low entry threshold, and has a high ceiling, but not well suited for creating both coarse and fine

music structure given a lack of a timeline metaphor, making control flow difficult to predict. It

is unsuited for managing large data sets (required for certain types of generative music such as

machine learning). Max, like many other systems explored, offers entirely different workflows

to that of common music sequencer applications. Although an unorthodox interface is often

required for creating non-trivial musical interfaces and instruments, like those afforded by Max.
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Figure 4.27.: Max’s visual programming interface.

OpenMusic (Bresson, Agon, and Assayag, 2011) is another environment for music composition

that uses visual programming languages for the generation or manipulation of musical material.

This provides a lower-entry threshold than more traditional programming languages, and also

allows familiar items such as scored elements to be retained.

4.4. Version Control

Version control is generally limited inmostmusic software. Cubase has a primitive version control

system that keeps track of edits to plug-in parameters, MIDI clips, and mixer configuration in a

historic list (Figure 4.28). Unlike other version control systems used in software development, it

does not provide any type of commit, i.e. a series of edits that contribute to a major change (or

version), such as adding a drum track. The information leans towards being too detailed, rather

than too succinct. In more general music software, the tools are limited. An undo list is a basic

version control system, but the list is often lost on program exit. Although users are free to save

as, and create different versions, it is very difficult to merge and manage these variations. Version

control is easily applied to the programming code-based systems discussed previously, simply by

wrapping them in an existing version control system, i.e. Git (Loeliger andMcCullough, 2012), but

this is not tailored for musical applications.
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Figure 4.28.: Cubase’s note edit list.

As most music software has little or no version control, its makes working with generative

music difficult as iterations and parameters are easily overwritten or lost. Duignan (2010) notes

that version control and snapshot tools are practically non-existent in existing music software

and that it is necessary to work around such issues. This suggests music software systems could

benefit from such tools. A recent development in this area is Splice studio (Splice.com, 2021) that

offers a form of version control for multiple different music software packages via a third- party

web-service, although this “outside of the box” solution necessitates the use of a reliable internet

connection.

4.5. Conclusion

To conclude, inroads on integrating generative effects in existing music sequencers have been

made, but remain mostly primitive. Notable exceptions include Logic Pro’s smart drummer, FL

Studio’s riff machine and Numerolgy’s Evolutionary Algorithms. Generative music systems are

often too different from existing music sequencing workflows, using odd notations or avoiding

design metaphors such as a timeline. Programming-based systems, unlike other systems, are

61



4. Existing Music Composition Systems

considerably more complex and scalable but are often squarely aimed at programmers requiring

code literacy skills.

Despite the safety net of knowing that model parameters and output are stored elsewhere and

that edits are not destructive, the inability to rapidly generate music in isolation is detrimental to

people working in the field, thus version control systems are paramount for CGM.

Music is evaluated visually through inspecting the notation but primarily from listening to it.

The output ofmany computer-generated effects is not placed back on the timeline (as the timeline

still shows the input material); rather, the output is in real-time. Users are not able to visualise

the output of the effect but have to rely on audible evaluation4. Users could reroute the live

output and record this on a secondary track to see the notation, but this is perhaps an unnecessary

workaround and makes fine-grain editing of generative output difficult.

The output from code-based systems is evaluated almost exclusively audibly, as there is no

timeline in which notes can be edited or inspected. The mapping between blocks of code or

audible output can be difficult to comprehend with such systems.

To summarise, popular systems include little support for computer-generated music.

Experimental systems provide inroads to generative music but do not conform well to existing

composer workflows; while code-based systems have a high computer literacy threshold, but

remain extremely powerful and feature complete.

4Some specific effects, notably FL Studio’s arpeggiator does, in fact, do this.
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From researching existing systems (Chapters 3 and 4), it is clear that few, if any, support

computer-generated music techniques using the provided music sequencing and editing

workflows. This chapter proposes the design requirements for such a system. The plethora

of existing computer-generated techniques is narrowed down and a set for implementation is

chosen. An original piece of research on composers’ perception of computer-generated music is

detailed in section 3. Primary and secondary research is combined, resulting in the development

and implementation of IGME. Work from this chapter was originally presented at CSMC1 2017

(Hunt, Nash, and Mitchell, 2017).

5.1. Computer-Generated Music Techniques

Chapter 3 presented a framework for categorising different computer-generated music

techniques, with the table reproduced in Table 5.1, and Chapter 4 looked at how such techniques

had been adopted with software interfaces for music composition. Each dimension is discussed

below, leading to an evaluation of each technique in Table 5.2. This process, therefore, proposes

which techniques are likely to be most suitable for an end-user computer-generated music

system, in the scope and context of this project’s research aims and objectives.

Type

Both generative and transformationbased techniques are suitable but analytic techniqueshave some

inherent difficulties. Firstly, the composer needs content for analysis. Secondly, such processes

canoften take considerable time to analyse, creatingunnecessary breaks in a composer’sworkflow.

One proposal is that composers interact with a pre-determined dataset, and another proposal is

1Conference on Computer Simulation of Musical Creativity.
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Technique Type
Feature-space
{Music,
Parameters}

Reproducible Appropriate
hierarchal level

Random number
generation Generative {None, None} No Note - Phrase

Deterministic
Rules Transformational {None, Simple} Yes Note - Global

Probabilistic rules Transformational {None, Simple} No Phrase - Section
N-grammodels Analytical {Dataset, None} Yes Phrase - Section
Markov chains Analytical {Dataset, None} Yes Phrase - Section
Simple grammars
(type 3) Transformational {Fractional,

Simple} Yes Note - Phrase

Complex
grammars (type 0)

Transformational
or Analytical {Dataset, Complex} No Phrase - Section

L-Systems Transformational {Dataset, Complex} No Section
Neural networks Analytical {Dataset, Simple} Yes Section
RNN and LTSM Analytical {Dataset, Simple} Yes Global
Deep learning Analytical {Dataset, Complex} Yes Global
Evolutionary and
genetic algorithms Generative {Fractional,

Complex} No Section - Global

Cellular automata Generative {None, Simple} No Section - Global

Arpeggiators Transformational {Fractional,
Simple} Yes Phrase

Harmonisers Transformational {Fractional,
Simple} Yes Note

Table 5.1.: A table showing the categorisation of various computer-generated music techniques.

that the system is continuously trained in the background, with the complexities hidden from the

user.

Feature Space

As the system envisioned will work alongside content created by the composer, the size of music

data available is limited. Techniques requiring a large dataset (for example, deep learning) are

difficult to obtain and implement effectively. On the other hand, Markov models can be trained

with music already in the environment (session). Minimising the number of parameters creates

a trade-off between ease of use, and making the effects highly customisable, however, where

possible, the number of on-screen controls should be minimised.
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Technique Integrated Reason for or against
Random number
generation Yes Simple for composer’s to understand.

Deterministic rules Yes Includes scale quantisers (essential in conjunction with
other techniques).

Probabilistic rules Yes Simple to implement and chain up (includes a number
of techniques).

N-grammodels No Basic concept similar enough to a Markov model, so
chosen instead.

Markov chains Yes Implement as a first-order transition table.
Simple grammars
(Type 3) No L-system chosen instead.
Complex grammars
(Type 0) No Is complex to implement and understand.

L-systems Yes Parallel rewriting makes it easier to implement and
understand from the composer’s perspective.

Neural Networks No Requires large datasets and impractical
to use in realtime.RNN and LTSM No

Deep learning No
Evolutionary and
genetic algorithms Yes Despite being complex can be broken into stages, i.e.

evolve a single musical element.
Cellular automata No Evolves over time, works on too high an hierarchical

level.
Arpeggiators Yes Commonly understood and found in

existing software/hardware.Harmonisers Yes
Music programming No Avoiding programming based approaches are a key

element of the project.

Table 5.2.: A table showing thedifferent computer-generated techniques andprocessesused in this
project.

Reproducibility

As some techniques cannot be reproduced2, it is paramount to consider how the output and

parameters of systems are stored. This is captured by the version control system discussed shortly.

Appropriate Hierarchical Level

Given that a key objective of the project is to create a human-computer creative system, anything

that can generate an entire composition is undesirable. Therefore, the focus is primarily on

generating content at the note, phrase, and bar level, that can be sequenced together into higher

level structure.

Alpern (1995) notes that “By building small parts with well-defined behaviour and linking them

together, we can create a great variety of methods and compositional output.”. Therefore, smaller

well-understood components, which can be combined, are preferable to larger ‘do-everything’

2i.e. evaluating the same model parameters twice will likely result in a different output (i.e. stochastic)
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Figure 5.1.: Prototype model of computer-generated music interaction.

techniques in this research. Systems using rule-based and stochastic models are easy to

comprehend and implement, as well as being fast to run, however produce only simplemusic. On

the other hand, evolutionary techniques for producing music, can produce sophisticated work,

but need greater domain-specific knowledge and computing time, often requiring the composer

to frequently contribute to the process (Wiggins et al., 1998).

It is hypothesised that composers will use computer-generated processes for initial ideation but

will not want to surrender ultimate control by, for example, producing a full composition at the

push of a button. Based on this (and themes discussed so far) Table 5.2 shows the techniques

taken forward for implementation and the reasons for doing so. Implementation details for each

process/plug-in in the IGME software are given in appendix D.

5.2. Modelling Computer-Generated Music

Although it is difficult to objectively model a creative workflow, this section attempts to define a

simple model, drawn from the work in Chapter 2, that can be applied to human and computer

composition workflows. However, the model is not a universal solution.

Figure 5.1 shows the prototype model used in this research for helping to define

computer-generated music as an end-user composition process. The idea/problem is defined
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as the input material, which can be a collection of pitches or a sequence of notes. The process

takes the input and modifies it based on a series of rules or transformations to create solutions.

Certain parameters are exposed for controlling the process. Following this is the output, at which

point the music becomes audible. The evaluation stage creates a branch, where the composer

is either satisfied with the output, or provides feedback to the initial seed and parameters in

the process stage. This loop continues until the evaluation stage is passed, where a ‘capture’ is

created and the next frame begins. The constraint space (Alty, 1995) governs restrictions on the

composition. For example, using the key C-major makes certain pitches more likely (Temperley,

2007).

The previous frame influences the current frame, in that it can impose restrictions over the

constraint space. The evaluation stage is considered in reference to the previous frame, as music

is auditioned in respect of a timeline. Likewise, changes from the feedback stage in the current

frame have a knock-on effect for the subsequent frames. A frame has no defined length; instead,

it should be considered as more than a single note but less than an entire section. This approach

emphasises creating carefully controlled frames of music that are unlikely to spiral into chaos

but retains inter-frame influence (higher-level musical structure) through attentive links between

frames. How these links are encoded is explored through the reference part system discussed in

Chapter 6.

This model can be applied to both real-world music and computer-generated systems. For

example, a melody will likely need to fit within an existing harmonic structure, so the constraint

space is limited by a key, and the input is a chord. The mapping between input and output is not

necessarily simple.

An arpeggiator is a transformation-based music generation technique that can be easily

mapped to the above model. The input (idea/problem) is the notes of the arpeggiator. The

parameters represent the speed, octave and rhythmic pattern controls. The input notes and

parameters produce an output. Upon hearing the output, the composer may either update the

input notes (seed) or the arpeggiator parameters, which subsequently creates a different output

iteration. Once the composer is satisfied, a capture is created for a given number of bars. The

following frame is influenced by its previous frame, in that certain parameters are likely to be

sharedbetween the two. The constraint space in this example could be governedby the limitations

of the arpeggiator effect, such as working with a total of 6 input notes at a time.
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An iteration would be defined in this model as a change in parameters producing a change

in output (computation → playback), whereas an audition (playback) would be no change in

parameters or output. Stochastic processes produce a different output without necessarily

changing any parameters. Iteration and playback are further discussed in Chapter 7.

The constraint space can be either deterministic or stochastic. For example, the key of a piece in

tonalmusic places an immediate constraint space on the stochastic choice of notes and harmonies

(Temperley, 2007). A C# major chord is unlikely to surface in a composition written in C-major.

The rules of strict species counterpoint prohibit certain tonal progressions, such as parallel fifths,

thus placing a deterministic rule on that constraint space, although music is as much about

following rules as breaking them.

5.2.1. Existing Systems andModels

The proposed model (Figure 5.1) builds upon the ideas of Logic Pro X’s (Apple, 2016) smart

drummer (discussed in Chapter 4), in that a computer-generated section of the music is defined

as a set of parameters that are evaluated at runtime. The output is somewhat stochastic but,

as mentioned previously, does not change unless a model parameter is changed too3; therefore,

loading a session from disk preserves previously calculated music.

Papadopoulos andWiggins (1999) describe algorithmic composition as a set of rules for solving

a problem by combining musical parts into a whole (composition). Holland (2000) presents a

framework for modelling open-ended creative activities, based upon choosing a goal, selecting

constraints, and then iterating through solutions. A result is generated throughout each step and

the constraints and goals are adjusted until some acceptance criteria are met. The model is built

on a framework that presents sets ofmodular but interacting components. Theworks listed above

also have many parallels with the model discussed in the previous section (Figure 5.1).

5.3. Composer Survey and Requirements Capture

A survey was conducted to evaluate composers’ attitudes to technology concerning

computer-generated music, digital audio workstations, notation packages, and usability.

The survey’s content was influenced by previous work in the field by; Boyd (2013), Raines (2015),

3This characteristic is specific to this effect but not to other more general computer-generated processes.
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and Service (2012), whose work involved interviewing various professional music practitioners

from diverse backgrounds.

A summary of key findings, focusing on the questions relating to computer-mediated

composition, is given below. Many of the questions not discussed, were evaluated to be less pivotal

to this research. The full survey is discussed in appendixA. The surveywas completed by 24music

practitioners.

5.3.1. Background

Table 5.3 shows the musical background of the participants, with the majority being music

technology students. Table 5.4 summarises the participants’ experience of music. Important

observations include that 21/24 participants had composed some form ofmusic and 9/24 identified

as professional music practitioners. Results from Figure 5.2 show that participants had a broad

knowledge of musical activities. More notably, just over half stated they had above average

experience of composing music using a computer.

Figure 5.3 shows a box andwhisker plot for the length of experience each participant had under

‘general musicianship’, ‘composing/songwriting’ and ‘professional composition’, with the results showing

wide variance. The distribution for professional composition is skewed as a number of participants

entered 0 years.

Q1: Which of these best describes your background?
Music
Technology
Student

Music
Student

Recreational
Composer

Professional
Composer Other

11 4 2 5 2

Table 5.3.: The musical background of each participant.
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Q2: What current musical experiences do you have? (tick any that apply)
Question Count Percetage
I play piano. 13 54.2%
I play guitar. 13 54.2%
I play another acoustic instrument. 13 54.2%
I play several musical instruments. 16 66.7%
I listen to a lot of music. 20 83.3%
I can read music. 16 66.7%
I have had music lessons. 19 79.2%
I have studied music theory (scales, etc.) 21 87.5%
I have performed live 15 62.5%
I have composed music/songs/tunes. 21 87.5%
I practise a lot. 8 33.3%
I am a professional performer. 5 20.8%
I am a professional composer/songwriter. 9 37.5%
I have performed with friends. 17 70.8%

Table 5.4.: The participant’s experience of music.

Figure 5.2.: Distribution of responses for participants’ knowledge of musical activities.
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Figure 5.3.: Box and whisker plot of the number of years of musical experience, by type.
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5.3.2. Experiences of Music

Figure 5.4.: Experience of composition techniques.

One of the survey questions was “What experience have you had of the following techniques for

music composition?”. Figure 5.4 shows the arpeggiator is themost used technique. Arpeggiators and

harmonisers are commonly found on consumer keyboards and feature widely in digital music

sequencers. Minimalism and Serialism techniques also show positive ‘usage’ and ‘awareness’. This is

unsurprising as they are often taught onmusic education courses. Although neural networks and

Markov models for computer-generated music are commonly explored in literature, most survey

participants were ‘unaware’ of them, and even fewer had ‘used’ them. Many composers marked

that they were ‘aware’ of genetic algorithms, and three marked they had ‘used’ them.

It could be argued that the reason composers have not used certain techniques is they are

unaware of them 4. Many of the more complex computer-generated techniques remain firmly

in the research domain and have not transitioned into mainstream user-facing music software (as

evidenced in Chapter 4).

Table 5.5 shows the results of asking surveyparticipants “If the computerwas able to suggestmusical

ideas, would you find this feature...”. Participants could choose from multiple selections. One-third

found the suggestion ‘interesting’ and/or ‘useful for composer’s block’, with roughly the same number
4A potential research objective hypothesis based on this finding is discussed at the end of this chapter.
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Q21: If the computerwas able to suggestmusical ideas, would youfind this
feature:
Metric Count
Annoying 5/24
Intrusive 9/24
Crucial 0/24
Useful for ’composer’s block’ 13/24
Interesting 13/24
Novel 1/24
Inspiring 3/24
None of the above 0/24

Table 5.5.: Summary of responses for above question.

finding the idea ‘intrusive’. Obviously a clear separation is needed between making such a feature

‘interesting’ to use and not making it ‘intrusive’. Few people found this to be ‘novel’ or ‘inspiring’, and

nobody found it to be ‘crucial’.

5.3.3. Summary

A recurrent theme throughout the study was the desire of users to have some control over a

proposed computer-generated process. Many composers said such processes should not be

intrusive. It is clear that processes need to be carefully designed and evaluated so the user retains

authorship. One participant said they do not use automated techniques, such as retrograde, as the

music would no longer be considered theirs. However, if they had completed the same process

manually (resulting in exactly the same music), they would have considered it their own work.

Another hypothesis to be drawn from the results, is that understanding computer-generated

processes leads to a higher chance of them being considered for use in composition. Composers

are unlikely to use serialist techniques if they have never been taught them.

As the study identified, generating new ideas, exploring ideas, and creating accompaniments

would seem practical roles that an automated composition process could take. This aspect is

covered in more detail below, and helped to form research questions that were put to IGME users

through user surveys (Chapter 8).
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Generating New Ideas

This refers to computer-generated techniques that can compose original material, with the user

specifying the parameters of a given model.

Research Question: “I would use computer-generated techniques to help me to come up with new ideas”.

Exploring Existing Ideas

Allow the user to utilise computer-generated techniques for experimenting with different

arrangements and support this in a suitable interface.

Research Questions: “I would use computer-generated techniques to help me to explore different

permutations of my own material” and “The interface provided allows me to effortlessly explore new

ideas”

Creating Automatic Accompaniments

Allow the user to create automatic accompaniments alongside their existing music.

Research Question: “I would use the automatic accompaniments as a starting point in my composition

practice.”

5.4. Formal Design Requirements

Tomeet the research objectives, amusic composition systemwas developed similar in design to its

contemporaries, this is arbitrary lengthMIDI clips arranged across a timeline of tracks sequenced

from left to right (Figure 5.5). A conclusive list of design requirements are discussed at length in

Chapter 6, using the Cognitive Dimensions of Notation framework as guidance.

5.4.1. Version Control

As discussed in Chapter 4, version control systems are rarely found in existingmusic software, but

here they are deemed of paramount importance for computer-generated systems. For example, a

composer may use a CGM technique to generate many iterations, only to find the most suitable

(i.e. a previous revision) has been overwritten. Some techniques produce the same output on each
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Figure 5.5.: Prototype IGME software.

iteration, whereas others produce stochastic unreproducible results. To address this, the system

proposed here makes use of source/version control techniques, providing both a method for

capturing unreproducible music parts and the ability to recall computer-generated interactions

in a list, facilitating and encouraging experimentation. Chapter 6 further details this feature.

5.5. A Part-Based InteractionModel

It is clear that an end-user computer-generated music system should follow the metaphor of a

clip, suggesting the music is broken down track by track into clips, sharing common functionality

with most music sequencers. The content of a clip is composed by either a human-led process or

fromacomputer-generatedone, creating a cleardividebetween twomediumsandgiving complete

control over the ratio of human and computer music. Many other benefits of using clips are the

same as in other software, such as they are easy to replace, stretch, copy and paste, and distinguish.

To avoid confusion, clips are referred to as ‘parts’ in this project due to their slightly extended role.
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A part in IGME is made of an initial musical idea and a set of optional parameters to

configure how this music may be either transformed or generated. Such a part has three

distinct components: the seed (initial material), parameters (for configuring computer-generated

processes), and result (output music). A more technical definition of parts is given in the next

chapter. The idea of formalising composition as a series of independent ‘blocks’was also suggested

by Gartland-Jones (2002). The part concept was formed through the model presented in section

5.2. Chapel (2003), while interviewing prominent computer music researcher Dr Max Mathews,

asked “how would you use music made algorithmically’’. Dr Mathews replied:

“I would be interested in keeping an interaction with the algorithm; a part from the computer and a

part frommyself. I am interested in algorithms for improvising. With these algorithms, themusician

and the computer play the music together. The algorithm chooses the notes, but the musician can

select, among the options given by the program, the one he likes .’’

This quote heavily influenced this work.

5.6. Evaluating Computer-Generated Music Systems

Evaluating the musical output from any proposed system is neither a high priority nor a current

research focus. Firstly, Sorensen and Brown (2008) believe not only is it impossible to measure

objectively the aesthetic nature of music composition, but such a measurement can be dangerous

as it can lead to explanations that do not bear scrutiny (Brown, 2004). Papadopoulos andWiggins

(1999) note that musical output in isolation, such as generative melodies fromMarkovmodels, are

redundant without harmonic context. Papadopoulos and Wiggins (1999) suggest that evaluation

of themusical output should be reviewed by professionalmusicians. Such a suggestion is however

impractical and remains subjective.

Instead of focusing on the music composed, we focus on the methods used to create it, as

music loved by one user may be loathed by another. The research objective is to understand how

composers interact with computer-generated music techniques, within the software built for this

project. A mixed-methods approach is used for studying user interaction, using questionnaires,

interaction logging, and screen recordings, spread across controlled and uncontrolled conditions.

Several studies were conducted and are further discussed in Chapter 8. Compartmentalising the

music into partsmeant the composition process could be observed at bothmicro (editing of notes)

and macro (arranging of parts) levels.
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5.7. Conclusion

This chapter discussed the development of the formal models and frameworks that underpin

IGME,withmoredetails given in the following chapters. Chapter 6uses theCognitiveDimensions

of Notations framework to compare existing interfaces for CGM and uses this to help define a set

of design guidelines for building end-user CGM systems. Through this process, the development

and rationale behind IGME’s features are detailed. Chapter 7 details the technical architecture

of IGME. Chapter 8 discusses various pilot studies, the participatory design process and formal

methodologies, which in turn finalise many aspects of the software.
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6. A Cognitive Dimensions Approach for the
Design of End-User Computer-Generated
Music Systems

This chapter describes how the Cognitive Dimensions of Notation framework (CDN) provides a

set of metrics and vocabulary both for guiding the design of computer-generated music software

and evaluating it. As noted in Chapters 3 & 4, existing systems for computer-generated music

offer interaction paradigms that are too dissimilar to mainstream music composition software.

Therefore, this chapter has three purposes:

• To compare existing computer-generated music systems and mainstream music software

under the CDN.

• To propose a good usability profile for end-user computer-generated music systems.

• To discuss some of IGME’s core features and design heuristics under the CDN.

This chapter is a stepping stone between research, development, and the later user-facing

evaluation, serving as a broad look at design choices implemented in IGME and comparing them

with other music sequencing software and computer-generated systems. The chapter includes

work presented at Tenor1 2018 (Hunt, Mitchell, and Nash, 2018).

6.1. Context and Rationale

Whereas the previous chapter explored the research questions through an exploratory lens, this

chapter imposes a formal approach, which in turn leads to a set of formal design proposals for

end-userCGMsystems. These proposals are evaluated and redefined in the conclusion, becoming

a set of prescribed design heuristics for end-user CGM systems.
1The 2018 International Conference on Technologies for Music Notation and Representation.
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Dimension Description
1. Visibility How easy is it to view and find elements of the music

during editing?
2. Juxtaposabillity How easy is it to compare elements within the music?
3. Hidden Dependencies How explicit are the relationships between related

elements in the notation?
4. Hard Mental Operations How difficult is the task to work out in your head?
5. Progressive Evaluation How easy is it to stop and check your progress during

editing?
6. Conciseness How concise is the notation?
7. Provisionality How easy is it to experiment with ideas?
8. Secondary Notation How easy is it to make informal notes to capture ideas

outside the formal rules of the notation?
9. Consistency Where aspects of the notation mean similar things, is the

similarity clear in the way they appear?
10. Viscosity Is it easy to go back and make changes?
11. Role Expressiveness Is it easy to see what each part of the notation means?
12. Premature Commitment Do edits have to be performed in a prescribed order,

requiring you to plan or think ahead?
13. Error Proneness How easy is it to make annoying mistakes?
14. Closeness of Mapping Does the notation match how you describe the music

yourself?
15. Abstraction Management How can the notation be customised, adapted, or used

beyond its intended use?

Table 6.1.: A table showing the terms of the Cognitive Dimensions of Music Notations framework
used in this research - taken from Nash (2015).

Chapter 2 identified thatmany frameworks (Carroll, 2003) for designing software focus on result

or performance-basedmetrics (i.e. the speed at which a task can be completed). Such frameworks

conflict with creativity-based activities which have minimal measurable goals, therefore leaving a

paucity of formal design frameworks in which to scope software for supporting creativity. Nash

(2011) suggests using more holistic frameworks, such as the CDN help design tools, to support

creativity. Given the many parallels between Nash’s work and this research, the CDN framework

was chosen.

Nash (2011) highlights the existence of minimal quantitative-based approaches for comparing

CDN dimensions across different software interfaces (for example, between music trackers and

score notation software). Nash’s work, based on empirical evaluation of music software, revealed

a common profile among different software. The identified characteristics broadly corresponded

with existing design principles (Blackwell and Collins, 2005; Duignan, 2010) for building software

80



6. A Cognitive Dimensions Approach for the Design of End-User Computer-Generated Music Systems

designed for musical creativity. These (from Nash, 2011) are given below as dimensions to either

prioritise or mitigate:

• High visibility (ease of viewing and finding data)

• High juxtaposability (ease of comparing data)

• Low viscosity (resistance to changing data)

• Low diffuseness (conciseness, helping visibility and editing)

• High role expressiveness (ease of determining the role of objects)

• High provisionality (ease of sketching and experimentation)

• High progressive evaluation (ease of checking progress)

• High consistency (facilitating sense of control and learning)

• Low premature commitment (freedom to change paths)

IGME is not designed as a universal music sequencer; as such, it imposes a few limitations that

guided this design process. Firstly, users are already expected to have domain-specific knowledge

of music sequencing, but minimal skill in programming-based activities. IGME broadly follows

the strengths and weaknesses inherent in other music sequencing software and focuses on

working withWestern music notation.

The remainder of the chapter goes through each dimension iteratively, with descriptions (Table

6.1) taken from Nash’s (2015) work. Figure 6.1 shows a comparison between programming-based

approaches (both visual and text), digital audio workstations, and what IGME aims to be under

each dimension. It is important to note that the dimensions are often discussed as qualitative

descriptors, making a full quantitative comparison difficult and beyond the scope of this research.

Thevalues in the tablewere assembled from theworkofNash (2015) andBellingham,Holland, and

Mulholland (2014b) and summarise findings from themore rigorous discussion of the proceeding

sections. The values are not intended to be ground truth, but are presented simply to create a

broad-brush comparison.
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Figure 6.1.: A simple CDN comparison between different interfaces for CGM.
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Figure 6.2.: The arrange view (timeline) in Logic Pro X.

6.2. Visibility

“How easy is it to view and find elements or parts of the music during editing?”

For any GUI interface, the ease at which information can be viewed and found is paramount.

Most existingmusic sequencers display information in a timeline (Figure 6.2) based view, whereby

clips of music are arranged respective to time (left-right) and track (up-down). Additional

information, such as plug-in parameters and clip content, are visible as breakout windows or

sub-components (Figure 6.3).

Bellingham,Holland, andMulholland (2014a) criticises patch-based interfaces for their unclear

structure, with layers spread across windows, which scales as system complexity grows. The

same criticism can be directed at code-based systems with their many layers of abstractions. For,

example a parameter for controlling a CGM effect may be hidden with several layers of classes or

functions.

End-userCGMsystems should prioritise this dimensionby following the interactionparadigms

that already exist withinDAWs that enable high visibility. In addition, computer-generated effects
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Figure 6.3.: Breakout windows in Logic Pro X (EQ plug-in and mixer)

should be controlled with graphical controls similar to those found in audio/MIDI plug-ins. The

values of the plug-ins are easier to see compared with programming-based systems whereby data

is often represented in variables and can be defined in a different place from where it is used.

6.3. Juxtaposability

“How easy is it to compare elements within the music?”

Existing tools, such as volume, solo, and mute controls, in DAWs permit parts of the music

to be compared quickly and easily. As noted in Chapter 5 there is minimal support for version

control in existing music software. Bellingham, Holland, and Mulholland (2014a) note that

form-based systems such as Tune Smithy (Walker, 2008) and the Algorithmic Composition

Toolbox (Berg, 2018) do not allow users to see older entries as they are replaced, potentially

harming juxtaposability. Therefore, either undo has to be used or everything has to be kept in

working memory, increasing hard mental operations.

It can be difficult to compare elements in a tightly-coupled programming-based environment

for computer-generated music. Some techniques, such as ‘commenting’2 out blocks of code, can

be beneficial. More complex changes often require the program to be recompiled. Where systems

output music in real-time, it can be finicky to A/B test different variants, so MIDI or music data

needs to be piped into a third party program for offline comparison.

The version control systems developed for IGME increases Juxtaposability. Each iteration can

be quickly swapped in and out with the result auditioned in context with themusic around it. The

included diff tool (Figure 6.4) shows the explicit difference between two parts.
2A process by which code is marked as code that is not compiled
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Figure 6.4.: IGME’s diff tool comparing two different iterations.

6.4. HardMental Operations

“When writing music, are there difficult things to work out in your head?”

Music is often seen as a problem seeking and subsequently problem-solving activity (discussed

in Chapter 2). Therefore, the composer needs an inherent challenge in which to engage (Nash,

2011). Certain aspects of composition can be made ‘hard’ through bad interfaces, which is

something that should be minimised.

Existing systems for CGM often require the design and implementation of algorithmic

techniques using either code or a graphical programming environment, therefore placing a high

mental load on the user. To engage non-programmers, IGME focuses on using in-built, rather

than designing, processes for composition.

Bellingham, Holland, and Mulholland (2014a) stress the need for a clear visualisation showing

the signal flow between components. This is a common problem for systems without a clear

indication of a timeline, such as in coding or patching systems. IGME, just like a DAW, uses a
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Figure 6.5.: IGME’s scratchpad for creating musical ideas.

timeline, with time flowing from left to right. The user is not required to predict control flow, thus

reducing cognitive load. It can be argued that such stochasticism is ideal for generative music.

However, the focus is on a human-computer co-creation system, so it is important to make this

signal flowmore formal.

6.5. Progressive Evaluation

“How easy is it to stop and check your progress during editing?”

The timeline concept found in DAWs permits high progressive evaluation, allowing users to

freely move the play-head around. When systems do not have a ‘timeline’ (code and patch-based)

it can bemuchmore challenging to do this and perhaps impossible in the case of a programmatic

stochastic music system that evolves over time.
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Figure 6.6.: Part 1 on track 1 is being repeated (referenced) by 2 other parts.

Collins (2005) states that evaluating thematerial is important formusic software, as iteration is a

primary concept in composition. Auser interactingwith any formof composition software is likely

to apply a trial and error approach, testing many ideas and combinations. Nash and Blackwell

(2012) note that a rapid edit-audition cycle contributes to a high state of flow, a desirable mental

state for users engagingwith creative exercises, such asmusic. Most existingmusic softwaremakes

it easy to stop and audition parts throughout and, usually, to make quick edits.

Code-based environments can have several roadblocks that can limit progression. Developing

intricate systems can often entail building several classes or containers that must be reasonably

complete and error-free before their output can be used/heard. The introduction of compile-time

errors can cause the composition workflow to stop altogether.

6.6. Hidden Dependencies

“How explicit are the relationships between related elements in the notation?”

The connection between components in a DAW is generally quite explicit and minimal.

Automation lanes and external bus ‘sends’ in DAWs can create dependencies, but these are

mitigated through having high visibility and remaining optional features for ‘power users’. Music

can have innate hidden dependencies, such as pitches being dependent on key and instruments

that are transposed. Hidden dependencies are often a side effect of a complex system. In general,

dependencies are not desirable. However, they can be made more explicit.
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Figure 6.7.: IGME’s show dependants features, highlights all parts that are dependant on part 1
track 1.

Programming-based systems can have a plethora of dependencies, such as it being difficult to

see exactly where a variable is later used and what impact changing it will have on the overall

output. Changing the internals of a function or patch can have knock-on effects if other parts

of the program depend on the original behaviour. Programming systems, such as Max, make

dependencies more explicit by using patch cables (Bellingham, Holland, andMulholland, 2014a),

which show explicit relationships between components. Similarly, classes in object-oriented

programming can encapsulate information, and mark certain relationships (i.e. inheritance)

explicitly.

To increase the development of high-level structure, the part referencing systemwas introduced

in IGME (this concept is briefly introducedherebutdiscussed at length inChapter 7). For example,

part 2 on track 1 can take its initial content from the output of part 1 on the same track. This

facilitates simple repeats or more complex processed-based music. To reduce the complexity of

reference parts, dependencies can be highlighted by uni-directional coloured arrows (Figure 6.6).

This feature is similar to the patch cable metaphor in Max (Manzo, 2016) and Reason (Duignan

et al., 2004). In addition, parent-child relationships can be shown by inspecting the part (Figure

6.7).
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6.7. Conciseness / Diffuseness

“How concise is the notation? Does it make good use of space?”

The various levels of hierarchical views in DAWs generally create a concise interface that can

be collapsed and expanded dynamically (Nash, 2011). The different input notations offer differing

levels of conciseness (Nash, 2015).

Both programming and patch-based systems can have both good and bad conciseness. Such a

trade-off is often a result of a user’s interaction and decision-making. In text-based programming,

the system can be encoded with minimal semantic information (i.e. single letter variable names).

However, Bellingham, Holland, and Mulholland (2014a) note that the verbosity of language

should be increased for variable names in coding environments even if this negatively impacts

the dimension.

In general, end-user systems should use a concise notation (or interface) where it makes sense

to do so (for example, encapsulating information) but add verbosity (i.e. “number of notes to be

generated”, instead of “num of notes”) for reducing ambiguity and increasing role expressivity.

6.8. Provisionality

“Is it possible to sketch things out and play with ideas without being too precise about the exact result?”

In the physical world, instruments afford high levels of provisionality. For example, opening a

piano lid permits an immediate interaction with the instrument, whereas loading up a DAW and

a VST is a little more involved. This philosophy extends to software interfaces. For example, Nash

(2015) states that digital scorenotation interfaces areweak for supporting this dimension compared

with paper notation, which is far more flexible, as it allows for informal sketching. Programs like

Sibelius are beneficial for preparing final scores, but not necessarily for rapid ideation. Tomitigate

this IGME permits users to rapidly enter note sequences without the restrictions imposed by bar

lines or time signatures. Eliminatingbar lines in the initial note entry process removes theneed for

tied notes that cross bars, as notes can simply be displayed as their absolute length. The two-stage

editing paradigm takes care of the creation of these formalisms (Figure 6.8).
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Figure 6.8.: The two-stage editing process ‘formalises’ the notation.

Systems like Max permit rapid experimentation with little setup, whereas programming

systems offer high provisionality to experienced practitioners but can be weighed down with

documentation and steep learning curves for novices. Programming generally enforces precision

and determinism, which is at odds with the above definition of provisionality.

Existing computer-generated music software often emphasises provisionality also, and can

create musical output quickly with few configured parameters. Bellingham, Holland, and

Mulholland (2014a) note that Improvisor’s (Keller and Morrison, 2007) pre-set algorithms can be

used to quickly create musical sketches based on chord progressions. Bellingham, Holland, and

Mulholland (2014a) also note that Logic Pro’s in-built loops facilitate provisionality, as the content

can be used as a place-holder and replaced later.

The scratchpad feature (Figure 6.5) in IGME supports the creation of parts outside the scope of

the arrange view. In most other software, this could only be achieved by storing clips many bars

in the future or by creating a new session entirely. This ability to create provisional material is

also a feature of PreSonus (Electronics, 2020). Older iterations in a given part can be placed in the

scratchpad so they can be later re-purposed.
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Figure 6.9.: IGME’s rapid rhythm entry window allows user to enter rhythm patterns quickly.

6.9. Secondary Notation

“How easy is it to make informal notes to capture ideas outside the formal rules of the notation?”

Nash (2015) notes that handwritten scores have an almost unlimited ability to make informal

notes that can be interpreted by the user across the score. Digital score editors make this much

harder, due to limited interactionwith the keyboard andmouse. Programming environments offer

excellent secondary notation through comments (text that is ignored by the compiler).

Bellingham, Holland, and Mulholland (2014a) note that adding colour to elements of an

interface can aid a program’s usability. Logic Pro can display each track as a different colour. Max

allows patch cables to be given different colours, which could, for example, represent different

types of signal flow (e.g. MIDI, mathematical, GUI controls). Such roles must however be

remembered by the author.

To support sketching, various in-built tools for quickly capturing ideas that could be formalised

at a later stage3 was added to IGME. Figure 6.9 is an example of a technique that uses secondary

notation to quickly input material. The “rapid rhythm entry” window allows users to simply tap a

rhythm using the space bar. The associated pitches and exact rhythm can be edited later. These

3These were used sparingly in the user studies.
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techniques support a sketching metaphor (Nash, 2015) where informal ideas can be recorded

quickly and effortlessly.

6.10. Consistency

“Where aspects of the notation mean similar things, is the similarity clear in the way they appear?”

Bellingham, Holland, and Mulholland (2014a) note that a consistent interface is easy to learn.

For example, most programming language supports the same core principles, i.e. loops, functions

and variables that bring coherency and consistency.

A criticism of many existing CGM systems is that they require users to learn a new workflow

with which they are not familiar. To mitigate this, and to engage existing music practitioners

with CGM systems, familiar interaction paradigms and features should be reused from existing

music sequencers. This design philosophy was fundamental in IGME, requiring that its interface

is consistent with other music sequencers. For example, the arrange view and edit view are

influenced by similar elements in other linearmusic sequencers. Likewise, editingmusic in either

score notation or piano roll shares many interaction routines. An important principle is that

people who are familiar with digital music composition should find it easy to pick up and use

IGME.The computer-generated processes operatemuch like plug-ins, with pre-sets and graphical

controls.

6.11. Viscosity

“Is it easy to go back and make changes to the music?”

Ahighly viscousworkflow results in a system that is easy to use and learn (Bellingham,Holland,

andMulholland, 2014a) whereas a system free of restriction provides less structure. Music editing

systems should have low levels of viscosity so that changes can be made rapidly and easily, which

in turn helps provisionality and ideation (Nash, 2015).

Viscosity in programming systems can vary significantly. A well-designed program can make

changing components easy, but in a tightly coupled onemuch harder. Moreover, systems without
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timelines can make editing music mid-piece much harder, and, in stochastic systems, sometimes

impossible (unpredictable).

Attempting to increase the length of a note in existing score editors has knock-on viscosity (Nash,

2015), where the resultant effect will often discard notes from the end of a bar or prohibit note

entry. Guitar Pro (Arobas-Music, 2020) solves this in anovelwaybynot removing anything, instead

highlighting the bar as an error (in red), requiring a manual fix from the user. The editing stage

in IGME has been designed with low viscosity in mind. The removal of bar lines for editing notes

means users are not required to supply tie lines for notes that cross bar lines, which is an idea

borrowed from Dorico (Steinberg, 2020b).

Repetition viscosity (Bellingham, Holland, and Mulholland, 2014a) is where sections of music

are copied and pasted to create repeats. When the userwants to update a single copy, the restmust

be updated manually. IGME’s reference feature can mitigate this, as changing the initial part will

trigger all parts that reference it to update. A downside is a slight increase in hiddendependencies,

although this is addressed in other ways (section 6.6).

Bellingham, Holland, and Mulholland (2014a) note highly viscous workflows can improve

stability and create well-defined use cases. This is not to say the effects are not powerful, but that

there are carefully designed interfaces that facilitate a fluid experience for the user. Nash (2015)

notes increasing viscosity is a trade-off for avoiding hidden dependencies, which can be observed in

patch and code-based environments.

For an end-user CGM system, some parts of the workflow should be viscous, for example,

having several computer-generated processes, each with limited degrees of control, that can be

combined to provide more complex behaviour. Version control systems help alleviate otherwise

Figure 6.10.: Part 1 is locked and cannot be moved or edited, whereas part 2 is open
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Figure 6.11.: IGME’s part highlighting options.

viscous parts of the interface and encourage users to go back andmake changes. Sometimes giving

users the flexibility of configuring the level of viscosity is useful. For example, the lock feature of

IGME (Figure 6.10) prevents the position or internal content of a part being modified, creating

a trade-off between viscosity and provisionality. Therefore, the software does not impose either

option; instead, the responsibility lies with the user.

6.12. Role Expressiveness

“Is it easy to see what each part is for, in the overall format of the notation?”

A key requirement of IGME is that each design element makes use of existing metaphors, such

as score editing, arranging clips on a timeline, and graphical controls for editing effects, which

already offer high role expressiveness. This consideration should apply to any end-user music

system that wishes to offer unorthodox features (i.e. CGM) to existing users, which in turn allows

them to quickly understand the interface Nash (2015).

A key consideration for editing computer-generated music is to ensure the user knows what

notes will be altered by any such processes. This is achieved in IGME by changing the colour, so

green indicates stochastic events and black shows deterministic ones (Figure 6.3). Also, parts are

coloured depending on their use, i.e. blue for a normal part or orange for a purely generative part

(Figure 6.2).

Given the explicit roles that computer-generated and human-created music should take,

systems should ensure that users can differentiate these roles. For example, IGME allows types

of parts to be highlighted or hidden, so users can easily find specific types of parts from the

arrange view (Figure 6.11). This is significantly more difficult to realise in patch or code-based
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systems, where the role of each musical element in the final output is not well distinguished or

easily separated, and the contribution from human or computer processes is tangled. Such a use

case may be desirable for certain compositions and, might be easier to realise with programming

approaches, but this is not the focus here.

6.13. Premature Commitment

“Do edits have to be performed in a prescribed order, requiring you to plan or think ahead?”

The timeline metaphor in DAWs encourages a linear left-to-right workflow and supports

various forms of development, including part-by-part, bar-by-bar or top-down arrangements

(Nash, 2015). Likewise, programming systems support various ways of working but often

necessitate the use of object-oriented programming (i.e. inheritance) requiring some premature

commitment.

Bellingham, Holland, and Mulholland (2014a) stress the importance of having an option that

states “I don’t know what is going on here”. Timeline-based interfaces support this, whereas more

specialised CGM systems, without this concept, are weaker in this regard. In general, code-based

systems are not supportive of more structured or orchestrated compositions. Nash (2015) notes

that an advantage of using an arrange view metaphor is that it allows musical parts to be easily

inserted, moved, and copied.

It is unclear if the user of parent-child relationships in IGME (through reference parts) increases

premature commitment. This is discussed further in Chapter 11.

6.14. Error Proneness

“How easy is it to make annoying mistakes?”

Annoying mistakes are not desirable for any software or interaction. With most CGM systems,

the processes themselves can generatemistakes4. With a subjective topic likemusic, it is important

to remember that what might be deemed annoying mistakes by one composer can be considered

wholly acceptable by another.

4For example, inserting an out of key chord could commonly be considered a mistake.
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6.15. Closeness of Mapping

“Does the notation match how you describe the music yourself?”

Nash (2015) notes thatDAWs score highly in this dimension due to having interaction paradigms

based on recording studio workflows. Programming-based interfaces are often dissimilar and

therefore score badly here. For example, a collection of variables (i.e. note, length and onset)

representing a MIDI note is less ‘close’ to its expression in a piano-roll editor.

6.16. AbstractionManagement

“How can the notation be customised, adapted, or used beyond its intended use?”

Green and Blackwell (Carroll, 2003) describe three classes of system: abstraction-hungry,

abstraction-tolerant, and abstraction-hating. Code and patch-based systems rely heavily on

user-defined abstractions which permit the development of complex and nuanced CGM systems,

not permissible or feasible by other interface types. This reliance on abstraction design can often

have a negative effect on usability (Bellingham, Holland, andMulholland, 2014a). Providing users

with pre-built abstractions (graphical interfaces) rather than with the components for building

them lowers the barrier to entry for CGM.

Bellingham, Holland, and Mulholland (2014a) suggest that “An effective design would be for the

software to have a low abstraction barrier but be abstraction-tolerant. Such a design would allow new

users to work with the language without writing new abstractions, while more advanced users could write

abstractions when appropriate.”

In general, IGME’s inbuilt processes are abstraction-hating, as they cannot be customised

internally but can be controlled only through the exposed graphical controls. IGME encapsulates

sequences of events into parts that can have further processes applied to them, and can reference

and reuse each other. Overall, the system is abstraction-tolerant. It is unclear, without more

conclusive user studies, howpowerful IGME’s inbuilt generative features andpart-referencingwill

be if there is no ability to create more complicated abstractions.
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6.17. Conclusion

This chapter has demonstrated that the CDN is a powerful framework that permits broad

comparisons to be made between opposing interfaces while providing a common vocabulary for

discussing them. It has shown how some of the issues associated with computer-generated music

systems can be mitigated by respecting established music sequencing workflows (DAWs), and by

eliminating some of the drawbacks of programming based approaches5. For example, having a

timeline increases visibility and progressive evaluation for which programming systems are often

lower in these dimensions.

The CDN is not without limitation. Despite having 15 discrete dimensions, it omits one deemed

critical to this work - learnability Simply put, this is,“how easy is it to learn the interface”. Learning

to program is hard (Guzdial, 2010), and acts as a barrier to entry for engaging with CGM, whereas

using graphical interfaces democratises tools. Learnability is more formally evaluated in Chapter

10.

The broad-brush comparison in this chapter of existing interfaces results in a list of desirable

design hypotheses (a CDN profile), given under each dimension (shown in Table 6.2). IGME

was therefore designed around these requirements as a software hypothesis (Leinonen, Toikkanen,

and Silfvast, 2008) which in turn allows them to be formally assessed in Chapter 11, once the

software has been evaluated through user studies. These design hypotheses result in a set of

design heuristics applicable to many different interfaces for engaging with CGM.

5Patch and code-based systems have many advantages but are not a focus of this research
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Dimension Design Hypotheses
1. Visibility Minimal layers of hierarchical views. Ensure that the role

of each musical element is clearly defined visually.
2. Juxtaposabillity Allow different variants of the music to be swapped

quickly and easily. Make use of version control
technologies.

3. Hard Mental Operations Focus on using, rather than designing,
computer-generated processes. Use a timeline to
make control flow simple to predict.

4. Progressive Evaluation Ensure that rapid edit-audition cycles are supported.
5. Hidden Dependencies Minimise hidden dependencies, and ensure that any

required dependencies can easily be visualized.
6. Conciseness Give controls verbose names.
7. Provisionality Ensure that the system can rapidly ideate. Support this

by using version control technologies. Consider adding a
secondary timeline (scratchpad).

8. Secondary Notation Allow for informal notes to be added to various musical
components (for example, track description).

9. Consistency Use common design and interaction paradigms found
in other music software (for example, clips, tracks, and
timelines).

10. Viscosity Allow users to lock down the position or final output of
the music. Ensure that it is otherwise easy to go back and
make changes.

11. Role Expressiveness Distinguish between computer-generated and
human-composed music.

12. Premature Commitment Use an arrange viewmetaphor, and support part-by-part,
bar-by-bar or top down arrangements.

13. Error Proneness The computer should not automatically fix musical
errors, but instead, allow users to judge and fix these for
themselves.

14. Closeness of Mapping Focus on graphical rather than textual controls.
15. Abstraction Management Can be used without creating abstractions, but allow

advanced users to develop their own abstractions.

Table 6.2.: A list of design heuristics under each dimension in the Cognitive Dimensions of Music
Notations framework used in this chapter.
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This chapter discusses the internal architecture of IGME and provides a vocabulary for discussing

its features in future chapters. This chapter details IGME in its final form and contains excerpts

from an amalgamation of Hunt, Mitchell, and Nash (2017b, 2018, 2019, 2020). Notable revisions

made to IGME after its evaluation in pilot studies are set out in Chapter 8.

IGME is a platform built purely to test research theories and is a means to an end, rather

than a research contribution. It is hoped that other practitioners will integrate elements of this

research into their products/work. The considerable time spent developing IGMEwas justified by

the need for an end-user platform integrating with complex and nuanced real-world workflows.

Incomplete or simplistic proof-of-concept tools offer nomeaningful insight into interaction issues

and need to be tested extensively and put to robust use.

This could explain why there is limited research onmacroscopic interaction in music software.

As researchers need to controlmany aspects of the study, simply extending an existing open source

project or using an API (for example, Max for Live) would not achieve the same outcome, and in

many cases not permit the integration of interaction logging technologies (discussed in Chapter

8).

7.1. IGME

IGME supports the exploration of computer-generatedmusic techniques, through a user-friendly

interface built around common digital music software paradigms. As summarised in Chapters

3 and 4, many existing computer-generated music systems use workflows that are not familiar

to non-programmer composers. IGME is designed so it can be quickly learned by composers

already familiar with the basic concepts of digital music sequencing and notation, allowing them
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Feature Rationale

Uses existing music sequencing
paradigms and design metaphors.

Creates a low-entry threshold for composers so they can
focus on using computer-generated techniques rather
than learning new workflows.

Provides a full version control
system, for tracking edits and
iterations.

Fundamentally required for stochastic processes which
produce output that differs each time and is then easily
lost or overwritten.

Uses graphical widgets, rather
than code-based interfaces.

Programming requires learning a new set of skills,
whereas graphical widgets are a fundamental part of
existing music software.

Takes a modular approach to
composition while retaining a
linear timeline.

Code and patch-based systems do not have a concept of
a timeline, making control flow difficult to predict. A
simple linear timeline makes this much easier.

Uses a multi-layered assembly
stage to create the final score from
individual parts.

Breaking music into parts ensures a clear distinction
between human and computer-composed content.

Table 7.1.: Design principles for end-user computer-generated systems.

to experiment immediately with computer-generated processes. IGME follows the ‘low threshold’

(easy to get started), ‘high ceiling’ (permits sophisticated ways of working) and ‘wide walls’ (can be

explored in multiple ways) design principles for supporting creative thinking set out by Resnick

et al. (2005). The five core design principles of IGME are detailed in Table 7.1.

7.1.1. Technologies

IGME is built using JUCE (Roli, 2016), a cross-platform C++ framework that is well-suited to

music software development. Two external libraries, FluidSynth (Henningsson and Team, 2011)

and GUIDO (Hoos et al., 1998), are also used. FluidSynth provides a sound-font synthesiser to

produce all the inbuilt instrument effects and is populated using a sound-font supplied from

MuseScore (Watson, 2018). GUIDO, a score-drawing framework, provides the Western score

notation interfaces used in this project. IGME contains a sub-application called IGMESynth that

is responsible for producing audio.

IGME is distributed as a closed source application, as many conditions needed to be controlled

academic study. This also protects the inbuilt logging software from being inappropriately

re-purposed with data being sent elsewhere. The IGMESynth is open source with a GNU

LGPL (Almeida et al., 2017) licence and is distributed alongside IGME, as Fluidsynth’s (compiled
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Figure 7.1.: IGME’s arrange view where parts are arranged across the timeline. Middle: Timeline
editor. Bottom: Part preview. Right: version control system/scratchpad.

within IGMESynth) licence prohibits its use in closed source software. IGME and IGMESynth

communicate over open sound control (Freed, 1997), with IGME being the parent application

that launches IGMESynth as a child. Both JUCE and GUIDO permit closed source development.

IGME was originally built for OSX, later ported toWindows, and remains cross-platform.

7.2. Arrange View

IGME is fundamentally a linear music sequencer that promotes arranging parts1 (sequences of

notes) of music onto a timeline of different tracks, sharing many parallels with existing music

software. Figures 7.1 and 7.2 show IGME’s arrange and edit views. To produce output, a ‘render’

stage is added, this collates and sequences parts on the timeline to produce a single multi-track

sequence (illustrated in Figure 7.3). Although this introduces an additional dependency, it has

two distinct extra uses specifically for computer-generated music, as discussed at the end of this

section.

Music is arranged on a linear timeline of tracks, whereby the order of the music is explicit

(i.e. left to right). This is in contrast with code or patch-based systems which can be difficult to

predict the order of events (Nash, 2015). The scratch-pad editor is an additional timeline/track that
1As mentioned previously, parts are metaphorically similar to MIDI clips found in other music software but have a
more complex role.
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Figure 7.2.: IGME’s edit view where individual parts are edited. Left: plug-in editor. Centre: note
editor. Right: version control system.

allows a composer to develop individual parts offlinewithoutworrying about their locationwithin

the overall musical structure. Users can copy and paste between the timeline and scratch-pad,

additionally using it as ‘cache’ for ideas discussed further in Chapter 6.

7.3. The Seed, Parameter, and Result Model

Parts in this project are defined as the core musical elements that are sequenced together

to produce a musical artefact (Figure 7.3). Parts have explicit roles that differentiate

human-composed and computer-generated music, facilitating an interactive generative

composition process. These parts are referred to as: human; human-computer; computer;

reference; iterator; and repeater. Table 7.2 summarises these.
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Figure 7.3.: The part arrangement process.

Group Part type Input (seed) Can apply
plug-ins

Regular parts
Human Edited by user Yes
Human-computer Edited by user Yes
Computer Computer generated Yes

Reference parts
Reference From another part’s seed

or result
Yes

Iterator Another part’s output No
Repeater Multiple part’s output No

Table 7.2.: A summary of the different part types.

A part has three distinct sub-components: the seed, parameters, and result (Figure 7.4). The seed

is the music material edited by the composer. The parameters are a series of computer-generated

effects (plug-ins) that are applied to the seed material. The result is simply the outcome of the

parameters applied to the seedmaterial, and is themusic sequence auditioned by the user. Should

the composer not configure any parameters, the result will be a carbon copy of the seed. In this

situation the part is referred to as human part, whereas a human-computer part would contain

computer-generated effects. In a computer part, the seed comes from a seed generator using a

secondary set of plug-ins. The result can be converted back into the seed, permitting a recursive
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Figure 7.4.: The seed, parameter, and result model.

editing process. Similarly, a computer part can be converted into a human-computer part. In both

cases, the output can be further edited (fine-editing)2.

Note List

IGME internally encodes musical events into a double-linked list3 container. Each event contains

the following values: note, velocity, length, timestamp, bar number and unique-id, as well as a

dynamic container for storing specific notation information. This additional metadata supports

rapid music analysis. Every time a new event is added to a sequence, it receives an incremental

unique-id. Editing a note does not update this id. A part contains two such sequences, one for

storing the seed and one for storing the result.

Reference Parts

One way of encouraging the development of higher-level structure and repetition is to use

references. Rather than each part having a unique seed, parts can base their ‘seed’ on the ‘seed or

result’ of another part. The newpart is referred to as a reference part type. There are two referencing

methods: pre-reference and post-reference. If the pre-referencemethod is used, the current part’s

seed is taken from another part’s seed. If the post-reference is used, the current part’s seed is taken

from the result of another part. An example of pre/post reference is shown in Figure 7.5, which

2The computer’s generative role is no longer required, and the users take ownership of the music. This concept was
used repeatedly in the user studies of Chapter 10.

3Inserting, deleting, and processing sequences is therefore made simple, compared with other data structure types.
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Figure 7.5.: Pre vs post referencing.

illustrates the difference in final output when part B references part A, using either pre or post

referencing.

Parts that use references prevent the composer editing the seed material, but they are still

permitted to apply generative effects. A key advantage is that the composer canupdate the original

part (A), and those changes will be propagated to all the other parts that were referencing it

(B). If the composer wishes to edit a reference part’s seed, copying and pasting from the original

part would be more appropriate. Reference parts appeared confusing for composers during user

studies, but also led to interesting compositional choices. These concepts are discussed further in

Chapter 10. Based on feedback from pilot studies (Chapter 7), two more part types were added to

IGME using the same principles as references, the iterator and repeater.

An iterator part can be set to iterate either a human-computer or a computer part, allowing

another iteration of a part to be placed on the timeline. This could be used to produce multiple

versions of a given effect, resulting in several parts with similar musical characteristics.

Repeater parts allow the user to repeat previous bars of music that can contain any arbitrary

amount of part types. Simply put, a repeater part repeats content already on the timeline. For

example, a setup to repeat bars 1-3 will take the result of parts 1 and 2 and repeat them. Should

parts 1 or 2 change, so will the output of the repeater.
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Figure 7.6.: Top: reference part (track 1), iterator (track 2), and repeater (track 3). Bottom: Output
of the above processes.

The differences between these constructs are illustrated in Figure 7.6. Track 1 uses a reference

part, with the second part applying a randomise effect. Track 2 uses an iterator and therefore part

2 is another variant of the effects set-up in part 1. Finally, track 3 uses a repeater, meaning bar 2 is

the same as bar 1.

During this PhD, supplementary research in studying repetition was conducted and published

by (Hunt, Mitchell, and Nash, 2019; Hunt, 2020), making use of IGME and the reference part

system. In summary, a large proportion of existing music can be encoded within IGME, using

the reference parts explicitly to show this repetition. If existing music can be encoded in this way

we propose that these mechanisms are useful for both regular music composition and for adding

explicit structure to computer-generated music pieces.
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Figure 7.7.: Top: the seed. Bottom: result. The result automatically applies the formalism of 4/4.

7.4. Editor View

IGME’s edit view is where parts are edited and generative effects configured (Figure 7.2). When

editing the basic music material (seed), the composer can avoid the formalities of working with

bar lines, as IGME automatically adds bar lines at the result stage (Figure 7.7). A composer is,

therefore, free to edit and arrange sequences with few constraints.

Secondly, when working with built-in computer-generated effects, the input (seed) material is

processed using various effects before becoming the output (result) music. This editing paradigm

is referred to as the two-stage editing process and enables a rapid edit-audition cycle4 (Nash, 2011).

Users can toggle between piano roll notation and score notation in either the editor or output

window. The need to add piano roll support was identified through user studies and is discussed

in Chapter 8.

The two-stage editing process enables users to work easily with computer-generated music.

The content of the music (the result) is dynamic. Editing the seed is simply a blueprint, with

the final result computed and subsequently auditioned when an iteration is created (Figure 7.2).

The two-stage editing process shows the before and after stages visually, revealing mappings

and dependencies between seeds, parameters and results (permitting verbose debugging). This

should help composers learn about computer-generated processes, and develop a cognitive

understanding of each process.

7.5. Version Control

IGMEcontains two independent, but related, version-control systems (VCS). Each part has its own

local VCS that tracks independent variables, such as the contents of the seed, the configuration of

computer-generated effects, the resultant output, and any references. A new version is added to
4Discussed at length in Chapters 9 and 10.
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the VCS when one of those four variables (seed, parameters, result, or reference state) changes as

a result of the composer creating an iteration. A composer can easily recall a previous version.

There is no provision for deleting unused versions, but composers can mark ‘favourite iterations5 ’.

The second VCS works on the arrange view and tracks the arrangement of parts on the timeline.

When a composer renders the arrange view, if the content of a part, or a part’s position on the

timeline, has changed, it is registered automatically as a new version.

The VCS supports composers working with stochastic music, permitting them to rapidly create

permutations of the music and, if they wish, to recall earlier versions. This rapid edit-audition

cycle contributes to a high state of flow, which is desirable for composers engaging with creative

exercises such as music (Nash and Blackwell, 2012). In essence, the VCS is a key component for

any end-user generative music composition system (evaluated in Chapter 9). Crucially, the VCS

provides the ability both to recall and track the compositional process. The methods for sending,

collecting and analysing each entry in the arrange-level VCS are discussed in Chapter 8.

7.6. Computer-Generated Processes

As mentioned in Chapter 4, existing computer-generated music systems require a composer to

be literate with programming languages, or to learn an alien interface (Bellingham, Holland,

and Mulholland, 2014a). IGME gives access to the underlying computer-generated effects engine

through a series of simple graphical interfaces. One downside is that composers are unable to

design their own effects or processes (abstractions), although there is scope to permit this in future

versions. Though accessible to novices, IGME may appear too shallow for more experienced

composers.

The three different types of computer-generatedprocesses are: note properties, seed generators,

and effect plug-ins6. The note properties panel (added late in development) provides a method

for applying stochastic properties to individual notes (discussed further in Chapter 7). Seed

generators (Figure 7.9) generate seed material using more complex generative effects (e.g.

transition table, or L-system). Effect plug-ins process entire sequences of notes by, for example,

reversing the input order or by quantising to a scale (see Figure 7.8). Human-computer parts can

5This feature was added through various pilot studies and is discussed more in Chapter 9.
6These are refereed to as type A, B, C respectively in appendix item D
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contain both note properties and any arrangement of effect plug-ins (both optional). A computer

part always contains a seed-generator, but may also contain effect plug-ins.

Some parts use a generative model, whereby the data provided for the model is formed

through analysing other parts on the timeline. An example is the distribution sample plug-in,

which uses a series of slider-banks to show the distribution of music characteristics, such as

pitch and rhythm. Several options for determining what informs the analysis are presented to

the composer. Appendix D provides more information on the implementation details for each

computer-generated effect.

Iteration and playback appear coupled but actually serve different purposes in IGME. Iteration

causes any computer-generated effects to be recomputed producing a new version, whereas

playback simply auditions the last or selected version. When editing parts, an iteration will also

induce playback. There are three options at the arrange view level. By default, playback (option 1)

is selected, which simply takes each version, in each part, and sequences them together to produce

a song. The composer can also compute iterations (option 3) in the arrange view editor. This in

turn goes through all parts on the timeline and produces a new iteration on each. Individual parts

can be locked ensuring their content remains fixed regardless. Option 2 is used to update the

reference part, such as when a parent dependency has changed. Although this process could be

done automatically, the option is determined by the user.

7.7. Conclusion

IGME was developed as our proposed solution for working with generative music. This

chapter is a cursory look at its core features, and appendix D gives further detail on all the

computer-generated processes. IGME was developed iteratively under a mostly participatory

design umbrella. This involved pilot studies and subsequent redesigns. A timeline of changes

is discussed in Chapter 8, along with a description of the methodologies for studying user

interaction.
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Figure 7.8.: Three different computer-generated plug-ins are chained up.

Figure 7.9.: One of the seed-generator processes (distribution sampler).
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8. Methodologies, Pilot Studies, and
Participatory Design

The ultimate purpose of putting IGME in front of users was to evaluate it as a paradigm

for computer-generated music composition, testing its novel features and discovering what a

computer-generated music workflow entails. Several methodologies, used by different groups

of users, were deployed in the evaluation. These can be broken down into: initial pilot studies

(participatory design); 1-hour workshops; video study (longitudinal); public beta; and remote

study. In all the studies, interaction data from the IGME software was logged and sent remotely

to the researchers. All studies involved a formal survey (discussed shortly). Table 8.1 summarises

the various studies.

8.1. Interaction Logging

Interaction logging is common in the field and is often used to measure usability (Brown, Nash,

and Mitchell, 2017). An example of this includes, Jeong, Kim, and In (2020) who took the novel

approach of logging images representing the user’s screen (GUI), resulting in interaction similar to

that of recorded videobutwith far less bandwidth. Lettner andHolzmann (2012) take an automatic

approach that analyses applications in real-time and reports on changes toGUI elements and their

life cycle.

Nash’s (2011) work studied composers interacting with music software, using interaction

logging-based approaches. Summarising the benefits of this, Nash states: “Significantly, the

non-invasive logging of interaction enabled the study of real-world creativity, without interfering with the

individual’s creative process or intruding in their environment. In this capacity, the Internet has proven a

powerful tool that can be instrumental in the remote observation of subjects in creativity research.”
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Study
Type

Data
Collected

Questioniare
type

Conditions Length Date IGME
Version

Sample
Size

Initial pilot
study

Basic
interaction
log.

A Controlled 1 hour 03/2018 0.8 9

Second
pilot study

Basic
interaction
log.

B Controlled 1 hour 09/2018 0.9 10

1-hour
workshops

Interaction
log and
music.

B-2 Controlled 1 hour 11/2019 1 23

Public beta Interaction
log and
music data
(optional).

B-2 Uncontrolled n/a 06/2019 1.0-1.1 n/a

Video
study

interaction
log, music,
screen
recording.

B-2 and C Controlled 4 hours 03/2020 1.06 4

Remote
study

interaction
log and
music data
(optional).

B-3 Uncontrolled 2 hours 10/2020 1.2 31

Table 8.1.: A table summarising the studies completed in this research.

Gerken et al. (2008) observes that interaction logging does not answer all the usability questions

and in some cases probably raises new ones1. In summary, interaction logging should be used in

conjunction with additional qualitative methods. For this reason, and others, the research here

takes a mixed-methods approach for studying IGME.

8.1.1. Implementation and Analysis

IGME contains a sophisticated inbuilt interaction logging system, which provides a fine level of

granularity - reconstructing in sequential order and in detail, the users’ actions2. Each message

includes a timestamp value (millisecond resolution). These interactions are logged to a text file

and sent remotely to a server. Each file also contains the following values: user-id, session-id,

system-id, and version number. User-id3 is the product registration key prescribed to the user

during registration, which can be looked up by the researchers to concatenate initial sign up,

consent forms, user data, and survey forms. Session-id is generated each time IGME starts up.

1Indeed the interaction data collected during Chapter 9 did, in fact, raise more (unanswerable) questions
2A list of interactions can be found in appendix item E.
3The user-id is meaningless to anyone other than the researchers as it is an arbitrary value.
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Figure 8.1.: IGME interaction data analyser. Each row represents an type of data, the black lines
signify minute markers. The background colours determines what view the user was
in.

System-id is anMD5hash (Rivest andDusse, 1992) of system information and is used to distinguish

registration information shared between multiple systems.

In addition to the interaction data, each iteration in the arrange-level version control system

(music data) is sent. These are tagged with the same header data as the interaction data. A

clock within IGME triggers every minute (and on shut-down/start-up), sending any new versions

of either data type via an HTTP post request to a server. Data is cached locally, so that any

interruption in internet connectivity can be mitigated, with data sending resuming automatically

once a connection is re-established.

A small tool was developed for inspecting and analysing the interaction data (see Figure

8.1). This tool was built using the concepts set out in the visual information-seeking mantra,

(Shneiderman, 1996; Craft andCairns, 2005), giving an overview of the data and the ability to zoom

in and filter details, and discover relationships between interaction types. Data types were divided
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into rows, with colour indicating that an event had been logged. This allowed for a cursory look

at what was otherwise arbitrary data. Figure 8.1 shows an overview, with data flowing from left to

right, and the black markers signifying each minute. A red background indicates the user was in

the editor, while green indicates the user was in the arrange view.

8.2. Surveys

Three types of surveys were developed and used in the research: preliminary evaluation (A),

cognitive dimensions evaluation (B), andprior experiences ofmusic (C). Templates for each survey

are included in Appendix B.

Survey A: Preliminary Evaluation

Survey A was used only for the initial pilot study and participatory design workshops. The short

survey was designed to capture basic information for evaluating the research objectives. It asked

participants: how much experience they had of different music software; their experiences of

computer music techniques4; what they had found enjoyable and frustrating; and, what they

thought could be improved within IGME.

Survey B: Cognitive Dimensions Evaluation

Survey B, the most commonly used survey, was split into two main themes. The first evaluating

the various features of the software and the latter for evaluating a user’s perceptions of engaging

with computer-generated music techniques. Questions in the first theme were aligned (where

possible) to an aspect of the cognitive dimensions of notations framework. Work by Nash (2011)

used a similar methodology for comparing experiences of users interacting with music trackers,

and evaluating the software under the cognitive dimensions. Questions in the second themewere

more open-ended, gathering qualitative data. The survey was amended twice - these changes are

discussed in section 8.5.1.

4The same as questions 3-4 from Appendix A
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Figure 8.2.: IGME’s Inbuilt tutorial system (also available via a website).

Survey C: Prior Experiences of Music

Survey C was used to uncover an individual’s musical background and was presented to

participants who engaged in the longer studies. This was a reworked version of the survey used in

Chapter 5 for understanding the experiences of music practitioners.

8.3. Tasks

IGME contains a range of inbuilt tutoring systems, including tutorial exercises (Figure 8.2),

a dynamic interactive help system (Figure 8.3), and common usability features (i.e. cursor

highlights). The inbuilt tutorials are a step-by-step guide to using IGME5. Although free to do

as they wished throughout, participants in all studies were guided towards the tutorials in order

to familiarise themselves with the system, with any remaining time spent experimenting. This

created a balance between ‘a specific task’ type study and ‘open exploration’ (Brown, Nash, and

Mitchell, 2017). The researcher explicitly told all participants they were more interested in the

methods used to create music than the resultant artefacts, preventing participants from feeling

pressured into making a certain type or style of music.

5These two systems were added following feedback from the 1st round of pilot studies.
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Figure 8.3.: IGME’s dynamic help system, which, once enabled a user can scroll over a component
to get a description of its purpose.

8.4. Initial Pilot Studies

Two primary rounds of pilot studies were conducted with IGME, built on the concept of

participatory design. These studies resulted in incremental changes to the software, and helped to

evaluate and fine-tune the methodologies. Participants were given one hour to experiment with

the IGME software. The researcher was available to answer questions and engage in informal

discussions. IGME was supplied on a USB stick. This contained the software and was the vessel

for collecting interaction data from participants. Informed written consent was obtained from

each user before the memory stick was distributed. Each USB stick had a unique name, which

was included on each consent form, so all data could be collated later. Each participant used an

identical computer and operating system (iMac).

8.4.1. Study 1

The first round of these studies took place through March-May 2018 involving 9 participants. A

preliminary study was undertaken with an additional user to catch any unforeseen issues. The

participants were all first-year music technology students studying at the researcher’s university.

They spent an hour with the software, were given a set of printed instructions and tutorials (see

appendix item F), and were asked to complete survey A at the end of the study.
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Figure 8.4.: Results for Q1 - music software experience.

The two initial questions polled users’ experience of music software. Answers to question 1

(Figure 8.4), revealedparticipantsweremostly experiencedwith linearmusic sequencers, butwere

less experienced with score editors and pattern-based sequencers 6. Question 2 asked: “what is

your preferred composition/DAW package?”, five participants answered ‘Logic Pro X’, with each of the

rest answering, respectively, ‘Sibelius’, ‘Reason’, ‘Live’ and ‘Pro Tools’.

Question 3 evaluated the participants’ pre-existing exposure to computer-generated music

techniques (Figure 8.5). Most participants had minimal exposure to the majority of these

techniques. In line with other observations (Section 5.3 and appendix A), none of the participants

had used neural networks, Markov models, or dice games, but around half had used algorithmic

forms of music composition (3G, 3H). Notably, all but one had used an arpeggiator process.

Overall the results suggest users remainedmostly unexposed to generative and algorithmicmusic

processes.

Question 4 asked: “what did you find enjoyable about using IGME”. Answers included “using

generative plug-ins....the range of effects and parameters make it versatile” and “working alongside the

computer”. One participant noted specifically “I enjoyed how quickly ideas could be generated”. Two

users commented the interface was similar to other existing DAWs.

Question 5 asked, “what did you find particularly frustrating7 about using IGME?”. Most criticisms

were about a lack of features and familiar workflows, such as the ability to “edit with mouse drags

6One user recorded ‘none’ for their experience of general music software (E), but this seemed to have been an error
as the same user also recorded ‘lots of experience’ for (A).

7Question 5 focused on frustration, which is rarely covered by HCI research (Brown, Nash, andMitchell, 2017).
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Figure 8.5.: Request for Q3 - using generative music techniques.

and use keyboard shortcuts”. As an alpha version, the software frequently crashed or exhibited

bugs. The biggest complaint was that, as part of the interaction sequence for generating music

output, it was necessary to use the generative engine toggle (disabled by default) and the user had

to “render the piece to activate the generative effect”manually. This also created hidden dependencies,

as triggering playback caused iteration only when the button was toggled. This was redesigned in

future versions (see section 7.5.2).

Question 6 asked, “what part(s) of IGME could be improved (not including the synthesised audio

quality8)”. Most comments focused on improving keyboard shortcuts to match interaction

sequences in similar software. A few users suggested thatmore effects could be added, specifically

at the per-note level, and would also like to “chain up multiple processes”. The plug-in architecture

was redesigned following the second round of pilot studies (discussed shortly). Finally, one

user said “the program’s aesthetics could be improved”. It is unclear how using software that

appears unfinished (prototype) affects the overall user experience. Although IGME’s interface

and graphical design were refined throughout the project, the research made no explicit attempt

to address or study this, which could be an exciting avenue for future research.

Promisingly, when asked, at the end of the survey, whether they would be willing to take part

in similar studies in the future, all 9 participants said ‘yes’. The final question, inviting additional

8The audio at this point in development was notably primitive, with only two instruments inside the software. MIDI
could also be sent out of IGME to an external application for synthesis.
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comments, elicited no significant responses. Although this study was informal, it was paramount

for testing and evaluating the research.

8.4.2. Study 2

The second round of studies took place in November 2018 involving ten participants. All were

second-year music technology students (from the same university as the researcher) and none

had previously used generative music techniques. The format was mostly the same as for the first

study, except this study used survey B. The components that had been added to IGME (based on

round 1) before this study are discussed at the end of this chapter. This round tested and finalised

many of the research elements including the inbuilt tutorial system, complete logging of both

music and interaction data, and the updated user survey.

A full discussion of the results from this sample of the questionnaire is not given, but the

methodology is revisited in Chapter 9, in which participants had a feature-complete version of

IGME and the sample size was larger. Rather, the results here are presented as a cursory analysis

of the research at that point in time. Many questions received neutral answers, which could have

been down to the wording of the question or a lack of time spent with the software, possibly

suggesting participants had gained insufficient knowledge to form a view.

Results

Answers for questions 1-3 are summarised in Figure 8.6. The version control system (VCS) was

mostly well-received, although question 1C (“I feel that the VCS allows me to check my progress”) had

a mixed response and is analysed further in Chapter 9. It was hypothesised that the VCS would

be increasingly useful in longitudinal studies (tested in Chapter 10). As expected, given its novel

workflow, the two-stage editing process (question 2) elicited more varied answers.

The generative plug-ins (question 3) were useful for coming upwith new ideas (3A). However, in

general, users wanted more control over the plug-ins (3C) and to design their own processes (3D).

The underlying computer-generated process architecture was redesigned following this study

and is discussed at the end of this chapter. Some participants found the generative plug-ins

made annoyingmistakes (3B), butmost were neutral about them, highlighting how unpredictable

stochastic processes really are, with it being very easy to generate extreme music, but less easy to

make ‘human-esque’ music. The answers suggest that knowing how easy it is to generate a new
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Figure 8.6.: Results for questions 1-3 from survey B.

variant and stop playback, and that a more pleasing result is possible, users expected or even

tolerated mistakes.

Answers to questions 4-7 are summarised in Figure 8.7. Question 5 is excluded from the

discussion as it was optional (for those who had used reference parts) and only 1 participant

completed it. For question 4, most people agreed it was easy to distinguish the role of different

parts (4A), whereas 4B and 4C received an almost equal split between agree and neutral. Question

6A revealed most users found IGME a challenge to work with. As discussed previously,

maintaining challenge is an essential characteristic of flow, so such a result is not necessarily

alarming. Participants mostly agreed they had enough control over IGME’s generative processes

(6B), but also said the computer had taken away control (6C). The majority of participants found

IGME similar to other sequencers (6F). It is unclear if the tutorial system helped users learn to

adapt (6G). Most participants agreed their knowledge of generative music (6D) had improved as a

result of their involvement in the study.
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Figure 8.7.: Results for questions 4, 6, and 7 from survey B.

For question 7, participants indicated they would use generative music for coming up with new

ideas (7C), and as a tool alongside their own practices (7B), but they were less open to the notion of

automatic accompaniments (7A). On reflection, question 7A was confusing9, so the ordering and

wording of questions were modified in future versions of this survey. Question 7D’s conclusion

that 70% of participants would use computer-generated music in their own compositions is

encouraging.

9As using accompaniments would assume the user already had a starting point (initial music), which conflicts with
question’s wording.
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All Some Neutral Somewhat me All me
1 3 4 2 0

Table 8.2.: Results for question 8, “Having used IGME, how much of the musical creativity do you
attribute to the computer?”

Question 8 (Table 8.2) polled “having used IGME, howmuch of themusical creativity do you attribute

to the computer?’’ with the results leaning towards computer attribution10. To supplement this

question 9 asked “is the authorship of your creative output a concern when using generative techniques?’’

withnineparticipants answering ‘no’ andone ‘yes’. Therefore, even if composers are attributing the

output to the computer, they are not concerned about it. Future versions of this survey included

additional questions to address shortcomings in this area.

The last two questions were “what are the positive/negative aspects of using generative music?’’ with

answers given as textual responses. Positive responses included “this could be used as a time-saving

instrument” and “for coming up with ideas people would not have had on their own”. As one response

states: “it’s free from the bounds of human imagination and creativity which can be limiting sometimes’’.

Negative responses were critical of both IGME and wider issues already documented (Chapter 3)

and included that users sometimes had insufficient control, or that some of the generated output

did not sound pleasing or even make any musical sense. One response was: “you could end up

becoming too reliant on the computer’’, which as another noted “human input is a fundamental part

of music’’. As previously mentioned, the aim of this research was to work alongside humans, not

replace them.

8.5. Amendments

The pilot studies, and subsequent iterations of IGME development, were crucial for catching

issues and errors. Fortunately, onlyminor amendments were needed between and after the initial

pilot studies.

10The answers here probably depended on the extent towhich users had engagedwith generative processes (discussed
further in Chapter 9).
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8.5.1. User Surveys

Following the second pilot study, survey B was converted from a paper handout to an online

form, with the content amended slightly11. Participants were asked for their email address and

IGME product key. Question block 3 added the sub-question, “using generative music/algorithmic

techniques helpedme to come upwith ideas that Iwould not otherwise have created onmy own’’, andblock

6 added “which feature of IGME would you most like to see in your usual music sequencing application’’.

The ordering and wording for question block 7 changed. Based on responses in the pilot

study, suggesting that generativemusic could be a productivity increasing tool, the question “using

generative/algorithmic techniques helps to increase my productivity’’ was included. Blocks 8 and 9 were

extended to include an extra open-ended text response box and an additional question asking

“what is the maximum percentage of automated creativity you would tolerate?’’ with answers given on

a continuous scale, from ‘me only’ to ‘fully the computer’.

8.5.2. Updates to IGME

This section presents an overview of the major changes to IGME during development and user

evaluation. All changes were the result of user feedback. This list is not exhaustive as there are

many smaller insignificant changes, such as bug fixes, typos, and UI resizes.

Iteration and Playback

At first, users were confused over the difference between playback and iteration. When iterations

were triggered by initiating playback with the generative engine toggle button on (off by default),

users were unclear on the exact workflow combinations that would result in playback or iteration.

After the 1st pilot study, playback and iteration were more clearly defined and given separate

buttons. Additional material was also added to the inbuilt tutorials. The need for users to

understand the distinction between deterministic and stochastic music became an identified

threshold concept in Chapter 10.

Plug-in Architecture Change

After the second roundof thepilot study, theplug-in architecturewas found to limit compositional

options. Many users wanted to chain up more than one computer-generated process. This was
11The surveywas also further amended for the real-world conditions studywith this beingdiscussed further inChapter
9.
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Figure 8.8.: IGME’s plug-in list, showing several effects chained up.

achieved both by developing another process, referred to as the note properties editor (discussed

below), and through redesigning the plug-in component.

The note property editor (Figure 8.9) permits the user to select notes in the editor and apply one

of three stochastic processes; chance (the chance of the note happening), pitch range (the range

in which the pitch of the note will be randomised), and duration (the length at which the note

will be randomly increased or shortened). A visualiser was added to show the effect this would

have on each note (Figure 8.10). The note parameter allows per-note generative effects, whereas

the plug-ins process the entire sequence.

Additional Part Types

Reference parts are amore complicated feature of IGME. They were used in the pilot studies only

by the most engaged participants, who found them challenging. Their full potential (discussed in

Chapter 10)was unappreciated until users hadmore experience of IGME, atwhichpoint theywere

seen as crucial. Based on user feedback, the iterator part and repeater part were added (discussed

in Chapter 7).
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Figure 8.9.: IGME’s note properties editor.

Figure 8.10.: Note properties visualised in IGME’s note editor. Up-down represents the pitch
variation, left-right the note length variation, and opacity the note’s chance. Green
coloured notes have these properties applied to them, whereas black notes (default)
do not.
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Figure 8.11.: IGME’s piano roll editor used for editing the seed, and the result viewer (output)
shown in score notation.

Piano Roll Editor

Originally IGME intended to exclusively use score editor notation, however, some users had too

little notional literacy to use IGME effectively. Instead, many were adept at using piano roll

notation, so a piano roll editor (Figure 8.11) was added after the 1-hour workshops (November

2019), before the longitudinal studies. Users were free to switch between score or piano roll in

one of three places: the arrange view inspector, the editor, and the result viewer.

8.5.3. Methodology Amendments

IGME was originally developed to be run in controlled conditions in user-facing workshops.

Giving IGME to composers in their own environments has many benefits, notably mitigating

the Hawthorne effect (McCarney et al., 2007), in which participants modify their actions, on the

perception of being observed. But this presents many technical challenges, including sending

all data remotely, obtaining consent and ring-fencing product activation. The biggest hurdle was

porting IGME toWindows,warrantedby its substantialmarket share (Sethi, 2018). With little or no

marketing, the researcher struggled to draw attention to the project; as a result, few participants

signed up, and of those many only sent limited interaction data. Even with regular conference

127



8. Methodologies, Pilot Studies, and Participatory Design

attendance and a public outreach talk (Watershed, 2019), attracting participants remained a

challenge throughout. The public beta approach was eventually abandoned, but the developed

technology permitted the remote study (discussed in Chapter 9) to take place.

Due to the COVID-19 outbreak of 2020 the longitudinal video study (Chapter 10) had to be

adjusted, resulting in a small sample size (4 total). The researcher deemed this sufficient for

analysis, due to the long periods of time each participant spent with the software. The analysis,

in conjunction with other studies, allowed for conclusions to be drawn. An additional study was

conducted to provide a different set of conditions that had not yet been explored. This presented

the opportunity to run the formal 1-hour workshop of Chapter 9, repeated remotely (discussed

further in Chapter 9). Time and resources prevented the researcher from running additional

studies.

8.6. Conclusion

This chapter details the methods for evaluating IGME and is the foundation for the following

chapters. Chapter 9 discusses the results of 54 participants each using IGME for 1 hour, 23 in

controlled conditions, and 31 in real-world conditions. Chapter 10 discusses longitudinal studies

of IGME, involving screen-recording technologies. The overall findings from the user studies are

collated, discussed, and concluded in Chapter 11.
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9. Studies Using Controlled and Real-World
Conditions

This chapter discusses two studies in which participants explored computer-generated music

composition using IGME in a university computer lab (controlled conditions) and a similar study

conducted remotely as a conference workshop tutorial (real-world uncontrolled conditions). The

participants of these studies are referred to as group 1 (23 participants) and group 2 (31 participants)

respectively.

Quantitative interaction data and qualitative survey data summarising computer-generated

music (CGM) experiences were used to evaluate IGME and to make recommendations for future

systems and interfaces, with the findings extended through the work of the next chapter. Work

from this chapter was originally presented at NIME1 2020, in Hunt, Mitchell, and Nash (2020).

In total, 54 participants used IGME across two different studies, with the overall aim of

understanding:

• “How do the interfaces, tools and workflows engender interactive CGM composition?”

• “What role can CGM take within composition?”

9.1. Background

As stated in previous chapters, computational tools for automatically composingmusic have been

thoroughly explored in literature. However, little research has been undertaken on the use of

such techniques alongside human composition within traditional music sequencing software

(Chapter 4). Instead, existing computer-generated systems use workflows that are unfamiliar to

non-programmer composers (Bellingham, Holland, and Mulholland, 2014a).

1Conference on New Interfaces for Musical Expression.
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Session
Length

Sample
Size

Complete
Survey
Results

Renumeration Survey Date

Controlled 1 hour 23 23 £10 B-2 11/2019
Real-world 2 hours 31 9 no B-3 10/2020

Table 9.1.: Comparison and summary of the two studies.

Limited empirical studies have been conducted on how users interact with music composition

software (probably due to the inherently invasive nature of doing so). Even less research exists

on users of CGM systems. When such studies were conducted, heavy emphasis was placed on

evaluating the quality of the computer-generated output, but not necessarily on the human factors

relating to the use of such systems (discussed in Chapters 4). Moreover, evaluation remains

occasional rather than frequent (Ariza, 2009). In summarising user experience studies from 132

papers from the NIME, SMC and ICMC2 conferences Brown, Nash, andMitchell (2017) found the

composers’ perspectives were rarely evaluated.

Nevels (2013) studied a student composing a song with off-the-shelf software, and Collins

(2005) conducted a three-year case study of a single composer. Both studies were limited by

their small sample size of one, whereas Nash (2011) completed a larger observational study of

tracking software, summarising 1000s of hours of interaction data. Duignan (2010) studied 17

music producers and their use of abstractionmechanisms in commonmusic sequencing software.

However, none of these studies focused on CGM.

9.2. Methods

Two similar, but related, methods were employed for studying interaction. These are discussed

further belowbut summarised in Table 9.1. Both groupswere given survey B (previously discussed

in Chapter 8) at the end of the session. Group 1 were given B-2, and group 2, B-3 which was

amended by adding three new questions (discussed in section 9.2.2). Additionally, interaction

and music data were collected autonomously for all participants. Each participant in group 1 was

remunerated £10 in Amazon vouchers, whereas group 2 were not remunerated.

2New Interfaces for Musical Expression, Sound and Music Computing, and International Computer Music
conferences.
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9.2.1. Controlled Conditions

For the controlled conditions study, 23 first-year undergraduate music technology students (aged

between 18-25, F = 3, M = 20), enrolled at the same university as the researcher, were invited to spend

an hour experimenting with IGME in a university computer lab. 7 of the 23 were creative music

technology students and the others, audio music technology students. The former specialises

in composition, and the latter on a more technical side of audio (for example digital signal

processing).

Two separate sessions, conducted on the 12th November 2019 were run inside a Mac computer

lab at the university with 10 and 13 participants in each. Participants were asked to work through

a series of tutorials3, these can be loosely summarised as follows:

1. Getting started (editing notes, adding parts)

2. Editing Notes (human parts)

3. Adding computer-generated processes (human-computer part)

4. Computer-generated music (computer parts)

Any remaining time could be spent freely. The researcher was present and answered questions

if needed, but otherwise remained a passive observer. After the session, all participants completed

survey B-2.

9.2.2. Real-World Uncontrolled Conditions

The real-world study was conducted on October 19th at the 2020 Joint Conference on AI Music

Creativity (Sturm, 2020). The formatwas adapted toworkunder theCovid-19 lockdownconditions

and therefore run remotelywith 31 participants. Two separate, two-hour4 sessions took place, with

21 and 10 participants respectively.

The tutorial used theBlackboardCollaborateUltra (BBCU) e-learning tool (Hill, 2019), allowing

the researcher to demonstrate the software and PowerPoint slides. A chat window enabled

participants to ask questions and talk among themselves. Despite the intention to follow a plan,

many participants left after an hour, and those that remained were happy enough not to warrant

further demonstrations (step 5 below). The proposed format of the sessions were:

3The tutorial material can be viewed at (Hunt, 2021) or in Appendix Item F.
4Although timetabled for two hours users did on average attend for less than half this time, see Figure 9.7.
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1. Introduction and research background (10 minutes)

2. Software demonstration 1 (5 minutes)

3. Setup (5 minutes)

4. Working through tutorials (40 minutes)

5. Demonstration 2 (20 minutes)

6. Free time (30 minutes)

7. Complete survey (optional)

At the end of the session, participants were emailed and encouraged (but not required) to

complete questionnaire B-3. Of the 31 participants, 9 completed the survey in full and 4 abandoned

it, while 18 did not respond to the email request. Interaction data was automatically collected for

all 31 participants.

Unlike previous studies involving IGME, group 2 participants had broader backgrounds than

the music technology students who, up to that point, had been the only users. All group 2

Participant self described background
The following participants submitted a complete survey response:
• Classical guitarist. Wide interests but particularly Baroque and Jazz.
• I’ve been taking piano lessons for the past 7 years or so.
• Composer, musician, coder. Classically trained on violin, self-taught on piano and
theremin.
• 4 years in classical performance, 1 year in electronic composition. 1 year in creative
computer science.
•Music enthusiast and self-taught musician.
• Music producer, Executive producer, Bandleader, Tour manager, Composer, MusicAI
researcher.
• Newbie, just played around with GarageBand, MAX and web app to create music but
have no music theory knowledge.
• Somewhere between screaming into the void and getting a PhD in composition.
• Electronic music producer/engineer for 20 years. Experience with Digital Performer in
the 90s and 2000s and Ableton Live for the past 10. Have dabbled with Max and Reaktor.
The following participants submitted only a partial survey response:
• BA in Music performance-voice, classical. Concerts and opera projects.
• Sound engineer, audio plugin developer, multi-instrumentalist musician.
• I am a musical enthusiast and I’ve learned most of music theory by myself (youtube
videos, playing with friends). I have no formal musical background. I can play the guitar
and the bass and have a computer science degree. I am interested in generative models
and I have tried some of the generative tools available today, such as Google Magenta’s
plug-ins and custommodels available on github.
• Electronic music, performance, live coder, write own tools in Max/MSP, CSound.

Table 9.2.: Responseswhen asked: “briefly in your ownwords describe yourmusical background”.
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participants were registered conference attendees and had signed up via a link on the conference

homepage a week earlier. The unedited descriptions of their backgrounds are listed in Table 9.2.

Given the conference subject, and subsequent attendance, group 2 participants were inherently

more interested in CGM than those in group 1. 61% of users in this study had used CGM before

compared with 39% among group 1.

9.2.3. Survey Amendments

Anadditional question block (using a 5-point Likert scale) was inserted and asked: “I found learning

IGME using the provided materials (tutorials, presentation and video)”, and “I feel that with time I

could master IGME’’. Compared to group 1, group 2 participants had less immediate help from

the researcher, who was also less able to gauge the ‘mood of the room’, requiring learnability to be

captured more explicitly5. Additionally, participants were asked “briefly in your own words describe

your musical background” as previous versions of this study collected minimal information about

the participant’s background.

9.3. User Survey Results and Discussion

The number of complete survey responses for group 1 (23) was considerably larger than that of

group 2 (9), so comparisons are difficult to make concretely. Although the sample size of group 2

is smaller, it contains self-selecting intrinsically motivated individuals.

To test if the distributions in results between both groups differed significantly, a

Mann-Whitney U test was employed (Bertram, 2007), as the data is ordinal, non-parametric, and

contains independent samples. Thiswas computed between questions 1-7 (excluding 56), resulting

in 28 separate tests. With anα value of 0.05, wefind for 24/28 tests to fail to reject theH0hypothesis

(the distributions are the same) and for questions (2A, 2B, 4B, and 7D) rejectH0 (the distributions

are different), with these being discussed further in the relevant sub-sections below. Table 9.3

shows the resultant values for each test.

In summary, the outcomes of the group 1 and group 2 studies are similar enough, such that

observations, suggestions, and findings are comparable. Table 9.6 and 9.7 additionally shows the

mode andmedian for both group’s answers, which also shows similarity in the responses received.

5Learnability is a theme of the video study discussed at length in the next chapter.
6Was optional and collected few responses.
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Question U statistic p Fail to rejectH0

1 A 105.5 0.465 True
B 103.5 0.431 True
C 89.5 0.224 True
D 97.5 0.334 True

2 A 50 0.005 False
B 55 0.012 False
C 74 0.08 True
D 74 0.058 True

3 A 90.5 0.233 True
B 107 0.492 True
C 102.5 0.416 True
D 80.5 0.123 True
E 102.5 0.416 True

4 A 103 0.424 True
B 67 0.043 False
C 105.5 0.465 True

6 A 69 0.05 True
B 103.5 0.427 True
C 81 0.124 True
D 98 0.341 True
E 71 0.054 True
F 89.5 0.218 True
G 86 0.175 True

7 A 94 0.271 True
B 96.5 0.315 True
C 78 0.1 True
D 63 0.031 False
E 78 0.107 True

Table 9.3.: Mann-Whitney U test results, α = 0.05, n1 = 23, n2 = 9.

The remainder of this section briefly discusses the results for both groups for each question using

a series of figures, with each question having two sets of results, one for each group.
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Figure 9.1.: Questions 1 (version control) and 2 (two-stage editing process) results.

9.3.1. Version Control System

The version control system (VCS) results (Figure 9.1) show most participants agreed the VCS

supported provisionality (1A) and juxtaposabillity (1B). Many participants did not find the VCS

useful for checking progress (progressive evaluation, 1C). With an open-ended task such as music

composition, it is not easy to define ‘progress’. The VCS enables a user to evaluate progress by

loading previous versions and comparing them. However, the survey results suggest this does not

happenoften inpractice7. Whilemost participants thought theVCSmade it easy tomake changes,

therefore having a low level of viscosity (1D), there was some slight variance between both groups.

9.3.2. Two-Stage Editing

The two-stage editing model is designed to increase provisionality (2A), while reducing premature

commitment, viscosity, and hidden dependencies (2B, 2C, and 2D respectively). The results (Figure 9.1)

showmost participants agreed that provisionality increased (2A), premature commitment decreased

(2B) and viscosity decreased marginally (2C). The last question (2D) in this section was on hidden

dependencies. Although 43% of participants found hidden dependencies had increased in group 1,

no meaningful conclusions could be drawn, given the large proportion of neutral answers in both

7This is discussed in detail in Chapter 10
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Figure 9.2.: Questions 3 (generative plug-ins) and 4 (explicit parts) results.

groups. AlthoughH0 is rejected for both 2A and 2B, it remains unclear on the reason for different

responses between groups.

9.3.3. Generative Plug-ins

The questions in this block were not explicitly aligned with any of the cognitive dimensions but

were intended to evaluate IGME’s computer-generated effects. The results (Figure 9.2) show the

majority of participants agreed that the computer-generated plug-ins helped them “to come upwith

ideas” (3A). Similarly when asked “if the program generated ideas they would not have come up with on

their own” (3E)most agreed thiswas the case. Themajority of participants said theywould like tobe

able to define their own generative effects (3D), but they remained generally neutral when asked if

theywould likemore control over the generative processes (3C). Slightlymore ‘agree’ answers were

given among group 2 for 3D, although themedian andmodewere the same for both groups. Group

2 contained more experienced music practitioners, who perhaps wished to have more control.

When asked if the software made annoying mistakes (3B), answers were mixed. It is difficult to

draw meaningful conclusions when assessing musical quality, given its subjective nature. For

example, a musical pattern may sound terrible to one person while being wholly acceptable to

another.
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Figure 9.3.: Question 6 (IGME system) results.

9.3.4. Explicit Parts

Regarding the 4th question (Figure 9.2), most participants agreed that it was easy to distinguish

between parts (4A). Group 1 agreed it was easy to find the part they were looking for when editing

(4B), whereas group 2 were more neutral. The median differed andH0 was rejected for question

4B. The majority of participants agreed that breaking the music into parts made it easy to try out

new ideas (4C).

9.3.5. IGME System Questions

This block of questionswas about IGME in general. One shortcoming of the cognitive dimensions

is that they fail to capture learnability. Work by Nash and Blackwell (2012) addresses this by

defining a virtuosity dimension. Given the limited time spent with IGME, it is unlikely the users

would have become virtuosic with it. However, questions 6D and 6G can be aligned with our

definition of learnability, which is “how easy is it to learn the interface”. Questions 6B and 6C did not

map strictly to any dimension.

Answers to question 6A were balanced for group 1 (Figure 9.3), suggesting that any hard

mental operations are relatively forgiving, whereas group 2 found these slightly more taxing. The

majority of respondents to question 6B felt they had suitable control over the generative processes.

Concerning 6C, the majority of group 1 agreed that some control had been handed over to the

computer, while a few participants in group 2 disagreed with this.
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Figure 9.4.: Question 7 (using generative music) results

IGME was designed to be similar to other music software, borrowing design metaphors and

workflows to aid learnability, although its unique features make it sufficiently different from other

software. In terms of learnability, most participants agreed their knowledge of generative music

had improved (6D). Askedwhether IGME’s inbuilt tutorial system (6G) had helped them learn the

software, the majority agreed. Responses to 6F were mostly positive.

Finally, question 6E evaluated the ability of IGME users to explore new ideas. Almost all

respondents in group 1 (91%) agreed that IGME did help them to explore new ideas, and group

2 gave similar results.

9.3.6. Using Generative Music

The questions in this section looked at in what situations CGM might be used and were

not related to the cognitive dimensions (Figure 9.4). The majority of participants would use

computer-generated techniques to come up with ideas (7A), and also to use such techniques for

exploring different permutations of their own music (7B). Participants were equally happy to use

automatically generated accompaniments (7C). Responses to question 7D were more polarised

among group 1, whereas the majority of group 2 were in agreement, h0 was also rejected,

which can probably be explained by group 2 being inherently more interested in the subject

(computer-music).

As reflected in the number of ‘strongly agree’ responses to questions 7A and 7B, and the slightly

larger number of ‘neutral’ or ‘disagree’ responses to 7D, it could be argued that computer-generated
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music is best used as a catalyst for composition and for influencing and motivating individuals

rather than for replacing them. Participants said they would use computer-generated music to

create and alter ideas, but would not necessarily use it directly. Both of these crucial findings are

discussed at length in Chapter 11.

When asked if CGM can be used to increase productivity (7E), results were balanced for both

groups. Although CGM can be used to replace composition (potentially saving time), it can take

many iterations to create something useful, thereby hindering productivity.

One stand-out observation is that few people from group 2 gave a neutral answer to the

questions in this block. Given that more participants of group 2 had used CGM than group 1 they

might already have a strong opinion of its merits or deficiencies8.

9.3.7. Creativity

Figure 9.5.: Responses for both groups when asked: having used IGME, howmuch of the musical
creativity do you attribute to the computer?

Balanced responses were given to the question “having used IGME, how much of the musical

creativity do you attribute to the computer?” (Figure 9.5). Notably, no-one responded ‘all’ for the

computer, suggesting that, with CGM, a degree of authorship remains with the user.

When asked “is the authorship of your creative output a concern when using generative techniques?”

43% in group 1, and 33% in group 2 answered ‘yes’. Given the option to comment further, one

participant stated, “once the system begins to be an AI, issues of authorship arise, but for adding what

is essentially a curated random chance, authorship and credit belong to the user.” Another gave this

additional response:

8As noted previously CGM techniques are not for everyone.
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“When using AI the composer sometimes becomes a ”selector” in the Jamaican DJ sense of

that word. I’m perfectly comfortable with this role. These types of algorithms don’t give me

authorship concerns per se; however if I imported a BeatlesMIDI file culled from the internet,

and non-creatively asked the algorithms to create moremusic like the importedMIDI, there’s

a nonzero chance I could run afoul of copyright law. Ultimately like for every tool creativity

resides largely with the creator. It’s tough for me to answer the last 0%-100% question. I’d

tolerate 100% if I could set an AI music algorithm on autopilot, let it automatically upload

music to streaming services, profit handsomely from the activity and spend all my newfound

free time studying composition, producing, and playing jazz piano.”

Participants used a sliding 0-100 scale when responding to “what is the maximum percentage of

automated creativity you would tolerate?” (see Figure 9.6). Participants in group 2 had a higher

tolerance for accepting the computer’s input, likely due to their background. In summary, users

appeared to accept some of the computer’s creative input9.

Figure 9.6.: Results for the above question.

9This finding reoccurs throughout the user studies, and is discussed at length in the conclusion (Chapter 11)
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9.3.8. Open Questions

Thefinal twoquestionswere “what are the positive and negative aspects of using generativemusic”, with

qualitative responses given. A list of all responses for these questions is given in appendix item

E. For positive responses in group 1, one stated: “It can create ideas that you would never otherwise

come up with”, with two others echoing similar thoughts. One individual said computer-generated

music could “help people stuck in a creative rut”, while another said “you don’t have to type different

sequences in over and over to try things out”. One participant from group 2 stated: “It is faster and more

efficient, and can easily be rearranged according to the users’ needs... and also allows people to compose

their own music without having to learn musical theory”, while another said: “That I can understand

my own creative process better, and develop new ideas using strictly the values I’ve predetermined”.

For negative responses in group 1, two participants said the music created would not be

considered their own and they would have lost some control over the composition process,

although one stated “you aren’t forced to use exactlywhat’s generated”. It was observed that it could be

time-consuming to create something that sounded ‘decent’ and that ‘chance’ played a key role, with

another stating specifically, “it can take very long to get something you like by chance”. Another wrote

that: “there can be a lack in originality/identity in generative music over music that a person has made

themselves”. One participant said that it is “almost too easy to make something, takes away part of the

challenge?’. Music composition can be considered a problem-solving (or constraint satisfaction)

activity (Alty, 1995), and in computer-generated music, the problem-solving activity is perhaps

the challenge of configuring parameters to produce a good result, rather than simply arranging

a sequence of notes.

One participant from group 2 responded, “the system could be a threat and could be detrimental

to composer employment”. Another stated: ‘AI’ is sometimes seen as a threat by “people who know

nothing about it”. Another response that echoed the project’s objectives was: “generative music

systems should always be thought of and developed as tools that enhance and support human creativity

rather than replacing it.” One user believed more constraints were needed (a recurring theme in

Chapter 10) as the system was too random, requiring “more constraints based on music cognitive

science”.
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I found learning IGME using the provided materials:
Very easy Somewhat

easy Neutral Somewhat
challenging

Very
challenging

2 3 0 4 0

Table 9.4.: Results for the above question.

I feel that with time I could master IGME:
Strongly
agree

Somewhat
agree Neutral Somewhat

disagree
Strongly
disagree

6 3 0 0 0

Table 9.5.: Results for the above question, n = 9.

9.3.9. Specific Questions for Group 2

The results in Tables 9.4 and 9.5 show the two additional questions added exclusively to the

survey presented to group 2. The responses suggest users mostly found IGME easy to learn,

but that it came with challenges. As already observed, a degree of challenge is needed for

problem-solving/seeking exercises, and to induce a state of flow (Nash, 2011). All users agreed

they could master IGME, but it is unclear how long this would take.

9.4. Interaction Data

This section briefly looks at the interaction data collected from both user groups. Interaction and

music data are further discussed in Chapter 10 when users had additional time to use IGME. The

sample size of group 2 was reduced to 24 (from 31) after inspecting the data, with the reasons for

this discussed below.

9.4.1. Time

The time each user spent with IGME is shown in Figure 9.7. Group 1 spent on average 44

minutes with IGME, with the remaining time spent registering the software, and completing the

questionnaire. Group 2 spent on average less time, however, the results show several outliers.

Excluded from further analysis were 5 participants who stopped using IGME within 3 minutes of

starting, and one who despite having IGME open for 2 hours recorded no activity until the last 5

minutes. Another participant in group 2made no note edits, but recorded almost 1000 interaction

points for configuring note parameters, switched notation 40 times, and changed instrument

sound 90 times (over the 2 hours). That individual did not trigger any iterations, or produce any
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Figure 9.7.: Amount of time users spent with IGME (group 1 and 2)

audio playback, suggesting severe problems with learning the software and again removed from

further analysis.

None of these 7 participants (outliers) provided a survey response. As noted by Gerken et al.

(2008), users’ behaviour cannot always be explained by interaction data, and in this case, left more

questions than answers. In addition, such anomalies were not found in group 1, likely as a result

of the controlled conditions.

One difference between each group was the duration spent between editing and arranging

(Figure 9.8). Group 1 spent almost twice as much time in the editor than in the arrange view,

whereas in group 2 the time spent was more varied.
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Figure 9.8.: Time spent in edit vs arrange views in IGME for both groups.
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Figure 9.9.: The time taken to produce first iteration (group 1 and 2)

9.4.2. Iteration

Inspecting the time stamp of the first iteration (in the interaction data) reveals how long it took

to interact with CGM techniques. Figure 9.9 shows that on average group 2 were slightly slower

than group 1, but contained several outliers - notably several participants were far quicker than

average. Both groups had access to the same tutorial material, but group 2 were given a 5-minute

demonstration of IGME, therefore these are not necessarily comparable. However, in summary,

users were generally able to quickly learn IGME’s interface, and begin to make CGM in both the

controlled or real-world conditions.

The interaction data showed that participants were triggering iterations, but not fully listening

to the resultant output, instead of either triggering another iteration or returning to editing. This
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will be referred to as ‘partial iteration’. The results in Figure 9.10 show wide variance and large

outliers (particularly in group 1), suggesting some users were keen to hear many permutations of

CGM. Reasons for this phenomenon are further explored in Chapter 10.

Figure 9.10.: Iteration ratio for each user.
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9.5. Methodology Comparisons and Technical Difficulties

Despite the second study being similar to the first, there were notable (if unavoidable)

methodological differences between the two, highlighting the opportunities and complications

of running sessions remotely. The BBCU learning tool mostly proved adequate for presenting the

workshop remotely.

Such studies would not have been possible without the high-quality video and audio stream

afforded by high-speed internet, although not all participants had the same experience, as some

reported that the transmitted system audio was lacking in quality, resulting in ‘low-fidelity’ sound

in the music examples.

At the time of writing, the BBCU tool transmits only a mono stream (taking the left channel

only) from an otherwise stereo audio application. Due to the different technologies and encoding

of video/audio, audio drop-out is often more noticeable than video.

The chat window feature proved useful when setting up. For example, using the Windows 10

version of IGME requires the manual installation of a font, something that had been overlooked

by the researcher. Fortunately, a participant was quick to realise the requirement and instructed

others on a solution. Unlike other studies on IGME, the end-user’s computer was not a

controllable quality. In addition, the previous studies had exclusively used MacOS. Other issues

included having to bypass gatekeeper onMacOS 10.15, due toApple’s increased securitymeasures,

something that had also been overlooked at the time.

Some participants were confused about the steps required to activate the software. Such issues

could be attributed to the tools used. For the study and the software to meet ethical approval,

consent had to be obtained and data had to be ring-fenced and protected, requiring several

involved steps. In other in-person IGME studies, the researcher was able to ensure all users

were properly set up, a luxury not afforded in this study. This might explain why users found

it challenging to get started with IGME as part of the failed public beta (Chapter 7).

The primary benefit of running a user study remotely is that it opens it to a potentially much

larger pool of participants, broadening access for users. Also, users would probably feel more

comfortable working with their own computers in familiar surroundings, helping to further

minimise theHawthorne effect.
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9.6. Conclusions

Similar survey results were collected for both groups. This suggests that being a participant in

controlled or real-world conditions had minimal effect on the participants’ survey response. This

mitigates some of the concerns associated with the Hawthorne effect (McCarney et al., 2007).

However, the interaction data produced different results, for example, whereas all participants of

group 1 remained in the session until the end and completed the survey, 71% of group 2 left and did

not complete the survey. This might suggest that participants of group 1 were encouraged to stay

because of remuneration, whereas group 2 were intrinsically motivated, given their attendance at

the conference in which the study was held.

This chapter has shown that users would use CGM to inspire andmotivate them to create initial

music ideas. Users remained somewhat apprehensive about directly using the output of CGM in

their own music. Participants agreed with the merits of the version control system, and two-stage

editing process. Participants were quick to get started with IGME and produce iterations, likely

the merits of retaining the familiar workflows and interface paradigms of existing music software

permitted this.

One advantage of the controlled conditions study was that it was easy to ensure participants

had installed the software correctly and that everyone completed the survey. As evidenced by

discussions in section 9.2, remote study participants found it more difficult to get started, and it

proved harder to engage them.

A limitation of the study was that most users spent less than one hour with the software. The

next chapter discusses many of the same concepts as in this chapter but considers these with

participants that engagedwith IGME for longer periods. The findings of this chapter are extended

through Chapter 10 before formal conclusions are drawn in Chapter 11.
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Question Group A Group B
Median Mode Median Mode Median Dif

1
A: I feel that the VCS
encourages me to experiment
with ideas.

2 1 1 1 1

B: I feel that the VCS allows
me to easily compare different
iterations.

2 2 2 1 0

C: I feel that the VCS allows me
to check my progress.

2 3 3 1 -1

D: Using the VCS makes it easy
to go back and make changes to
the music.

2 2 2 1 0

2
A. The TSEP allows me to
rapidly enter ideas.

2 2 2 2 0

B. The TSEP allowsme tomake
edits in any order.

2 2 3 3 -1

C. The TSEPmakes it easy to go
back and make changes to the
music.

2 1 3 3 -1

D. I feel that the TSEP creates
hidden dependencies.

3 3 3 3 0

3

A: The GP in IGME helped me
to come up with new ideas.

2 1 2 2 0

B: I find that the GP make
annoying mistakes.

3 3 3 3 0

C: I would like more control
over the GP.

3 3 3 3 0

D: I would like to be able to
define my own GP.

2 2 2 2 0

E: Using GP helped me to
generate ideas that I would not
have created myself.

2 2 2 2 0

4
A. I feel that it is easy to
distinguish between human
parts and computer parts.

2 1 2 2 0

B. Is it easy to find the type of
part I am looking for.

2 3 3 3 -1

C. Breaking themusic into parts
makes it easy to try out new
ideas.

2 1 2 1 0

Table 9.6.: Table of comparisons between both groups answers to the first 4 questions. 1 = strongly
agree, and 5 = strongly disagree.
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Question Group A Group B
Median Mode Median Mode Median Dif

6

A. When writing music within
IGME, there were difficult
things to work out in my head.

3 3 2 3 1

B. I feel that I have suitable
control over the generative
processes in IGME.

2 2 2 2 0

C. I feel that the computer
has taken some control of the
composition process in IGME.

2 2 3 3 -1

D. I feel that my knowledge of
generative music has improved
since using IGME.

2 2 2 2 0

E. The interface provided by
IGME allows me to easily
explore new ideas.

2 1 2 2 0

F. IGME’s workflow is similar
to other score editors and
sequencers.

2 2 2 2 0

G. The tutorial system inside
IGME helped me to learn the
software quickly.

1 1 2 1 -1

7

A: I would use CGM techniques
to helpme to come upwith new
ideas.

1 1 2 2 -1

B: I would use CGM
techniques to explore different
permutations of my own
material.

2 1 1 1 1

C: I would use accompaniments
created by the computer
alongside my own composed
music.

2 2 2 2 0

D: I would use music the
computer has generated in my
own compositions.

2 2 1 1 1

E: Using generative/algorithmic
techniques helps to increasemy
productivity.

2 3 2 1 0

Table 9.7.: Table of comparisons between both groups answers to questions 6 and 7. 1 = strongly
agree, and 5 = strongly disagree.
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10. Longitudinal Studies in End-User
Computer-Generated Music

Previous studies of IGME were focused on short engagements, with larger sample sizes,

whereas the work presented here involved more detailed use of IGME over a longer period.

Screen recordings of participants were analysed and categorised into themes. Commonality

between participants created discussion points on the mechanisms and techniques that enabled

computer-generated music (CGM) workflows and their roles in computer-human composition.

10.1. Method

For this longitudinal study, (similar to those discussed in Chapter 9), people who had taken

part in an earlier IGME study were contacted. Of those, 4 completed the study. Figure 10.1

shows an overview of how participants progressed from initial studies (Chapter 9) through to

the longitudinal study. A pilot study was undertaken with an additional individual, to test and

evaluate the entire process and subsequentmethodology. Everyonewho volunteered for the study

received a £40 Amazon voucher.

The brief for the four participants was: “compose music while considering the computer (IGME) as

a collaborator”. Each participant was given an anonymised name: Cameron, Tim, Gary, and Liam

– to help with identification and general discussion.

Participants used IGME for 4 hours, split into two 2-hour sessions one week apart. They

were able to reference tutorials supplied via a website1. The researcher was physically present

throughout to answer questions but otherwise remained a passive observer2, permitting further

notes to be jotted down.

1The tutorial material can be viewed at Hunt (2021).
2Exceptions are discussed at the end of this chapter.
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Figure 10.1.: A flowchart showing participant selection and motivation.

Screen-recording software, capturing internal audio output and microphone input, was used.

As with other studies involving IGME, music and interaction data was logged and sent remotely.

The music created by each participant was analysed and discussed. Cameron completed one

composition across the two sessions. Tim and Liam each completed one composition per session

while Gary created four smaller pieces overall. All produced smaller compositions at the start

whilst learning IGME. However, due to space constraints, these are not discussed here.

10.1.1. Surveys

Participants were given survey C to complete before the study, and survey B2 at the end of each

2-hour session, revealing how their opinions modulate over time.

The results from surveyC show the participants’ backgrounds revealing theywere experienced,

music practitioners. All could play at least one instrument and had spent between 3-10 years

composing music. Three of the four declared themselves ‘expert’ in one or more types of
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music software and said they balanced their compositional activities between the computer

and non-computer (i.e. playing an instrument). In contrast to the findings in section 10.2.4

(problem-solving theme), three said their composition was not guided by their knowledge of

music theory. This statement is conflicting as users still need some knowledge of music theory

(i.e. editing and reading scores) to use IGME. Similarly, the wording of this question implies that

users follow music theory explicitly (i.e. no accidentals), but, as stated previously, music is as

much about breaking ‘rules’ as following them. Therefore, the interpretation of the question may

provide some of the reasoning behind this disparity. Similar to the findings in Chapter 5, users

had used arpeggiators, minimalist, and serialist processes, but had used neither neural networks

norMarkovmodels. Figures supporting this discussion are shown in Appendix E (Figures 10 - 15).

10.1.2. Technology

Video recordings and screen recordings are particularly useful for logging human-computer

iterations (Preece, Sharp, and Rogers, 2015) as they produce an objective record of events while

they unfold, and permit the unobtrusive collection of intricate computer work (Tang et al.,

2006). FitzGerald (2012) introduces the field of video analysis, which is discussed in more

depth by Erickson (2006). Video analysis is useful for studying interaction and performance in

music contexts. For example, Xambó et al. (2013a) studied groups interacting with the Reactable

instrument. The observation of recorded interaction can be quantified (how many times did this

interaction happen). However, qualitative descriptors are more common.

Xambó et al. (2013b) notes that video analysis methodologies are not formally established. For

example, Coorevits et al. (2015) analyses video footage of guitarists, applying themes to themusical

expressions observed. Although the methodology is not a formal thematic analysis (discussed

shortly) it has many parallels.

10.1.3. Thematic Analysis

Rosala (2019) defines thematic analysis as a “systematic method of breaking down and organizing rich

data from qualitative research by tagging individual observations and quotations with appropriate codes,

to facilitate the discovery of significant themes”. Thematic analysis is normally used for text-based

data, such as interview transcripts, but can be applied to any qualitative data.
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Braun and Clarke (2006) define 6 steps for such analysis:

1. Familiarising yourself with the data.

2. Generating initial codes.

3. Searching for themes.

4. Reviewing themes.

5. Defining and naming themes.

6. Producing the report.

Data can be analysed bottom-up (inductive) or top-down (theoretical or deductive). Inductive

means themes are directly linked to the data, allowing themes to develop through the data itself.

Deductive can result inmislabelleddata, especiallywhendatamust fitwithinpre-selected themes,

theories or hypotheses. Thematic analysis allows for the discovery of ‘answers’when the questions

are not necessarily known. Tanaka et al. (2012) used thematic analysis to examine the results of a

user survey on mobile music GUIs, to reveal themes not explicitly targeted by the survey.

The video interaction descriptions (discussed shortly) are qualitative and as such are examined

under a thematic analysis framework. This research was intended to be as open as possible, to

capture themes that the research may not have originally hypothesised.

The data collected from the video was mostly qualitative descriptions of interaction, with few,

if any, spoken observations. This rules out two commonly used methodologies for qualitative

research - discourse analysis and grounded theory. Discourse analysis is primarily used for the

analysis of text or spoken language (Thompson, 2002). Likewise grounded theory (Grossoehme,

2014) requires primarily interview data and necessitates the data collection continues until hitting

a saturation point (when no new information is being learned), subsequently requiring more

participants than this study had. It also assumes from the outset the researchers don’t have any

existing theories3.

10.1.4. Encoding Observations

Interactions observed in the video were logged (text) in a spreadsheet along with a timestamp,

the corresponding IGME iteration (if applicable), and interaction type (e.g. spoken, physical).

Between 720 and 780 observations were recorded for each participant and summarised as

high-level user interactions. For example, “user added a new part t1p1”, rather than; “user-selected
3The research in this section builds upon the findings of the previous studies, so negates this.
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Figure 10.2.: A photo showing the physical set-up for analysing video footage, data sheet (left),
video recording (right).

track 1, bar 1, right-clicked and selected add part”. The spoken dialogue was similarly summarised4.

The lower-level granularity of interaction was captured through the internal IGME logging

system.

Each observation was evaluated and tagged with a mid-level theme summarising the user’s

actions. General themes were grouped and described the users’ interaction routines with IGME.

This bottom-up approach allowed for the discovery of themes, rather than for high-level themes

to have been assumed at the outset.

10.2. Resultant Themes

The following sectiondetails each theme,with thediscussionpoints creating a lens throughwhich

the interaction andmusic datawere analysed. Although listed individually, the themes havemany

cross-over points. The seven themes to emerge from the study were:

A Human-computer composed music.

B Edit, iteration, and evaluation cycles.

C Familiar; plug-ins, workflows, and routines.

D Music Theory and problem-solving.

E Version control.

4Examining the entropy of verbatimdialoguewas deemedunnecessary for this study andwouldhavebeen excessively
time-consuming.
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Figure 10.3.: A diagram showing a visualisation of the resultant themes.

F High-level structure.

G Learnability, virtuosity, and threshold concepts.

The work here is examined through a computer-generated music lens, however, the more

general discussions around computer music composition might also be useful for the field. The

themes are visualised in Figure 10.3.

10.2.1. A: Human-Computer ComposedMusic

“Users interacting with IGME use it to generate new ideas, or create variants of existing ones.”

Processes employed by users for working with generative music were varied and nuanced,

with some concepts common not just across this study but across studies discussed previously.

The computer’s main role, other than for music sequencing elements, was to act as a catalyst

for creativity, aiding rather than replacing human creativity. The composition process was

made more complex because, instead of just arranging notes, users had to arrange and debug

computer-generated processes. They also had to juxtapose human and computer output,

bouncing between the role of composer, curator, and music appraiser.
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Human Human-computer Computer Reference Iterator Repeater
Median length 0.81 1.00 1.00 1.00 1.00 4.00
Mean length 0.89 1.07 2.37 1.19 0.96 3.06
Sample Size 501 1902 333 196 187 32

Table 10.1.: Average part length by type and sample size.

Using the computer to come up with ideas and, more frequently, using it to develop existing

ideas were the two core workflows that emerged from examining the uses for CGM. Participants

whoworkedwith IGME found the computerwas able to compose some of the lower-level (phrase)

content, freeing them to evaluate those creations and then sequence different iterations together.

One user said: “I am enjoying not having to think about melody much because I am letting the computer

do it’’. Users commonly chained upmore than one computer-generated process. For example, they

used the note parameter editor to vary a sequence and then applied (e.g. pitch quantiser) plug-ins

to constrain it.

The varied roles for CGMwere oftenmaterialised through different processes, Liam noted that,

upon trying two plug-ins, the wind chime plug-in simply produced a rearrangement of what he

had already composed, whereas the transition table created new material with similar musical

characteristics. Understanding the different processes enabled participants to determine which

should be used for the current composition task (discussed more in theme D).

The composition was developed in a mostly linear fashion, with users working on one musical

part before moving on to another. Parts remained short in length (usually a single 4/4 bar), as

illustrated in Figure 10.4 which shows the distribution for the length of themusic grouped by part

type, and Table 10.1 shows the median, mean, and sample size for each type. Human parts tended

to be the smallest at around or just under a bar, while human-computer, reference and iterator

parts were slightly longer. This is likely due to them being used to model high-level structures.

The results for the computer part were significantly longer, but the sample size was considerably

smaller. The role of the repeater part would appear to be for ‘chunking’ togethermusical structure.

Of all the music created during the sessions, only 14 human-computer parts and 5

computer-parts were over 10 bars in length, accounting for just 0.63% of the total. These are not

included in the results above as they are considered extreme anomalies.

The manual creation of simple sequences and the use of generative processes to modify them,

most frequently with the note parameter editor (see theme C for plug-in use), were the most

commonworkflows. Several of IGME’s plug-ins, namely the transition table (TT) and distribution
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Figure 10.4.: A distribution of part result length, grouped by part type.

sample (DS), were used to produce music with similar characteristics to the user’s music. By

analysing existingmusic, either by specifying a range from a given track or by analysing the entire

session, users could generate new music in a similar style, and still had the option of adjusting or

tweaking the parameters.

Gary had been initially dismissive of the DS plug-in and had struggled to find a meaningful

use for CGM. However, at the end of session 2, having composed a lot of music manually, he used

the DS plug-in and, after tweaking various parameters, stated “this is now very useful because it (the

computer) knows what I want. I understand the IGME processes more, whereas before I found it hard to

make use of ideas from nothing, but I find it useful when I already have ideas in the piece”.

Gary’s response was shared by other participants, suggesting that, of the two main uses for

generativemusic, the ability toworkwith existingmusic is preferable to generating it from scratch.

This finding is discussed again in Chapter 11. Using the computer to generate an idea from scratch

was mainly achieved through the seed generator plug-ins. Cameron noted that this process was

quite quick: “you just fiddle with some knobs, you can get something decent quite quickly”.

Cameron noted that trying a process such as retrograde in Sibelius meant applying the process

manually, whereas with IGME it was possible to listen to the output of various processes and pick

the one that sounded best rather than simply following the algorithm.

158



10. Longitudinal Studies in End-User Computer-Generated Music

The part conversion was a process whereby a computer-generated, or reference part was

converted back to a human part for more fine-grain editing. This process could be described as

taking ownership, with the computer’s compositional role no longer required. This process allowed

any small mistakes by the computer to be easily rectified, rather than continuously re-iterating.

Users expressed frustration at this process, often wanting to regenerate only a subdivision of a bar

while retaining the fragments they were happy with, possibly suggesting that part conversion was

the only option (problem-solving) and not the preferred approach.

Cameron stated “I like to humanise a part’’, by converting a computer-generated idea into ahuman

part. At this point, he remarked “I guess I own it’’. At the end of the session, Cameron commented:

“it did end up sounding like my music’’. When asked, “do you attribute this to yourself?”, the answer

was: “it’s definitely mymusic’’. These statements emphasise that authorship is not a concern for this

user5.

10.2.2. B: Edit, Iteration, and Evaluation Cycles

“Users composing music, configured effects and evaluated the output using an iterative process.”

Edit-iteration-evaluation (EIE) cycles were a recurrent theme in which users edited either a

sequence of notes and/or computer-generated model parameters, computed an iteration, and

then evaluated this through auditioning it and visually inspecting the notation. Therefore this

theme combined editing, iterating and evaluating. The differences between simple playback

and iteration caused initial confusion to participants in all the studies and became an identified

threshold concept (see theme G). Figure 10.5 shows an annotated visualisation of the interaction

data, showing users editing notes, doing iterations, and listening to the output.

A rapid EIE cycle was a common workflow in which users rapidly iterated output, producing

many variants of a generative model, often coupled with editing notes and/or parameters. This

phenomenon was observed in all users. The rapid EIE cycles can be primarily attributed to the

two-stage editing process and theVCS.Althoughplayingmostly a passive rolewithinEIE, theVCS

was a safety net and also offered the ability to revisit the musical material, encouraging users to

work rapidly, exploring the limits of a given generative process. As noted by Nash (2011), existing

theories of flow emphasise the importance of rapid edit-audition cycles.

5Themes associated with authorship are explored again in Chapter 11.
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Figure 10.5.: Visualisation of a general edit-iteration cycle inside the IGME interaction analyser.
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Figure 10.6.: Visualisation of a rapid iteration, few if any edits happen.
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Occasionally, users triggered rapid iteration, as the output had not changed, either because an

effect had not been applied or had been inadvertently disabled, requiring users to problem solve

(see themeD), although this was an anomaly rather than a common reason for rapid iteration. As

Cameron noted, it was not always possible to tell if there was any variance between iterations.

During EIE cycles, users would often terminate playback of output, because they had requested

another iteration be produced, resulting in rapid iteration and partial evaluation (RIPE). There

may be three possible reasons for this. The first is enjoyment, with users wanting to hear many

different versions of the generative process they had configured. The second reason is that users

could see issues with the score6, such as a high occurrence of accidentals or large melodic leaps,

and quickly deemed this unacceptable. The third reason was that users were unable to find a

suitable iteration, although this is less likely, as they could just have returned to editing.

During Session 1, Tim generated 27 iterations in under a minute, which was unlikely to have

happened with regular forms of composition. An example of this, seen in the IGME interaction

analyser, is given in Figure 10.6. Tim later stated “I just keep going through different iterations until I

get something that I like”. Thiswas Possibly a criticismofCGM,highlighting the reliance on ‘chance’

in that the ‘perfect’ musical content will possibly appear but is not guaranteed.

As the music developed, the frequency of iterations tended to tail off, resulting in a more

contemplative EIE cycle, in which most musical output was auditioned in full. Users tended to

jumpbackwards and forwards between the editor (auditioning solo) and the timeline (auditioning

in context), sometimes generating new iterations locally. They were critical of this division of

editing and arranging. Parts were developed in isolation, but additional steps were required

to audition newly-created parts alongside material on the timeline. As the session neared its

conclusion, longer periods of playback increased in frequency, probably an inherent side effect of

having a more complete (longer) piece. As users progressed through iterations, parameter ranges

becomemore constrained, narrowing the stochastic search space for computer-generated output.

This was particularly observed with the note parameter editor7.

6The ability to recognise issues with visual notation from existing knowledge of music theory and debug generative
processes is discussed in theme D.

7This was observed throughout the video but exact patterns were harder to discover in the ‘noisy’ interaction data.
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Figure 10.7.: Box and whisker plot of the difference in ms between iterations for each user.
Excludes outliers above 30 seconds.

Users were often quick to audition edits. However, sometimes a series of edits or high-level

processes that did not produce an immediate audible effect would be completed before

auditioning. This suggested that either users were confident that processes would work without

error, or that itwasworthwhile to execute a pre-determinedmentalmindmap (themeD) requiring

multiple steps before an audition. Not all the evaluation was audible, as visualisation of the score,

arrangement on the timeline, and explicit dependencies (theme F) were also mechanisms for

evaluation.

The interaction data revealed the frequency of iterations, and also the amount of playback

triggered by the user. Figure 10.7 shows a box and whisker plot for the interval in milliseconds

between subsequent iterations occurring less than 30 seconds apart. Table 10.2 shows the total

iterations for eachparticipant, split into defined types. Themedian for all participants (Figure 10.7)

was between 4 and 6 seconds, suggesting that rapid iteration was a common occurrence. Partial

iteration was seen in all users, but especially for Liam and Tim, with 16% and 18% respectively,

meaning they had triggered another iteration before fully auditioning the subsequent output.

Arrange view iterations were recorded when the user iterated on the timeline, triggering all

unlocked parts to be reiterated, although this was an uncommon occurrence.
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Name
Group Observation Cam Gary Tim Liam

Iterations
Total 392 569 540 676
Partial 19 19 98 110
Arrange 11 6 0 13

Time in (minutes)
Playback 44 53 29 48
Arrange view 157 137 71 89
Edit view 63 87 132 121
Total 220 223 203 211

Tracks Added 9 13 10 13
Removed 1 1 0 4

Parts
Added 151 118 134 88
Removed 72 60 44 28
Converted 19 20 0 7

Edited
Sounds 403 446 72 249
Note parameters 3741 496 16028 12716
Notes 668 1444 2583 3365

View switched focus 343 416 200 213
Playback engine state changes 3077 4012 3582 3586

Table 10.2.: Various metrics captured from the interaction data (both session are summed).

Figure 10.8 illustrates how many iterations per part were needed to finalise or arrive at a

desirable solution. Human parts have low iterations8, compared with human-computer, and

computer parts, i.e. fewer revisions are needed to achieve suitable content. Thismight suggest that

the user is in control of human parts, leading to fewer iterations, whereas the stochastic processes

of human-computer and computer parts leads to a higher frequency of iterations. This creates

tension between a user’s ability to control either human or computer parts. On average, iterator

and reference parts have low total iterations, as these tend to develop rather than create newmusic

(discussed in theme F).

8Iteration for a human part means users made a series of edits and then audition, registering a new iteration in the
VCS, repeated auditions do not constitute a new iteration.
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Figure 10.8.: Iterations per part type.
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10.2.3. C: Familiar; Plug-ins, Workflows, and Routines.

“A user applied a sense of consistency across their choice and application of plug-ins, workflows, and

routines.”

All users had prior experience with digital music composition. Within IGME, they applied

established routines for digital music composition and found ways to combine IGME’s unique

features and workflows. Although keen to explore the various plug-ins and effects inside IGME,

they seemed to settle on a small number of these, focusing on mastering and exploring the limits

of each. This resulted in the same set of procedures being applied across several parts. Although

at first, this appeared to be limiting, it made the musical structure more cohesive. Sometimes,

users would close a plug-in and then return to one they had already learnt, possibly suggesting

they were less motivated to learn new processes.

CGM can be criticised for its lack of both high-level structure and overall musical coherence

(discussed in Chapter 3). Users were careful to reuse compositional constructs, working with

similar parameters across different generative effects and parts. The tendency to take a conscious

approach to composition has many parallels with theme F (high-level structure).

Explicit examples of musical consistency include users making constant use of the pitch

quantiser and constrainer plug-ins. The former ensured sequences stayed in key/scale while the

latter limited the overall note range and ensured sequence lengths remained quantised to a bar.

Often, when opening a new part, these plug-ins were added before anything else. Thismight have

artificially restricted musical variety, but also highlighted how constrained CGM processes need

to be effective. Such constraints allowed working with CGM to remain a manageable objective.

From analysing each of the nine compositions produced, the ratio of different

computer-generated processes used to produce iterations is shown in Figures 10.9 and 10.10.

The values indicate that for example, 45.8% of the iterations Gary produced used the note

parameters process. The results emphasise that once a user understood a given process they

preferred to master this rather than learn a new one.

Figure 10.11, summarises all the data and shows that the note parameter model was the most

commonly used process for computer-generated music, followed by the pitch quantiser. The

distribution sample was the most commonly used seed generator. While the note map, L-system,

and rhythm quantizer were not used (excluded from the diagram). The note parameter process
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Figure 10.9.: Ratio of different computer-generated processes used by each participant.

167



10. Longitudinal Studies in End-User Computer-Generated Music

Figure 10.10.: Ratio of different computer-generated processes used by each participant
(comparison).
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Figure 10.11.: Ratio of different computer-generated processes overall.

permitted per-note stochastic effects, unlike other plug-ins, suggesting users wantedmore control

than that afforded by other processes. As a result, this plug-in was used frequently, as it could also

be easily be combined with other processes.

10.2.4. D: Music Theory and Problem Solving

“A user’s experience of IGME is dependent on their knowledge of music theory. It is used to debug, evaluate

and critically analyse issues with CGM.”

The ability to solve problems was a key theme identified from the observation of users in

both problem-seeking and problem-solving domains. Problem-solving was divided into three

categories: debugging an undesirable generative output (or finding out why there was no output

at all), working out how to construct a computer-generated process, and general usability issues.

With all three, there was frustration when things did not work out.

Problem-solving and learnability (theme G) are interrelated, i.e. problems cannot be solved

without learning the tools and relevant threshold concepts. Users solved high-level problemswith

various high-level tools (discussed in theme F).

A computer-generated process synthesising only a single note would be a trivial problem

to solve. This was a common occurrence with some examples being; users turning off a

computer-generated effect or applying a note-parameter effect with no notes selected, although
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both of these might be general usability issues. The resultant output was not always obvious,

leading users to move parameters to the extreme to check the effect was actually working. This

subsequently led to examples of unconventional music (discussed in section 10.3).

More notably, users relied on their music theory knowledge while working with generative

processes, as evidenced by comments like ‘the piece has too largemelodic intervals (jumpy)’; ‘the output

is too simple’; ‘notes are in an inappropriate range’; and ‘this sequence has no tonal centre (key).’ Such

observations came from both visual (inspecting the notation) and audible perspectives. Another

observation concerned two tracks clashing as they occupied the same note register, leading to the

user transposing one part.

Working with the DS plug-in, Cameronwanted to explicitly generate within a given key, stating

the sequence: “yeah tone, tone, semitone... emphasise the dominant and subdominant’’ as he went,

configuring the pitch profile accordingly.

Tim wanted to transpose by a value that exceeded the limits of the transposer plug-in (+24

semitones) so simply added two of them in a series to achieve a +48 semitone transposition.

Although users found ways of working creatively around limitations, not all experiments were

successful. For example, Liam added two arpeggiators in a series, having no meaningful effect (in

this context). Unaware of this, Liam remained satisfied.

It was clear that users needed (either explicit or implicit) knowledge of music theory and that

workingwithCGMisnot suitable for thosewithout suchknowledge9, as is sometimes true ofmore

general music practice.

Mental MindMaps

Users often had a mental mind map of what they wanted to create in IGME. They were able

to realise plans through a combination of solving problems and their knowledge of music

composition and IGME, as demonstrated by observations from the video, sometimes in the form

of questions requiring answers, and sometimes thinking aloud. Cameron made a plan using an

external drawing program and then worked his way through it in IGME (see Figure 10.12). Gary

left empty parts across the timeline as placeholders, suggesting a delegation of parts of the song

to be either human or computer. The pauses that were observed throughout the study indicated

that users needed time to think.

9Although AI may be able to become a “musical style spell checker” in the future.

170



10. Longitudinal Studies in End-User Computer-Generated Music

Figure 10.12.: Cameron’s compositional plan - captured in paint.

10.2.5. E: Version Control

“Version control is used to cache existing material and recall previous versions.”

The version control system (VCS) was considered as both a passive tool and an active tool. In

a passive role, this created a virtual safety net, giving users confidence that everything was being

retained, and a catalyst in enabling the rapid iteration discussed previously. Despite the safety net,

the version history was sometimes lost completely, such as when converting from one part type to

another.

As an active tool, VCS enabled users to recall versions, make comparisons, and check for

duplicates. The inbuilt ‘diff’ tool10 was not utilised by any users (discussed in Chapter 6).

After a series of rapid iterations, and trying and failing to get a desired result, users sometimes

revisited the list to check the suitability of a previous idea. The starring system enabled iterations

to bemarked (favouriting), although onlyTimused this. He said he hadmarked iterations in order

to highlight interesting ones (to be re-auditioned) and also to confirmwhat iterationwas wanted11.

10A tool used in existing version control systems for comparing the changes between two files.
11 However, the selection of any iteration in the VCS would also have achieved this.
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In another novel approach, Cameron used a single generative process to create different

iterations and then copied and pasted variants from the VCS to form additional parts on the

timeline.

Some participants used the scratchpad to cache previously created parts. They generally found

this useful. Gary’s statement that they “had not wanted such a feature” supported the argument

that users do not always know what they want (Nielsen, 1994). Before learning the intricacies of

IGME, Gary had moved parts into the future on the timeline (caching ideas), a rudimentary form

of version control. Likewise, Cameron had created a track named ‘mess around’.

Although the video made it possible to see the VCS in action, no data was logged concerning,

loading from or comparing iterations. The logging of such interactions was overlooked by the

researcher. However, an inspection of each user’s composition, to check that the final version in

each part was not the last entry in the list, revealed if a previous version had been recalled. Four of

the nine compositions created in the study had not used any version recall while three had used it

just once. InTim’s 2nd composition, 9/66 and8/36parts useda recall. Although the sample sizewas

too small to draw any meaningful conclusions, the study showed that the VCS was occasionally

used in an active capacity.

10.2.6. F: High-Level Structure

“Users develop high-level structure using the features of IGME (i.e. reference parts)”.

After developing music at the part (micro) level, users were required, as with other music

sequencing workflows, to arrange and sequence parts into tracks across a timeline, producing

high-level (macro) structure. Another set of IGME’s unique features was prescribed. Specifically,

a set of mechanisms, built on the idea of a ‘reference part’, encouraged the development and

repetition of existing computer-generated processes.

Reference, iterator, and repeater parts are all detailed in Chapter 7. Reference parts take the

output of one part and feed it into another; iterators produce another iteration of a previous part

on the timeline, while repeater parts repeat the music of a given range.

Before understanding the references as a threshold concept (discussed in themeG), users relied

upon features such as theubiquitous copy andpaste. Using copy andpaste reducedonceusers had

understood references. Participants in the shorter studies remained apprehensive throughout,

but those in the longitudinal study eventually found the tools crucial for developing high-level
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Figure 10.13.: Two methods for checking reference part dependencies in IGME. The top showing
all dependencies, the bottom showing all the children attached to a given parent
(track 1 part 1).

structure, reinforcing the consistency theme (C) discussed previously. For example, using iterators

to produce several variants of the same computer-generatedmodel resulted in each having similar

musical properties (e.g. a motif or theme).

Users employed many techniques to achieve this high-level structure (discussed below). Once

they had become familiar with the references (threshold concepts), they showed confidence

with the techniques, sometimes setting up multiple effects and high-level mechanisms without

auditioning them. This highlighted the execution of pre-existing plans (mental mind-map, theme

D).

Reference parts were primarily used when a user wanted to develop a previously composed

idea, applying edits or changes. Iterator parts were used when the user had set up a desirable

generative process but wanted to create several variants across the timeline. Repeaters were used

for repeating a large block of material that could contain an arbitrary arrangement of part types.
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Figure 10.14.: Line graph showing the development of part types in Tim’s 2nd composition
throughout the piece.

Sometimes these tools were used simply to create symbolic repeats (copy-paste implicitly loses

such links and dependencies).

Issues arose when users wanted to repeat or develop musical material. This meant they had to

problem-solve and consider which process would allow them to dowhat theywanted. Sometimes

they used a mechanism in an unorthodox way, such as repeating content with an ‘iterator’ part.

Alternatively, they would use a reference to take the output of one part (expected use case) and

convert it back to a human part, this having the same effect as copying the result of one part into

the seed of another. This too demonstrated problem-solving (theme D).

Users utilised the automatic dependency-checking options within IGME (Figure 10.13), as well

as manually studying the arrange view, to determine structural dependencies. A design feature

of reference parts is that updating the parent will automatically propagate changes through to the

child parts. Participants in the studies rarely updated the parent. It is unclear whether they were

aware of this implicit mechanism and subsequent dependences created by it. Users sometimes

converted reference parts into normal parts, explicitly breaking this structure. At times, they

seemed to distrust this visualisation and would additionally audition and manually compare two

parts to ensure the effect had worked correctly.
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Figure 10.15.: Ratio of part types for each composition.

Although the mechanisms encouraged the development of high-level structure, the explicit

breaking down of music into different roles (i.e. parts) placed an additional cognitive load on the

user, who had to determine which part was suitable for what.

The development of high-level structure can be visualised through the music logged in the

arrange-level VCS system. The distribution of part types can be reconstructed to show how they

develop over time. For example, Tim’s second composition (Figure 10.14) shows the creation of

newmaterial plateaus and instead the user focuses on developing existing sequences of music.

Figure 10.15 shows the distribution of part types in each of the nine compositions created in

this study. Each of the nine compositions created exhibit a wide variety in the way musical

structure is developed, additional figures for each composition, showing how part types develop

over time is given in Appendix E (Figures 1 - 9). The large variance between different users and

their compositions suggests that IGME supports creativity due to the non-linearway of working in

IGME (further discussed in Chapter 11).
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10.2.7. G: Learnability, Virtuosity, and Threshold Concepts

“Users learnt IGME through studying the tutorials and experimenting autonomously.”

This research set out to create an end-user music system similar to other digital music

sequencers. Participants’ prior experiences of music software enabled users to transfer their

skills and knowledge via core components inside IGME. All used computer-generated effects and

produced compositions, suggesting they had learnt IGME sufficiently. However, they needed

more hand-holding to grasp IGME’s more complex features and build a cognitive model of CGM.

This particular aspect was overlooked at the outset of the project.

As in other studies, participants in this project primarily learnt IGME through tutorials and

independent exploration. The learnability aspect of previous studies was mostly assessed by the

researcher, who observed the participants and drew on his own experience of teaching students

in a similar workshop-led style. The participants’ ‘development’, and the threshold concepts they

needed to grasp, was captured more explicitly by the screen recordings.

Threshold Concepts

A threshold concept can be defined as opening a previously unknown subject - in other words, a

learner cannot progress in a subject without understanding a specific concept (Meyer and Land,

2003). As highlighted in the video, the reoccurring concepts that users had to understand were:

• The difference between deterministic and stochastic processes.

• The difference between iterate and playback.

• Using reference parts and iterators.

• Plug-ins, seed generators, and note parameters.

The difference between playback, which simply auditions the seed, and iteration, which causes

the generative effects to be computed, was one of the first threshold concepts for participants

to grasp. Gary stated: “so in this part, if I iterate it, it won’t do anything unless there is a plug-in

loaded?”. Tim lost the progress he had made, as he had not iterated, and tried to reload a previous

version from the VCS system. Although frustrated, Tim verbalised his discovery, demonstrating

an understanding of this threshold concept.

Differentiating between deterministic and stochastic processes, i.e. knowing at what point

an iteration produces a computer-generated output, and what causes this to stop, is another
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threshold concept. Highlighting notes in different colours helped users to quickly understand

which events were fixed (black) and which were stochastic (green). On the other hand, locked

parts, non-selection of notes in the editor, and not loading computer-generated processes all

caused the termination of output. A null effect could be produced by pure chance. Likewise,

sometimes there was no output, for example, because a stochastic process had removed all the

notes.

As argued in theme F, reference parts are crucial for building a high-level structure in CGM.

However, they often confuse, primarily as they aremore complicated than copy-paste and because

there are multiple mechanisms for repeating structure. Although these are all fixable usability

issues.

Learning by Experimentation

All users learnt IGME through experimentation (trial and error) and often applied the same

tenacity to problem-solving (previously discussed). Users often applied a scatter-gun approach

to working with processes in which parameters were quickly and arbitrarily set up, allowing users

to make something quickly. By contrast, users also carefully constructed a computer-generated

process once they understood it in more detail.

In a novel example of this, Timwent through each control in the DS plug-in, mapping between

the controls and output. Gary did something similar (also using the DS), adjusting each pitch

profile control and octave range to find the notes that would trigger cymbals. After struggling to

understand references (a threshold concept), Cameron created a variant of each type to explicitly

observe the resultant effect.

Users quickly learned about the relationship between the note parameter editor and

subsequent result, moving each control in isolation to observe the effect. Sometimes they

verbalised their thought process, confirming they had understood the underlying models.

Moreover, they created novel effects to underpin their understanding, which might explain

why much of the created computer-generated output could be considered unmusical (discussed

shortly). Each computer-generated process has its ownminiature threshold concept, but these are

not easy to compound into generalised concepts. Users had to build a cognitive understanding of

the mapping between input (notes and parameters) and output, this is made more difficult with

stochastic processes (discussed more in Chapter 11).
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10.3. Musical Artefacts

Themusic created by users varied significantly. It remains doubtful whether they always took the

task seriously, as evidenced by Tim’s comment, “before (in session 1) I was trying to see how weird I

could make it and this time I am trying to create something sensible”.

Creating sound effects is a valid use of CGM, and this was all that one user did. Liam stated:

“the output would have been difficult to compose manually”. Similarly, Tim experimented with

generating drum patterns. His subsequent efforts to do this manually took significantly more

time, illustrating how generative music can sometimes increase productivity, even if the output is

not always as ‘pleasing’. Although, from results in theme B, users generated more iterations when

working with CGM than without, resulting in increased ideation.

As with existing research in generative music, the music output of the study attracted criticism

and sometimes induced a sense of frustration. Although users seemed to enjoy their overall

experiences with the software, as evidenced by them laughing, smiling, and by their comments,

they all expressed disdain at some point, with some explicitly stating “that they did not like what

they had made”. More light-hearted observations included “this sounds like two aliens speaking to

each other”. Even when praising the output, users said it often did not fit into the song in which

they were working. Despite not being completely satisfied with what they had produced, users

accepted the ‘not-so-bad’ iteration and moved on with the rest of the composition.

Sometimes users blamed themselves (usually out loud) for a bad iteration. After trying and

giving up on several iterations, Gary replaced the generative part with a human-created one,

stating “my issue is now I know exactly what I want to happen, so I will just do that”, additionally

stating “It is so hard to work with generative parts when I am so used to not working with them”. As

discussed in theme A, Gary did eventually find a novel use for IGME’s processes.

10.3.1. Sound Editing

IGME’s large bank of sounds resulted in users spending a long time experimenting with

instruments. This was not the focus of the study, so some of these instruments could have been

removed. The researcher overlooked this, leaving users free to load sound effects such as the

comical MIDI jetplane effect. All users spent time configuring instruments, even though this is

already an intrinsic part of digital music composition.
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10.4. Survey Comparisons

Survey B has been analysed in depth previously (Chapter 9), so the focus here is on whether

users’ responses after the first 2-hour session changed once they had completed the second 2-hour

session. The full responses for both sessions are given in appendix E (Figures 16-19). The small

sample size limited the choice of valid statistical tests, so the numerical difference between scores

for each question was computed, this giving a coarse comparison of the results. A positive value

indicated users moved from ‘strongly disagree’ to ‘strongly agree’, and vice-versa. A score of +4 or -4

signified a flip of opinion from one extreme to the other.

The results in Figure 10.16 and 10.17 showed users’ perceptions of the VCS and TSEP generally

improved. Two users noted that the TSEP increased hidden dependencies and that this trade-off

improved provisionality, reduced premature commitment and viscosity.

Question 3 elicited more varied responses. Gary, who was the least engaged with generative

music, strongly agreed theymade annoyingmistakes (3B) whereas the responses of Liam and Tim

becamemore positive as time lapsed. This suggested themore they learnt the processes, themore

they were able to control them. Question 3C produced polarising responses, with Liam strongly

agreeing he wanted more control and also to be able to define his own processes (3D). Answering

question 4, Liam agreed with splitting music into parts. Other users’ opinions did not do change

significantly.

The range of results and anomalies for questions 6 and 7 make it difficult to draw definitive

conclusions. In summary, participants agreed that hard mental operations had increased. They

generally concurred that they had suitable control over IGME (6B), but also said the computer

had taken away some control (6C). As time lapsed, they agreed that IGME’s overall workflow was

similar to other sequencers, confirming that one of the fundamental design requirements had

been met12. Users were slightly less likely to use CGM to generate initial ideas (7A), but remained

happy to use it to develop their own ideas (7B). Twoparticipants signalled theywere now less likely

to use CGM in their own composition (7D). The remaining survey questions produced little to no

variance in responses.

12IGME could easily be used by someone with familiar experiences of other digital music sequencing software, which
IGME was designed to imitate.
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Figure 10.16.: Survey B results indicating the difference in received survey response recorded
between each sessions for all participants (questions 1 - 4).
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Figure 10.17.: Survey B results indicating the difference in received survey response recorded
between each sessions for all participants (questions 6 - 7).
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10.5. Methodology Review and Threats to Validity

The study permitted analysing interaction in greater detail than previous studies. The anomalies

found previously within interaction data, could now be explained through the recorded video,

providing context and resolving ambiguous findings. The video also showed interaction not

captured by IGME’s data logger, such as browsing tutorials that permitted discovering content

associated with theme G (learnability) or understanding how the VCSwas used (as no interaction

data was captured for this). Generally, the discovery of themes guided the researcher for areas in

which to probe the interaction data.

The study originally proposed that 10 participants would be studied, however as discussed in

Chapter 8, the remaining 6 had to be cancelled. The small sample size would normally raise

questions as to validity, repeatability and generalisability. However, they are extensions of those

already discovered in studies involving larger numbers of participants. Furthermore, the small

sample size permitted the researcher to spend time analysing the results in microscopic detail

- more finely reviewing and coding the themes discussed. It is unclear within the scope of the

research if it would have been feasible to complete more studies.

Undoubtedly, the invasive nature of participants being observed did not create a perfect

real-world situation. A notable downside of the study was that users’ questions often required

a verbal explanation. The researcher aimed to be objective when answering questions based on

content in the tutorials, as some problems could be solved in multiple ways. Although trying as

hard as possible to be a passive observer, the researcher had to step in when IGME crashed and

needed to be fixed. Despite all the testing, several feature-crippling bugs developed. Realistically,

users could not have fixed these, or found workarounds, by themselves, so either the researcher

had to explain what needed to be done or had to apply a manual fix. It is unclear what users

would have done, or how they would have solved such problems if the researcher had not been

present. On the other hand, having to sort out issues for themselves could have accelerated users’

comprehension of IGME and its threshold concepts.
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10.6. Conclusion

In summary, when working with generative music (theme A), a series of edit, iteration, evaluating

(EIE) cycles were used to produce many versions of generative output (theme B). As time

progressed, users moved from working rapidly to applying more detailed or fine-grained edits.

Theywere quick to learn and applyworkflows forCGM.A set of preferred plug-insweremastered,

facilitating musical consistency (theme C). Users of CGM were problem-solvers, debugging and

fixing issues with computer-generated output using existing knowledge of music theory, and

assembling processes to realise an envisioned compositional structure (theme D).

Version control (theme E) was mostly used as a safety net, encouraging users to ideate musical

ideas. Recalling and comparing variants remained uncommon. Several tools for developing

high-level structure were used, making use of IGME’s inbuilt reference parts, emphasising

repeating and developing structure (theme F).

IGME was learnt through a combination of existing knowledge of music sequencing, studying

tutorials and experimenting with the software, requiring users to master several threshold

concepts (theme G).

Although these themes were documented in this chapter, they are also echoed within the

smaller studies, andmany of them, despite not being formalised, were evident in previous studies.

183



Part V.

CONCLUSION

184



11. Conclusion

The thesis aimed to observe, through the IGME platform, the interaction between end-users and

computer-generated music (CGM) composition systems. A range of methodologies, supported

by an iterative research and development process, was employed. The methodologies included

initial informal pilot studies, formal studies in both controlled and uncontrolled conditions, and

a longitudinal study. This chapter reviews those methodologies and summarises the empirical

findings of the user studies. It also presents a set of design heuristics for CGM software

11.1. Summary of Thesis

This thesis was informed by creativity and HCI. Both were explored in Chapter 2, while the

introduction and categorisation of techniques for computer-generated music, and their primary

evaluation as tools for end-users, were covered in Chapter 3. This theme continued in Chapter

4, which took a broad look at existing systems for CGM, attempting to find a ‘middle ground’ for

building an end-user CGM system.

Chapter 5 set out the design requirements for a CGM system, amalgamating primary and

secondary research and developing formalmodels for supporting interaction. Chapter 6 analysed

existing systems and interfaces using the CDN framework. This created a formal set of design

hypotheses that helped to formalise requirements for building end-user CGM systems. These

requirements evolved through the development of IGME, which was built for studying user

interaction and discussed in Chapter 7.

Chapter 8 covered themethodologies for studying interaction and for improving IGME through

informal pilot studies, resulting in a design, test, and evaluation cycle. Chapter 9 summarised

and compared the results of two studies involving IGME, one in controlled conditions and one

in uncontrolled conditions. The findings were extended throughout Chapter 10, which analysed
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A: What tools do music practitioners require for working with computer-generated
music? Chapters
• The interfaces and tools provided should be similar to those found in
common digital music sequencing software. 4
• Interfaces that abstract the complexity of CGM techniques democratise
assess to them. 5, 6, 7
•A range of design heuristics are recommended for CGMsystems (discussed
further in this chapter). 6, 9, 10
B: How do these tools differ from existing systems and interfaces?
• Existing systems are either too dissimilar to common music software
interfaces, or require the appropriation of programming environments. 4, 6
• Music practitioners often have limited programming skills, and use the
computer as one of many tools in composition (alongside instruments, and
other forms of notion)

5

C: How can computer-generated music processes be appropriated in a
co-collaborative creative process?
• CGM is mostly used to influence and catalyse the composition processes. 9, 10
• CGM techniques are preferable at the micro rather than macro level of
music structure. 9, 10

Table 11.1.: Summary of research questions.

the screen recordings of a longitudinal study, drawing out the themes associated with CGM

composition.

11.1.1. Research Questions

The original research questions proposed in the introduction were:

• What tools do music practitioners require for working with computer-generated music?

• How do these tools differ from existing systems and interfaces?

• Howcan computer-generatedmusic processes be appropriated in a co-collaborative creative

process?

Table 11.1 shows each question and states in which chapters they were explored and answered.

The proceeding section further explores these questions, which in turn leads to the contributions

to knowledge.

186



11. Conclusion

11.2. Contributions to Knowledge

The principal themes of the research can be grouped as:

A : A set of design heuristics for building end-user computer-generated music systems.

B : How computer-generated music techniques are used in real-world practice.

C : The users’ profile and backgrounds conducive to computer-generated music.

D : The role of the computer in co-collaborative music practice.

The findings are summarised in Table 11.2, and the above labels (A-D) are used to categorise the

contributions. The remainder of this section further unpacks these findings.

11.2.1. Empirical Findings

Studying real-world interaction with computer-generated compositions revealed how the tools

designed in this research were adopted by practitioners. Initial findings from the short studies

(Chapter 9) were refined, clarified, and concluded in the longitudinal study (Chapter 10). The

research demonstrated that participants could easily engage with CGM composition.

Computer-Generated Techniques

IGME users preferred to master a small set of computer-generated processes rather than

experiment with all processes. The actual computer-generated technique underpinning each

process became less important than how the technique was presented through a graphical

interface. Users had to be able to connect action to mapping and debug what is fundamentally

a ‘black-box’. Whereas some musical instruments have a direct mapping between an action and

resultant sound, i.e. a piano (Maes et al., 2014), most of IGME’s processes are stochastic, and

it is not immediately obvious how input and parameters are combined to produce output. All

users appeared to enjoy the discovery process. Finding the limits became a creative endeavour,

permitting the tool to be used in real-world challenges.
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Theme Summary of contribution Page
Chapter 4

A • Existing commercial music software has limited capability to engage with
computer-generated processes. 61

C • Purpose built generative music systems require engagement with irregular
interfaces and workflows. 61

Chapter 5

C • Music practitioners have limited exposure to, or knowledge of CGM
techniques. 69

Chapter 9

A • The version control system is a peripheral interaction tool that supported
ideation, and was occasionally used to recall previous versions. 135

A •The two-stage editing process supported rapid note entry, again supporting
ideation. 135

B • Computer-generated processes helped users come up with ideas they
would not have come up with on their own. 136

D
• Users said they would have liked a little more control and to be able to
define their own processes within IGME, indicating the computer had taken
away some control.

136

A
• Users agreed that IGME was similar to mainstream music software and
that this had helped them to learn it and also to learn more about generative
music.

137

B
• Users were happy to use computer-generated techniques to come up with
ideas, and permute existing ones, aswell as using the techniques in their own
music.

138

D
• Participants remained apprehensive about the extent to which the
computer was involved, with just under half expressing concern over
authorship.

139

D • Participants accepted that the computer was responsible for some of their
musical output. None attributed all their musical output to the computer. 139

A •On average, users took less than 20 minutes to produce their first CGM. 142
C • Similar results were obtained under both controlled and uncontrolled

conditions. 148
Chapter 10

Confirmed many findings from the earlier studies but in addition:

B
•Users became less likely to use computer-generated processes for creating
music from scratch but were more likely to use them for modifying,
extending, and recomposing existing music.

156

A • Rapid edit-iteration-evaluating cycles were commonly used. 159
B • Users preferred to master a small number of computer-generated

processes. 166

C • Users needed some knowledge of music theory to work with generative
output. 169

A • Tools for developing high-level structure were essential. 172
C • Several threshold concepts were evident and required for meaningful

interaction. 176

Table 11.2.: Summary of findings.
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Techniques that could transform, reinterpret and modify user-composed sequences were

preferable to those designed to replace initial ideation. The CGM field focuses mainly on

generating music from scratch. Little research has been done on music practitioners’ preference

for using computer-generated techniques to manipulate, extend and reinterpret music composed

by themselves. Therefore, future research should focus on this.

With most techniques inside IGME outputting swiftly, future work should focus on ensuring

that any computer-generated process supports rapid ideation. CGM relies heavily on ‘chance’,

which means the search space has to be navigated repeatedly for satisfying musical output. The

version control system (VCS) and two-stage edit process (TSEP) ensured participants in the studies

could work quickly and that few restrictions were enforced by the user interface, this ensuring a

state of flow could be obtained.

The chance of finding suitable music in stochastic processes diminishes when model

complexity and the range of parameters is increased. As mentioned in Chapter 10, generative

processes often had to be used alongside other processes that could limit or constrain the output.

Reflecting on their experiences of IGME, one participant stated that, to use IGME ‘properly’, more

constraints would be needed, emphasising that at times the systemmight have been too ‘random’.

That individual said, “it feels like I am throwing paint rather than applying it and I think I would rather

paint with a brush than chuck paint at it”.

Several study participants used the transition table plug-in (a first-order Markov model),

proving that complex techniques for CGM can be appropriated by regular digital music

practitioners without pre-existing knowledge of the technique. This specific process supports

populating the initial parameters through the analysis of existing music, while still permitting

the user to freely edit the controls. This not only allows users to get started quickly but eventually

gives them the confidence to define their own models. Therefore, it is not the techniques that act

as barriers to entry for CGM, but the interfaces designed around them.

High-Level Structure

Subjects preferred to generate small fragments of music and subsequently arrange them to

form high-level structure rather than generate larger phrases. Working with smaller pieces of

music ensured users were more in control and the local structure was less likely to spiral into

chaos. Existing research in the field has had more success with creating small local structures
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(i.e. a bar), rather than high-level structures, although the gap as suggested by recent literature

(Siphocly, Salem, and El-Horabty, 2021) is narrowing. However, a lack of high-level structure

remains a commonly criticised characteristic of CGM. This partially confirms that simpler,

easy to understand and implement processes are preferable to larger, more complex black-box

algorithms, as speculated by Sorensen and Brown (2008). In addition, this research has shown

that users prefer toworkwithCGMtechniques that have anarrow ‘breadth of context’ (Wooller et al.,

2005). Although this thesis did not explore many techniques that have a large ‘breath of context’ it

alsomay suggest that thesemay not have been preferable for themusic practitioners studied here,

which may or may not demonstrate a wider trend. Indeed, in reviewing music software more

generally, Nash (2011) notated a strong correlation between flow (intrinsic motivation, enjoyment)

and programs that offer smaller, more focused edit-audition workflows (patterns, loops), versus

those designed around wider musical arrangements (linear timelines).

WorkingWith Computer-Generated Music

When working with CGM, the computer’s role might be that of a ‘visionary’ and creator of a set

of musical ideas to inspire the human, whose role remains that of composer (or curator), deciding

which musical fragments can be best used and in what order they should be sequenced.

Users were mostly positive about CGM and welcomed the idea of using it, suggesting that the

low widespread adoption was probably due to a lack of appropriate interfaces and workflows in

existing systems. Another factor is that composers who are unaware of computer-generated tools

will not seek them out. As with all commercial software, the need for additional features often

correlates to a return on investment. If users are not requesting computer-generated features,

and such features will not increase the sales of said software, then they remain assigned to the

enthusiast and academic domains.

The choice of computer-generated processes, the development of high-level structure, and

the variance of interaction data (including notable outliers) indicate that users did not work

with IGME in a linear way, with each demonstrating originality. This observation and others

already discussed, suggest that IGME elicits creativity, and supports numerous ways (‘wide walls’)

of composing and working with computer-generated processes (Resnick et al., 2005). In their

definition of creativity, Acar, Burnett, and Cabra (2017) note four ingredients: originality, value,

surprise, and aesthetics, with originality being the strongest correlation to creativity.
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Authorship questions arose throughout the studies but were not fully addressed. As seen

in Chapter 9, one participant noted that ‘AI’ was seen as a threat by “people that usually know

nothing about it’’. It could be argued that AI in music is misunderstood and that there is a need

to emphasise to composers that music generated by an intelligent process is not a threat but a

means of increasing creativity and efficiency. Moreover, computer-generated software users are

not just composers of notes but also composers of parameters and constraints. Authorship can

still be expressed through the arrangement of initial music material, selection of parameters and

plug-ins and, finally, the curation of material from different output iterations. A degree of creative

flair is needed when configuring computer-generated processes.

In the shorter studies, CGM users were apprehensive about who the author was. Participants

said they would use CGM to inspire and motivate them to create initial music ideas, but they

remained apprehensive about directly using the output of such music in their own compositions.

However, survey responses discussed in Chapters 10 and 11 show that no one attributed music

composed with IGME solely to the computer. This is probably because users remained in control

of this division (between computer and human-created music).

It is clear that longitudinal studies cannot be replaced by running repeated shorter studies. For

example, at first glance, it appeared that participants had not used the tools offered by IGME in a

serious or measured way (in the short studies). However, it became apparent that this observation

was incorrect and that participants had initially created extreme pieces of music in order to gain

a cognitive understanding of the various processes, learning IGME through experimentation. If

not for the screen recordings in the longitudinal study, such a finding might not have been made.

Using CGM to produce ‘unmusical’ output or odd sound effects, is not deemed a negative

characteristic but an observation. One user, specifically in Chapter 10, noted that these processes

resulted in sound effects that would have been difficult to create manually. Similarly, trying

to limit music composition to a task measured in terms of its productivity is reductionist and

meaningless.

Music, aswith other creative endeavours, needs intrinsicmotivation. Not allmusic practitioners

want to use computer-generated tools, just as some classical composers have no wish to write

music for an electric banjo. For the field to advance, it must be acknowledged that CGM is not a

tool sought out by every practitioner. Furthermore, should such computer-generated techniques
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become a more prominent feature of common music sequencing software, they should always

remain optional, just as they are in the limited examples already discussed (Chapter 4).

A Computer-Generated Music Practitioner

The individuals1 recruited for the studies had different levels of experience in music

practice. All enjoyed their time with IGME but many remained apprehensive about adopting

computer-generated techniques in their daily practice. Although some characteristics of the ideal

CGM practitioner remain elusive, some common themes were evident. Notably, an individual

needs enough knowledge ofmusic theory (either explicitly or implicitly) to debugmusic that does

not conform to inherent properties of tonalmusic - recognising ‘tonal mistakes’. Of course, creating

atonal music remains a valid compositional activity. Users also need existing knowledge of music

sequencing workflows.

11.2.2. Design Heuristics for Computer-Generated Music Systems

Limited advances have been made in integrating CGM techniques in existing music sequencing

software and workflows. IGMEwas built as a means for exploring what such a systemmight look

like. In evaluating the features of IGME through real-world testing, the following sectiondiscusses

desirable characteristics for end-userCGMsystems. Fundamentally, there shouldbe a clear divide

between systems that seek to replace or mimic human composition and those that aim to work

alongside human composition, with a different set of requirements for each. This research looked

to support human composition.

Two sets of design heuristics are given in this section. The first (Table 11.3) shows a summary

of specific design elements evaluated through the user studies. The second set (Table 11.4)

articulates further general design principles using the language of the cognitive dimensions of

notations framework with lessons from both literature and the empirical work presented here.

Where possible each heuristics provides a page number where the strongest evidence for its

rationale was discussed. It is important to note that dimensions are not orthogonal, and have

trade-offs, requiring that designers identifywhichdimensions arepriorities for their intendeduser

experience (Nash, 2012). Neither list is exhaustive and omits more general usability requirements

already well documented, focusing on priorities specifically for CGM systems.

1Thedemographic for this studywasprimarily undergraduatemusic technology students. This limitation is discussed
further in section 11.3.

192



11. Conclusion

Design requirement Rationale Evidenced by
Enable rapid
edit-iteration-evaluation
(EIE) cycles.

Rapid EIE cycles
are integral to
computer-generated
processes.

Frequently observed in user studies
(page 159), and used as a means to
explore the limits of CGM processes,
which often require many iterations
for a result.

Contain a version control
system.

Required for working
with stochastic processes
in which previous
iterations are easily lost
or overwritten, acting as
a passive safety net.

The VCS was welcomed by
participants (page 135), and
primarily acted to support the
above requirement as a (passive)
peripheral interaction tool.

Built on familiar digital
music composition
design paradigms.

Aids with learnability
and increases the
likelihood of user
adoption.

Chapter 9 & 10 revealed that users
found IGME easy to learn and offered
similar workflows to existing systems
(page 137)

Contain minimal
threshold concepts.

Decreases the barriers
to entry and places
focus on using
rather than learning
computer-generated
processes.

Several threshold concepts were
identified in Chapter 10 (176) which
users needed to understand to create
meaningful interaction with CGM.

Prioritise developing
smaller well-contained
measures of music.

Small measures are
easier to create and less
likely to spiral into chaos.

Users primarily created small
fragments of music (page 156),
focusing on narrow ‘breadths of
context’.

Focus on small, easy to
understand, processes
that can be combined
and sequenced together
through formal
mechanisms.

Easily allows the
computer-generated
output to be sequenced
in and around
human-composed
content and permits
high-level structure.

User preferred to master simple
CGM processes and had limited
engagement with more complex
processes (page 166). The part
referencing mechanism permitted the
development of high-level structure
(page 172)

Table 11.3.: Design heuristics for CGM systems.
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Feature Summary

The VCS was primarily designed to make working with CGM practical. Given the inherently

stochastic nature of such music, the ability to store and recall previous iterations was essential.

Participants agreed that VCS had merits, although, since ‘undo’ was never properly implemented

inside IGME, they could have been overly reliant on it. Nevertheless, we strongly argue that

such a feature is crucial for CGM systems, even though it could increase both ideation and rapid

edit-audition cycles in existing music software. This research has advanced the topics discussed

by Duignan (2010), who proposed the use of such systems in music compositions.

The two-stage editing process (initial input and resultant output) democratises access to CGM.

Although unorthodox, it represents a novel attempt to solve the problem of creating an interface

that enables access to CGMwhile retaining similarities to commonmusic sequencing workflows.

This feature was positively received by most study participants. The input editor and resultant

output would also benefit from being decoupled in future systems, so the mappings created

by a computer-generated effect can be discovered with the input and subsequent output of a

computer-generated process shown explicitly.

We argue that a rapid edit-audition cycle should be integral to computer-generated processes,

emphasising speed over other characteristics. If a more complex process can generate suitable

music in fewer iterations, this is also desirable. Moreover, action sound latency (the delay between

an action and sound) in digital music systems should always be minimal (McPherson, Jack, Moro,

et al., 2016). Almost all of IGME’s computer-generated processes are instantaneous, but it remains

unclear whether more complex processes could be equally instant.

Users commonly employed two of the more complex plug-ins: the distribution sampler, and

the transition table. Both took over some of the hard work (as automation devices), allowing users

to pre-populate parameters while still giving them a chance to fine-tune themodel and at all times

allowing them uncompromising control.

The part referencing system in IGMEwas primarily designed to alleviate issues associated with

a lack of high-level structure, a commoncriticismof generativemusic alreadywell documented. In

splitting composition between human and computer, the human was in most cases left in charge

of creating high-level structure, which is difficult for a computer to automate. These mechanisms

could also be used to form non-generative structure in ordinary music composition software.
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For a generative music system to be attractive, practitioners need to understand that music

generated by an AI process need not be a threat but a means of increasing human creativity and

efficiency. IGME does not explicitly do this, which could be a topic of future research.

Cognitive Dimensions of Notation Review

Chapter 6 proposed a set of design hypotheses (see Table 6.2) to use as guidelines for building

the IGME software. These were aligned with each dimension in the Cognitive Dimensions of

Notations framework. In summary, IGMEmostly followed the design hypotheses originally listed.

However, upon reviewing these, several dimensionsneeded tobe redefinedor amendedas follows:

Hidden Dependencies

Although IGME used the part referencing mechanism to show hidden dependencies explicitly, it

also encouraged users to create more of them. Additionally, this feature had several unforeseen

side effects such as deleting a parent reference, leaving all the children orphaned (missing

input music). This part referencing mechanism resulted in a trade-off between creating more

dependencies and increasing high-level structure.

Consistency

The reliance on design metaphors in existing music software, led users to believe more features

were supported (i.e. shortcuts). Little could be done to address this within the scope of the

research, but arguably this would have made IGME both slightly harder to learn and work with

efficiently.

Premature Commitment

If users wanted to make use of reference parts, they first had to determine which part would be

the parent. This led to cases of premature commitment.

Error Proneness

Users were keen to explore CGM but were often left disappointed with low-quality music,

suggesting that computer-generated models could have done more to produce higher-quality

music, and remove ‘obvious’ mistakes.

195



11. Conclusion

AbstractionManagement

Many users wanted to create their own effects, but it is unclear how this could have been

supported. Furthermore, such limitations often encourage creative solutions (Chapter 2).

The table in Chapter 6 has been updated following evaluation of the research, with a final set

of design heuristics shown in Table 11.4.

Despite limitations, the CDN framework helped design and critique the IGME software and in

providing a vocabulary for comparing interfaces for CGM.However, trying to design software that

rectifies an established issue within a field (in this case CGMhavingminimal high-level structure)

leads to a CDN profile that suggests, for example, that the part referencing mechanism creates

high amounts of hidden dependencies. Therefore, the CDN should not be the only mechanism

for specifying design hypotheses but should be considered as guidelines rather than as a set of

immutable design requirements.
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Dimension Design Heuristics Page(s)
1. Visibility Minimal layers of hierarchical views. Ensure that the

role of each musical element is clearly defined visually.
Elements of the music that the computer will compose
need to be explicitly revealed.

176,
101

2. Juxtaposabillity Allow different variants of the music to be swapped
quickly and easily. Version control technologies can be
used to support this. Ensure the timeline can grow and
shrink as needed.

156,
171

3. Hard Mental Operations Focus on using, rather than designing,
computer-generated processes. Use a timeline to
make control flow simple to predict.

156,
4.5

4. Progressive Evaluation Support rapid edit-audition cycles and ensure music can
be auditioned in any order.

159

5. Hidden Dependencies Minimize hidden dependencies, and ensure that any
required dependencies can be easily visualized. Consider
how users inevitably create more dependencies.

172

6. Conciseness Give controls verbose names. Consider what information
a user will need at the surface level.

89

7. Provisionality Ensure that the system can rapidly ideate. CGM should
be computable in minimal time and not prevent rapid
edit-iteration cycles. Consider adding a secondary
timeline (scratchpad).

159,
171

8. Secondary Notation Allow for informal notes to be added to various musical
components (for example, track description).

170

9. Consistency Use common design and interaction paradigms found
in other music software (for example, clips, tracks, and
timelines). Ensure that users can replicate the same
(expected) functionality (i.e. short cuts).

137,
166

10. Viscosity Allow users to lock down the position or final output of
the music. Ensure that it is otherwise easy to go back
and make changes. Consider how to limit the length of
stochastic processes.

159,
166

11. Role Expressiveness Make the role between computer-generated and human
composed music distinguished.

176

12. Premature
Commitment Use an arrange viewmetaphor, and support part-by-part,

bar-by-bar or top down arrangements. Consider how
tools for supporting high-level structure may cause
unforeseen premature commitment.

172

13. Error Proneness The computer should not automatically fix musical
errors, but instead, allow users to judge and fix these for
themselves. Give the user the option of having obvious
errors be fixed automatically.

178

14. Closeness of Mapping Focus on graphical rather that textual controls. 61, 166
15. Abstraction
Management Permit the software to be used without creating

abstractions, but allow advanced users to develop
their own abstractions. Creating abstractions is likely a
‘power-user’ feature.

136

Table 11.4.: A list of design heuristics for each dimension in theCDN that can be used as guidelines
for building end-user CGM systems.
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11.2.3. Methodology Review

A mixed-methods approach was used to evaluate interaction. The challenge of recruiting

representative users caused delays at several stages of the research. A balance of broad,

larger sample studies and longitudinal small sample studies were used to provide insight into

real-world creative applications, although engagement within the scope of the research was

limited. Directions for further development and further empirical studies are supported by the

work presented here. Themethodologies and study types for investigating user interaction inside

IGME produced varying levels of success, and are discussed by type below.

Pilot Studies

Developing IGME to be representative of a complete end-user experience required an extensive

development period. In hindsight, engaging users at the outset of the research would have been

beneficial, although the pilot studies were invaluable for evaluating and shaping early IGME

prototypes. Increasing the number of studies and decreasing the number of users in each could

have been beneficial, as it would have resulted in more development-evaluation cycles.
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Screen-Recording

The longitudinal study offered the best insight into a computer-generated composition workflow.

The ability to re-watch the exact timeline of events executed by the user was invaluable. The

longitudinal study took the most time to analyse and draw conclusions from. The study was also

limited by sample size, with resource and time constraints preventing more studies from being

conducted.

The researcher’s presence in the study allowed for further notes to be made and for ad-hoc

questions from participants to be answered, but at the risk of influencing subject responses. The

information conveyed often helped to clarify novel actions executed by participants, although it

remains unclear what effect this had on the study. Potentially, the longitudinal study could be

run remotely. This would be difficult to do at present, for technical and ethical reasons, but is a

possibility for the future.

User Surveys

User surveys were a primary method for collecting data across all studies. A mix of Likert

scales and open-ended questions enabled a breadth of information to be collected. With Likert

scales, topics could be quickly analysed and comparisons made quantitatively. The open-ended

questions elicited qualitative responses beyond those targeted by the questionnaire. Regarding

the remote study in Chapter 9, it was difficult to engage everyone. Only one-third of participants

completed the survey, thereby highlighting that responses came from the engaged and the

enthusiastic.

In all variants of survey B, question 5 was optional and few participants answered it.

The questions specifically targeted the use of dependency arrows, which highlight structural

dependencies when using reference parts. Even the participants who did use reference parts in

the longitudinal study (Chapter 10), ignored it. In hindsight, the question should not have been

marked optional. Instead, an option such as “did not use” could have been added, requiring users

to acknowledge they did not engage with this feature.

Although the CDN framework was useful for designing the software, it was perhaps not as

useful for designing questions in the user survey. Some of the questions, for which the researcher

was most interested in obtaining answers did not align with a dimension. For example, many
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topics sought to understand the role of the computer as an author, which is fundamentally not

what the CDN is useful for.

Interaction Logging

Interaction logging was selected as a means of unobtrusively collecting data. In practice, this

produced thousands of data points. It became increasingly difficult to find patterns. In the end,

other methodologies became the primary data sources, supplemented by the interaction data.

Brown (2020)made similar observationswhen employingmixedmethods for studying interaction

in end-users of digital music instruments. Interaction logging is more useful when the sample

size is increased, and/or users spend longer periods with the software (Nash, 2011), making other

time-invasive methodologies less feasible.

As noted by Gerken et al. (2008), users’ behaviour cannot always be explained by interaction

data, and often leaves more questions than answers. The various unexplainable anomalies and

outliers found in the uncontrolled conditions study (Chapter 9, page 146) broadly support this

statement. Observing users of third party commercial music composition software is difficult (if

not impossible) with interaction logging as this would require modifying the underlying source

code (and gaining access to it).

11.3. Research limitations and Future Directions

The research was limited by its reliance on finding individuals interested in participating in the

user studies. Specifically, finding experienced music practitioners who could dedicate time to

learning all of IGME’s intricacies, proved difficult.

The onus on the researcher to develop and test a complex interactive environment to be

robust enough to support real-world usage limited the scope for further development. However,

the novelty of IGME and its enablement of computer-generated composition gave the project

sufficient scope that it was deemed unnecessary to develop more complex computer music

models. The tools offered by the IGME environment are still quite rudimentary. Given IGME’s

modular architecture, there is ample opportunity to develop more complex plug-ins and effects

in future research. There is also an opportunity to open-source the IGME software.

Generally, IGME was well-received throughout the studies, notably from Likert scale data.

However, research from Dell et al. (2012) suggests that respondents are about 2.5x more likely
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to prefer technology developed by the interviewer (or researcher), than an alternative (although

the users of IGME were not given an alternative software to work with). In addition, it is well

understood by psychologists that study participants often modify their answers or behaviour by

trying to second guess what the researcher is trying to achieve (McCambridge, De Bruin, and

Witton, 2012). It is therefore worth noting that the findings presented here may indicate overly

positive participant bias. Upon reflection, little could be done to compensate for this in the scope

of the research.

11.3.1. Musical Affordances and aesthetics

Allmusic technology products and tools dictate themusic they afford the user. For example, sheet

music editors (i.e. Sibelius) encourage the user to develop formal scores, whereas pattern-based

sequencers (i.e. Ableton Live) encourage the development of loop-basedmusic. When individuals

use IGME software, they create ‘IGME’ music. The software provides a set of constraints and

limitations, giving the music that is created a certain aesthetic and a stylistic fingerprint.

The software mostly enforced the development of music into small fragments isolated from

the surrounding musical context. IGME’s inability to support music outside a 4/4 meter created

rigidity in themusical artefacts. The heavy emphasis on computer-generated processes somewhat

forced participants into using them, meaning perhaps fewer of their ownmusical signatures were

evident in the resultantmusical artefacts. The ratio of humanvs computer-generatedmusicwould

likely be higher, as discovered in this thesis, than if such features were already an integral part of

mainstreammusic composition software.

Reflecting on the above, McPherson and Lepri (2020) state that “Although a tool may theoretically

be capable of anything, it will still have certain idiomatic patterns, making some structures and concepts

easier or more obvious to the designer than others.” In summary, IGME has made using CGM easier,

at the expense of making regular composition harder and pre-loading users with an expectation

that they use CGM.

The majority of IGME’s development and evaluation was provided via feedback from

participatory design studies. Most participants were music technology students. Having had

minimal exposure to professional music practice, or to postgraduate education (most were

undergraduates), their inputs undoubtedly influenced how IGME evolved from initial conception

to real-world software. In summary, the software design and features became tailored to the
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demographic using it. As already discussed, IGME had limited use and feedback from highly

experiencedmusic practitioners, so it is unclear how the design of such a tool would have differed

if those practitioners had been involved. In addition, Dahlbäck and Karsvall (2000) notes that

“voluntary participants are not a representative sample of the general population, but are likely more

extrovert and have more open personalities.”

IGME’s reliance on the concepts of Western music limits its scope. Although the barrier to

entry has been dropped, IGMEhas only democratised CGM tools for a computer-literateWestern

music-focused demographic. Little could be done to address this within the scope of the research.

Such an observation is a common criticism of many musical interfaces in communities such as

NIME (Morreale et al., 2020). Future research should look deeper into this.

11.3.2. Future Directions

The range of computer-generated techniques integrated into IGME only scratches the surface

of the field. Future research could focus on this aspect and on the automatic arrangements

of high-level structure. A supplementary review of algorithmic representations of high-level

structure (Hunt,Mitchell, andNash, 2019), and the study of repetition (Hunt, 2020), was conducted

by the researcher but is not discussed in the boy of this thesis (see Appendix item G).

To recap, most studies were conducted in controlled conditions with comparably small

numbers of users. The resultant compositions were short and experimental in nature.

Commissioning a series of longer pieces by an experienced IGMEpractitioner would offer further

insight into the juxtaposition of human and computer-composed music. Moreover, future work

could focus on analysing human-computer music and comparing it with existing styles, forms,

and genres of music.
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11.4. ClosingWords

This thesis began with the observation: computer music researchers dream of the perfect

algorithm, in which the music generated is indistinguishable from, or even superior to, that

composed by the world’s most talented practitioners. Although many researchers are still

motivated to fulfil this ambition, manymusic practitioners are dismissive of the idea, as this thesis

shows. As previously stated, we propose that computer-generated music techniques be used as

tools that work alongside human composers, acting as a catalyst for human creativity rather than

replacing it.

Although computers can automate many activities and can disenfranchise humans, we argue

that computer-generated music and human composition are not at odds with each other. The

world still needs exceptional composers, and computer music researchers still need to solve

impossible problems. For now, at least, composers can sleep soundly knowing their practice is

still safe from novel automation, butmight yet be able to further harness themysterious, intricate,

complex, and open-ended ‘technology’ that is the computer.
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Summary

A: Music Practitioner Questionnaire

Discusses the results of a user survey given to music practitioners. Summarised in chapter 5, but

discussed at length here.

B: Surveys

Copies of the 3 surveys used in the user studies discussed in chapters 7, 8 and 10.

C: Existing Music Software Plug-in Summary

An extension of the work summarised in chapter 4. This section discusses the range of

computer-generated plug-ins and processes already found in commonmusic software in detail.

D: IGME System Documentation

Details all of the computer-generated processes within IGME.

E: Additional Figures

Additional figures excluded from the main body.

F: IGME Tutorial Sheet

A copy of the tutorial given to participants in the first pilot study.

G: Additional Publications

Publications produced as part of doing this PhD that are not discussed in the main body.

224



A: Music Practitioner Questionnaire

This chapter originally formed a larger part of the main body of work. Although it was removed

due to space constraints, key findings were summarised in Chapter 5. The original work is

included here for the interested reader.

1. Introduction

Evaluating existingmusic systems through simply exploring them in the literature provides only a

single-dimensional view of the topics this research aimed to address. Studying the methods used

by composers to create music helped to identify workflows that could be automated and roles

for which computer-generated music might be useful. An additional aim of the research was to

identify the type of composer who would, not only use but benefit from a computer-generated

music system.

Themethodology employed an online questionnaire (based on work by Nash (2011), which was

advertised to the university’s music technology cohort as well as through an online composer

forum1. A range of music students, amateur composers, and professional composers responded.

24 complete responses were gathered.

2. Survey

This section summarises the results for each question. The main findings are given a cursory

look, as an in-depth discussion was beyond the scope of this research. To aid the narrative, the

questions are not explored consecutively. A template of the questionnaire is supplied at the end

of the chapter.

1http://www.compositiontoday.com/blog/431.asp
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A: Music Practitioner Questionnaire

2.1. Participant Background

Table 1 shows the musical background of the participants, with the majority being music

technology students. Table 2 summarises the participants’ experience of music. Important

observations include that 21/24 participants had composed some form of music and 9/24 were

professional music practitioners. Results in Figure 1 show that participants have a broad

knowledge of musical activities. More notably, just over half stated they had above average

experience of composing music using a computer.

Figure 2 shows a box and whisker plot for the length of experience each participant had under

‘general musicianship’, ‘composing/songwriting’ and ‘professional composition’, with the results showing

wide variance. The distribution for professional composition is skewed as several participants

entered 0 years.

Q1: Which of these best describes your background?
Music
Technology
Student

Music
Student

Recreational
Composer

Professional
Composer Other

11 4 2 5 2

Table 1.: The musical background of each participant.

Q2: What current musical experiences do you have? (tick any that apply)
Question Count Percetage
I play piano. 13 54.2%
I play guitar. 13 54.2%
I play another acoustic instrument. 13 54.2%
I play several musical instruments. 16 66.7%
I listen to a lot of music. 20 83.3%
I can read music. 16 66.7%
I have had music lessons. 19 79.2%
I have studied music theory (scales, etc.) 21 87.5%
I have performed live 15 62.5%
I have composed music/songs/tunes. 21 87.5%
I practise a lot. 8 33.3%
I am a professional performer. 5 20.8%
I am a professional composer/songwriter. 9 37.5%
I have performed with friends 17 70.8%

Table 2.: The participant’s experience of music.
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A: Music Practitioner Questionnaire

Figure 1.: Distribution of responses for participants’ knowledge of musical activities.

Figure 2.: Box and whisker plot of the number of years of musical experience, by type.
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A: Music Practitioner Questionnaire

Figure 3.: Summary of results for experience of different types of music software.

2.2. Music Composition Software

Figure 3 shows the distribution of results when asking about experiences of using different types

of music software. The results suggest that ‘linear sequencers’ and ‘score editors’ remain the most

commonly used software types. ‘pattern-based sequencers’ and ‘music programming’ show relatively

little use by comparison. Question 6 asked “what is your preferred composition/DAW package.”. A

range of responses was given, with the two most popular being Logic Pro X and Sibelius.

2.3. Music Ideation

Question 7 was “briefly reflect on how your preferred software allows you to explore new ideas?”. A

recurring theme was the software features that permitted the participant to experiment with

different arrangements of theirmusic. One noted that “Ableton Live also has some great presets, which

allow me to sketch out musical ideas before fleshing them out”. Another stated that music software

allows them to experiment with ideas they cannot perform on the piano, and the playback of such

sequencers allows them to proofread.

Several participants said the workflow afforded by their chosen software permitted ideas to

flow easily from their minds to the computer. One noted that strong knowledge of the software’s

limitations and user interfaces meant it was possible to concentrate on composing.

Question 8 complemented the previous question by asking, “is there a specific feature in any of

the above software that helps you come up with new ideas?”. Two recurring responses were ‘using the

inbuilt loops as a source of inspiration’, and ‘using inbuilt audio effects/processes to create new sounds’.
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In a counter-response, one participant stated: “I don’t think Finale especially promotes the formation

of newmusical ideas”. Finale (Makemusic, 2018) likeSibelius is primarily a score engravingprogram,

and not designed for ‘coming up with ideas’. Similarly, another participant noted there are such

features, but preferred not to use them.

Question 9 asked “are there composition techniques that you are interested in, which are not well

supported in your current DAW/composition package?”. Several participants agreed that their needs

were already beingmet. Twowanted to use generative and algorithmicmusic tools, while another

wanted to create ‘avant-garde’ compositions. In essence, most composers’ needs are already being

met.

2.4. Workflows and Approaches to Composition

Question 10 asked “are there specific technique(s) that you use to improveworkflow (e.g. work faster, more

efficiently)?”. Manyparticipants said theymadeuse of an external device, such as aMIDI controller,

keyboard, or an iPad, to inputmaterial. A similar number indicated they used keyboard shortcuts.

One participant noted that being able to quickly audition clips, and see how they fitted in with

different loop points and effects, improvedworkflow in their choice of software (Ableton Live).

Question 11 asked “when using any of the above software, are there certain issues that restrict

your workflow?”. More responses were received for this than for the previous question. Several

participants complained that inputting notes, either through initial note-by-note input or by

cleaning up MIDI data, was often tedious. Similar responses were that the computer could not

work very fast and that it was easier to work on paper. One participant observed that score editing

softwarepackages areunable to generate coremusical structures, suchas a chord sequence, during

the initial sketching phase of composition. Sketching is an activity afforded by a paper medium

(Nash, 2015) and is often more difficult in software.

Question 14 asked “For each of the following statements, indicate how well the description agrees with

your own approach to composing music?”. Answers are discussed below, in reference to Figure 4.

229



A: Music Practitioner Questionnaire

Figure 4.: Approaches to Composition

“I use the computer to come up with ideas.”

Most participants agreed, suggesting the computer facilitates the user in creating new

ideas. Computers can assist in many ways, including auditioning a full orchestra, applying

transformations (e.g. retrograde), and generating content. However, solely based on this answer,

it is unclear what features of the computer or software facilitate idea generation.

“I experiment with different arrangements of notes until I hear something I like.”

The majority of people agreed with this, which indicates the benefit of using computer tools that

make it easy to go back and make changes and of working with few constraints.

“My composition is guided by my knowledge of music theory.”

Slightly more people disagreedwith this statement than agreed, perhaps because strictly following

music theory severely limits the scope of music. This possibly suggests that embedding music

theory in a way that tries to correct compositional choices would be undesirable. Music is as much

about respecting the rules as breaking them.

“I feel there is a correct solution that I must find.”

This question generated a similar distribution of answers between agree and disagree. Many

algorithms and machine learning techniques can be seen as problem solvers, in that they search

through a problem space for a solution. This idea has parallels with music (Alty, 1995). The
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Figure 5.: Experience of composition techniques.

difficulty in finding a correct solution in ordinary music composition is that multiple possibilities

are evaluated based on subjective preference.

“I often do not know how or where to start composing a piece.”

Themajority of participants agreedwith this statement, indicating that using computer-generated

techniques for initial idea generation could be proposed as a solution for aiding composers.

2.5. Techniques for Music Composition

Question 13 asked “what experience have you had of the following techniques for music composition?”,

with results given in Figure 5. The most used technique is the arpeggiator, which along

with harmonisers is commonly found on consumer keyboards and features widely in music

composition software. Minimalism and serialism techniques also showed frequent ‘usage’ and

‘awareness’, perhaps unsurprisingly as these are often taught on music education courses. Neural

networks andMarkovmodels have been commonly explored techniques for computer-generated

music in the literature, although the majority of participants were ‘unaware’ of them and hardly

anyhad ‘used’ them. Many survey participantsmarked that theywere ‘aware’ of genetic algorithms,

and three marked they had ‘used’ them.
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Q21: If the comptuerwas able to suggestmusical ideas, would youfind this
feature:
Annoying 5/24
Intrusive 9/24
Crucial 0/24
Useful for ’composer’s block’ 13/24
Interesting 13/24
Novel 1/24
Inspiring 3/24
None of the above 0/24

Table 3.: Summary of responses for above question.

It could be suggested that the reason composers have not used certain techniques is they are

simply unaware of their existence, or because they are satisfied with their existing experiences of

music composition. Many of the more complex computer-generated music techniques remain

firmly in the academic domain and are absent from existing mainstream music composition

software.

Table 3 shows the results of asking “if the computer was able to suggest musical ideas, would you find

this feature...”, with participants able to make multiple selections. One- third found the suggestion

‘interesting’ and/or ‘useful for composer’s block’, while roughly the same number found this too

‘intrusive’. It is evident that there needs to be a clear separation between making such a feature

‘interesting’ to use and not making it ‘intrusive’. Few people found this to be ‘novel’ or ‘inspiring’ and

no one found it to be ‘crucial’.

Question 15 asked “would you consider using music the computer has generated in your current music

practice?”. 12 participants answered ‘yes’, 9 answered ‘it depends’ and 3 answered ‘no’. Those who

answered ‘it depends’, additionally wrote that they would need to have control over the process and

that it would depend on what it sounded like. Another noted they would use computer-aided

composition, such as fractals, but would not use AI-generated material. Several stated that it

would depend on the context, with one suggesting they would consider using computerisation

only for a commission.

Among those who answered ‘no’, one said “I consider composition exclusively from my own ideas

and experience to be a satisfying challenge”. Another said, “the emotions in music are not susceptible to

computerisation”. It should be asserted and respected that generative music techniques are simply

not of interest to every composer.
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Q12: Where does most of your musical creativity take place?
Entirely at the computer 0
Mostly at the computer 11
Mostly away from the computer 6
Entirely away from the computer 4
Other 3

Table 4.: Where does creativity happen.

Figure 6.: Ratio of composing music on a computer vs non-digital methods.

2.6. Digital and non-Digital Creativity

Question 12 asked “where does most of your musical creativity take place?”. The results, as set out in

Table 4, were mixed. One participant stated “I generally don’t have musical ideas when working with

a computer, but rather use it as a way to create or discover something that I would never have thought of

myself - I like it to surprise me”. The results show that no participant uses the computer in isolation

but makes use of other forms of music practice (i.e. playing an instrument).

Question 16 asked “what would you say your current ratio of composing music is done on a computer

vs non-digital methods”. Participants manipulated a set of sliders to give a percentage for each,

totalling 1002. The results in Figure 6 showed wide variance for each category. On average, half of

all compositional activity was completed on a computer. The outliers for the paper distribution

showed that for two individuals at least 80% of composition was completed on paper. Finally, a

large proportion of composition happens in the ‘mind’ of the composer.

Question 17 asked: “when composing, are there particular tasks that you prefer to complete on the

computer; and/or on paper; and/or using a differentmethod?”. Several participantsmade informal notes

on paper, or via a mobile device. Many respondents noted that playing a physical instrument

2the user interface ensured that the results totalled exactly 100
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Q20: Do you feel music composition software supports or impedes
creativity?
Mostly Supports Somewhat

Supports Neither Somewhat
Impedes Mostly Impedes

8 13 3 0 0

Table 5.: Opinions on creativity.

is crucial for creating music, something that the computer cannot replicate. Many participants

stated that finishing a final score is often more suited to being completed on a computer (instead

of paper).

In summary, many participants use instruments to come up with ideas and then use software

as the main method for preparing finalised compositions, while using other devices or forms

of ‘secondary notation’ to capture informal ideas. It is therefore crucial that the computer is not

considered the only ‘tool’ in a composer’s toolkit.

Question 19 asked “how important a role does technology play in your composition process (if at all)?”.

One notable response was: “without computer-aided techniques, I wouldn’t be able to explore many of

my ideas in more depth at the speed I can.”, reinforcing the idea that the computer can be used to

facilitate creativity. Another response was “for a lot of people it’s the only way people can create the

music they hear, and hear the music they create!”.

Finally, question 20 asked “do you feel music composition software supports or impedes creativity?”.

The results from this question (Table 5) indicated that computers do support the creative process

but that this could be improved further. Nobody found computers to ‘impede’ creativity, although

a few answered ‘neutral’.

3. Summary andMethodology Review

The questionnaire covered topics relating to composition, software, workflows, creativity, and

computer-generated music techniques. The questionnaire was lengthy for an online survey,

resulting in several abandoned responses - 60 people started the survey but only 24 finished. The

questions were broad and focused on general music practice rather than specifically looking at

computer-generated music themes.

One hypothesis from studying the results is that understanding computer-generated processes

increases the likelihoodof thembeing considered for use in composition. For example, composers

are unlikely to use serialist techniques if they have never been taught them. Therefore, it is
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suggested that any proposed software should explain techniques (through inbuilt tutorials or

documentation) such as a Markov model before interfaces for playing with them are given3.

3.1. Research Questions

The research identified three areas in which computer-generated music could be used:

• Generating new ideas

• Exploring existing ideas

• Creating automatic accompaniments

Each objective is defined in more detail below and presented with a research question that was

later used in the participant studies.

Generating new ideas:

This refers to techniques that can create newmaterial, with the user specifying the parameters of

a given generative model.

Research question: “I would use CGM techniques to help me to come up with new ideas”.

Exploring existing ideas:

Allow the user to utilise CGM techniques for experimenting with different arrangements and

support this in a suitable interface.

Research questions: “I would use CGM techniques to help me to explore different permutations of my

own material” and “the interface provided allows me to effortlessly explore new ideas”.

Creating automatic accompaniments:

Allow the user to create automatic accompaniments alongside their existing music.

Research question: “I would use the automatic accompaniments as a starting point in my composition

practice”.

3This was not explored in depth in the research or user studies and could be an area for future research.

235



A: Music Practitioner Questionnaire

4. Conclusion

To conclude, the following design requirements should be factored into any computer-generated

music system, and specifically for the system built for this research. The topics discussed in this

chapter informed the requirements listed in Table 6.

Requirement Description
Workflow The system should ensure that ideas can be entered quickly, and that

informal notes and sketches can be made in appropriate alternative
notations.

Education The system should seek to educate users on generative techniques.
Experiment The system should use algorithmic techniques to augment existing

ideas and to explore alternative arrangements with ease.
Learnability The system should be familiar in nature to existing music sequencing

applications.
Idea Generation The system should allow the user to use novel generative music

techniques for creating newmaterial.
Unobtrusive A user should be able to use the system firstly as a music sequencer

and, if the user so wishes, to have inbuilt tools for experimenting with
generative and algorithmic techniques.

Table 6.: Some initial design requirements for building an end-user computer-generated music
system.

In summary, the data gathered here was used in conjunction with the background research to

inform the initial design requirements for an end-user computer-generated music system. The

system could have been designed based on the secondary research detailed in Chapters 3 and 4.

However, the design was supplemented and reinforced by the research presented in this chapter.

5. Survey

Listed on the next page is the survey given to participants for the work discussed in this chapter.
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https://uwe.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_6xL3TLfZiXOIV4V&ContextLibraryID=UR_3qHzuth… 1/9

Default Question Block

Composer Workflow Study
 
This survey looks to gain your insight into software based methods that can assist composers. 

The research looks at how generative music applications can be embedded inside existing 

systems such as Sequencers, Score Editors and Digital Audio Workstations, and how these can 

be integrated with existing musical practices. 

 
The questions included in this survey are subjective, there are no right or wrong answers.

 

Data gathered as part of this questionnaire will be stored in the UK and will be anonymised. It is 

envisioned that the data will be used for academic publications and theses. You are free to 

withdraw from the survey at any time until 1st June 2017, after this the data collected will have 

been collated and published.

 
If you have any questions prior to taking this survey you can email the following people:

 
Samuel Hunt - Principle Researcher: Samuel.hunt@uwe.ac.uk.

 
Dr Chris Nash - Project Supervisor: Chris.Nash@uwe.ac.uk

Information about the project and consent can be downloaded from the following link:

Composer survey information and consent form

 
Please note consent for the online survey is given in the section bellow.

 

Please confirm that you give consent to provide the data required by this survey by
clicking and highlighting the following three statements.

My participation in this survey is entirely voluntary, I am free to withdraw at any time up until the
1st of June 2017 without reason. If I choose to withdraw any information provided will be
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Music

Which of these best describes your background?

What current musical experiences do you have? (tick any that apply)

Please indicate your current level of knowledge with the following musical activities:

securely discarded.

Given the nature of the questions relating to sometimes personal experiences. I have the right to
decline answering any question without reason.

I have downloaded a copy of the Information and consent for participants document, and have
read and understood it.

I play piano. I have studied music theory (scales, etc.)

I play guitar I have performed live.

I play another acoustic instrument I have composed music/songs/tunes.

I play several musical instruments. I practice a lot.

I listen to a lot of music. I am a professional performer.

I can read music. I am a professional composer/songwriter.

I have had music lessons. I have performed with friends

   None ... Some ... Lots

Reading written
music.   

Sight-reading music
(performing a piece
on sight).

  

Analysing music by
ear.   

Performing music in
private.   

Performing music in
public.   

Improvising music
(live).   
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Number of years of musical experience:

Software

How much experience do you have using the following software.

   None ... Some ... Lots

Composing music.   

Composing music
using a computer.

  

Writing melodies.   

Writing harmonies
(e.g. chord
progressions).

  

Writing rhythms
(including drum
programming).

  

Notating music.   

Notating music using
a computer.

  

General Musicanship

Composing/Songwriting

Professional Composition (e.g. paid)

   A great deal A lot
A moderate

amount A little None at all

Experience with linear
sequencers or DAWs
(e.g. Logic Pro, Pro
Tools, Reaper).

  

Experience with score
editors (e.g. Sibelius,
Finale, Guitar Pro).

  

Experience with
live/pattern-based
sequencers (e.g.
Ableton Live, trackers,
FL Studio).
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What is your preferred composition/DAW package?

Briefly reflect on how your preferred software allows you to explore new ideas?

Is there a specific feature in any of the above software that helps you come up with
new ideas? (Feel free to list as many as you want.)

Are there composition techniques that you are interested in, which are not well
supported in your current DAW/composition package? (Feel free to list as many as you
want.)

Are there specific technique(s) that you use to improve work flow (e.g. work faster,
more efficiently)? (Feel free to list as many as you want.)

   A great deal A lot
A moderate

amount A little None at all

Experience with music
programming (e.g.
Max, SuperCollider).

  

General Experience
with Computer Music
Software.
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When using any of the above software, are there certain issues that restrict your work
flow? (Feel free to list as many as you want.)

Where does most of your musical creativity take place?

If you selected other please briefly explain:

Music Composition

What experience have you had of the following techniques for music composition?

   

Entirely at
the

computer
Mostly at the

computer

Mostly away
from the
computer

Entirely
away from

the
computer Other

I generate most of my
ideas...   

   Unaware Aware Have used

Neural Networks   

Arpeggiators   

Genetic algorithms   

Harmonisers / one
touch chords   

Markov Models   

Dice Games   

Minimalism / Process-
based

  

Serialism   
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For each of the following statements, indicate how well the description agrees with
your own approach to composing music?

   
Strongly
disagree

Somewhat
disagree

Neither
agree nor
disagree

Somewhat
agree

Strongly
agree

I use my instrument
to experiment with
music before
notating/entering it
into a computer.

  

Most of the music I
compose is recorded
live (audio or MIDI)

  

I use the computer to
come up with ideas.

  

I experiment with
different
arrangements of notes
until I hear something
I like.

  

I know exactly what I
want to write before
sitting down at the
computer.

  

My composition is
guided by my
knowledge of music
theory.

  

I feel there is a
correct solution that I
must find.

  

I work a track at a
time; producing all the
music for one part
before moving to the
next (e.g. writing a
whole melody before
adding
accompaniment).

  

I work a segment at a
time; building all
tracks simultaneously,
working incrementally
from the start of the
piece to the end.
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Would you consider using music the computer has generated in your current music practice?

Technology

what would you say your current ratio of composing music is done on a computer vs non-digital methods 

(e.g. paper and in your head)?

   
Strongly
disagree

Somewhat
disagree

Neither
agree nor
disagree

Somewhat
agree

Strongly
agree

I rely on how the
music sounds to guide
my
composing/editing.

  

I often do not know
how or where to start
composing a piece.

  

I could write a piece
of music without
listening to it.

  

Yes

It depends (please specify):

No (please briefly explain):

 

Computer           69

Paper           31

In Your Head           0

Mobile device i.e.
dictaphone           0

Total: 100

 0 10 20 30 40 50 60 70 80 90 100

2/8/2021 Qualtrics Survey Software

https://uwe.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_6xL3TLfZiXOIV4V&ContextLibraryID=UR_3qHzuth… 8/9

When composing, are there particular tasks that you prefer to complete on the computer; and/or on paper; 

and/or using a different method? Please briefly describe the tasks and methods used.

How important a role does technology play in your composition process (if at all)?

Have you ever forgotten a new musical idea because of the lack of supporting
technology? (if so please explain briefly)

Do you feel music composition software supports or impedes creativity?

If the comptuer was able to suggest musical ideas, would you find this feature:

Mostly Supports

Somewhat Supports

Neither Supports or Impedes

Somewhat Impedes

Mostly Impedes

Annoying Interesting

Intrusive Novel

Crucial Inspiring

Useful for 'composer's block' None of the above
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Conclusion

 Thank your for your valuable input into this survey.  We are also looking for
composers who are willing to discuss their composition process and use of technology
in more detail. If this is something you would like to be part of, please leave your
name and email address.

Contact Details

Are there further comments you would like to add, regarding the research or any of the survey questions 

in general?

Name:

Email:



B: Surveys

1. Survey A: Preliminary Evaluation

This survey was used for the first pilot study, discussed in chapter 7.
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IGMSE Questionnaire sample:     Document ID:……………… 
 
Please answer all questions, there are no right or wrong answers. 
 
Q1. How much experience do you have of using the following software: 
(please note only tick one box for each row) 
 

 A great 
deal 

A lot A moderate 
amount 

A little None at 
all 

Linear Sequences and 
DAWs (e.g. Logic, Pro 
tools) 

     

Score editors (e.g. 
Sibelius, finale) 

     

Live pattern-based 
sequencers (Ableton, 
trackers, FL studio) 

     

Music Programming 
(e.g. Max, Supercolider) 

     

General Experience 
with computer music 
software 

     

 
Q2. What experience have you had of the following techniques for music composition? 
(please note only tick one box for each row) 
 

 Unaware Aware Have used 
Neural Networks    
Arpeggiators    
Genetic Algorithms    
Harmonisers/one touch 
chords 

   

Markov Models    
Dice Games    
Minimalism/process 
based 

   

Serialism    
 
Q3. What is you preferred composition/DAW package? 
 

 
 

 
 
 
Questions continued overleaf 

Q4. What did you find particularly enjoyable about using IGMSE? 
 

 
 
 
 
 
 

 
Q5. What did you find particularly frustrating about using IGMSE? 
 

 
 
 
 
 

 
Q6. What part(s) of IGMSE could be improved (not including the synthesised audio 
quality)? 
 

 
 
 
 
 

 
Q7. Would you be interested in using a similar tool again in the future? (if so please leave 
email) 
 

 
 
 
 
Optional email:  

 
Q8. Do you have additional comments? 
 

 
 
 
 
 
 

 
 
Thank you again for your participation in this workshop. 
By Samuel Hunt, 2017 



B: Surveys

2. Survey B-3: Cognitive Dimensions Evaluation

This survey was used for the second pilot study in chapter 7, and the studies in chapter 9 and 10.
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Default Question Block

Having now spent some time using IGME please fill out
the following survey. It should take between 5 - 10
minutes to complete

Please enter your email address

Please enter your product key (optional)

Have you used generative music techniques before this
project?

Yes

No
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Briefly in your own words describe your musical
background:

Question 1

Version Control System

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree

I feel that the
version control
system encourages
me to experiment
with ideas.

  

I feel that the
version control
system allows me
to easily compare
different iterations.

  

I feel that the
version control
system allows me
to check my
progress

  

Using the version
control system
makes it easy to go
back and make
changes to the
music
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Question 2

Two stage editing process

Question 3

Generative effects

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree

The two stage
editing process
allows me to rapidly
enter ideas.

  

The two stage
editing process
allows me to make
edits in any order.

  

The two stage
editing process
makes it easy to go
back and make
changes to the
music.

  

I feel that the two
stage editing
process creates
hidden
dependencies.
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Question 4

Explicit parts

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree

The generative
effects in IGME
helped me to come
up with new ideas.

  

I find that the
generative effects
make annoying
mistakes.

  

I would like more
control over the
generative effects

  

I would like to be
able to define my
own generative
processes.

  

Using generative
music/algorithmic
techniques helped
me to come up with
ideas that I would
not otherwise have
created on my own

  

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree
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Question 5

Dependency arrows (optional)

Please answer the questions bellow if you had chance to
use reference parts, if you did not please leave this
section blank

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree

I feel that it is easy
to distinguish
between parts that
are computer
generated and ones
that are purely my
own content

  

Is it easy to find the
type of part I am
looking for

  

Breaking the music
into parts makes it
easy to try out new
ideas

  

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree

The dependency
arrows make the
relationships
between each part
explicit.
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Block 6

IGME system questions

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree

It was clear that
editing a part would
have knock on
consequences for
other parts

  

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree

When writing music
within IGME, there
were difficult things
to work out in my
head

  

I feel that I have
suitable control over
the generative
processes in IGME

  

I feel that the
computer has taken
some control of the
composition
process in IGME

  

I feel that my
knowledge of
generative music
has improved since
using IGME.
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Which feature of IGME would you most like to see in your
usual music sequencing application.

Block 7

General

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree

The interface
provided by IGME
allows me to easily
explore new ideas.

  

IGME’s workflow is
similar to other
score editors and
sequencers

  

The tutorial system
inside IGME helped
me to learn the
software quickly

  

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree
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Block 8

Creativity

    

Strongly
agree

Somewhat
agree

Neither
agree nor
disagree

Somewhat
disagree

Strongly
disagree

I would use
generative/algorithmic
techniques to help me
to come up with new
ideas.

  

I would use
generative/algorithmic
techniques to help me
to explore different
permutations of my
own material.

  

I would use
accompaniments
created by the
computer alongside
my own composed
music.

  

In general I would use
music the computer
has generated or
suggested in my own
compositions.

  

Using
generative/algorithmic
techniques helps to
increase my
productivity
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Is the authorship of your creative output a concern when using generative techniques?

Feel free to explain further

What is the maximum percent of automated creativity
you would tolerate?

    

All of it to
the

computer

most of it
to the

computer neutral
Most of it
to myself

All of it to
myself

    

All of it to
the

computer

most of it
to the

computer neutral
Most of it
to myself

All of it to
myself

Having used IGME,
how much of the
musical creativity
do you attribute to
the computer

  

Yes

No

 

Amount                    

Me only 50:50
Fully the

computer

 0 10 20 30 40 50 60 70 80 90 100
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Block 10

I found learning IGME using the provided materials
(tutorials, presentation and video):

I feel that with time I could master IGME

Block 9

What are the positive aspects of using generative music?

Very Easy

Somewhat Easy

Neutral

Somewhat Challenging

Very Challenging

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree



2/24/2021 Qualtrics Survey Software

https://uwe.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_7WN6x6Xas7BUwiV&ContextLibraryID=UR_3qHz… 11/11

Powered by Qualtrics

What are the negative aspects of using generative
music?

Is there further comments you would like to make?



B: Surveys

3. Survey C: Prior Experiences of Music

This survey was given to participants before starting the longitudinal study in chapter 10.

251



7/15/2020 Qualtrics Survey Software

https://uwe.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_d6fXaVlPYoL7Qk5&ContextLibraryID=UR_3qHzuth… 1/8

Default Question Block

Composer Workflow Study
 
This survey looks to gain your insight into software based methods that can assist composers. 

The research looks at how generative music applications can be embedded inside existing 

systems such as Sequencers, Score Editors and Digital Audio Workstations, and how these can 

be integrated with existing musical practices. 

 
The questions included in this survey are subjective, there are no right or wrong answers.

 

Data gathered as part of this questionnaire will be stored in the UK and will be anonymised. It is 

envisioned that the data will be used for academic publications and theses. You are free to 

withdraw from the survey at any time until 1st June 2020, after this the data collected will have 

been collated and published.

 
If you have any questions prior to taking this survey you can email the following people:

 
Samuel Hunt - Principle Researcher: Samuel.hunt@uwe.ac.uk.

 
Dr Chris Nash - Project Supervisor: Chris.Nash@uwe.ac.uk

Information about the project and consent can be downloaded from the following link:

Composer survey information and consent form

 
Please note consent for the online survey is given in the section bellow.

 

Please confirm that you give consent to provide the data required by this survey by
clicking and highlighting the following three statements.

My participation in this survey is entirely voluntary, I am free to withdraw at any time
up until the 1st of June 2020 without reason. If I choose to withdraw any information
provided will be securely discarded.
Given the nature of the questions relating to sometimes personal experiences. I have
the right to decline answering any question without reason.
I have downloaded a copy of the Information and consent for participants document,
and have read and understood it.
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Music

Which of these best describes your background?

What current musical experiences do you have? (tick any that apply)

Please indicate your current level of knowledge with the following musical activities:

I play piano. I have studied music theory (scales, etc.)
I play guitar I have performed live.
I play another acoustic instrument I have composed music/songs/tunes.
I play several musical instruments. I practice a lot.
I listen to a lot of music. I am a professional performer.
I can read music. I am a professional composer/songwriter.
I have had music lessons. I have performed with friends

     A great deal A lot
A moderate

amount A little None at all
Reading written
music.   

Sight-reading music
(performing a piece
on sight).

  

Analysing music by
ear.   

Performing music in
private.   

Performing music in
public.   

Improvising music
(live).   

Composing music.   
Composing music
using a computer.   

Writing melodies.   
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Number of years of musical experience:

Software

How much experience do you have using the following software.

     A great deal A lot
A moderate

amount A little None at all
Writing harmonies
(e.g. chord
progressions).

  

Writing rhythms
(including drum
programming).

  

Notating music.   
Notating music using
a computer.   

General Musicanship

Composing/Songwriting

Professional Composition (e.g. paid)

     A great deal A lot
A moderate

amount A little None at all
Experience with linear
sequencers or DAWs
(e.g. Logic Pro, Pro
Tools, Reaper).

  

Experience with score
editors (e.g. Sibelius,
Finale, Guitar Pro).

  

Experience with
live/pattern-based
sequencers (e.g.
Ableton Live, trackers,
FL Studio).

  

Experience with
music programming
(e.g. Max,
SuperCollider).
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What is your preferred composition/DAW package?

Are there composition techniques that you are interested in, which are not well
supported in your current DAW/composition package? (Feel free to list as many as
you want.)

Where does most of your musical creativity take place?

If you selected other please briefly explain:

Music Composition

What experience have you had of the following techniques for music composition?

     A great deal A lot
A moderate

amount A little None at all
General Experience
with Computer Music
Software.

  

    

Entirely at
the

computer
Mostly at the

computer

Mostly away
from the

computer

Entirely
away from

the
computer Other

I generate most of my
ideas...   

     Unaware Aware Have used
Neural Networks   
Arpeggiators   
Genetic algorithms   



7/15/2020 Qualtrics Survey Software

https://uwe.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_d6fXaVlPYoL7Qk5&ContextLibraryID=UR_3qHzuth… 5/8

For each of the following statements, indicate how well the description agrees with
your own approach to composing music?

     Unaware Aware Have used
Harmonisers / one
touch chords   

Markov Models   
Dice Games   
Minimalism / Process-
based   

Serialism   

    
Strongly
disagree

Somewhat
disagree

Neither
agree nor
disagree

Somewhat
agree

Strongly
agree

I use my instrument to
experiment with
music before
notating/entering it
into a computer.

  

Most of the music I
compose is recorded
live (audio or MIDI)

  

I use the computer to
come up with ideas.   

I experiment with
different
arrangements of
notes until I hear
something I like.

  

I know exactly what I
want to write before
sitting down at the
computer.

  

My composition is
guided by my
knowledge of music
theory.

  

I feel there is a correct
solution that I must
find.
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Would you consider using music the computer has generated in your current music practice?

Technology

what would you say your current ratio of composing music is done on a computer vs non-digital methods 

(e.g. paper and in your head)?

    
Strongly
disagree

Somewhat
disagree

Neither
agree nor
disagree

Somewhat
agree

Strongly
agree

I work a track at a
time; producing all the
music for one part
before moving to the
next (e.g. writing a
whole melody before
adding
accompaniment).

  

I work a segment at a
time; building all
tracks simultaneously,
working incrementally
from the start of the
piece to the end.

  

I rely on how the
music sounds to
guide my
composing/editing.

  

I often do not know
how or where to start
composing a piece.

  

I could write a piece
of music without
listening to it.

  

Yes
It depends (please specify):

No (please briefly explain):

 
 0 10 20 30 40 50 60 70 80 90 100
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When composing, are there particular tasks that you prefer to complete on the computer; and/or on paper; 

and/or using a different method? Please briefly describe the tasks and methods used.

Do you feel music composition software supports or impedes creativity?

If the comptuer was able to suggest musical ideas, would you find this feature:

Conclusion

 

Computer                     69

Paper                     31

In Your Head                     0

Mobile device i.e.
dictaphone                     0

Total: 100

 0 10 20 30 40 50 60 70 80 90 100

Mostly Supports
Somewhat Supports
Neither Supports or Impedes
Somewhat Impedes
Mostly Impedes

Annoying Interesting
Intrusive Novel
Crucial Inspiring
Useful for 'composer's block' None of the above
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Contact Details

Are there further comments you would like to add, regarding the research or any of the survey questions 

in general?

Name:

Email:



C: Existing Music Software Plug-in Summary

1. Computer-Generated Music Techniques in Popular Music Software

This work is an extension of the research presented in Chapter 4.

Name Summarised Reference Version
Ableton Live Yes (Ableton, 2020) 9
ACID Pro No (MAGIX, 2020) 10
Ardour No (Davis, 2020) 5.12
Audiotool Yes (AudioTool, 2020) 2020
Bitwig Studio Yes (Bitwig, 2020) 3.1.2
Cubase Yes (Steinberg, 2020a) 10.5
Digital Performer Yes (MOTU, 2020) DP10
Dorico Yes (Steinberg, 2020b) 3.1
FL Studio Yes (Image-Line, 2020) 20
GarageBand Yes (Apple, 2020a) 10.3.4
Guitar Pro Yes (Arobas-Music, 2020) 6/7
Logic Pro X Yes (Apple, 2020b) 10
Numerolgy Yes (Five12, 2020) 3
Pro Tools No (Avid, 2020a) 2020
REAPER Yes (Cockos, 2020) 6.07
Reason Yes (Reason-Studios, 2020) 10.4
Renoise Yes (Renoise, 2020) 3.2
Sibelius Yes (Avid, 2020b) 2020
Studio One Yes (Electronics, 2020) 4.6
Tracktion Yes (Tracktion-Software-Corporation, 2020) 10

Table 1.: List of popular music composition software and digital audio workstations that were
analysed in Chapter 4. (Reproduced from Chapter 4 Table 1).

Chords

Many pieces of software contain a chord effect processor, which is a MIDI process that produces

more than one output note for a given input note. Designs vary, with some providing the same

mapping for any incoming note (Live and Bitwig) while others, such as Logic Pro and Cubase

(Figure 3), allow a user to assign a different chord for each note on the keyboard. Reason’s scales
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Figure 1.: A collection of various chord effects (Bitwig, Live, Logic and Presonus.

and chords plug-in (Figure 2) maps a single keypress to a chord but is selected from a scale so

remains in key.
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Figure 2.: Reason’s chord and scale plugin.

Figure 3.: Cubase chord pad.
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Figure 4.: Collection of various transposers (Bitwig, Live, Logic, Presonus and Studio one).

Transposer

A transposer (Figure 4 is a simple deterministic plug-in that transposes the incoming notes by a

set amount. More complex variants include inbuilt limiters and scale quantisers. As with most

plug-ins, the controls can be automated in real-time.
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Arpeggiator

Figure 5.: Collection of various arpeggiators (Bitwig, Live, Logic and Presonus).

An arpeggiator is a process in which notes are rapidly output in a pattern. The ordering of

input notes does not necessarily determine the output order. For example, the arpeggiator may

sequence notes in ascending order. A pattern can be repeated over a given number of octaves. The

effect can be both deterministic and stochastic depending on the configuration. Whereas most

arpeggiator effects work in real-time (that is the output is heard audibly rather the being placed

back on the timeline), FL Studio works offline by arpeggiating the notes in the editor. Once the

effect is computed, the output is put back on the timeline. The effect is destructive once the user

hits ‘confirm’ and the initial notes and settings are lost. After opening the arpeggiator settings,

further effects can be applied, essentially working recursively. Figure 6 shows the input notes, and

output after the arpeggiator has been computed.
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Figure 6.: FL studio before (top), and after (bottom).
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Note Randomiser

Figure 7.: Collection of note randomiser effects.

A note randomiser is an effect that randomises elements of a sequence of notes. Some variants

work in real-time, modifying a note as it is played live, whereas offline tools and editors can

randomise the contents of a clip. Some of these will generate new patterns, while others will

shuffle an existing sequence. Without the ability to quantise to a scale, the result can be unusable.

The top of Figure 8 shows the before and after of applying Reason’s note randomiser to a MIDI

clip. The bottom of Figure 8 is similar but shows the ‘alter notes’ effect, which uses only notes in the

original sequence, keeping a sense of consistency. Studio One contains a novel “thin out notes”

process that can simplify a sequence, or delete notes randomly from a sequence, as well as a more

complex note randomiser (Figure 9) with a range of configuration options.
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Figure 8.: Applying a note randomiser (top) and note alter effect (bottom) in Reason.
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Figure 9.: Studio One’s note randomiser.
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Scale Quantisers

Figure 10.: Various scale quantisers (Bitwig and Live).

A scale effect essentially maps one incoming note number to another, ensuring all notes are in

a scale or key. Quantisers are often embedded inside other plug-ins and effects, but standalone

ones are available too. The grid-based approaches offered in Bitwig and Live (Figure 10) allow for

unorthodox non-linear mappings. When coupled with note randomisers, these two effects allow

for more sensible forms of music to be generated.

Note Repeaters

Anote repeater (or echo) effect rapidly repeats incoming notes. The velocity of each repeat can be

specified, creating different rhythmic effects. Reason’s inbuilt note echo (Figure 12) is similar to a

step sequencer. Patterns can be applied so that each successive note increases in pitch, or repeats

a non-linear pattern.
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Figure 11.: A selection of note repeater plug-ins (Bitwig and Live).

Figure 12.: Reason’s powerful note repeater (echo) plug-in.
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1. IGME’s Computer-Generated Processes

This section details each of IGME’s computer-generated processes, as summarised in Table 1.

Type A is the note properties model. Type B contains the regular plug-ins and type C is the seed

generators. Complexity is arbitrarily defined as how complex the process is deemed to use.

Group Plugin
name

Stochastic or
deterministic

Complexity
(1-5)

Type Number of
sliders

Number of
drop-down

Number of
checkboxes

Other Controls

B Transpose Deterministic 1 Transformation 1 0 0
A Note

Properties
Stochastic 2 Generative 5 (per note) 0 0

B Pitch
Quantise

Deterministic 2 Transformation 2 0 0

B Transforms Deterministic 2 Transformation 0 0 4
B Note Map Deterministic 2 Transformation 0 0 0 Many 1-1mappings
B Subtractor Stochastic 2 Transformation 1 0 0
B Wind

Chime
Stochastic 2 Generative 1 0 0

B Repeater Deterministic 2 Transformation 1 0 1
B Constrainer Deterministic 2 Transformation 2 0 0
B Rhythm

Quantiser
Deterministic 2 Transformation 0 2 0

B Evolution Stochastic 3 Generative 2 3 0
B Arpeggiator both 3 Transformation 2 2 0
C Random

Note
generator

Stochastic 3 Generative 10 3 1

C Perlin Noise
Generator

Stochastic 3 Generative 12 3 1

C Distribution
sample

Stochastic 4 Analytic 31 3 0 Presets and
automatic analysis

C Transition
table

Stochastic 4 Analytic 181 1 0 Automatic analysis

C L-System Deterministic 5 Generative 1 1 0 Supports the
writing of small
passages of music,
and the rules of a
formal grammar

Table 1.: Summary of the the CGM processes/plug-ins included in IGME.

Note Properties Model

Thenote properties effect (Figures 1 and 2) is used to apply one of 3 effects to eachnote in the editor

and works only for human-computer part types. Applying an effect to a human part implicitly

converts it to a human-computer part.
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Figure 1.: Note properties showing pitch variation, and chance.

The pitch control (y-axis) controls the pitch randomisation and ranges from -12 to +12. This

means that, for each note, the pitch can be transposed up or down. Values are limited to the range

0-127 (same as MIDI).

The chance control (rotary control) applies a probability to a select note, that determines if the

note will be in the output sequence (result). By default, this is set to 100%. Notes that are removed

from the sequence are replaced by rests, to which chance can also be applied. If the rests are

removed, the remaining sequence will be shortened.

The rhythm control (x-axis) changes the individual note’s length. This has a range of a single

whole note in either direction and is split into 1/32 divisions. Setting the values to between -1/2

and +1/2 would randomly modify the length of the note either by reducing it by up to -1/2 or by

increasing it by + 1/2. Should the note length change, so will the notes in the following sequence.

Should a note be reduced by an amount greater than its current length, the note would simply be

removed.
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Figure 2.: Note properties showing rhythm variation.
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Figure 3.: Transforms plug-in.

Transforms

The transforms plug-in (Figure 3) applies one of 4 processes to the input sequence. Retrograde

reverses the sequence (i.e. plays it backwards). Inversion inverts the sequence around its origin.

Rotate left takes the first note in the sequence and places it at the end, whereas rotate right does

the opposite. The order of operations is prescribed as retrograde, inversion, rotate left, and rotate

right. A user who wanted to rotate right and then retrograde would need to add two instances of

this plug-in.
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Figure 4.: Pitch quantiser plug-in.

Figure 5.: Transpose plug-in.

Pitch quantiser

The pitch quantiser plug-in (Figure 4) takes a sequence and transposes any note that is not in

the selected key/scale. This process is also included in the ‘random note’ and ‘Perlin noise’ seed

generators discussed towards the end of this section.

Transpose

Transpose (Figure 5) takes the input sequence and then transposes all notes by either a positive

or negative value in the range -24 to + 24 semitones. Note numbers are unable to exceed 127 or go

below 0.
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Figure 6.: Arpeggiator plug-in.

Arpeggiator

The arpeggiator (Figure 6) first analyses the input sequence and collects a set of discrete notes.

For instance, if there are two C3s, only one will be taken. This set of arbitrary notes is sequenced

according to the parameters in the arpeggiator plug-in. The first controls the ordering of output

notes. For example, ‘up’ results in sequencing notes in ascending order. The octave control

determines over howmany octaves this is repeated. The second drop-down selects how long each

note will be. Finally, the bar control determines the overall length of the output sequence.

Note Map

The note map plug-in (Figure 7) works similarly to a musical ‘find and replace’. The editor window

allows the user to drag arrows between an input and output keyboard. If a mapping between C4

and E5 is created, then all instances of C4 in the seed are replaced with E5 in the result.
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Figure 7.: Note map plug-in.

Figure 8.: Repeater plug-in.

Repeater

The repeater plug-in (Figure 8) takes the input sequence and repeats it. The bar sync ensures that

the repeats start on a bar division, with rests added where needed.
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Figure 9.: Windchime map plug-in.

Windchime

Thewind chimeplug-in (Figure 9) reorders the input sequence. Thisworks by randomly sampling

from the available notes in the input. The output may contain more or fewer notes than the seed

depending on the value set in the editor.
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Figure 10.: Subtractor plug-in.

Subtractor

The subtract plug-in (Figure 10) removes a given number of notes from the input sequence. For

example, when the parameter is set to a value of ‘2’, then two notes are selected at random and

removed (replaced with rests). If rests are removed then the sequence is shifted left. Should more

notes be removed than the sequence has, a blank sequence is returned.

275



D: IGME System Documentation

Figure 11.: Constrainer plug-in.

Constrainer

The constrainer plug-in (Figure 11) limits the range of notes and overall sequence length. The note

range control prevents notes in the input sequence from exceeding or going below a certain value.

Whereas the bar control clips the output at a given bar length.

RhythmQuantiser

The rhythm quantiser plug-in (Figure 12) quantises both a note’s length and onset time. Either

control can be set independently and all have values from 1/4, 1/8, 1/16, 1/32, and 1/64 in set divisions.

Evolution Plug-in

Despite being developed as a prototype, the evolution plug-in (Figure 13) was never enabled in the

user-facing version of IGME software. It is considered an area for future development.
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Figure 12.: Rhythm quantiser plug-in.

Figure 13.: Evolution quantiser plug-in.
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Figure 14.: Random note seed generator plug-in.

RandomNote Generator

The random note generator (Figure 14) has a range of controls for generating monophonic

sequences. The fundamentals of the pitch quantiser plug-in are found to the left, ensuring

that generated material stays in a given key/scale, but this can be switched off. The note rest

ratio determines the probability of each generated event being a rest or note. The keyboard

control governs the range in which notes can be generated. The rhythm profile determines the

distribution of different note lengths. Finally, the lower right panel determines either how many

discrete events or bars’ worth of material is generated, with this control present in all of the seed

generators.
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Figure 15.: Perlin noise seed generator plug-in.

Perlin Noise Generator

The Perlin noise generator (Figure 15) is similar to the random note generator. However, instead

of using a regular stochastic note generator, a Perlin noise process is used. This plug-in adds two

controls, frequency and depth, to determine the shape of the noise.
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Figure 16.: Distribution sample seed generator plug-in.

Distribution sample

The distribution sample (Figure 16) seed generator generates a monophonic sequence by

evaluating probabilistic distributions. The key profile determines the likelihood of various

pitches. The octave control (middle) sets the range in which notes are generated, while the

central node skews the distribution (central octave) in the underlying model. The rhythm profile

represents a bar divided into 16 even steps, and each step determines the likelihood of the note

being placed at that bar position. This process supports populating the pitch and rhythm profile

through the analysis of music already in the sessions. This can be done by analysing the entire

song, or by analysing a specific track in a given range of bars.
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Figure 17.: L-System seed generator plug-in.

L-System

The L-system (Figure 17) seed generator is modelled on the L-system grammar (discussed in

Chapter 4). This process is a formal grammar that supports algorithmically sequencing small

sequences of music. The fragments panel allows an arbitrary number of sequences to be added,

edited and mapped to a unique upper case letter. The rules panel determines what each symbol

is replaced by during each iteration of the grammar’s execution. In this case, A is replaced by

BB, and then B is replaced by AB. The starting point determines the starting grammar. The final

control determines how many iterations this process will run for. Once the grammar has been

evaluated, each symbol in the final sequencewill bemapped back to itsmusical counterpart. This

is illustrated in Figure 18 for the first 3 iterations.
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Figure 18.: L-System output.

282



D: IGME System Documentation

Figure 19.: Transition table seed generator plug-in.

Transition table

The transition table seed generator models a 1st order Markov model (discussed in chapter 4).

The GUI presents twomatrices, one for pitch and one for rhythm. For the pitch matrix, the y-axis

represents the inputpitch and thex-axis theoutputpitch,with the cell representing theprobability

of a note transition. Similarly, for the rhythmmatrix, the last note length and the next note length

is represented. Each matrix is sampled to produce a pair containing a pitch and rhythm value.

Each cell can be set manually. The analysis options in the distribution sample plug-in are also

available for pre-populating both matrices.
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1. Additional Figures

This section contains additional figures thatwould otherwise convolute theflowof text in themain

body.

1.1. From Chapter 8
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Type Arguments Description
String Arbitrary string Generic string message
Key press Key values Logs keyboard press
Iteration Part, track, unique ID New iteration has been computed
Slider Slider Id, value Slider has been moved
Note edited Part Id, old event, new

event Note has been edited
Button press Button Id, value Button has been pushed
View switched
focus View type Called when a view is switched, i.e. arrange

or edit
Add track Track Id Track added
Remove track Track Id Track removed
Add part Position, track Id Part added at ‘position’ on timeline
Remove part Part Id, position, track Id Part removed at ‘position’ on timeline
Change plug-in Type Plugin type has changed/added
Part selected Part, track Called when a part is selected for editing
Playback engine State Playback engine state has changed
New note add Unique Id, part, track New note added
Note removed Unique Id, part, track Note deleted
Editing Part Id, state Called when a part is opened/closed for

editing
Non fatal error Description Generic error message
Part swapped Unique Id, part (pairs) Two parts on the timeline have been

swapped
Part moved Part Id, old position, new

position Part has been moved around on timeline
Session file IO State, name user has either saved or loaded
Sound changed Track, sound Instrument sound has changed
Note parameter String, unique Id Note parameters have been edited, string is

encoded with all data
Part converted Part, track Part is converted from computer to human
Notation type Type[3] Logs the current notation type selected for

arrange, edit, and result views

Table 1.: Summary of the various types of interaction data collected from within IGME.
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1.2. From Chapter 9
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“What are the positive aspects of using generative music?”
Group 1
•Not tied down to what you know; funks it up.
• It helps to provides new creative ways to create music
• Quicker than using a d20, and you don’t have to type different sequences in over and
over to try things out
• Creates new ideas for the user to develop with.
•New and interesting ideas that would have never been considered before
• you can see new idea
•Quick rough ideas, new ideas possibly found
• Create new ideas
• allow creativity
•New ideas will arise
• It creates new ideas that I’d never had though of
•Workflow
• You can quickly come up with small ideas in a computer that you yourself can expand
further
• Creating new ideas that were unseen by the user! Creating very fast good sounding
music.
• It is easy to use and float around, easy to input data and understand what is happening
• Exploring new ideas.
• creativity. exploring new possibilities
• It can create ideas that you never otherwise would come up with
• easy to come up with new ideas, which you could then adapt
• helps you to be productive, ideas
• It can help peoples stuck in a creative rut.
• Can make your projects more interesting
• creating new ideas/performing ”impossible” music
• The ability to generate new ideas that may inspire or be used in other music could help
musicians to build on material they have created and get them past a road block in the
creative process, for example not knowing how to progress an idea further.
• fun, new variations and ideas
Group 2
• It is faster andmore efficient, and can easily be rearranged according to the users’ needs.
And also allows people to compose their own music without having to learn musical
theory.
• Being given an inspirational jolt when you’re stuck in a creative rut.
• That I can understand my own creative process better. Develop new ideas using strictly
the values I’ve predetermined
• It increases the creative thinking during music composition and performance.
• Advance research.
• surprises! writes itself! conceptual!
• It’s fun and can eliminate of writer’s block. I delight in the application and relaxation of
constraints.

Table 2.: Unedited responses for the above question.
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“What are the negative aspects of using generative music?”
Group 1
• You feel insignificant and useless
• It forces different workflow which could be undesirable
• Less guided and precise, you don’t have quite as much control initially, but at the end of
the day you aren’t forced to use exactly what’s generated, so it’s alright
• Limits the user to create their own style.
• Potentially removing the human artist completely
• it is not your composition
•Doesn’t feel as creative, feels like cheating if you find a real good melody
• Easy to use too much generation
• 1.more synth bases instruments 2. allow changeable time parameters
• Criticism from outside for not ”owning” your work
•Not always having control of what is made
• Automation - Art’s tombstone
• there can be a lack in originality / identity in generative music over music that a person
has made themselves
• Can take very long to get something you like by chance
• no comment
• Sometimes, it can be hard to find the exact thing the artist wants.
• loss of control. uncertain of outcome, sometimes terrible result
• Its unpredictable and hence can sound eratic
• almost too easy to make something, takes away part of the challenge?
• none
• You can fall in a wormhole trying to find a sound from your head.
• Can be argued that it isn’t really your work
• People might overrely on it?
•Taking control away from the usermay encourage laziness where instead of deliberately
choosing what to add or change about a piece of music they let an algorithm decide for
them.
• unpredictability
Group 2
• The availability and ease of use might have a negative affect on job opportunities for
human composers.
• It can make some people feel uncomfortable, ”AI” is seen as a threat by some (usually
those that don’t knowmuch about it!)
• can get carried away with these rules. Some ofmy rules I don’t even recognise nor could
I rationalise
•Generativemusic systems should always be though and developed as tools that enhance
and support human creativity rather than replacing it.
•None
• sometimes it sounds horrid
• none!

Table 3.: Unedited responses for the above question.
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1.3. From Chapter 10

Part Development profiles

Figure 1.: Part development for Tim 1.
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Figure 2.: Part development for Tim 2.

Figure 3.: Part development for Liam 1.
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Figure 4.: Part development for Liam 2.

Figure 5.: Part development for Cameron (across both sessions since they worked on just one
piece).
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Figure 6.: Part development for Gary 1.

Figure 7.: Part development for Gary 2.
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Figure 8.: Part development for Gary 3.

Figure 9.: Part development for Gary 4.
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Survey C - Participant background and experiences of music

Figure 10.: Summary of each user.
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Figure 11.: User’s exposure to generative techniques.

Figure 12.: User’s knowledge of various musical activities.
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Figure 13.: User’s approach to composition.
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Figure 14.: User’s general experience of music.

Figure 15.: User’s experience of music software.
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Survey B responses

Figure 16.: Results for questions 1-3 from survey B, at the end of the first session of the longitudinal
study in chapter 10.

Having used IGME, how much of the musical creativity do you attribute
to the computer?
Session 1 Session 2
Most of it to myself Most of it to myself
Most of it to myself Most of it to myself
Most of it to the computer Most of it to the computer
Neutral Most of it to myself

Table 4.: Summary of responses for above question.
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Figure 17.: Results for questions 1-3 from survey B, at the end of the second session of the
longitudinal study in chapter 10.

Figure 18.: Results for questions 4, 6, and 7 from survey B, at the end of the first session of the
longitudinal study in chapter 10.
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Figure 19.: Results for questions 4, 6, and 7 from survey B, at the end of the second session of the
longitudinal study in chapter 10.

Is the authorship of your creative output a concernwhen using generative
techniques?
Session 1 Session 2
No - My general composition style
is quite process-based anyway. Even
without the computer assistance, I
would end up following some form of
pattern.

No - I feel like as I choose the
processes, I have influenced and
created the result.

No - Because it is up to the user
to dictate how the computer will
generate the music not purely the
computer on it’s own. e.g. generative
music vs AI music.

No

Yes - If the artist is the one who
created the generative algorithms,
then authorship isn’t a concern. If an
artist is using pre made generative
algorithms then it can be a concern.

Yes

No
No - Generative effects aren’t forced,
is it still your choice. You have the
control, especially when given more
tool to manipulate the output.

Table 5.: Summary of responses for above question (un-edited).
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1. IGME Tutorial Sheet From Initial Pilot Study 1
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1 Preword

Firstly thank you for taking the time to be a participant in this workshop.
Your participation will have significant bearing on the outcome of this re-
search, and the development of future music technology software.
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2 Introduction

Many pieces of software exist for the creation of algorithmic and generative
music using a computer. However the interfaces provided by these software
systems requires the user to edit the data directly, in either a patch based
(i.e. MaxMsp) or code based environment. IGME (Interactive Generative
Score Editor) is designed to address this problem, by integrating a wide array
of generative and algorithmic techniques inside commonly used score editing
interfaces. This workshop is designed to get your feedback on this early
prototype. The primary aim of this research looks at how generative music
techniques can be embedded inside existing systems such as Sequencers, Score
Editors and Digital Audio Workstations.

2.1 Getting Started

To start your session, please open the following application by double clicking
on the IGME Icon. Please run the application from the supplied memory
stick.

3 Exploring the arrange View

To those familiar with existing Digital Audio Workstations (DAW’s) this
view should feel familiar. The arrange window is divided into 3 sections.

The arrange part is where the individual musical blocks are arranged.
The example shows a two track arrangement, with three 1-bar blocks per
track. The sliders can be used to navigate the arrange window as it gets
larger. Clicking on an individual musical block shows a preview of its mu-
sical contents on a score (Figure 1 - Preview). The final part of the session
view Other, shows the Changes, Scratch-pad, Library, and other compo-
nents, these are controlled in a tab view. The exact purpose of these are not
explored in this session.

3.1 Playback and Global View

Upon start up, each of the segments on the time-line are randomly generated.
To view an overview of the score the render button must first be pushed,
it should turn green to indicate it has been completed. The role of this is
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Figure 1: Main View of IGME. You should see this after opening the appli-
cation.

to combine each of the blocks together to form a single multi-track piece of
music. The option box next to the render button will be explored later.
You can now click the show score button to view the score. You can use
the transport bar to audition piece using the inbuilt synthesis engine. Please
note that the synthesis engine is still a work in progress.
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Figure 2: Pop-up window showing the complete score.

4 Exploring the Edit View

By double clicking on a block the edit view (Figure 3) should open. This
view is responsible for editing the individual notes of each block, as well as
applying various generative techniques. Similar to before, the Edit view is
broken down into 4 main sections.

4.1 Score Editor

The score editor section allows the content to be edited using familiar score
notation. This view is context sensitive and can be switched for different
forms of notation, e.g. western score or piano roll.

4.2 Score Output

The output window at the bottom shows the net result of the input score
and any generative parameters that have been applied. If no such parameters
have been applied the output will be exactly the same as the input. Note that
we don not hear the input score, only the output score. Without applying any
generative parameters, IGME works much the same way as other common
music sequencers.

5



Figure 3: Overview of the main part editor.

4.3 Generative Plugin

The Generative Plug-in window at the bottom right is used for applying
generative techniques to the content in the score editor. Different techniques
can be applied by switching between them in the options box.

4.4 Iteration View

To help keep track of the various edits made to the input score and generative
output score the iteration view keeps track of all of these edits, so they can
be recalled at any time, ensuring no content ever gets lost.
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5 The First Activity

Now IGME is up and running we can now begin the first activity. Although
IGME is designed for interactive composition with algorithmic and gener-
ative music techniques it is also possible to use IGME simply as a music
sequencer, as we shall now demonstrate. Firstly open up Activity 1, by se-
lecting File - Load Session. Note you need to load the folder, rather then
the files inside it.

You should now see a single track with only one block. Open up the edit
view for block one on track one by double clicking.

The task of this activity is to notate the following sequence (shown in fig-
ure 4) inside the block we have just opened for editing. See the keyboard
commands section (bellow).

Figure 4: Score to notate.

5.1 Keyboard Commands

The following keyboard commands are used to edit notes more quickly in
IGME. Please note that these controls work only on notes that are selected
(i.e. blue).

A-G : Used to change the pitch of a note

Up, Down : Used to increment/decrement the pitch of a note

Cmd + Up or Down : Used to increment/decrement the octave of
a note
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1-7 : Used to change note duration.

Left, Right : Used to navigate between notes.

5.2 Manual vs Auto note entry

Figure 5: Note Entry

When editing notes two different entry methods can be used, auto note
step and manual note step. In manual mode the selected notes will not
progress to the next note when the selected notes’ pitch is changed. In auto
mode, changing the pitch of the selected note will cause the next note in the
sequence to be subsequently selected. Both modes have their advantage.

Use Manual step: when you want to edit multiple selected notes at
the same time, or want complete control over the editing process.

Use Auto step: to quickly enter a new sequence of notes, or to edit
an existing sequence.

6 The Seed, Parameters and Result

The theory behind IGME breaks the composition of blocks down into three
parts. These are:

Seed : The name given to the musical material that is edited (Figure
6).

Parameters : The parameters allow you to choose the type generative
model and configure it.
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Result : The result is the final music material produced from passing
the seed material through the generative process. This is music that
gets rendered into the final score.

Figure 6: Seed, Parameters and Result

7 The Second Activity

Although IGME can make use of complex generative music algorithms, it
can also do simple note transformations. The activity here is to take the
block we prepared in activity 1 and apply a simple stochastic algorithm that
randomly removes notes present in the input sequence to produce output
variations (iterations). You can also load a preprepared version from file
(activity 2).

7.1 Adding chance

The chance plug-in sets a selected note to have a certain probability of ap-
pearing in the final score. For example a note with only 50% probability has
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Figure 7: Chance plugin

only a 50% chance of appearing in the result output.

In the generative plug-in window, select Chance from the options drop
down window. The interface has only two controls, a button for turning the
effect on and off, and a slider for setting the probability. To apply this to
a note in the input score simply select the note(s) you want and then set
their probability by moving the slider in the plug-in window. A probability
of 100% means that the note is guaranteed to be in the output sequence.

For this activity set each 4th note in the sequence to have a 50% proba-
bility of occurring. See figure 8 for more information.
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Figure 8: Correct notes positions for 50% chance parameter.

Figure 9: Note and parameter positions for activity 7.1.

Now set each 2nd note in the sequence to have a 25% probability (notes
2,6,10 and 14). See figure 9 for more information.

You should now be able to press space bar to toggle a new generation
and subsequently hear the output. Watch as the right hand side change
tracker adds a new entry for each iteration. Note that the generative toggle
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button must be enabled for the changes to take place.

7.2 Adding Randomness

We will now use a different generative technique to randomise and modify
the pitch of each note. Using the same sequence as before, hit the Clear
Generative Effects. In the generative plug-in window selectRandom from
the drop down window.

Next select a selection of notes (as many as you want) then move the
range slider in the plugin window. Set the range to go between -2 and +2
semitones. When you audition the piece each iteration will vary the range of
notes between -2 and +2 producing some interesting variations. Feel free to
experiment with different ranges and selections of notes.

Figure 10: Random effect, plugin window
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Figure 11: Examples of random permutations created with IGME.

8 Generative Techniques

Figure 12: Adding a new generative block.

So far we have been editing a specific type of block referred to as hu-
man/computer block. That is a block that has both human and computer
input to produce music. There is however another type of block that we can
use, referred to as a Generative block. The music produced by this block is

13



specified by controlling certain parameters, there is no input (seed) musical
material.

To add a generative block, first return to edit view using the back but-
ton. Next push the add button at the end of track 1, and select generative
block from the drop down menu.

Once again double click on the newly created block to open up the edit
view (see figure 13). Select random note generator from the plug-in drop
down menu. This view should look familar to the previous exercise. The
range controls the range in which notes will be generated, key controls the
key, scale controls the scale, finally notes to be generated controls how
many notes get generated.

Figure 13: Generative edit view.
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Figure 14: Suggested controls for random generative process.

Figure 15: Examples of music produced with the random generative process.

It is also possible to convert musical content generated using a purely
generative block into a human/computer block so that both further

editing and generative processes can be applied. To achive this simply
right click on the part in the arrange view and click “covert to

human/computer part”

9 Survey

Thank you for taking part in the workshop. Before progressing further would
you please take the time to fill out the supplied paper questionnaire.
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10 Conclusion

We hope you have enjoyed using IGME during this workshop. Both construc-
tive criticism and positive comments are welcome, and you are encourage to
discuss your experience with the workshop tutor. In addition we ask you
kindly fill out the supplied questionnaire.
Due to scope and size of IGME there are many more complex features that
distinguish the program, that could not be explored inside the session. How-
ever if you are interested in learning more about IGME and wish to partici-
pate in more in-depth studies, then please feel free to get in touch.
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ABSTRACT

Standard western notation supports the understanding and
performance of music, but has limited provisions for re-
vealing overall musical characteristics and structure. This
paper presents several visualisers for highlighting and pro-
viding insights into musical structures, including rhythm,
pitch, and interval transitions, also noting how these el-
ements modulate over time. The visualisations are pre-
sented in the context of Shneidermans Visual Information-
Seeking Mantra, and terminology from the Cognitive Di-
mensions of Music Notations usability framework. Such
techniques are designed to make understanding musical
structure quicker, easier, less error prone, and take better
advantage of the intrinsic pattern recognition abilities of
humans.

1. INTRODUCTION

Standard western notation serves as a strict, formal set of
instructions for the performance of composed music. How-
ever, it omits explicit representation of a rich amount of
hidden data that exists between individual notes, and the
location of the notes within an overarching musical struc-
ture. One way to understand this structure is to analyse the
music: either manually, requiring an experienced musicol-
ogist; or via computer, resulting in several multi-dimensional
data fields, which may be difficult to represent and com-
prehend. Representing this data visually utilises the brains
pattern detection abilities, supporting easier and faster com-
prehension of material to enable insight and speculation
that can inform further formal analysis.

Visualisation presents non-visual data in a visual format,
usually as 2D/3D images or video. Shneiderman [1] intro-
duces a framework for guiding the design of information
visualisation systems, known as the Visual Information-
Seeking Mantra (VISM). The framework consists of seven
tasks for presenting information in a visual form to a user
(Table 1). Craft and Cairns [2] elaborate on this by stating
the VISM serves as inspiration and guidelines for practi-
tioners designing visual information systems. /par

Copyright: c©2017 Samuel J. Hunt et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

Task Description
Overview Gain an overview of the data.
Zoom Zoom in on items of interest.
Filter Filter out uninteresting items.
Details-on-
Demands

Selected an item or group and get
details when needed.

Relate View relationships between items.
History Keep a history of actions to sup-

port undo, replay, and progressive
refinement.

Extract Allow extraction of sub-collections
and of the query parameters.

Table 1. The 7 tasks of the VISM.

Shneiderman emphasises that humans have remarkable
perceptual abilities, allowing them to easily detect changes
of and patterns in size, colour, shape, movement or texture
in visual media. Such advanced and robust feature extrac-
tion capabilities are considerably more difficult to encode
as automated analysis using computer systems.

In a musical context, visualisers also enable rapid, auto-
mated methods for visualising not only a single piece of
music, but an entire corpus - allowing understanding and
comparisons of musical material at a higher and more gen-
eralised level to that of manual score analysis.

The level meter which features in the majority of con-
sumer audio products, represents a ubiquitous visualisation
method, whereby the current sound level is visualised us-
ing vertical bars, and for the majority of situations a more
useful presentation than a display of audio sample values
(amplitudes). Digital audio is stored as a series of num-
bers, a sequence of amplitude measurements with respect
to time. Sonograms convert this information to visualise
the distribution of frequency content. An example of this
is illustrated in Figure 1, whereby the musical score has
been synthesized using piano samples on a computer and
analysed with a sonogram.

This paper focuses on visualizing scores at the note-level
(e.g. MIDI), avoiding the many difficulties of audio feature
extraction. Sequenced music, encoded as MIDI, by con-
trast allows for rapid and reproducible analysis [3]. The
aim of the paper is to present novel techniques that support
the analysis of music.

The remainder of the paper is broken down as follows.



Figure 1. Sonogram plot of the score.

Section 2 presents relevant prior work and theory, followed
by a brief discussion in Section 3 of the software system
developed to support this research. Section 4 reviews visu-
alisation techniques for pitch, contours, intervals and key,
followed by Section 5 looking at rhythmic elements. Sec-
tion 6 discusses visualisation techniques that integrate both
pitch and rhythmic elements. The final section consid-
ers future work for the area and proposes evaluation tech-
niques.

2. RELATED WORK

Prior work in music visualisation can be broadly categorised
into two groups: those exploring sampled audio data and
those exploring sequenced music data (scores and MIDI).
Soriano et al [3] present methods for browsing an audio-
based music collection, using graphical metaphors designed
to convey the underlying song structure. This analysis is
performed via feature extraction from MIDI files, enabling
easy identification of simple and meaningful musical struc-
ture, such as pitch and rhythm.

Foote [4] and Wolkowicz & Brooks [5] both used self-
similarity matrix visualisations to reveal similarity in mu-
sic. This visualisation approach relies on the measure-
ment of pitch content at quantised time intervals, and plot-
ting this against all other intervals. Figure 2 shows a self-
similarity matrix visualisation, whereby the music proceeds
through time from the bottom left to the top right, with re-
gions of similar patterns appearing as clusters of squares.
Both axes represent the same input vector. The music ex-
ample uses a repeating motif of one bar, with a modulation
at bars 2 and 4.

Bergstrom [6] presents several visualisers that convey in-
formation about interval quality, chord quality, and the chord
progressions in a piece of music, helping users to compre-
hend the underlying structure of music. Feedback from
engagement with the system revealed users who having

Figure 2. Self-Similarity visualisation of the score.

quickly understood the basics, wanted to compare music
from multiple genres and composers. Holland [7] presents
a similar system (Harmony Space) to allow beginners to
interact with harmony using a visual grid.

Jeong and Nam [8] discuss a system that visualises au-
dio streams, to show audio features such as, volume, onset
density, and dissonance. The authors also state that as mu-
sic is an auditory art, visual representations can contain
information that cannot be transferred or perceived accu-
rately with sound. Herremans and Chew [9] use visualisa-
tion to highlight tonal tension in music, creating an explicit
representation of something that is not easily quantifiable,
presenting graphics alongside the scored elements.

Established analytical frameworks for music, such as the
Generative Theory of Tonal Music (GTTM) [10] and Schenke-
rian analysis [11], also present ways to annotate music and
reveal structure. The GTTM proposes a series of prefer-
ence rules for determining the different musical structures
that underlie the perception of western music. Schenkerian
analysis is an established musical analysis technique that
aims to explicitly reveal hidden dependencies and struc-
tures implicit in the music. This analysis primarily aids
score reading by marking it with elements of musical struc-
ture. Both of these theories have been mechanised in soft-
ware [12][13].

Nash [14] presents research that adapts the Cognitive Di-
mensions of Music Notations framework (CDMN) [15],
for use in designing and analyzing music notations and
user interfaces for digital and traditional music practice
and study. This paper utilises the framework as a vocabu-
lary for comparing visualised music content and metadata
against western notation and other forms of visualisation.
However not all of the 16 core dimensions originally spec-
ified are of relevance here. A list of the terms and their
definitions relevant in this research are listed in Table 2.

Using the self-similarity visualisation in Figure 2 as an



Dimension Description
Visibility How easy is it to view and find ele-

ments of the music during editing?
Juxtaposabillity How easy is it to compare ele-

ments within the music?
Hidden Depen-
dencies

How explicit are the relationships
between related elements in the
notation?

Hard Mental
Operations

How difficult is the task to work
out in your head?

Conciseness How concise is the notation?
Provisionality How easy is it to experiment with

ideas?
Consistency Where aspects of the notation

mean similar things, is the similar-
ity clear in the way they appear?

Viscosity Is it easy to go back and make
changes?

Role Expres-
siveness

Is it easy to see what each part of
the notation means?

Error Prone-
ness

How easy is it to make annoying
mistakes?

Closeness of
mapping

Does the notation match how you
describe the music yourself?

Table 2. Terms of the Cognitive Dimensions of Music No-
tations framework used in this paper [14].

example of the terms used in the table, the visibility of the
figure is good, showing a clear overview of the entire piece,
likewise the juaxtaposability scores highly as the patterns
can be compared much more easily than sequences in the
score. There are high hidden dependences as the original
information has been transformed, with each square rep-
resenting a smaller amount of information. The simplistic
nature of the visualiser scores high on provisionality, con-
sistency and conciseness. The visualisation does not have
any meaning unless related to the score, with the under-
lying notated elements looked up, so has a poor closeness
of mapping. Comparing sequences using just the notation
would require both hard mental operations, and would be
prone to error (error proness), whereas the automated anal-
ysis used to build the self-similarity visualisation is easily
reproducible and more accurate.

A core concept of visualisation for notated music is its
ability to reduce the hard-mental operations arising from
manual score analysis [14]. Computer aided analysis also
reduces the error proneness of operations. Visualisation
can remove un-needed details (filtering [1]) from the score,
for example performance markings, therefore improving
the conciseness of the results.

Temperley [16] [17] uses visualisation to inform, explain,
and evaluate formal analysis by computer. Often using
these techniques when analysing a large corpus of music,
to immediately show data that would otherwise be difficult
to extract from looking directly at the score, or in fact thou-
sands of individual pieces. Temperley also uses these as a
way of comparing and refining models for music analysis.

3. INTERACTIVE VISUALISATION

This paper discusses visualisers developed for an original
software package (Figure 3), the design of which has been
influenced by the seven principles of the VISM (listed in
Table 1). In general, it allows different pieces of music in
MIDI format, to be opened and visualised quickly, in order
to support high provisionality and enable rapid experimen-
tation with analysis techniques. The software can analyse
and compare entire corpora or individual pieces, as well as
sub-sections or voices (tracks). A historic list of analyses
is kept so these can be recalled and modified, retaining low
levels of viscosity and commitment, therefore further fa-
cilitating experimentation and evaluation (provisionality).

Software and automated analysis has the advantage of
processing large amounts of data quickly (compared to man-
ual techniques), but takes considerable amounts of time
and care to design and implement. Visualisation tools,
such as that described, allow a user to speculatively inter-
rogate data, before committing to more detailed and formal
music analysis methods, be they traditional (e.g. Schenke-
rian) or computer-based (e.g. machine learning see Section
4.4).

4. VISUALISING PITCH

The set of visualisers presented in this section focus on el-
ements of pitch, contour, and melodic interval. Some tech-
niques present the material as overviews of the piece as a
whole, others present excerpts in time. For the purposes of
discussion and comparison, the majority of visualisations
present Bachs Two-part Invention No. 1 (BWV 772) [18],
but can be applied to many other examples and genres of
music, including non-Western.

4.1 Melodic Contours

A contour representation of music can simply be defined as
information about the up and down pattern of pitch changes,
regardless of their exact size [19]. Melodic contours are
also a key psychological part of music, one that aids the
recollection of musical themes [20].

Melodic contours themselves can be illustrated using a
score, where it is usually clear in which direction the pitch
is going (Figure 4, top). However, once accidentals are in-
troduced (Figure 4, bottom), it becomes less visually dis-
tinct. A piano roll (Figure 5) provides a clearer representa-
tion of melodic contour. This provides improved closeness
of mapping [14], and increases the ease with which se-
quences can be compared (improving juxtaposability).Piano
rolls provide ways for shapes, patterns and contours to be
identified. Wood [21] presents related research in which
the standard note head is visually modified to show the
pitch degree in a more role expressive way, and reports im-
proved speed for sight-reading when compared with stan-
dard note heads.

This type of visualisation can also be used to reduce a
search space, allowing sequences represented as contours
to be visually clustered. The items in Figure 6 show a se-
ries of monophonic melodies extracted from Bachs BWV
772. Visually, we can see that the first two patterns are



Figure 3. Software created to support visualisation tasks.

Figure 4. Score with clear melodic contour (top) and ob-
fuscated melodic contour (bottom).

Figure 5. Piano roll representation of Figure 4.

similar, and that pattern 14 is the same pattern inverted.
This kind of visualisation allows the viewer to employ the
gestalt principles of visual perception, in this case similar-
ity, to group together similar shapes [22]. In this situation
the data has filtered out everything but the contour, giving
a better overview of the types of contours, which can then
be easily related against one another.

Figure 6. Selection of melodic contours from Bach’s
BMW 772.

4.2 Intervals

The contour plots provide an overview of the melodic pat-
terns present in the music, but reduce the visibility and
role expressivity of the intervals. Temperley [16] uses a
histogram of melodic intervals to show the distribution of
interval leaps between melodic note sequences within an
entire corpus of music material, revealing wider patterns
and trends in music. In-so-doing, this hides dependencies
in the music, such as the local context and note-to-note re-
lationships (i.e. certain pitches are more unlikely to transi-
tion to those depicted in the figure because of their relation
to the home key and sensitivity to tonal context). The dia-
gram in Figure 7 shows the interval profile for Bachs BWV
772.



Figure 7. Interval distribution over two octaves in Bach’s
BWV 772.

Figure 8. 2D Markov plot of Bach’s BWV 772.

A different way to analyse this data, in a way that al-
lows interpretation of pitch, intervals and range, is to use
a Markov type model, defining the transition probability
between any given notes, in a numeric table format. This,
however produces a data table of size 127x127 elements,
which is difficult to comprehend in a numeric format, but
easily visualised to reveal musical trends and characteris-
tics as illustrated in Figure 10. The design of this once
again takes an overview of the data, filtering out the timed
elements of the music, to give a detailed overview of the
pitch and interval elements. Parts of the plot can be further
inspected to reveal exact transition probabilities (details on
demand).

From the plot, it can be noted that the intervals in the up-
per ranges are more likely to jump down in interval, while
the opposite effect can be observed in the lower range.
Towards the middle the width of the melodic jumps are
slightly larger. The blue line along the leading diagonal
represents the unison interval (repeated notes), the hori-
zontal deviation from which reflects transitions to subse-
quent notes. The darker the marker, the more likely the
transition. The diagram can also be thought of as a lay-
ered series of melodic interval distributions (as in Figure
7), given different starting notes (y-axis).

Figure 9. 100 randomly-selected common repertoire
Baroque pieces.

Figure 10. 100 randomly-selected common repertoire Jazz
pieces.

Two more plots are shown in this style, but illustrating
trends in, and differences between, larger corpora of music:
respectively, a collection of 100 pieces of baroque music
(Figure 9) and jazz music (Figure 10), selected randomly
from a larger corpus. The visualisation process helps to
reveal differences between the corpora that would other-
wise be harder to discover or articulate. For example, the
range of intervals in the jazz corpus is far wider, whereas
the baroque is limited to mostly to an octave, and multiples
thereof and appears more uniform throughout the range.

4.3 Pitch Distribution

It is instructive to consider pitch usage in general terms.
Temperley [16] considers the distribution of pitches within
a piece to be an intrinsic element that grounds the overall
tonality and key in western music. Key is something that



Figure 11. Major Key Profile.

Figure 12. Pitch distribution in Bach’s BWV 772.

musicians are trained to detect [16], but for which Temper-
ley has developed automated methods. To illustrate, Figure
11 shows an ideal key profile describing the average distri-
bution of pitches within a piece in C major, which can also
be considered a coarse measure of pitch-class appropriate-
ness in relation to key. For comparison Bachs BWV 772
(Figure 12) is also visualised. It is easy to visually infer the
similarity of the distribution within the piece (known to be
in the key of C) and the generalised representation (Figure
11). Smaller more nuanced details are also visible, such as
the fact that the piece, although in C major, has more in-
stances of D than the tonic C. Such details can be enough
to fool automated analysis, as detailed in the next section,
but things are clearer to the eye.

Other metadata can also loosely be inferred. A less pro-
nounced distribution may indicate a piece that uses several
different keys or tonalities beyond the diatonic. Atonal mu-
sic, such as serialism, may confound such analysis and ap-
pear entirely different when visualised, such as Schoenberg
Op.11-1 (Figure 13).

4.4 Key

Visualisation can help guide and test formal analysis. For
example, a machine learning algorithm was developed that
could infer the key based on the pitch profile of a piece.
Bachs Well-tempered Clavier (Book 2) [24] was chosen
as a test set, as it has two pieces in each of the 24 keys,
providing an ordered pattern of tonality.

Figure 13. Pitch Distribution in Schoenberg Op.11-1 [23].

Figure 14. Pitch Distribution for Bach’s BWV 870.

Figure 15 presents the detection results of the model, for
each piece, ordered by their BWV number. The results of
this experiment show that the algorithm is mostly able to
predict each of the keys, and the graph can be inspected
to find the relative confidence of each prediction as well
as identify anomalies and deviations from the expected re-
sults. Bachs methodical progression through alternating
major and minor keys within the collected work produces
a visual pattern in the plot (discernable from the gestalt law
of good continuance [22]), the deviations from which iden-
tify errors in the key detection model and, in turn, nuances
in Bachs approach to key.

The algorithm makes three mistakes, out of a total of 48
predictions, corresponding to the anomalies circled in the
figure. In one instance, the algorithm has predicted a key
of D minor when the nominal key is C-Major. By visual-
izing the pitch profile of the piece (Figure 14), using the
techniques suggested in Section 4.3 it can be observed that
the overall ratio of pitch D, is higher than the tonic and
5th compared with an ideal plot (Figure 11), Indeed, this
detection anomaly is attributable to Bachs actual use of D
minor (and other keys) in the piece. This indicates a limi-
tation of the analysis technique, in conflating the pitch pro-
file of an entire piece without sensitivity to modulation, but
nonetheless raises an interesting musicological question of
why this and not other pieces from the set fall foul of this
limitation.



Figure 15. Visualisation of a machine learning algorithms prediction of the 48 pieces of Bachs well-tempered clavier book
2 [24]. The 3 mistakes are BWV numbers 870 part 1, 871 part 1 and 880 part 1. The red highlighting shows the mistakes
and the green shows the actual keys.

Figure 16. Distribution of rhythm for Bach’s BWV 772.

5. VISUALISING TIME

Visualisation can also be used to reveal patterns in mu-
sical time, as in the case of rhythm, tempo, and density.
Time also provides the metrical structure to a sequence of
pitches. Taking the Bach piece BWV 772 as before, and
visualizing the rhythmic aspects of the piece, several pat-
terns are revealed. The elements under consideration are
Note Onset, Note Length, and Density should be merged.

5.1 Note Onset

The basic rhythmic plot, note onset (Figure 16) shows the
ratio of note onsets in each position of the bar for the entire
piece. The events are first quantised to 1/32nd of a note,
to remove noise caused by micro variations in time. The
plot shows us, that simpler divisions of the bar are more

Figure 17. Distribution of rhythm for Beethoven’s Op.
53..

likely to contain notes than more complex ones, shown
by the regular distribution and preponderance of quavers
and semi-quavers. The middle of the bar has the least note
activity in general, whereas the 1st quaver beat, and 4th
quaver beat have the most. Comparing this to Beethovens
piano sonata No.21 Op. 53 (Figure 17), a piece from a
much later period, shows a complete contrast in the struc-
ture, with a much more uniform distribution of note onsets,
with the second semi-quaver bar position (3/32) being the
most likely place for a note to be played.

5.2 Note Length

Note length visualisation (Figure 18) does not reveal as
much information as some other techniques, but confirms



Figure 18. Software created to support visualisation tasks.

Figure 19. Distribution of note length in Bach’s BWV
772.

this piece uses mostly note lengths of a semi-quaver in
length. Roughly four times as many as using a quaver note.
However, comparing this with other examples of music,
for example Beethovens piano sonata No.21 Op. 53 (Fig-
ure 19), shows for example the use of a dotted semi-quaver
(3/32) note length is more common than either a quaver or
crotchet, and a value not even used in the Bach piece.

5.3 Rhythmic Density

Rhythmic density can be defined as the number of note on-
sets that happen during a beat or other window of time.
The analysis is computed by calculating the number of on-
sets in each density window, and plotting the changes over
time for each voice (note that only the first 12 measures are
shown in Figure 20). Using Bachs BWV 772 again, sev-
eral repeating patterns are visually observable between the
two voices.

Figure 20 shows that only three of 48 windows have both
voices indicating a density reading of 4 simultaneously.
The sharp peak in Voice 1 at 23-24, is indicated as the most
intense, a result of the piece using demi-semi-quavers (see
figure 21). From windows 25 to 41, the voices are alternat-

Figure 20. Distribution of note length in Beethoven’s Op.
53.

ing in a strict pattern. This representation provides a con-
cise overview, but does not differentiate between chords
and rapid melodic phrases, reducing the visibility and jux-
taposability of data. However, while a finer resolution could
reveal more detail, it would also reduce conciseness, with
four times as many data points. This represents a common
trade-off between the dimensions, as observed in other no-
tations [14].

In general, the techniques discussed in this section show
that one method will reveal certain information at the sake
of obscuring others, and that sometimes multiple perspec-
tives are needed to fully understand the data.

6. INTERGRATED VISUALISATIONS

Previous sections considered elements of music in isola-
tion, but visualisations can also reveal relationships be-
tween different dimensions of music. The ability to in-
tegrate musical characteristics and model the complex in-
terwoven principles between them is a prime objective of
music analysis and visualisation. The diversity and variety
of such interconnections makes this difficult, but it is pos-
sible to combine multiple dimensions of characteristics to
reveal more complex and interesting patterns.



Figure 21. Demi-semi-quavers in bars 6. Relative to
points 23-24 on figure 20.

Two related elements of music that can be integrated for
visualisation and analysis are rhythm and pitch. A se-
quence of notes can be considered a pitch change after a
given length of time, and it is possible to build up the fre-
quency of these different event combinations and display
the result. Given a standard composition the number of
options is vast, and represents a complex problem. How-
ever, this is relatively easy to visualise (Figure 22) by plot-
ting the change in interval against the difference between
note onset, with the colour level (brightness) showing the
ratio. In the example (Figure 22), a visualisation of Bachs
Brandenburg concerto BWV 1046 [24] is shown, using this
method.

Looking at the analysis, it is clear how consistent the
timing of the piece is, with most events falling on quaver
note divisions. There is some evidence of quaver-triplets as
shown between 12 TPQ (Ticks Per Quarter Note or Crotchet)
equivalent to a semi-quaver and 24 TPQ (Crochet), with
these taking a value of 16 TPQ. Looking at the overall
pitch range the widest range of pitch intervals is a note
following on a quavers length after the previous note, with
events ranging from +24 semitones, to -17 semitones. This
is also where the most events are likely to be played, shown
by the density of red dots. At the 1 and 2 semi-quaver
duration (12 and 24 TPQ) the pitch is more likely to in-
crease, on any value greater than this, the pitch is likely to
decrease. At the semiquaver difference, almost all inter-
vals are present, but compare this to longer duration differ-
ences, and intervals start to disappear. An interval change
of +4 semitones (major 3rd) does not happen following a
previous note whose duration was a quaver. This is quite
possibly linked to the rules of strict counterpoint, a tech-
nique regularly employed by the composer, but further in-
vestigation is subsequently required before drawing spe-
cific conclusions. Finally, at the 3-semi quaver duration
(32 TPQ) interval, a pitch increase is more likely, but at
the crotchet level (48 TPQ) a pitch decrease is more likely.

7. CONCLUSIONS

This paper has reviewed a variety of basic music visual-
isations to demonstrate their utility to reveal implicit de-
tails, patterns, and structures in musical phrases, pieces and
broader corpora. Although the visualisations have been
informally evaluated with reference to the CDMN frame-
work, another way to evaluate the use of visualisation is to
establish whether or not it revealed something that was ei-

Figure 22. Visualisation of change in interval vs time be-
tween note onsets for Bachs BWV 1046. TPQ is defined
as the number of ticks per quarter (crotchet) note.

ther not known before or complicated to reveal using other
methods. As several of these techniques have made such
novel observations about musical structure, they can there-
fore be considered successful.

Other further types of studies are also planned in this area,
including embedding these visualisation techniques inside
music composition software. Such investigations will ex-
plore the pedagogical benefits of alternative visual repre-
sentations of music, looking at how visualisations can in-
form students understanding of musical process and struc-
ture.

Visualisation techniques can also inform the design of
generative musical techniques. They allow the identifica-
tion of characteristics that can become factors of a com-
puter composition models, such as the parameters of a ma-
chine learning process. It also allows a degree of quan-
titative evaluation and comparison between music gener-
ated algorithmically and the target musical result. Vick-
ery [25] advocates re-sonifying visualised music represen-
tations, formed through analysis of the original music.

While this review of visualisation techniques only scratches
the surface of both visual and musical possibilities, it is
clear the visual domain can be exploited to provide dif-
ferent perspectives on musical patterns and structures, and
make hidden information and insights more accessible to
musicians and scholars.
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ABSTRACT (228) 
In this paper we explore the recreation of existing musical compositions by representing 
the music as a series of unique musical bars, and other bars that can be replicated 
through various algorithmic transformations, inside the Interactive Generative Music 
Environment software, or IGME. This re-composition approach is intended to explore 
whether the pre-existing music could have been created using the processed based 
approaches offered by the IGME software. If music can be expressed by algorithmic 
processes then we propose that original works of music can be expressed or created in 
the same way. Such a justification can provide a rationale for creating the unique 
compositional processes and workflows that IGME affords to those looking to compose 
with generative and algorithmic music techniques, and avoid many of the pitfalls of 
generative music. 
 

Music can be imported into IGME and automatically analysed to find unique bars, 
and bars that have been transformed from them.  The overall timeline can be visualised 
to quickly demonstrate the structure of the music, using colour to differentiate unique 
musical ideas, and arrow-arcs to show the relationships between different parts. Such a 
process reduces the overall entropy of the music data and provides an educational 
insight into macro level music structures. Each of the techniques are explained and 
examples given. In addition, data sets have been pre-computed for several genres of 
music, showcasing the distribution of different types of techniques.  

1. INTRODUCTION  
 

IGME (the Interactive Generative Music Environment) is a music sequencer that 
supports the exploration of generative and algorithmic music techniques. Unlike code or 
patch-based systems, it provides an easy to use interface for exploring generative and 
algorithmic music techniques, that is built on common music software paradigms. Many 
existing generative music systems use workflows that are not familiar to non-
programmer music composers. A more detailed overview of IGME (previously named 
IGMSE) is given in (Hunt, Mitchell and Nash, 2017 and 2018). The core design 
principles of IGME are:  
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1. Integrates algorithmic techniques for musical composition inside familiar score 
editing and music sequencing workflows.  

2. Provides full version control, for revisiting and comparing material.  
3. Uses graphical controls (WIMP) rather than code-based interfaces. 
4. Takes a modular approach to composition, while retaining a linear timeline.  
5. Uses a multi-layered assembly stage that assembles the final score from individual 

parts.  
An impediment of generative music systems is that they often fail to form high level 

structure, and are often highly stochastic in nature (Hunt et al, 2017). This is seen in 
large existing systems such as Jukedeck (Langkjaer-Bain, 2018), Aiva (Zulić, 2019), 
and Melodrive (Collins, 2018) focusing on replacing the human completely, with 
cutting edge machine learning. The, overarching aim of IGME is to create a system that 
supports human and computer composition. The aim is that by combining the best 
aspects of generative music with the careful control of a human operator that more 
structured forms of generative music can be created. Therefore, it is worth considering 
how much of the music should be unique and how these ideas should be developed 
through the piece. Therefore, the principal aim of this research is to assess whether 
existing music (composed by humans) can be encoded and represented by algorithms 
using the tools afforded by IGME. From this we can understand what techniques other 
general music sequencing software should adopt, for supporting interactive generative 
music. 

 
Figure 1: Arrange view inside IGME 

IGME considers composition in terms of three distinct musical parts: human created 
content, computer generated content, or a mixture of both. A part within IGME is 
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similar to the idea of a MIDI clip in other music software (the differences are discussed 
in section 3).  The IGME program is divided into two main views: the arrange view 
(Figure 1) and edit view (Figure 2). The arrange view focuses on arranging and 
sequencing individual parts (e.g. MIDI clips), using design principles found in other 
common music sequencers. The edit view (or detail view) allows the user to edit the 
individual music sequences, and/or specify the algorithmic effects for each part. A 
range of algorithmic effects are implemented by IGME, that can either augment human 
composed music, or generate computer created music.  

 

Figure 2: Edit view inside IGME. 

The aim of this research is to look at how existing pieces of music can be 
represented and encoded using the IGME environment. The paper therefore considers 
two differing but similar research tasks.  The first explores specific examples of music 
in detail, whereby the music can be represented more closely by; original ideas, and a 
series of transformations. The second looks at automatically analysing larger datasets to 
provide generalised metadata about musical structure. The concept of expressing music 
as patterns and processes has been explored previously by Nash (2014) using the 
Manhattan environment, and shares a number of parallels with this work. 

 
The main body of text is broken down into five sections. Section 3 explores some of 

IGME’s unique features that are crucial to this research. The various techniques for 
transforming and relating groups of musical parts are explained in section 4, each shown 
with examples of this process. Following this section 5 discusses the data pipeline for 
computing analysis automatically. Section 6 examines the output of a complete analysis 
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of a single song, revealing insight into its musical structure. Lastly datasets are computed 
for various types of music and these are summarised in section 7.   

2. BACKGROUND 
 
In general, musical structure is often composed by following some set of rules. Moore 
(2001, p 433) notes that it is these rules that characterise different genres of music. 
Rules can be understood in terms of stylistic choices that determine or constrain 
elements of the music which are often inferred rather than formally defined (Herremans 
and Sörensen, 2012).  For example, most tonal music is constrained to a given musical 
key (Temperley, 2007). However, certain genres of music, for example music composed 
using species counterpoint have well defined formal rules (Fux and Wollenberg, 1992). 
Furthermore; Minimalism, Serialism and other process-based forms of music are a 
genre of music that focuses on representing music composition as a process or series of 
algorithms, the research here considers music that does not identify as belonging to such 
a genre. In a general sense, this research attempts to find patterns in the structure of 
composed music. 
 

Lerdahl and Jackendoff’s (1983) generative theory of tonal music (GTTM) 
organises music into a four-level hierarchy; motives, phrases, periods, and larger 
sections. Several authors have attempted to automate the GTTM, notably Hamanaka 
(2006), however a full automated implementation of the GTTM remains unexplored. 
Rothfarb (2010) notes that the phrase level generally considers music to be 4 measures 
in length. The research here considers segmenting music mostly into motives, where the 
smallest division of hierarchy is fixed to a single measure. 

 
The Manhattan music programming environment (Nash, 2014) uses a pattern-based 

sequencer paradigm in which code is situated in repeating musical patterns to 
manipulate the music during playback, as an explicit interaction model that considers 
music as the synthesis of patterns and processes, sympathetic to the key roles of rules 
and repetition throughout musical practice and history. Through a series of studies 
(études), the tool has been used to encapsulate pieces across various genres and eras of 
Western music (baroque, minimalism, romantic, popular, etc. – from Bach to Stravinsky 
to Hendrix) – recomposed as expressions of arranged patterns (musical seeds) and 
transformative or generative processes (procedural code). Used currently as a 
pedagogical tool, this model is designed to foster analytical thinking in students through 
manual analysis and reinterpretation through code, but is also the basis of other work on 
automated analysis and the practical exploration of data models in music. 

 
Formal frameworks for analysing music have existed for a long term, notably 

Schenkerian analysis. Despite work by Marsden (2010), traditional Schenkerian 
analysis has only had limited success in being automated and remains too 
computationally expensive. More cutting-edge research in machine learning has 
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explored automated music analysis in other ways (Huang, 2016). Deep learning, despite 
its promises of delivering exemplar solutions to the problem, provides a ‘black box’ 
approach that provides little metadata explaining the process, which is both important 
and useful for music. Rudin (2019) notes that more emphasis should be placed on 
making interpretable models for big data, rather than using black box algorithms. 
 

Notable researchers, such as David Cope (Cope, 1991, 1996), has produced multiple 
works in the area of list programming for generating music. Starting with smaller 
fragments of music and combining them through various procedures to produce larger 
works. This work takes the opposite approach (starting at the end result, and working 
back to the start).  
 

3. TERMINOLOGY: 
A part in IGME is very similar to a MIDI clip in other musical sequencing software, 
however an individual part in IGME is made of 3 distinct sub-components. These are 
the seed, parameters, and result. The seed is the musical material that is edited by the 
user. The parameters are a series of processes (effects and algorithms) that are applied 
to the seed, to produce a result. Note the result is the musical material that is audible to 
the user. Without specifying any parameters, the result is identical to the seed. The seed 
material can also be supplied from a previous part’s result (discussed below) or by a 
seed generator (generative effect). 
 

A reference part in IGME is whereby the content of a given part is referenced (or 
taken) from another part. In this relationship the seed material of a given part B is 
specified from part A’s result, therefore part B is referencing part A. Note that the 
reference part can have exactly the same content as its parent, or modify it (through 
various transformations). Looking closely at the score in Figure 3, the second bar is a 
direct duplicate of the first bar. Therefore, inside IGME part 2 could be notated as a part 
that references (in this case) part 1 (Figure 4 middle). This representation shows more 
explicitly the structure of the music. This could also be expressed as a repeat as shown 
in Figure 4 right. However, this common music sequencing paradigm fails to work 
when a bar of music is repeated in a non-consecutive manor, as shown in figure 5. 
Referencing can be used to represent musical structure in a more visual way, and is 
therefore argued as crucial concept for this work. 
 

 
Figure 3: musical score. 
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Figure 4: Left: Two parts the same. Middle: Part 2 referencing part 1. Right: 

Part 1 repeated once. 

 
Figure 5: Part 3 is referencing part 1. 

With reference parts there is a one-to-many mapping, whereby an individual part 
may be referenced many times, in figure 6, part 1 is referenced by parts 2, 3, and 4. 
 

 
Figure 6: One part being referenced multiple times. 

4. TECHNIQUES 
IGME is a music composition environment, and consequently there are a range of 

tools for generating music through both stochastic and algorithmic techniques. Many of 
the stochastic techniques are not relevant in this research, as existing music cannot be 
expressed statistically, as the musical decisions would have been fixed during 
composition. Instead, a subset of the tools offered by IGME are used to determine and 
express musical structure. Namely the following techniques; duplication, transposition, 
transformations, arpeggiation and note-mapping can be automated. Each of these tools 
will be described in the next section alongside a working example. All of these 
techniques (except arpeggiation) make use of part referencing, whereby a part’s initial 
content is taken from a previous part and then has some further process applied.  
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Figure 7: Score for the examples shown in this section. 

 

Figure 8: IGME part representation of the score in figure 3. 

4.1. DUPLICATION 
Is the technique of duplication (repeating) previous musical ideas, these are expressed in 
IGME through simple references (previous section). 

4.2. TRANSPOSITION 
Transposition is simply the process by which all notes are chromatically transposed by a 
given value. In Figure 7, the second third bar of music is the first bar of music repeated 
and transposed by +5 semitones. Therefore, more structural semantics can be shown, if 
this is expressed as a reference part with a transpose process applied. 

4.3. TRANSFORMS: 
A transform process applies one of 4 simple procedures to a given part, these are; 

retrograde (playing the sequence backwards), inversion (inverting the pitches), 
retrograde-inversion (both together), rotate left or rotate right (note that rotating left and 
right together is nullified). In Figure 8 part 4 is set to reference part 1 and then have the 
retrograde plugin added. 
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4.4. NOTE MAPPING: 
Note mapping is analogous to find and replace. A note map is simply a mapping that 

defines what notes in one sequence are replaced by in another sequence. For example, in 
figure 7 the pattern of notes in bar 5 is similar to bar 1, however the 2 A4’s are replaced 
with G5’s. This is expressed with a reference part and the note map plugin applied (Figure 
9). With this process all occurrences of note A4 are replaced. 

 

Figure 9: note mapping interface. 

The famous guitar hook introduction of Guns N’ Roses’ Sweet Child O’ Mine (1987), 
provides ample opportunity to demonstrate the note map technique. The arpeggiated 
sequence of notes in bar 1 repeats in a block of 8. Bars 3 and 4 take the initial idea and 
replace the low D with an E. Bars 5-6 substitute the same note with a G, a score is 
provided in figure 10. Applying the note map process for bars 3 and 5, and applying 
reference duplication for bars 2,4,6,7, and 8, we end up with just 1 unique part, and 7 bars 
of transformations. This is visualised in Figure 11. 
 

 

Figure 10: First 8 bars from Sweet Child O’ Mine. 
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Figure 11: IGME representation of Figure 14. 

4.5. ARPEGGIATION: 
Unlike the other techniques discussed so far, arpeggiation attempts to reduce the 

overall musical data in a single part by expressing it as a collection of pitches, and the 
settings for an arpeggiator. For example, the sequence in Figure 12 can be encoded as 4 
notes and the arpeggiator plugin with up as the play order, 1/16 for the speed, for 1 bar, 
and in 1 octave. Figure 13 shows the editor set up in IGME to replicate this. 
 

 
Figure 12: Simple arpeggiated idea. 

 
Figure 13: Part with an arpeggiator plugin applied. 
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5. DATA PIPELINE AND AUTOMATED ANALYSIS 
 

An individual song in IGME is analysed by the following automated procedure. A song 
selected for analysis is first imported in MIDI format and decoded into IGME’s internal 
representation (note that for the purpose of this study songs are limited to those in a 4/4-
time signature, discussed further in section 8). Each MIDI track is given a track 
comprising of a sequence of individual parts. A track is split into parts based on bar lines, 
so the smallest possible part is a single bar, notes that cross bar lines are expressed such 
that the part takes up multiple bars of music. Note length and note onsets are quantised 
so that they are rounded to the nearest 1/32 note. Other details are lost by the process such 
as dynamic markings. Without making these modifications the complexity of doing this 
analysis would be implausible.  

 
The general expression of two parts A and B is the relationship that relates B to A. 

This process therefore tries to find the set of procedures that modifies part A so that it 
produces the exact same musical output as part B. The processes outlined below automate 
this process using the techniques (discussed in section 4) to discover musical structure. 
 

5.1. DUPLICATION ANALYSIS 
The duplication analysis tried to find and group parts that have identical content. 

This works from left-to-right from the first track to the last. The process starts by taking 
the first part on track 1, and comparing it with every other part on the timeline. Note 
only parts that have the same number of events are compared, greatly reducing the 
overall complexity. 

 
As the process works from left-to-right the overall number of comparisons decreases. 

When the first track is complete the process repeats starting with the first part on track 2. 
Only parts on track numbers greater than the current track need to be compared. When a 
match is found a reference is made between the two parts. 

5.2. TRANSPOSITION ANALYSIS 
The transposition analysis is similar to the duplication analysis, but the part is 

chromatically transposed incrementally from -12 semitones to +12 semitones before 
being compared with other parts. Essentially running the duplication test 24 times. This 
is expressed as a reference part, with a transpose plugin.  

5.3. TRANSFORMS ANALYSIS 
The transform analysis stage checks to see if the relationship between the two clips 

can be represented by a simple musical transform. This process is quicker than the first 
two analysis stages as parts that have already been marked as duplicate or transposed are 
removed from the task queue. Only parts that have the same number of events are 
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compared, as the transformation process does not alter the quantity of different events. 
Given two parts, A and B, this process would iteratively compute the 4 transforms on part 
A, and check to see if the output matches part B, if this is true then part B is set to reference 
part A, and the relevant transform parameter is added to part B. 

 

5.4. NOTE MAPPING ANALYSIS 
This process looks to see if a given part can be represented by referencing another 

part, and substituting certain notes so that the result is the same. A number of checks are 
first made, these include, ensuring the two parts have the same total number of notes, the 
same rhythmic structure, and the part cannot be expressed by other simpler techniques. A 
list of notes that occur in each part are first computed, (we will call these list L1 and L2). 
A set of possible combinations are computed, by iteratively taking a single note from L1, 
and each note from L2, whereby the total number of comparisons is the size of L1 
multiplied by the size of L2. A recursive function is then used to test each of the 
transforms on sequence A (original) and comparing it with sequence B (target). If a match 
is found the function exits and returns a list of the note mappings that transform part A to 
part B. If this process is successful then part B is set to reference part A, and the relevant 
note map parameter is added to part B. The note mapping process is CPU intensive and 
is run last. 

5.5. ARPEGGIATION ANALYSIS 
The arpeggiation analysis checks to see if a given part can be expressed as a smaller 

set of core notes and settings for an arpeggiator. The automated analysis first takes a given 
part and removes all the duplicate notes from the sequence, therefore leaving only a set 
of unique notes. The arpeggiator effect is then added, and the settings are iteratively 
worked through. At each iteration the output is computed and compared to the original, 
if it matches the original then the part is converted to an arpeggiated part.  

 

5.6. OVERALL ANALYSIS 
Pieces within IGME can either be analysed individually or in bulk. When computing 

an individual analysis, the parts are given a unique colour and the entire composition 
can be visualized.  As an additional feature, once the analysis of the piece is computed. 
IGME can remove all but the unique ideas, therefore revealing just the raw building 
blocks that make up the rest of the song. 

The analysis computes and represents the overall music into 2 overall categories, 
these are unique parts and representable parts. Within representable parts, several 
variants are grouped, these are duplicated parts, transposed parts, transformed parts, 
arpeggiated parts, and note map parts. 

Duplication has a higher priority than the other techniques. In many instances a part 
can, be expressed as either a duplication of the same part previously, or as a 
transposition. For example, in a given 4 bar section there might be 2 unique parts and 2 



 12 

parts that are expressed as transpositions of the first 2. When this 4-bar section repeats 
again, the 4 parts would be expressed as duplications in respect to the first 4 bar section. 

6. EXAMPLES 
6.1. SECRET OF THE FOREST 
To give an overview of the automated analysis process discussed previously (before 
discussing analysing large corpuses), this section looks at a single piece of music in 
detail. Secret of the forest is a song composed by Yasunori Mitsuda (Mitsuda, 1995). The 
song has previously been deconstructed and analysed by Yu (2016). There are a number 
of sections in this piece that can be expressed and represented using the tools offered by 
IGME, that disseminate musical structure in the piece. Overall the piece has roughly 
10% unique parts, and the remaining 90% can be expressed through the processes 
discussed in sections 4 and 5. Table 1 shows the overall distribution of parts found by 
this analysis process. No transformation parts were discovered so these are excluded 
from table 1. Figure 18 shows a visualisation of the overall piece. Duplicate parts are 
given the same colour, making patterns in the structure easier to distinguish, light blue 
is used to show unique parts, which are mostly present at the start of the piece. 
 
 

  
Number 
of Parts 

Unique 
Parts Duplicate  Transposed Arpeggiated 

Note 
Mapped 

Counts 579 60 496 14 6 3 
Percentage 100.00% 10.36% 85.66% 2.42% 1.04% 0.52% 

Table 1: Analysis results for Secret of the Forest. 

 
Figure 18: Visualisation of a section from the piece. 

Although the analysis process performs optimally on this piece of music, there are a 
number of reasons why the piece cannot be analysed further. Tracks 1, 2, and 8 are 
percussion, and repeat a single idea throughout. Track 3 is a bass part and contains a lot 
of representable content, some of the content on this track is similar in structure 
however it is not easy to represent within IGME using current techniques, the same 
conclusion is true of tracks 4 also. Track 5 is almost exclusively 2 note chords, as all of 
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the parts have the same structure this can all be represented through transforms. Tracks 
6, 7, and 9, contain the bulk of the material, the unique ideas are different enough that 
they are mostly inexpressible by other means.  6 of the 7 parts on track 10 can all be 
expressed as arpeggiated parts. The final 2 tracks are mostly melodic ideas. From these 
60 parts the rest of the song can be assembled. 

 
   

 
Figure 19: All of the unique ideas (building blocks) for secret of the forest. 

 

 
Figure 20: Musical score of repeating idea. 

One of the more interesting structural ideas found when analysing the song was the 
repeating idea shown in figure 20, this is first used from bar 33. The same idea is 
repeated 4 times, but is chromatically transposed each time. The 4-bar section is then 
repeated 6 times throughout the piece. The repeated 4-bar sections are expressed as 
duplication (of the earlier section) rather than 1 part and 3 transpositions, as they did on 
the first occurrence. 
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7. DATA SETS 
7.1. HUMAN COMPOSED MUSIC 

 
To understand how the processes discussed in sections 4 and 5 can be applied to 

existing music it is important to analyse a large selection of it. To compute the datasets 
for this research, a large selection of MIDI files in different genres were gathered from 
various free online MIDI databases. These were then grouped by genre and analysed in 
bulk using the pipeline discussed in Section 5. Section 6 looked at analysing a single piece 
whereas this section applies the same process but for multiple pieces of work. Table 2 
shows the results.  
 

 
Table 2: Analysis results for various genres of music, whereby N is the number 

of files analysed. 

 
The representable value is expressed as the percentage of parts that can be computed 
from another part (i.e. not unique). Initial observations of the data revealed that the 
Classical dataset scored the lowest for representability, unlike other styles of music is 
often instrumental, meaning that the music is perhaps more complex to accommodate 
for the lack of vocals. Pop, Rap, and dance music have high representable scores, 
perhaps as these genres of music make use of loops. Jazz has slightly more 
representability than classical but less than pop and rock. Video game music scores the 
highest overall. The results could be interpreted, that more popular forms of music (rock 
and pop) tend to express music in a simpler structure that conforms to the bar level 
hierarchy, whereas jazz and classic tend to follow more nuanced levels of structure that 
is not sufficiently captured by this process.  Despite their low overall scores, Classical 
and Bach contain more transposed and arpeggiated parts then any of the other datasets. 
 
The transformation (retrograde, inversion, rotation) technique is clearly in its current 
configuration either; unable to represent the music (incorrect model), or is just simply 
not used that often as a technique. Given the relatively high duplication score for almost 
all datasets, it is worth considering if current musical composition software makes this 
duplication either; easier to do, or make its representation obvious. Additionally, we 
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suggest that these duplicated ideas are intentional and crucial for developing structured 
(non-stochastic) music. 
 

7.2. GENERATIVE MUSIC 
In addition, the output of a series of generative music programs was captured and used 

to create a large dataset of generative music. Based on work by (Francis, 2018) a selection 
of the example programs provided were compiled and run 1000 times each to produce 
1000 pieces of music for each technique (see table 3). Even though the focus of this study 
was to test whether or not existing music could be represented by the techniques discussed 
in this paper, it is worth considering if and how generative music (composed by other 
programs) fits with this model. 
 

 
Table 3: Output for different generative program types analysed. 

 
The representability scores for the generative dataset vary widely. Firstly, the mostly 

stochastic techniques (fractal and windchime) have low representability scores, meaning 
these music types sound predictably chaotic in nature. On the other end of the scale Jazz 
and Blues have higher representability scores than their real-world counterparts. The 
counterpoint data set has a number of differences with the Bach data set, notably the 
generative set has less duplication, but much more transposition. 

 
The findings in the section perhaps confirm why generative music is seen as either 

structureless (too stochastic) or repetitive. Therefore, a balance needs to be struck 
between repeating and developing existing ideas, and creating new ones. From the 
findings above, it would seem that this remains a challenge. It could also be suggested 
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that generative music techniques are mostly suited to generating lower levels of musical 
hierarchy and that the human composers should focus on developing and arranging these 
lower levels to form higher level structure. 

8. CONCLUSION 
8.1. LIMITATIONS  
The analysis processes used in the research considers musical structure to be grouped 
into bars, while this works for certain styles of music, much of the musical structure 
operates at smaller micro (rather than macro) levels. This is true of Classical music in 
which sequences may by asynchronous with bar lines. However as discussed previously 
this coarse resolution approach is designed to reduce the complexity of the research 
objectives. However, this automated approach paves the way for more formal methods 
of analysis such as Schenkerian analysis. Nash’s (2014) Manhattan software (which has 
many parallels with this work) provides the ability to encode music at the micro and 
macro level thus providing a more complete representation of musical structure, 
although such representation must be encoded manually. 

 
The system itself is still in a beta development stage and some limitations do present 

themselves. A major limitation is the inability to work with time signatures other than 
4/4, and of course pieces that modulate to and from a different time signature. Such 
pieces are omitted from the data sets discussed in section 8.  Many pieces of music 
cannot be represented sufficiently using IGME and there are two principle reasons for 
this. Firstly, the pattern-recognition capabilities of IGME are themselves limited, and 
are demonstrated here as a proof of concept. Developing these techniques for future 
work will undoubtedly increase the representable score of music, further highlighting 
the importance of patterns in music. Secondly, and for perhaps good reason certain 
music cannot be simply compounded into primitive rules. 

8.2. FUTURE WORK 
This research has several novel uses. Firstly, it allows a user interacting with the software 
to analyse music in a visually stimulating way. We can also use generalised metrics about 
music to assess why for example generative music is often seen as structureless, by 
analysing and comparing it with a style it is trying to replicate. This also might be used 
as a tool for learning a piece of music. Whereby a student can extract the individual pieces 
of music and practice these over, later slotting them the logical timeline to realise the full 
piece of music. 
 

Ultimately the focus of this research was to assess whether existing pieces of music 
can be represented by a series of unique musical bars, and subsequent representations. As 
this paper has demonstrated this is indeed the case, with stronger emphasis for dance, folk 
and rap genres of music. Therefore, it is entirely possible to compose new pieces of music 
that intentionally use these types of processes. The number of techniques explored in this 
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paper fail to capture all aspects of musical structure, however future work may look to 
address some of the shortcomings of this research. 
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Fig. 1. Large format grid controller, made from 4 smaller grid controllers

Polyrhythms, Polymeters, and Polytempo are compositional techniques that describe pulses which are desynchronous between two
or more sequences of music. Digital systems permit the sequencing of notes to a near-infinite degree of resolution, permitting an
exponential number of complex rhythmic attributes in the music. Exploring such techniques within existing popular music sequencing
software and notations can be challenging to generally work with and notate effectively. Step sequencers provide a simple and effective
interface for exploring any arbitrary division of time into an even number of steps, with such interfaces easily expressible on grid
based music controllers.

The paper therefore has two differing but related outputs. Firstly, to demonstrate a framework for working with multiple physical
grid controllers forming a larger unified grid, and provide a consolidated set of tools for programming music instruments for it.
Secondly, to demonstrate how such a system provides a low-entry threshold for exploring Polyrhytms, Polymeters and Polytempo
relationships using desynchronised step sequencers.
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1 INTRODUCTION

Linear sequencer workflows generally enforce synchronization between tracks, whereby it is not possible to have more
than one tempo or meter in concurrency [10]. For example one track at 120 bpm and another at 130, or one track in
4/4 and another in 9/8. Different types of notation allow or inhibit this in different ways. For example western score
notation makes compound time permissible with different voices appearing on a single stave, or various compound
notation across different staves. A piano roll notation allows virtually any discrete time division but can require tenacity
and fine motor control to drag a note into a position. Step sequencer notation provides a simple way of expressing
rhythms by dividing a period of time evenly into a fixed number of intervals (steps).

A step sequencer generally divides a sequence into evenly spaced steps, whereby a step corresponds to an individual
note that is either on or off at that position [11]. Steps run left-to-right and voices are stacked vertically. Step sequencers,
unlike traditional notation, make it easy to divide a bar of music into an arbitrary number of steps, for example dividing
a bar of 4/4 into 11 identical pulses. Step sequencers have some novel properties, for example each row can be mapped;
linearly, to a given scale, or to an arbitrary note value (drum sequencer). Step sequencers exist in both physical hardware
and in software. We propose a simple step sequencer interface using physical hardware for exploring time, whereby we
can have multiple step sequencers running together to both illustrate and audibly compare the effects of Polyrhythms,
Polymeters, and Polytempi.

Grid controllers are physical interaction devices made up of a matrix of backlit buttons (see Figure 1). The interface
provided by a grid controller lends itself well for representing and interacting with step sequencers. Many such
controllers exist (explored in the next section) however the tools and frameworks for designing sequencers and more
general purpose instruments for grid controllers are somewhat lacking. To enable us to explore time for the purpose
of this project we created a general purpose framework for enabling the design of instruments for grid controllers
(section 3). From this we demonstrate a step sequencer based approach using a large format grid controller for exploring
complex rhythms (section 4). The large grid controller discussed in this project was built several years prior to this
project and more details about its origin can be found here1 .

2 BACKGROUND

2.1 Polyrhythms, Polymeter, and Polytempo

A polyrhythm is the simultaneous use of two or more rhythms that are not readily perceived as deriving from one
another [1]. Given 2 bars of the same length and tempo (stacked vertically), a polyrhythm would be dividing the upper
bar into 4 beats and the lower one into 3 beats. These beats would be in sync on the first beat and drift or phase for
remainder of the bar (figure 2). A polymeter is where two sequences are played using different meters, but with the
same tempo. For example a pattern that repeats a sequence over 5/4 played against one repeating over 4/4 (figure
3). After 20 pulses the original patterns will repeat again (the lowest common denominator of two time signatures).
Polyrhythm and polymeter differ in that the first repeats every measure, and the latter at the phrase level [5].

1http://launchpadmegamini.blogspot.com/

Manuscript submitted to ACM



Exploring Polyrhythms, Polymeters, and Polytempi with the Universal Grid Sequencer framework 3

Fig. 2. 4/3 polyrhythm.

Fig. 3. 5/4 and 4/4 polymeter

Fig. 4. two sequences using polytempo

Polytempo is whereby two sequences are played at different tempos, the point at which these sequences repeat can
be significantly longer than sequences employing either polyrhythm or polymeter. For example a 1 bar repeating phrase
sequence played at 120 bpm and at 121 bpm simultaneously will take 4 minutes to repeat (figure 4).
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Renney and Gaster [10] state traditional notation software struggles to represent more complex manipulations
of musical time. Additionally, expressing two time signatures in parallel (polymeter) or working with concurrent
time (polyrhythm) is not generally well supported in notation software and thus requires undesirable ‘work-arounds’.
However some existing software systems do support these compositional methods.

Nash’s [9] Manhattan tracker software enables a user to work with complex rhythms by subdividing rows in the
tracker into a number of subdivisions. For example taking a row with a resolution of 1/32 note and dividing this into 7
smaller divisions, this effect can be repeated between tracks creating complex rhythmic structure. Malmberg’s IRIS
software sequencer [7], represents a step sequencer around the edge of a circle. The system supports having multiple
sequencers within the circle so that polyrhytmic music can be explored. Renney and Gaster’s [10] work presents a
novel physical interface for exploring polyrhythms and polymeters on a 3D printed circular interface. Dorin [3] has
explored polyrhythms in a more abstract form using cellular automata. More general purpose programming languages
such as Supercollider [12] would allow a user to program any number of complex rhythms but requires competency of
programming for an end-user. More formal methods for composing with complex rhythms is given by Dobrian [2].

2.2 Grid Controllers

Grid controllers are generally defined as a matrix of buttons that output button state information when pushed. Many
of these controllers have LED lighting behind each button so that visual feedback can be displayed. The first commercial
example of a grid controller is commonly considered the Monome [4]. More modern controllers such as the Launchpad
Pro2 and Ableton Push 3 use velocity and pressure sensitive pads with full RGB feedback. Unlike traditional keyboards,
grid controllers are more general purpose with specific software providing the instrumental interface and mapping for
musical applications. Other than the Monome 256 (a 16 x 16 grid controller), Yamaha Tenori-on4, and Polyend SEQ5,
larger grid controllers are rare and notably expensive.

Many purpose built musical applications exist for grid controllers, utlising Max for live patches, custom firmware, or
programmed in a general purpose language. For example, Monome has a community of developers creating applications
written using Max [8]. Novation’s launchpad pro has the ability to write programs and embedded them directly on
the device [6]. Ableton’s push controllers provide specific interfaces when interfaced with Ableton Live. No general
purpose framework exists for building instruments on a grid controller, but rather each device has its own set of
tools and requirements. For example, a purpose built application for a Launchpad written in Max would require a
significant rewrite to enable interaction with a push controller. Given the amount of common functionality between
grid controllers, a framework that enables instruments to be designed for a ‘general purpose grid controller’ allows
developers and musicians to more easily develop and share instruments.

3 UNIVERSAL GRID SEQUENCER

The Universal Grid Sequencer (UGS) is an open source C++ framework that provides a series of musical applications
for grid based controllers developed for this project. There are a number of components later discussed that make the
system universal. But essentially it is a software package that allows multiple grid based controllers to be connected
together as if they were one large grid controller and then position various sequencers and musical instruments on it.
An instrument written specifically for one grid controller can easily be made to work with another. We briefly discuss
2https://novationmusic.com/en/launch/launchpad-pro
3https://www.ableton.com/en/push/
4https://www.yamaha.com/en/about/design/synapses/id_005/
5https://polyend.com/seq-midi-sequencer/
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Fig. 5. Code example for setting up a step sequencer. See AMSequencerSimpleDrumSequencer in the source code.

the core concepts as a full detailed description of the system is beyond the scope of the project, full source code is
available from6.

Firstly all MIDI devices are connected through a device object. The device object is responsible for providing the
mapping between a device’s physical control mapping and the virtual logical mapping employed by the system. For
example, the Launchpad controller used by this project sends note on messages for each pad. Each row is represent by
increments of 16 and each column by 1. These are translated by the device component into an XY coordinate position.
The physical device itself can be oriented in one of four predefined positions (rotated in 90 degree increments) with the
software automatically computing the transformations. The device object must also provide the reverse mapping, i.e.
given a XY coordinate which pad does this relate back to. We propose that any grid based MIDI controller can be used
with the system providing a device and its mapping is defined. For practical reasons we have not tested every variant of
grid controllers. The basic requirements for any device is that it supports a state based button press (sending on and off
messages), has LED feedback under each button and communicates via MIDI or OSC.

LED feedback is a core part of many grid based controllers, and decoupled from a pad’s input. The device object also
deals with mapping an arbitrary RGB colour value into a device’s physical ability to represent this. Many controllers
(Push, Launchpad Pro) support full RGB colour, however some controllers (the Launchpad used by this project) support
only red and green with a 2 bit colour depth for each channel. In this instance the red and green components are
down-sampled to be compatible.

The device manager is responsible for connecting and positioning several devices together to build an overall grid.
The position, size and orientation of these devices can be arbitrary. For example, in this project we have four launchpad
devices positioned in a 2 by 2 grid, with each device rotated through 90 degrees (see figure 1). At this point we have an
overall grid size of 18 by 18. The device manager is responsible for translating messages from and back to individual
devices. For example a message from the bottom right launchpad at its local position 0,0 becomes 9,9 in the overall grid.
Likewise, sending LED feedback to position 9,9 will return that feedback to the bottom right launchpad. At this point
input messages are transferred from the MIDI thread into the master clock thread using a circular buffer.

Furthermore, all the IO between devices is setup and focus can now be placed on designing controllers. A controller
is simply a musical instrument or sequencer of arbitrary size and position within the grid. A session object manages
an arbitrary number of controllers, and transfers messages from the device manager onto the relevant controller. For

6https://github.com/Sjhunt93/Universal-Grid-Sequencer
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example we might have 3 controllers, a drum pad on the top right and note scaler on the top left and a 16 step sequencer
occupying the bottom half of our grid. Controllers generally fit into one of 3 categories, momentary controllers,
sequencer controllers, and setting controllers. The first of these is the most simple and generally maps input into
output MIDI messages. For example we could have a 4 by 4 drum pad that maps each XY position to a MIDI number
corresponding to specific drum sounds (e.g. kick = MIDI note 36, snare = MIDI note 38). Sequencer controllers are
similar, but instead output notes at some point in the future and resemble traditional step sequencers. These respond to
messages sent from clock objects that provide timing information (discussed shortly). Setting controllers send messages
that control the state of other controllers, for example switching scales, transposing, selecting sequences, and others.

The master clock is responsible for transferring incoming messages into the individual controllers (through the
session manager) and sending LED feedback to the physical devices, but also keeps track of and manages a number of
clock objects. Clock objects send regularly pulsed messages to a given number of controllers. There is a 1-to-many
mapping between clocks and controllers, however for simplicity 1 clock might control every controller ensuring
synchronicity between them. For more complex examples we might have 4, 16-step sequencers each with 4 voices on
our 16 by 16 grid, with each sequencer receiving a different clock. This allows each sequencer to go in and out of phase
and sync with each other.

All LED feedback is sent to a LFXBuffer (LED effects buffer). Each controller has its own buffer. For example a
controller with a size of 5 by 5 has a buffer of the same size. The device manager holds a master buffer that is the same
size as the grid. Around 60 times a second the buffers from each controller are transferred to the master buffer and
positioned accordingly. The master buffer is a representation of the physical device so therefore output messages are
only sent if the state has changed which avoids overloading the communication output stream.

The system is entirely written in C++ and currently configured through changing and modifying source code which
is relatively simple to do. Further iterations of the project intend to provide a drag and drop user interface and/or a
domain specific language for setting up controllers. Figure 5 shows some example code for creating a step sequencer,
and Figure 6 shows the output of this on the physical grid. To create a simple step sequencer we would allocate an
instance of it (step 1), and also supply the two required setup parameters: a size (which for this controller determines its
number of steps and voices) and a position on the grid. We then set the note numbers for each row (step 2), and add it
to the session (step 3). As the controller is a sequencer type (see previous section) we need to create a clock and register
this controller to it (steps 4 and 5). If we wanted to add a second sequencer we would repeat the above process. The
sequences could either share the same clock or alternatively register a new one. We finally start the master clock (step
6). All MIDI output messages from the program are sent out via a virtual MIDI device and synthesised in an external
program, these messages are separate to the LED Feedback (also sent as MIDI) messages sent back to the physical
devices.

4 EXAMPLES

Whereas the previous section presented the system as a generalised tool for working with grid based controllers,
this section explores how a large grid based controller easily supports experimenting with time using examples in
polyrhythms, polymeters, and polytempi. A large grid enables us to have multiple sequences not only running at once
but remain visible.

Although creating an arbitrary number of virtual step-sequences in software (for example in Max) is easily possible,
physical hardware provides tactile and sensory feedback. In the examples below, 16 steps corresponds to a bar of music
in 4/4 time. All example code is available from the open source repository, the accompanying video demonstrates each of
Manuscript submitted to ACM
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Fig. 6. Basic step sequencer, realisation of the code in figure 6

the concepts, and provides more details than is possible in paper7. Additionally, the range of possibilities are far greater
than that demonstrated here as we focus on providing relatively simple instruments that promote demonstrability over
complexity.

4.1 Polyrhythmic examples

To showcase polyrhythmic controllers (see figure 7) we need to create two (or more) step sequencers that are always
in sync on the first step. In order to set up a 4 over 3 polyrhythm we would create two step sequencers one that
has 16 steps and one that has 12 (any number of steps would work as long as the ratio between them is 4/3). Each
step-sequencer requires a different clock, in this example the first has a tempo of 120 and the second 90 (25% slower). In
any polyrhythmic container the ratio between steps (16/12) and clock speed (120/90) are proportional.

The software constructs these containers and computes relative clock speed automatically and a user simply needs to
supply the number of steps for each of the two sequencers. In the example, the top of the grid has the 16 step sequencer
and the bottom of the grid the 12 step sequencer, with each controller having 8 voices. LED feedback is used to show
the start and end points of each sequencer. With little effort we could easily create a sequencer that is a 16/15/13/11
polyrhythm, which is considerable complex, although its musical merit remains something for the user to evaluate.

7https://www.youtube.com/playlist?list=PLES5ig6CvJKTYDKepwLWc37nniWoP7gwX
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One downside of this representation is that (using the example shown at the start of this section), the 3/4 rhythm
is shown to be shorter that the 4/4 rhythm, when in reality these are the same length. This is of course due to the
limitations of needing a button for every time step. A continuous interface such as a touchscreen would allow this
easily, but is not the focus of the project.

Fig. 7. 16/12 polyrhythmic sequencer, class: AMSequencer2WayPolyrhythmicContainer

4.2 Polymetric examples

Polymeterical examples are easier to configure as the sequencers share the same clock, but have a different numbers of
steps between sequencers. In the example (figure 8) we have a 16 step sequencer played against a 10 step sequencer,
Manuscript submitted to ACM
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giving us a 4/4 over 5/8 polymeter. As these are shown together visually, the user can observe the sequences going in
and out of sync.

Fig. 8. 4/4 against 5/8 polymetric sequencer, class: AMSequencerPolymetricContainer

4.3 Polytempi examples

For the polytempo example we created 8 separate sequencers with a single voice (with each row outputting a separate
note) and all 15 steps in length (see figure 9). Each sequencer was given its own clock with a tempo 1 bpm faster then
the previous one, starting at 120. The lower rows appear to speed up as the pattern progresses, thus illustrating the
concept visually. In this example it would take 4 minutes for the piece to repeat.
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Fig. 9. 8 step sequencers running in a polytempi configuration, class: AMSequencerPolytempoContainer

5 CONCLUSION

This research sets out the initial objectives of the UGS framework and discusses its architecture. We encourage the
development of the system to support more grid controllers and the creation of novel instruments. The project is
provided as open source software. The framework provided us with a platform from which to develop and easily create
step sequencers for exploring polyrhythms, polymeters and polytempos. With more complex examples of rhythms
seemingly stochastic music was easily created, however the focus of this research was not on the musical quality of the
output. Mathematically the music can be modelled and described, although it is unclear audibly whether a listener can
perceive these structures, and would warrant further study and research.

Future work should therefore be primarily focused on evaluating the research with empirical user studies. Many
activities are permissible, however emphasis should be placed on gauging a users understanding of complex time and
Manuscript submitted to ACM
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rhythmic relationships, and the ease at which such interfaces can be assembled. Other studies could include more open
ended exercises focusing on what a user chooses to do with these tools and to what extent they felt artistically liberated
by using them.
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Abstract. Video game music, unlike other forms and genres of mu-
sic, is comparatively young in its development, and undoubtedly heavily
influenced by the hardware it was originally played on. This study ob-
serves whether the amount of repetition in video game music has been
affected by limitations in hardware and physical storage size. Musical
structure often derives from repetition and is one of many crucial mu-
sical elements for defining structure. We hypothesise that early videos
games will contain above average repetition due to hardware limitations.
Early video game soundtracks were minimally encoded, utilising hard-
ware based chip-tune synthesis, whereas modern games can support Hol-
lywood style soundtracks. This research analyses 21,391 pieces of video
game music across a range of various video game consoles. In conclusion
our original hypothesis was mostly disproven, and in fact the repetition
structure discovered across different platforms and generations remained
more-or-less consistent. There were however improvements in song length
and the number of instrument tracks within a song. Overall this paper
presents an initial informal analysis of repetition in video game music.

Keywords: Video game music, music analysis, music structure

1 Introduction

Despite its relative immaturity, video game hardware and audio has rapidly
progressed over the last 60 years. Early hardware had primitive, if any sound,
with some systems only able to emit a single beep (Chang, Kim, & Kim, 2007).
Modern systems are employing dynamic and evolving soundtracks, immersive
audio, and complex surround sound mixing (Hutchings & McCormack, 2019).
Music analysis is a vast subject and there are many feasible research objectives
for analysing video game music. However, one characteristic that perhaps cap-
tures musical structure holistically is repetition. Rahn (1993) states most musical
structure derives from repetition - without repetition there is no structure and
the music itself will be little more than random. The main objective of this
research is to observe how repetition within video game music has progressed
over the various generations of hardware. Other musical elements such as key,
harmony and rhythm could also have been analysed and compared, however, in
line with other work in the field (see section 2) and to keep things within the
scope of this paper we focus on a singular element (repetition).
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2 Literature Review and Video Game Hardware

Musical structure happens at different hierarchal levels. Lerdahl and Jackendoff
(1996) consider music to be in one of a four-level hierarchy; motifs, phrases, pe-
riods, and larger sections. Within these levels repetition occurs in different ways,
for example a single bar of music may be repeated several times in succession,
whereas an entire section may be repeated more than once, such as a chorus
section. Classical musical forms, such as ternary form (ABA), emphasises a full
repeat of the first A section, after the B section. Humans are excellent pattern
recognisers and even those without formal training are competent enough at
recognising repeating musical sequences and motifs (Chai, 2005).

Discovering repeating patterns within music automatically using computer
programs is not a novel problem, and researchers have gone about solving this
in different ways. This research focuses on analysing digitally sequenced music
(i.e. MIDI). Some notable research has attempted this on recorded audio (Lu,
Wang, & Zhang, 2004), and with the recent developments in machine learn-
ing, interest in this has increased (Jhamtani & Berg-Kirkpatrick, 2019). Hsu,
Liu, and Chen (2001) present two methods for discovering repeating patterns in
music, one using a correlative matrix and the other using a tree type data struc-
ture. Their study focuses on finding patterns of music at the smallest structural
level. Other methods include using a dictionary-based compression algorithm
(Shih, Narayanan, & Kuo, 2001). Both of these methods are a little complex for
the purpose of this study. Another simpler method used by the authors (Hunt,
Mitchell, & Nash, 2019) in previous work for analysing repetition, is to simply
split a piece of music into smaller segments based on bar lines and then compare
these against one another. Although some nuanced details are lost by this pro-
cess it permits a simple automated approach that can cover a large dataset. We
employ the same methods in this research and discussed further in section 3.

Collins et al. (2008) has thoroughly explored the relationship between tech-
nical systems and their musical use in video game music. An example of her
work that had similar research objectives to the work in this paper, is exploring
the link between hardware limitations and the use of loops in 8-bit video game
hardware (Collins, 2007). She suggests that there is some correlation between
the provision of music (use of repetition) and the storage capacity of the games
cartridges, but in conclusion notes “that rather than being the consequence of the
limited memory available on the systems, loops were, at least in part, an aes-
thetic that grew as the games became more popular and more complex”. Noting
that creative composers have invented ways in which to overcome or even to
aestheticize those limitations. In summary the research was limited by focusing
solely on 8-bit generation hardware. With influence of Colins’ work, we conduct
similar research but for a wider range of hardware.

A full technical description of the vast history of video game audio hardware
is outside of the scope of this research, however, we can broadly categorise each
piece of hardware into one of 3 groups using work by (Chang et al., 2007). These
are; chip tune and 8-bit (Group A), synthesis and sampling (Group B), and
pre-recorded and streaming music (Group C).
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Chip tune and 8-bit systems (A) synthesised music in real-time using primi-
tive on-board hardware based sound generators, similar to analogue synthesisers.
Synthesis and sampling systems (B) moved away from discrete waveform gener-
ators into more general purpose synthesisers. Wavetable and FM synthesis were
heavily utilised given their small memory footprint. Pre-recorded and streaming
based systems (C) differ in that music could be composed and recorded exter-
nally and then played back in real time. Fritsch (2013) notes that in early video
games the role of the composer often fell on the programmers themselves given
that forms of storage and playback were not well formalised. Music, for the first
two categories, required extensive programming for in game playback. Whereas
with pre-recorded and streaming based systems the role of the composer and the
sound programmer were fully decoupled.

A game’s storage medium may have affected the music and audio utilised
within the game. Early hardware used cartridge based media with limited stor-
age capacity, whereas disk based media provided ample storage. For example, a
Nintendo 64 cartridge provided a maximum of 64 mb whereas its closest com-
petitor, Sony’s Playstation, had 660 mb with its CD based storage (Sakamura,
1999).

There are 8 defined generations of video game consoles (Kemerer, Dunn, &
Janansefat, 2017), with music from generations 3-6 used in this research. The
first two generations contained minimal, if any, music as the hardware was prim-
itively simple. The most recent generations have seen little advancements in
terms of audio hardware implementation (Chang et al., 2007), but have empha-
sised improvements in immersive audio (surround sound formats) and dynamic
generative soundscapes (Hutchings & McCormack, 2019) which create challenges
for obtaining and analysing such music. Furthermore, the dataset (discussed
shortly) used in this study contained few examples of music for generations 7-8.

The video games consoles whose music was analysed for this research are
listed in table 1 (see appendix). The Sega Megadrive and Nintendo 64 both
supported disk based media through hardware add-ons (Sega CD and N64 DD)
however games using those add-ons were removed from the datasets to eliminate
additional variables. For this study we only focused on home video game consoles,
neither handhelds or PCs were considered.

3 Methodology and Software

To analyse the music needed for the project, the interactive generative music en-
vironment (IGME) was used to compute the repetition analysis (Hunt, Mitchell,
& Nash, 2018). The same authors (Hunt et al., 2019) have completed similar work
using IGME but focused on algorithmic representation of music. The dataset for
the project was obtained from the online VGMusic database1 which contains a
large database (over 30,000) of MIDI files categorised by console.

Individual songs are imported into IGME as MIDI files and then analysed.
IGME only supports the analysis of files in a 4/4 time signature. The music is

1 https://www.vgmusic.com/
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segmented into smaller clips for analysis, for the purpose of this study (and as a
limitation of the software) the smallest clip size is 1 bar. If notes are tied across a
bar line then they are simply segmented at the next possible (non-note crossing)
bar line, leaving a phrase larger than a single measure (we subsequently found
this to only account for a small minority of pieces). Therefore, a clip for analysis is
defined as 1 or more measures of music. A clip size average score of 1, implies that
all the music in the piece could be split uniformly into 1 bar measures. Splitting
into smaller units (i.e. less than a single measure) requires more complex analysis
on both segmenting and subsequent analysis. Some notable work (Temperley,
2007) has explored options for this (albeit in a non-automated way), as well as
the more general purpose repetition analysis methods discussed previously. Note
length and onsets are quantised to the nearest 1/32 note. Other details are lost
by the process, such as dynamic markings. Without making these modifications
the complexity of doing this analysis would be implausible.

The repetition analysis attempts to find and group measures of music that
have identical content. So that within each bar, every note has the same note
length, onset time and note number; therefore, comparing every clip against
every other clip on the time line. In the case of parallel duplication (two tracks
doubling the same music), this increases the overall amount of repetition found
as these two clips would be identical. Should two tracks be completely identical in
their entirety, one is removed before starting the analysis processes. Although our
definition of repetition excludes measures that are almost identical (for example
a variation on a theme), it is difficult to analyse and categorise such measures,
this could be an area for future research.

4 Results

Fig. 1. Repetition analysis results, grouped by system.
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Our original hypothesis stated older game music would contain more repe-
tition than modern equivalents, given the hardware limitations discussed previ-
ously. The research analysed 11 groups of MIDI files (1 per platform), using the
method described previously, with the results in figure 1. The repetition score is
given as a mean for all music analysed per system as well as a standard devia-
tion of the mean. The average song length in bars, the average number of MIDI
tracks (after removing duplicate tracks) and the average clip size are also given.

The overall results, show that the repetition score varies little between sys-
tems. Taking an overall mean average, we find a repetition value of 62.79 and
a standard deviation of 3.49. This would suggest that on average 62.79% of the
musical clips in the music are a repeat of a previous clip.

One value that changes significantly over time is the average song length as
well as the number of permissible tracks. It would appear that advancements
in a game’s storage size allowed for longer song lengths, and advancements in
audio hardware increased polyphony. One interesting observation is that when
comparing the Nintendo 64 and Playstation, they have similar values for rep-
etition and song length. We hypothesised that Playstation music would have
longer song lengths given how its storage capacity was 10x that of the Nintendo.
Although the Playstation has marginally longer songs and higher track counts,
it appears that these storage limitations had little effect on a songs structure.

5 Conclusion

In conclusion we found little variance in musical repetition between video game
consoles and their subsequent hardware. Although older hardware itself did not
specifically contribute to repetition, it limited the amount of songs that a individ-
ual game could contain. Such an observation would however require future study.
Collins (2007) whose research was similar to that discussed here, observed that
despite some quite rigid technological constraints provided only ‘loose pressures’
on the development of audio for 8-bit video game hardware.

The style of music composed for a video game is hugely dependent on the
type of game and is something overlooked in this study. Future work may focus
on the differences between such genres although this would require significant
organisation of the dataset. A limitation of using MIDI files is that two inde-
pendent music lines or voices might be encoded on a single MIDI track, this
may therefore have an adverse effect on the results. Is it however considerably
difficult to separate voices once they are encoded without tediously analysing
and manually separating the content. Also worth noting, is the smaller tim-
bre characteristics of the audio when played on its respective physical hardware
undoubtedly creates small nuances in the structure of the music. These are not
sufficiently captured by MIDI encoding. Although repetition is an important mu-
sical characteristic it does not describe all the complexities of musical structure.
Future work may also include additional analysis processes, such as: rhythm, use
of key, instrumentation, polyphony, harmony and others.
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Appendix

Table 1. A table summarising the various video game consoles used in this study.

Generation Console Audio
group Type

Media Type Year of re-
lease

3rd
Sega Master System B Cartridge 1986
Nintendo entertain-
ment system

A Cartridge 1983

4th
Super Nintendo B Cartridge 1991
Sega Megadrive B Cartridge 1988
SNK NEOGeo B Cartridge 1990

5th
Playstation C Disk 1994
Sega Saturn C Disk 1994
Nintendo 64 C Cartridge 1996

6th
Playstation 2 C Disk 2000
Sega Dreamcast C Disk 1998
Nintendo Gamecube C Disk 2001
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