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This study has provided an approach to classify soil using machine learning. Multiclass elements of
stand-alone machine learning algorithms (i.e. logistic regression (LR) and artificial neural network
(ANN)), decision tree ensembles (i.e. decision forest (DF) and decision jungle (DJ])), and meta-ensemble
models (i.e. stacking ensemble (SE) and voting ensemble (VE)) were used to classify soils based on their
intrinsic physico-chemical properties. Also, the multiclass prediction was carried out across multiple
cross-validation (CV) methods, i.e. train validation split (TVS), k-fold cross-validation (KFCV), and Monte
Carlo cross-validation (MCCV). Results indicated that the soils’ clay fraction (CF) had the most influence
on the multiclass prediction of natural soils’ plasticity while specific surface and carbonate content (CC)
possessed the least within the nature of the dataset used in this study. Stand-alone machine learning
models (LR and ANN) produced relatively less accurate predictive performance (accuracy of 0.45, average
precision of 0.5, and average recall of 0.44) compared to tree-based models (accuracy of 0.68, average
precision of 0.71, and recall rate of 0.68), while the meta-ensembles (SE and VE) outperformed (accuracy
of 0.75, average precision of 0.74, and average recall rate of 0.72) all the models utilised for multiclass
classification. Sensitivity analysis of the meta-ensembles proved their capacities to discriminate between
soil classes across the methods of CV considered. Machine learning training and validation using MCCV
and KFCV methods enabled better prediction while also ensuring that the dataset was not overfitted by
the machine learning models. Further confirmation of this phenomenon was depicted by the continuous
rise of the cumulative lift curve (LC) of the best performing models when using the MCCV technique.
Overall, this study demonstrated that soil’s physico-chemical properties do have a direct influence on
plastic behaviour and, therefore, can be relied upon to classify soils.
© 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

strength, and swelling. Depending on the aim or type of con-
struction project envisaged, the class or category of soils required

Soil classification is considered as one of the fundamental steps
in the planning, design, development, and implementation of
various infrastructural projects and related undertakings that have
to do with static and dynamic interactions with the ground
(Kaliakin, 2017). This is mainly because the results obtained from
classifying soils could serve as valuable indices in determining
mechanical properties, such as compressibility, permeability, shear
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may vary as a result of either their plasticity properties or particle
sizes.

Two major groups of soil classification systems are usually
adopted in the practice of soil science and engineering. The first
category often relies on textural classification based mainly on soil
particle size distribution (PSD) originally proposed and stand-
ardised by the United States Department of Agriculture (USDA). In
the second category, the engineering behaviour of soils is mainly
considered; hence, classification is based on both PSD and plasticity
properties. The methods and procedures of soil groupings in this
case are all captured and standardised in the American Association
of State Highway and Transportation Officials (AASHTO) as well as
the unified soil classification system (USCS). Moreover, it is also
imperative to add that several researchers are continuously

1674-7755 © 2022 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:eyo.eyo@uwe.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jrmge.2021.08.011&domain=pdf
www.sciencedirect.com/science/journal/16747755
http://www.jrmge.cn
https://doi.org/10.1016/j.jrmge.2021.08.011
https://doi.org/10.1016/j.jrmge.2021.08.011
https://doi.org/10.1016/j.jrmge.2021.08.011
http://creativecommons.org/licenses/by-nc-nd/4.0/

604 E. Eyo, S. Abbey / Journal of Rock Mechanics and Geotechnical Engineering 14 (2022) 603—615

devising other means of classifying soils (Moreno-Maroto et al.,
2021).

Although the classification of soils through their textural char-
acteristics is important, particle sizes do not completely represent
the general properties of soils because soils having similar PSD can
possess different physical characteristics (Casagrande, 1948;
Moreno-Maroto et al., 2021). Therefore, the focus of this article is
the classification of soils based on their plasticity behaviour. Plas-
ticity is simply defined as the capacity of soil to be moulded into
any shape without rupturing or cracking. Soil plasticity is mostly
established by carrying out the Atterberg limits test and, more
specifically, by determining the liquid limit (LL) and plastic limit
(PL), representing the upper and lower moisture content values for
which the soil can exhibit plasticity.

Most previous systems of soil classification are based on an in-
direct estimation and correlation of LL, PL, and plasticity index (PI)
on charts, which in some situations are subject to a few setbacks
most especially in borderline cases (Casagrande, 1948; Saito and
Miki, 1975; Polidori, 2007, 2009; Moreno-Maroto et al.,, 2017;
Moreno-Maroto and Alonso-Azcarate, 2018). These techniques rely
mostly on the activities of either first remoulding or working the
soil and then testing or laborious physical measurements in order
to indirectly infer soil classifications (Cai et al., 2011; Bol, 2013;
Shahri et al,, 2015; Eyo et al., 2019). Pham et al. (2021) attempted a
classification of soils by correlating properties such as specific
gravity, moisture content, void ratio, clay content, and Atterberg
limit with their plasticity categories. Even though the accuracy of
prediction had some improvements, their model indicated that
about 12.5% of the soil samples were neither captured nor properly
identified. Hence, in addition to the challenges mentioned above,
some of the problems encountered in their method of soil classi-
fication could have been as a result of not considering the core
intrinsic properties of the soils.

Soil plasticity is affected mainly by mineralogy and chemical
compositions (Polidori, 2015; Spagnoli et al., 2017; Okeke et al.,
2021). According to Moreno-Maroto et al. (2021), these factors
can provide even more information on the plasticity behaviour of
the soils than those stated previously. Besides, studies on the
relationships between these factors and engineering behaviours,
such as shear strength, swelling, compressibility, and compac-
tion, have been reported (e.g. Christidis, 1998; Al-Rawas, 1999;
Yilmaz, 2004; Abbey et al., 2019, 2020, 2021; Eyo et al., 2019,
2020, 2021). In view of this and the aforementioned shortcom-
ings, this article aims to provide a novel approach to soil classi-
fication based on a consideration of their physico-chemical
characteristics (i.e. cation exchange capacity (CEC), carbonate
content (CC), specific surface area (SSA), and clay fraction (CF))
using machine learning.

Machine Learning is artificial intelligence (Al) paradigm that is
gradually gaining attraction and popularity within the civil engi-
neering discipline. However, the focus of machine learning tech-
nique application in geotechnical engineering at present tends to
be mostly on regression-based problems related to soil engineering
macro-behaviours, such as shear strength, unconfined compressive
strength, resilient modulus of elasticity, compressibility, swelling,
compaction, and stabilisation (e.g. Kayadelen et al., 2009; Ikizler
et al,, 2010; Liao et al., 2011; Tekin and Akbas, 2011; Yilmaz and
Kaynar, 2011; Bekhor and Livneh, 2014; Tinoco et al., 2014;
Mozumder and Laskar, 2015; Zhang and Goh, 2016; Goh et al., 2017;
Mozumder et al., 2017; Soleimani et al., 2018; Gajurel et al., 2019;
Ermias and Vishal, 2020; Hanandeh et al., 2020; Eyo and Abbey,
2021; Zhang et al., 2020, 2021).

In summary, the major objective of this study is the application
of stand-alone machine learning algorithms (logistic regression
(LR) and artificial neural network (ANN)), decision tree ensembles

(decision forest (DF) and decision jungle (DJ)), and meta-ensemble
models (stacking ensemble (SE) and voting ensemble (VE)) to the
soil classification. Unlike regression, the task of machine learning
classification is to employ a decision-making technique to the class
membership of an unknown item of data based on the entirety of
the dataset (Dreiseitl and Ohno-Machado, 2002; Pham et al., 2021).
For the nature of soil classification envisaged, with the predictor
variable containing potentially more than two categorical features
(due to wide soil plasticity ranges), multiclass elements of machine
learning models adopted herein shall be used in the soil classifi-
cation. Also, prediction shall be carried out across multiple cross-
validation (CV) methods for the first time.

2. Methodology
2.1. Database generation and integration

Both numerical and categorical high-quality data collected from
careful experiments on soils (both clayey and silty soils) with wide-
ranging plasticity properties were used in this study. The soil
classes represented by the USCS are based on the Casagrande chart
of Pl versus LL (see Fig. 1). The dividing line (or ‘A-Line’) expressed
as PI = 0.73 (LL — 20) is the line separating inorganic clays, located
above the ‘A-Line’, and the rest of the soil materials (i.e. organic
soils, silts, and fine sandy soils) located below. A series of symbols
that allow the soils to be categorised or classified into different
groups are further explained in Table 1. It should be noted that the
soils used in this study are those of inorganic clayey and silty na-
ture. Highly standardised measurement techniques and testing
procedures used for determining physico-chemical properties of
the soils were adopted (e.g. Smith et al., 1985; Dexter, 1990;
Abduljauwad, 1994; Cerato, 2001; Kalkan and Akbulut, 2004;
Sridharan and Gurtug, 2004; Senol et al., 2006; Arnepalli et al.,
2008; Venkat et al, 2008; Yazdandoust and Yasrobi, 2010;
Gaidzinski et al., 2011; Ngun et al., 2011; Erzin and Gunes, 2013;
Bayat et al., 2015; Mahmoudi et al., 2016; Mehta and Sachan, 2017;
Akgiin et al., 2018; Spagnoli and Shimobe, 2019). The physico-
chemical properties of the soils (i.e. CEC, CC, SSA, and CF (<
2 um)) derived from these measurements shall serve as inputs or
independent variables for machine learning prediction. To achieve
the goal (i.e. determining soil classifications in terms of their
plasticity), Atterberg limits of the soils were appropriately used to
depict the machine learning predictor categorical variables (soil
classes). Table 2 shows some of the important components of
descriptive statistics obtained from the raw and independent soil
data features. Also, Table 2 confirms the wide plasticity ranges of
the soils used in this study. The values of LL range between
approximately 18% and 155%, while that of PI range between about
1% and 94%, indicating that soils of low and high plasticity are
represented according to the USCS. Frequency distributions of the
raw data collected from the literature are depicted in Fig. 2.
Although the data are quite sparse in some bin counts, especially
for SSA and CEC, CF seems to possess a more uniform distribution.
Among these features, both CC and CF seem to have less deviation
from the mean of the values.

To enable comprehensive analysis and evaluation of the soils’
plasticity categories generated from multiple sources, thorough
integration and alignment of the data were imperative. All the
datasets were appropriately appended by putting together the el-
ements with similar attributes and features. An appraisal of the
importance of each independent feature by assessing their relative
importance in the machine learning prediction before and after the
process of data training and validation was conducted and reported
in subsequent sections of this study.
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Fig. 1. Casagrande—USCS plasticity chart (Reprinted from Soil Mechanics: Calculations,

and classification, Copyright (2017), with permission from Elsevier).

2.2. Data wrangling and CV

The data used in the supervised machine learning classification
in this study do not contain any missing value. Although it is
sometimes considered essential (depending on the variability of
the dataset) to transform the dependent features before training
and validation, it is unnecessary given these data features are cat-
egorical in nature. However, it is important to employ the tech-
nique of CV to ensure an improvement of the training dataset as
well as a drastic reduction of the possibility that some coincidental
variables receive more importance in the multiclass prediction
(Joshi, 2020). Also, by using this method, overfitting of the machine
learning models could be avoided, and the predictive performance
is enhanced (DeRousseau et al., 2019). The techniques of CV
adopted in this study are train-validation split (TVS), k-fold cross-
validation (KFCV), and Monte Carlo cross-validation (MCCV).

TVS ensures that the dataset is radically and randomly split with
each of the dataset used for training, testing, and validation. In this
study, 80% of the dataset from the source were utilised to effectively
train the machine learning multiclass algorithms, whereas the
remaining 20% were used to test and validate the predictive per-
formance of the models. This method is based on the recommen-
dations from most machine learning studies that the validation set
should be 10%—30% of the total dataset (Han et al., 2020; Joshi, 2020).

The KFCV method divides the entire dataset (Nkpcy) into k
subsets with equal size. One of the subsets is used for training,
while the remaining ones are for validation (ny). The process is then
repeated for k times while excluding the k-subset in each iterative
cycle (see Eq. (1)). Ten-fold CV (i.e. k = 10) is used in this research
for the training and validation of the classification data.

(1)

MCCV technique combines the concepts of TVS and KFCV
methods. MCCV divides the entire dataset (Npccy) into two sets
through sampling without replacing one of the datasets. The
training is then carried out on the non-replaced subset (n¢), while
validation is performed on the remaining ones (ny). The MCCV may
preclude the running of iterations, unlike the KFCV (see Eq. (2)). In
this study, the proportion of validation data is 20%, in addition to
ten-fold CV.

Ngrcv = kny

Principles, and Methods, Victor N. Kaliakin, Example problems related to soil identification

(2)

Nypcey = ne+ ny

3. Machine learning algorithms
3.1. LR

LR is based on the least square function of linear regression,
where several correlations between one or more independent (or
explanatory) variables and predictor (or dependent) variables are
established by
Yn = Bo + B1X1n + B2Xon + ... + BmXmn + €n (3)
where Y, is the predictor variable; X1, Xap, ..., Xmn are the inde-
pendent variables; (g is a constant; and f1, 82, ..., 8 are the co-
efficients of regression; and ey, is the error term.

On the other hand, LR tends to determine the conditional
probability that the predictor variable Y = 1 given the independent
variable X. The probability distribution for LR is generally given by
the hypothesis function:

P(Y =1|X =x) = p(x) (4)

LR then tends to model the logarithm odds of an event linearly
as follows:

px) | _
log;o [1 — p(x)} = Bo + B1X1n + B2Xon + ... + BmXmn (5)
where the solution for the even occurring p(x) is given as
1
p(x) (6)

~1—exp(Bo + B1Xin + B2Xon + - + BmXimn)

For every single data point, there exists some feature vectors x;
as well as a class of observation y; whose probability is either p (if
yi=1)or 1 — p (if y; = 0) given the likelihood of the event as

18) = zn:[}h'xiﬂ* 10g10<1 + eXﬁ)]

i=1

(7)
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Table 1
Casagrande—USCS description of soil plasticity.

Symbol Plasticity class

CL Inorganic clays of low to medium plasticity
CH Inorganic clays of high plasticity

ML Inorganic silts of low plasticity

oL Organic silty clays of low plasticity

MH Inorganic silts of high plasticity

OH Organic clays of high plasticity

Note: The first letter ‘C’ in the symbol column represents clays, ‘M’ represents silts,
and ‘O’ represents organic; the second letter ‘L’ represents low to medium plasticity,
and ‘H’ represents high plasticity.

3.2. ANN

ANN is a type of machine learning algorithm that is modelled
after the human brain. Hence, the functioning and problem-solving
processes of an ANN mimic that of the human fundamental neural
network unit called the neuron (Fig. 3a). The neuron is the brain’s
simple information processing unit that is created to receive and
process input signals generated from other surrounding neurons
(connected at a junction called synapsis) through an input path
referred to as the dendrite to an output path called the axon. It is
worth mentioning that although the ANN structure is based on the
human nervous system, which is said to possess billions of neurons,
the ANN does utilise only a few hundreds of its neurons in practical
geotechnical engineering problems (Das, 2013).

The neurons are described as processing nodes or elements in
the ANN’s mathematical model. Hence, a network having an input
vector consisting of a single element x; (I = 1, ..., N;) would be
transmitted through some form of connections that are multiplied
by a set of weights to produce the hidden unit z; as

Ni
zj = IX:WjIX1+bj0(j = 1,...,Np) (8)
=1

where Nj is the number of input units; Ny is the number of hidden
Ni

units consisting of weighted inputs < > wj,x,> and bias (bjo); wj is
=1

weight; x, is input.

In order to allow for nonlinearity in the network system, the
inputs would have to pass through a layer of some transfer (acti-
vation) function, f which then generates:

Ni
Sj f(ZleX1+bjo> 9)
i=1

Fig. 3b depicts a typical three-layer ANN architecture with the
input, hidden, and output layers.

3.3. Tree-ensemble models

Decision tree models are based on a concept that involves
repeated or continuous splitting (branching) of input data by
adhering to a set of formal rules or criteria that aims to maximise
the separation of these data, hence, resulting in a typical tree-like
structure (Fig. 4). Each splitting of the input data leads to a
decrease in the system’s entropy and a maximisation of the splits.
This formal rule (or information gain criterion) is common in most
decision tree networks. The estimate of the probability distribution
P(m|n) in this case would be the ratio of m class elements to all the
elements of the leaf nodes containing data item n (Dreiseitl and
Ohno-Machado, 2002). However, depending on the kind of prob-
lem or application, there are some differences in how the decision

Table 2
Relevant statistics of machine learning independent features and soils’ consistency
limits.

Statistical parameter CC CEC SSA CF LL PL PI
(%) (meq/100g) (m*mg) (%) (%) (%) (%)

Mean 17.58 28.49 122.01 40.99 43.53 24.49 19
Std. dev. 19.86 22.63 79.08 19.08 19.75 7.68 14.07
Kurtosis 1.77 6.55 2.89 -0.44 9.09 38 7.52
Skewness 144 23 1.41 0.16 214 138 2.08
Range 88.1 120.6 438 91 137.3 49 933
Minimum 0.1 55 11 4 17.7 12 0.7
Maximum 88.2 126.1 449 95 155 61 94

Note: Std. dev. means the standard deviation.

tree machine learning models are constructed or used. For the sake
of this research, the multiclass elements of both DF and D] are
considered.

3.3.1. DF

The DF as a tree ensemble is typically created in order to mini-
mise the fluctuations or instability which would have possibly
existed if a solo tree structure has been utilised in machine learning
prediction. The multiclass classification DF relies on the concept of
bagging or ‘bootstrapping aggregation’ to perform its function
efficiently. Bagging, in this case, is defined simply as a technique of
training a dataset by bringing together multiple tree algorithms in a
‘bag’ (Kang et al., 2021). One of the main setbacks of using a DF is its
susceptibility to overfitting due to its various small biases and wide
variance.

33.2. D]

DJ is regarded sometimes as some form of an extension of the
random forest. D] comprises an aggregation or ensemble of deep-
rooted decision directed acyclic graphs (DAGs), which is a tech-
nique that ensures that compact and precise machine learning
classifiers are obtained (Shotton et al., 2013). Because the merging
of several trees is performed, the decision from the DAG typically
tends to possess a low memory footprint, thus making them rather
phenomenal in their general performance. The multiclass element
of D] has the advantage of being non-parametric and thus can
effectively represent nonlinear decision boundaries. Moreover, D]
can select some integrated features and perform classification
problems while also be robust in resisting noisy features during
data training.

3.4. Meta-ensembles

Models or meta-ensembles are machine learning paradigms
that combine various models, some of which are mentioned above
in machine learning prediction. The basic idea is to utilise the
strength of each model to estimate different patterns in the data.
This can be carried out to improve prediction accuracy through the
technique of either majority or weighted voting or stacking
generalisation depending on the classification problem envisaged.

34.1. VE

This method of machine learning may not necessarily require
any prerequisite from the aggregated classifiers or models. Hence,
in most cases, the method of voting neither relies on any
assumption of prior knowledge of how individual model behaves
nor does it require training on very large quantities of results of
representative recognitions from the classifiers (Kim and Upneja,
2021). Weighted voting combining the best weights from the
above-mentioned models is proposed for the multiclass problem in
this study (the structure is shown in Fig. 5a).
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Fig. 2. Frequency distributions of machine learning features and soils’ consistency limits: (a) CC, (b) CEC, (c) SSA, (d) CF, (e) LL, (f) PI, (g) PL, and (h) Distribution of soil class labels.

34.2. SE

SE uses two-level models or classifiers and includes both base
learners and meta-classifiers for machine learning predictions. SE
tends to combine the outputs produced from the base learners by
using meta-classifiers to learn the patterns or relationships be-
tween the generated outputs. Fig. 5b presents the structure of the
SE as proposed, which was used in this study for multiclass clas-
sification of the soils based on their physico-chemical
characteristics.

3.5. Machine learning model development and implementation

All the processes of machine learning training and validation
were implemented through a designer platform that supports
programming with python with its libraries (pandas, NumPy,
Matlib plots, and scikit-learn) and pipeline development. The
dataset records utilised in this study for multiclass classification of
the natural soils, the fundamental specifications of some of the
important features, and the parameters adopted for both the soils
and machine learning models are given in Tables 3 and 4. A flow-
chart depicting the methodology in this study for the development

of machine learning pipelines, subsequent evaluation, and the
deployment of the models is shown in Fig. 6.

3.6. Performance evaluation criteria

This study utilises the ‘discrimination’ criterion to assess the
quality of the classification algorithms. Discrimination simply
measures how well multiple categories or class labels in a dataset
are separated. The following discrimination-based performance
evaluation metrics are used in this study:

(1) Accuracy, which is regarded as the overall proportion or
correct predictions of an machine learning algorithm and is
expressed as

TP + TN

Accuraty = 15 Fp T TN <IN (10)

where true positive (TP) is the total number of collated in-
stances from a positive class given that the true class label is
equal to the predicted class label, false positive (FP) is the total
number of collated instances from a negative class where the
machine learning algorithm has been known to misclassify
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these instances by falsely predicting them as positive, true
negative (TN) is the total number of collated instances from a
negative class whereby the true class label is known to be
equal to the predicted class label, false negative (FN) is the
total number of collated instances from a positive class
whereby the machine learning algorithm has been known to
misclassify these instances by predicting them as negative
instead.

(2) Precision, which is the positive predictive value defined as the
total number of predictions that are regarded as being actually
corrected out of all the predictions considered to have been
made on positive classifications which is expressed as

TP

Precision = TP + FP

(11)

(3) Recall, which otherwise known as sensitivity, tends to mea-
sure the machine learning model’s ability to identify the

Root node

(initial split)

\
\
1
/

Fig. 4. Structure of a typical decision tree.

proportion or percentage of some relevant data points. It can
also be taken as the number of collated instances of the
correctly predicted positive class. Recall is mathematically
expressed as

TP

(12)

3.7. Receiver operating characteristic (ROC) curve

A typical class prediction sensitivity analysis to determine the
level of acceptability of the best machine learning models in the
identification of the TPs belonging to different class labels or cat-
egories is through the ROC curve. ROC is a useful probability
assessment tool that enables an evaluation of multiclass classifi-
cation models by demonstrating the relationship between true
positive rates (TPRs) and false positive rates (FPRs) during the
course of any change in the decision-making threshold. ROC depicts
to a great deal how much a machine learning model can properly
differentiate between categories or classes. Used along with the
ROC, (area under the curve (AUC)), measures the amount of sepa-
rability between each class in machine learning prediction. For the
ROC, an accurate or perfect machine learning classification in-
dicates a point having coordinates of (0, 1) at the top left-hand side
corner on a plot of TPR versus FPR, which is otherwise regarded as
the sensitivity or recall of 100% (i.e. without any false negatives in
the prediction) shown in Fig. 7. On the other hand, an act of
randomly guessing the class or category of a natural soil’s plasticity
would generate points on or below the straight line (or line of no
possible discrimination) extending from the origin (0, 0) to the
upper right-hand side corner regardless of the positive or negative
base rates which in turn would represent the worst possible con-
dition. In this case, the ROC curve would be almost equal to 0.5,
meaning that the machine learning model has no possible

l |

[lst base lcamcr] [2nd base lcamcr] [3rd base lcarncr] e ol

l l
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Fig. 5. Typical meta-ensemble architecture for voting and stacking models: (a) VE
structure, and (b) SE structure.
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Base machine learning models’ parameter settings.

Multiclass Parameter Option/value
model
LR Trainer mode Single parameter
L1 regularization weight 1
L2 regularization weight 1
ANN Hidden layer specification. Fully connected
Number of hidden nodes 100
Rate of learning 0.005
Number of learning iterations 100
Initial learning weight diameter 0.1
Normalizer min-max
DF Resampling method Bagging
Trainer mode Single parameter
Number of decision trees 8
Maximum decision tree depth 32
Number of random splits per node 128
Minimum sample no. per leaf node 1
DJ Resampling method Bagging

Trainer mode

Number of DAGs

DAGs maximum depth
DAGs maximum width

Single parameter
8

32

128

Number of optimization steps per DAG 2048
layer

discrimination in distinguishing between several positive and
negative class labels.

4. Results and discussions
4.1. Assessment of machine learning models’ performance

Fig. 8 depicts the performance of the multiclass machine
learning algorithms utilised for the prediction of the soils’ plasticity
categories according to the USCS. A comparison between the
numbers of variables selected in the prediction is also depicted in
Fig. 8. It is observed that when using all four variables (SSA, CF, CEC,
and CC) in the classification problem, both the stand-alone machine
learning models (LR and ANN) seem to produce relatively less ac-
curate performance compared to tree-based and meta-ensemble
models. Overall, the worst performing model is the LR (accuracy
of 0.44, precision of 0.47, and recall of 0.43), with the ANN clearly
having the highest accuracy of the two stand-alone models (accu-
racy of 0.46, average precision of 0.52, and average recall of 0.45).
One of the main reasons for LR’s worst performance is its intrinsic
assumption of linearity in spite of several instances of collinearities
between input and response class labels in the multiclass predic-
tion, which leads to their inability to sufficiently learn the features.
The inclusion of more ‘interaction’ product terms to the original
independent variables and their covariates can certainly improve
the performance of the LR model by causing it to be more nonlinear
and robust in the multiclass prediction. However, this approach
must be dealt with cautiously because the desire for greater flexi-
bility could be accompanied by a much higher risk of overfitting,
reducing further the accuracy of the model (Dreiseitl and Ohno-
Machado, 2002). On the other hand, the architectural make-up of
the ANN model, as defined previously, means that their perceptron
outputs (also referred to as hidden neurons or black-boxes) are
inherently nonlinear. Hence, the output of the ANN is a nonlinear
function of its inputs which in the context of a multiclass problem
would mean that the decision boundary can be nonlinear, thus,
making this algorithm relatively more flexible in the multiclass
prediction compared to LR.

It is pertinent to add that LR and ANN models are quite similar in
many aspects, given that both tend to possess common roots,

especially in most statistical problems. Moreover, these models are
regarded as being different from the tree-based ensembles, because
as explained previously in Section 2, they can supply both a func-
tion f, and a parameter vector a to allow an expression of the
probability distribution P(y|x) as

Pylx) = f(x, ) (13)

However, what makes the LR different from the ANN is the
functional form of expression used. Whereas this is often referred
to as the parametric functional method when using the LR, that of
the ANN is called non-parametric or semi-parametric. This is an
important distinction because the contribution from parameters in
an LR can be interpreted. At the same time, this may not often be
the case for the parameters or weights of a neural network.

The unique structure of the tree-based models makes them
inevitably nonlinear, and according to Fig. 8, they seem to produce
slightly higher performance metrics than the stand-alone models.
The decision trees are ‘white-box’ models, so-called because when
compared to neural networks, they tend to allow for an interpre-
tation of model parameters within a set of rules. As explained
earlier, the tree-based models work by the continuous splitting of
the input data according to sets of criteria or rules, which maxi-
mises the separation between the data and a corresponding
decrease in entropy.

However, Fig. 8 also shows the relative lower performance of the
tree-based ensembles (D] and DF) compared to the meta-
ensembles, most especially the VE model (which does outperform
the rest of the models). One of the main drawbacks of decision tree
algorithms can be traced to their somewhat ‘greedy’ behaviour at
each successive step of construction during the actual training
process. A combination of the best variables and an optimal split-
ting of the same are obtained at each step. However, a single pro-
gressive construction or feed-forward step that utilises a
combination of the variables may end in a much better or different
result while compromising the rest of the other steps. Another
serious disadvantage in the decision tree algorithms would be that
the continuous variables of the dataset could be discretised
implicitly in the splitting process, such as losing their importance
and some of the needed predictive information as the construction
of the leaves progresses along.

Some of the setbacks mentioned above, especially as it relates to
the decision tree ensembles, could be tremendously curtailed by
aggregating multiple learners (both the stand-alone and tree en-
sembles) into what is referred to herein as meta-ensembles in the
machine learning training. As could be observed in Fig. 8, the per-
formance metrics of the meta-ensembles, most especially the VE
model, are high (accuracy of 0.78, average precision of 0.78 and
average recall of 0.76). As stated previously, the VE and SE work by a
meta-heuristic combination of base algorithms’ hyperparameters
such that the outcomes of their prediction are even more accurate.
It is quite interesting to note how the stacking technique of the
model of algorithm performance (SE) is almost at par with that of
the tree-ensembles. Further investigation of this behaviour shall be
conducted subsequently through a sensitivity analysis.

4.2. Multiclass prediction uncertainties

Multiclass prediction probability distributions across each of the
classes for the machine learning models are plotted in Fig. 9.
Greater symmetry (or less skewness) in the distribution is exhibi-
ted by the ensemble models compared to the stand-alone ones. The
stand-alone machine learning models generally possess nonsyn-
chronous means and median scores across the class labels. More-
over, much greater biases in the prediction when using LR are
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Table 4

Data type of machine learning features.
Feature Data type
Carbonate content Integer
Specific surface area Integer
Cation exchange capacity Integer
Clay fraction Integer
Soil class String

towards CH and CL classes, whereas the probability of predicting
machine learning is higher compared to other classes as demon-
strated by ANN. Overall, the probability of correctly predicting the
classes is shown by the ensemble models given their relatively
higher and balanced averages.

4.3. Evaluation of machine learning feature importance

Indicators of the importance of machine learning independent
features can give insights into the dataset used while also
contributing to an improvement of the machine learning model
efficiency. Feature importance is a technique that enables an
assignment of scores to input variables of a dataset and indicates
the relative significance or usefulness of each variable to the goal of
machine learning model prediction. For the sake of brevity, the
influence of each input feature or variable across each of the classes
is assessed in this study and given in Fig. 10 for the best meta-
ensemble model. It is observed that the CF seems to have the
greatest overall significance on the multiclass prediction of the
natural soils’ plasticity classes in accordance with the USCS.

Data
Retrieval

Dataset

Feature Scaling,
Normalisation &
Optimisation

Feature Extraction

Data Preprocessing & Eneineeri
ngineering

Machine Learning
Model

Pipeline Development
& Implementation

Model
Evaluation &
Sensitivity
Analysis

Recommendation &
Deployment

Fig. 6. Machine learning workflow diagram.

L Iterate till satisfactory machine learning model performance

1

TPR

0 FRP 1

Fig. 7. A typical ROC curve.

Previous studies have established that CF, among other physico-
chemical soil properties, does bear a strong relationship with the
physical and mineral properties of soil, which in turn are known to
affect soil plasticity (Mitchell and Soga, 2005; Nelson et al., 2015).
The greatest influence of CEC on the MH soil class is also easily
noticeable, along with the importance of SSA (although slightly
lower than that of CF) in predicting CL soil classes. Moreover, it was
recently confirmed by some probabilistic analyses that a soil’s LL is
most likely to be directly proportional to SSA and CEC (Spagnoli and
Shimobe, 2019). The overall importance of SSA and CC in deciding
the soil classes are not easily distinguishable, even though the in-
fluence of the later appears to be the least when evaluated cumu-
latively compared to the other features.

Fig. 11 depicts the performance of the VE model by comparing
the predicted values of the classes to their true or actual values. As
could be observed, VE slightly over-predicted the CH (by approxi-
mately 10%) and CL (by approximately 17%) plasticity classes while
under-predicting the machine learning (by approximately 30%)
plasticity class. It is also clear from Fig. 11 that the MH class was
most accurately predicted by the VE model. Fig. 12 depicts the
density plot of feature importance in terms of the cumulative
average of absolute values. The means of the distribution are higher
for CF followed by CEC, CC and then SSA, hence, confirming the
level of importance of these features when considered in that order.
Also, a more symmetric distribution of the density plots about their
mean or average value of importance is observed for the features
with the highest level of influence in the multiclass prediction.

4.4. Sensitivity analysis of the best performing models

The meta-ensemble models used in the prediction did produce
the best predictions as observed from the foregoing. However,
given that a multiclass classification problem is being addressed in
this study, it is imperative that the classifier boundaries between

B Accuracy @ Ave. precision Ave. recall

08

Scores

LR ANN DF DI SE VE

Machine learning models

Fig. 8. Machine learning performance scores for all models.
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Fig. 10. Feature importance of multiclass prediction for VE model. 8 p

the plasticity categories of the natural soils are assessed with both VE and SE using the method of TVS is indicated in Fig. 13. An
respect to a threshold value using the ROC curve. examination of Fig. 13 indicates the ability of the meta-ensemble

An analysis of the sensitivity of the meta-ensemble models models to distinguish between the soils’ class labels. The ROC
considered with all four input variables (SSA, CF, CEC, and CC) for curve of VE model seems almost indistinguishable from that of SE
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model, especially when the multiclass AUC metric of both models is
considered. However, when considered in terms of the machine
learning score of accuracy, the VE model seemed to outperform SE
model by about 10%, as observed previously. However, it is quite
revealing through the ROC curve in Fig. 13 that reliance on a single
metric score alone to determine the performance of the ensembles
may be not entirely sufficient. Notwithstanding, further diagnostic
analyses of the performance of the meta-ensembles across
different CV methods used in the training and subsequent valida-
tion of the dataset are discussed below.

1

~ 08
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02 H

| AUC=10.83

Accuracy =0.78
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False positive rate (FPR)

Fig. 13. ROC for VE and SE models using TVS method.

4.5. Comparison between different CV techniques

As mentioned previously, both KFCV and MCCV methods
could be applied to improve the prediction of machine learning
analyses while also serving as fine-tuning mechanisms to the
more conventional TVS method. Although, when considered in
terms of their bias—variance trade-offs, the MCCV is mostly
deemed as having greater biases than the KFCV but with the
former seeming to provide slightly more confidence in machine
learning predictions given that it is more repeatable than the
later due to its capacity to provide results with lower degrees of
variance. As indicated in Fig. 14, the predictions offered using all
three methods of training, testing, and validation of the dataset
used in this study by adopting the meta-ensemble models do not
appear to show any difference in the resulting ROC curves of the
VE model. Hence, this does confirm that the multiclass machine
learning models used predominantly for training and testing
under TVS did not overfit the data, although the resulting metrics
for using this technique are slightly higher according to Table 5.
On the other hand, when using the SE model for the multiclass
machine learning prediction, Fig. 14 and Table 5 demonstrate that
the outcome is only slightly better when the dataset is trained,
tested, and validated using MCCV and KFCV methods, albeit with
the former showing a greater ability to distinguish between the
positive classes. Table 5 also shows that the assignment of
‘weights’ to cater for any class imbalance or under-represented
class instances does improve the multiclass accuracy metric
though only slightly.
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4.6. Lift curve

The lift curve (LC) could provide another means for checking the
sensitivity of the meta-ensemble models by lending more credence
to their effectiveness in the multiclass prediction of the soil’s
plasticity class. Again, this is because the prediction that could be
achieved from a somewhat ‘random’ model or through an act of
guessing may be incorrect compared to a very good model with a
greater percentage of datasets. LC is visually represented as a curve
of cumulative gain ratio for any random model. Fig. 15 indicates no
difference in the LC when applying the KFCV, MCCV, and TVS
techniques to predict the multiclass soil labels, confirming no form
of overfitting for dataset training carried out using the VE model.

Table 5
Machine learning metric scores for the meta-ensemble models.

Model Score CV technique

TVS MCCV KFCV
VE Accuracy Balanced 0.763 0.631 0.688

Weighted 0.789 0.612 0.65
AUC Weighted 0.84 0.832 0.848
SE Accuracy Balanced 0.685 0.651 0.644
Weighted 0.716 0.637 0.605
AUC Weighted 0.83 0.835 0.834

Overall, even though the highest lifting as noticed throughout the
entire percentile range occurred with training, testing, and vali-
dation carried out with the SE model using the MCCV method, the
same amount of lifting (at four) was observed for the three dataset
validation methods.

5. Research significance and recommendations for future
study

The need to appropriately classify soils, especially from the point
of view of geotechnics field practice, cannot be over-emphasised.
This is in most parts because an inaccurate classification of a silty
soil as a plastic clay soil could result to undesirable cost overruns
that are associated with a remedial measure such as stabilisation or
even utter disregard of soils by incorrectly assuming they do not
meet required specifications. Consequently, this study has utilised
an intensive data-driven decision-making approach through the
concept of machine learning to rigorously classify soils. It is
believed that the procedures adopted in this study have provided a
succinct basis for categorising soils because unlike previous tech-
niques, which relied mainly on the activities of first remoulding the
soil and then testing or laborious physical measurements to indi-
rectly infer soil classes, the method followed herein is based on
properties that intrinsically affect the natural soil behaviour under
in-situ conditions or without having to physically work the soil.
Granted, not every conceivable physico-chemical property of the
soils is considered in this study. Nevertheless, the fundamental
basis for future research has been provided. Accordingly, it is
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Fig. 15. Machine learning cumulative LCs for (a) VE and (b) SE models.
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recommended that soil’s inherent properties not covered in this
study should be used to further evaluate and forecast soil classes.
Besides, statistical comparisons are also suggested between class
predictions based entirely on physical, electrical, or mechanical
properties and those relying on soil’s chemical components.

Meanwhile, for practical deployment and application of the
concepts and ideas advanced in the present research, the resources,
models, and their predictions, including the developed machine
learning background codes utilised, can be carefully saved on an
organisation’s server, software and hardware assets and the best
models reloaded, and predictions made for new soil data for in the
classification problem. This procedure can be best implemented
during the preliminary phases of a geotechnical site investigation
and design.

6. Conclusions

In this study, a novel approach of soil classification based on
their physico-chemical characteristics was carried out using the
concept of machine learning. Multiclass elements of stand-alone
machine learning algorithms, decision tree ensembles and meta-
ensemble models were employed to classify soils according to
their plastic behaviours. Machine learning predictions were also
performed on the best models across multiple CV methods. The
following are the important highlights from this study:

(1) CF had the highest influence on the multiclass prediction of
the natural soils’ plasticity in accordance with the USCS,
while SSA and CC possessed the least significance within the
context of this study and the nature of the dataset used.

(2) Stand-alone machine learning models (LR and ANN) pro-
duced less accurate predictive performance compared to
tree-based and meta-ensemble models. Overall, the least
performing model is the LR (accuracy of approximately
0.436), with the ANN clearly having the highest accuracy of
the two stand-alone models (accuracy of approximately
0.462).

(3) Tree-based ensemble models (D] and DF) gave less accuracy
(accuracy of 0.68, average precision of 0.71, and recall rate of
0.68) when compared to the meta-ensemble models (SE and
VE). Overall, the meta-ensemble models, as could be
observed, outperformed the rest of the models (accuracy of
0.75, average precision of 0.74, and average recall rate of
0.72).

(4) Sensitivity analysis of the meta-ensemble models proved
their capacities to discriminate between soil classes across
different CV models considered. Machine learning training
and validation using MCCV and KFCV methods enabled
better prediction while also ensuring the dataset were not
overfitted by the machine learning models.

(5) Further confirmation of this phenomenon was depicted by
the continuous rise of the cumulative LC of the best per-
forming models when using the MCCV technique. Overall,
this study demonstrated that soil’s physico-chemical prop-
erties do have a direct influence on plastic behaviour and,
therefore, can be relied upon to classify soils.

Declaration of competing interest

The authors wish to confirm that there are no known conflicts of
interest associated with this publication, and there has been no
significant financial support for this work that could have influ-
enced its outcome.

Acknowledgments

The authors hereby wish to offer their thanks and deep appre-
ciation to the reviewers for their thoughtful comments, suggestions
and efforts towards improving our article.

References

Abbey, S.J., Olubanwo, A.O., Ngambi, S., Eyo, E.U., Adeleke, B., 2019. Effect of organic
matter on swell and undrained shear strength of treated soils. J. Civ. Constr.
Environ. Eng. 4, 48—58.

Abbey, S.J., Eyo, E.U,, Oti, ], Amakye, S.Y., Ngambi, S., 2020. Mechanical properties
and microstructure of fibre-reinforced clay blended with by-product cementi-
tious materials. Geoscience 2020 (10), 241.

Abbey, SJ., Eyo, E.U., Okeke, C.A.U., Ngambi, S., 2021. Experimental study on the use
of RoadCem blended with by-product cementitious materials for stabilisation of
clay soils. Construct. Build. Mater. 280, 122476.

Abduljauwad, S.N., 1994. Swelling behaviour of calcareous clays from the eastern
Province of Saudi Arabia. Q. J. Eng. Geol. Hydrogeol. 27, 333—351.

Akgiin, H., Giinal, A., Arslan, A., Youse, K., Oner, G., Kerem, M., 2018. Assessment of
the effect of mineralogy on the geotechnical parameters of clayey soils: a case
study for the Orta County, Cankirl, Turkey. Appl. Clay Sci. 164, 44—53.

Al-Rawas, A.A., 1999. The factors controlling the expansive nature of the soils and
rocks of Northern Oman. Eng. Geol. 53, 327—350.

Arnepalli, D.N., Shanthakumar, S., Rao, H.B., Singh, D.N., 2008. Comparison of
methods for determining specific-surface area of fine-grained soils. Geotech.
Geol. Eng. 26, 121-132.

Bayat, H., Ebrahimi, E., Ersahin, S., Hepper, E.N., Narain, D., Amer, A.M., Yukselen-
aksoy, Y., 2015. Analyzing the effect of various soil properties on the estimation
of soil specific surface area by different methods. Appl. Clay Sci. 116—117, 129—
140.

Bekhor, S., Livneh, M., 2014. Using the artificial neural networks methodology to
predict the vertical swelling percentage of expansive clays. J. Mater. Civ. Eng. 26,
06014007.

Bol, E., 2013. The influence of pore pressure gradients in soil classification during
piezocone penetration test. Eng. Geol. 157, 69—78.

Cai, G., Liu, S., Puppala, AJ., 2011. Comparison of CPT charts for soil classification
using PCPT data: Example from clay deposits in Jiangsu Province, China. Eng.
Geol. 121, 89—-96.

Casagrande, A., 1948. Classification and identification of soils. Trans. Am. Soc. Civ.
Eng. 113, 901-930.

Cerato, A.B., 2001. Influence of Specific Surface Area on Geotechnical Characteristics
of Fine-Grained Soils. MSc Thesis. University of Massachusetts, MA, USA.

Christidis, G.E., 1998. Physical and chemical properties of some bentonite deposits
of Kimolos Island, Greece. Appl. Clay Sci. 13, 79—98.

Das, S.K.,, 2013. Artificial neural networks in geotechnical engineering: modeling
and application issues. Metaheuristics in Water, Geotechnical and Transport
Engineering, first ed. Elsevier, Amsterdam, The Netherlands.

DeRousseau, M.A., Laftchiev, E., Kasprzyk, J.R., Rajagopalan, B., Srubar, W.V., 2019.
A comparison of machine learning methods for predicting the compressive
strength of field-placed concrete. Construct. Build. Mater. 228, 116661.

Dexter, A.R.,, 1990. Changes in the matric potential of soil water with time after
disturbance of soil by moulding. Soil Tillage Res. 16, 35—50.

Dreiseitl, S., Ohno-Machado, L., 2002. Logistic regression and artificial neural
network classification models: a methodology review. . Biomed. Inf. 35, 352—
359.

Ermias, B., Vishal, V., 2020. Application of artificial intelligence for prediction of
swelling potential of clay-rich soils. Geotech. Geol. Eng. 38, 6189—6205.

Erzin, Y., Gunes, N., 2013. The unique relationship between swell percent and swell
pressure of compacted clays. Bull. Eng. Geol. Environ. 72, 71—-80.

Eyo, E.U., Ng’ambi, S., Abbey, S.J., 2019. Effect of intrinsic microscopic properties and
suction on swell characteristics of compacted expansive clays. Transp. Geotech.
18, 124—-131.

Eyo, E.U., Ng’ambi, S., Abbey, S.J., 2020. Incorporation of a nanotechnology-based
additive in cementitious products for clay stabilisation. J. Rock Mech. Geo-
tech. Eng. 12 (5), 1056—1069.

Eyo, E., Abbey, S., Oti, J., Ng’ambi, S., Ganjian, E., Coakley, E., 2021. Microstructure
and physical-mechanical characteristics of treated kaolin-bentonite mixture for
application in compacted liner systems. Sustainability 13 (4), 1617.

Eyo, E.U., Abbey, SJ., 2021. Machine learning regression and classification algo-
rithms utilised for strength prediction of OPC/by-product materials improved
soils. Construct. Build. Mater. 284, 122817.

Gaidzinski, R., Duailibi Fh, J., Tavares, L.M., 2011. Influence of aging on the techno-
logical properties of clays in the ceramic industry. Appl. Clay Sci. 54, 47—52.

Gajurel, A., Mukherjee, P.S., Chittoori, B., 2019. Estimating optimal additive content
for soil stabilization using machine learning methods. In: Proceedings of the
Geo-Congress, pp. 662—672, 2019.

Goh, AT.C,, Zhang, Y., Zhang, R., Zhang, W., Xiao, Y., 2017. Evaluating stability of
underground entry-type excavations using multivariate adaptive regression
splines and logistic regression. Tunn. Undergr. Space Technol. 70, 148—154.


http://refhub.elsevier.com/S1674-7755(21)00146-3/sref1
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref1
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref1
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref1
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref2
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref2
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref2
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref3
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref3
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref3
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref4
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref4
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref4
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref5
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref5
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref5
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref5
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref5
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref5
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref6
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref6
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref6
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref7
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref7
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref7
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref7
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref8
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref8
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref8
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref8
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref8
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref9
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref9
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref9
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref10
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref10
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref10
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref11
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref11
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref11
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref11
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref12
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref12
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref12
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref13
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref13
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref14
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref14
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref14
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref15
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref15
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref15
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref16
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref16
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref16
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref17
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref17
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref17
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref18
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref18
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref18
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref19
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref19
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref19
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref20
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref20
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref20
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref21
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref21
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref21
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref21
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref22
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref22
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref22
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref22
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref23
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref23
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref23
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref24
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref24
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref24
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref25
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref25
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref25
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref26
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref26
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref26
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref26
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref27
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref27
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref27
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref27

E. Eyo, S. Abbey / Journal of Rock Mechanics and Geotechnical Engineering 14 (2022) 603—615 615

Han, T, Siddique, A., Khayat, K., Huang, J., Kumar, A., 2020. An ensemble machine
learning approach for prediction and optimization of modulus of elasticity of
recycled aggregate concrete. Construct. Build. Mater. 244, 118271.

Hanandeh, S., Ardah, A., Abu-Farsakh, M., 2020. Using artificial neural network and
genetics algorithm to estimate the resilient modulus for stabilized subgrade
and propose new empirical formula. Transp. Geotech. 24, 100358.

Ikizler, S.B., Aytekin, M., Vekli, M., Kocabas, F., 2010. Prediction of swelling pressures of
expansive soils using artificial neural networks. Adv. Eng. Software 41, 647—655.

Joshi, A., 2020. Machine Learning and Artificial Intelligence, first ed. Springer In-
ternational Publishing. https://doi.org/10.1007/978-3-030-26622-6.

Kaliakin, V.N., 2017. Example problems related to soil identification and classifica-
tion. In: Soil Mechanics: Calculations, Principles, and Methods. Elsevier,
Amsterdam, The Netherland. https://doi.org/10.1016/b978-0-12-804491-
9.00002-1.

Kalkan, E., Akbulut, S., 2004. The positive effects of silica fume on the permeability,
swelling pressure and compressive strength of natural clay liners. Eng. Geol. 73,
145—-156.

Kang, M.C,, Yoo, D.Y., Gupta, R, 2021. Machine learning-based prediction for
compressive and flexural strengths of steel fiber-reinforced concrete. Construct.
Build. Mater. 266, 121117.

Kayadelen, C., Taskiran, T., Giinaydin, O., Fener, M., 2009. Adaptive neuro-fuzzy
modeling for the swelling potential of compacted soils. Environ. Earth Sci. 59,
109—-115.

Kim, S.Y., Upneja, A., 2021. Majority voting ensemble with a decision tree for business
failure prediction during economic downturns. J. Innov. Knowl. 6, 112—123.
Liao, KW, Fan, ].C., Huang, C.L., 2011. An artificial neural network for groutability
prediction of permeation grouting with microfine cement grouts. Comput.

Geotech. 38, 978—986.

Mahmoudi, S., Bennour, A., Meguebli, A., Srasra, E., Zargouni, F., 2016. Character-
ization and traditional ceramic application of clays from the Douiret region in
South Tunisia. Appl. Clay Sci. 127—-128, 78—87.

Mehta, B., Sachan, A., 2017. Effect of mineralogical properties of expansive soil on its
mechanical behavior. Geotech. Geol. Eng. 35, 2923—-2934.

Mitchell, J.K., Soga, K., 2005. Fundamentals of Soil Behaviour. John Wiley & Sons,
Hoboken, NJ, USA.

Moreno-Maroto, J., Alonso-Azcarate, ]., Alonso-Azcarate, J., 2017. Plastic limit and
other consistency parameters by a bending method and interpretation of
plasticity classification in soils. Geotech. Test ]. 40, 467—482.

Moreno-Maroto, J.M., Alonso-Azcarate, ]., 2018. What is clay? A new definition of
“clay” based on plasticity and its impact on the most widespread soil classifi-
cation systems. Appl. Clay Sci. 161, 57—63.

Moreno-Maroto, J.M., Alonso-Azcarate, J., O’Kelly, B.C., 2021. Review and critical
examination of fine-grained soil classification systems based on plasticity. Appl.
Clay Sci. https://doi.org/10.1016/j.clay.2020.105955, 200.

Mozumder, R.A., Laskar, A.l., 2015. Prediction of unconfined compressive strength of
geopolymer stabilized clayey soil using Artificial Neural Network. Comput.
Geotech. 69, 291-300.

Mozumder, R.A., Laskar, A.l, Hussain, M., 2017. Empirical approach for strength
prediction of geopolymer stabilized clayey soil using support vector machines.
Construct. Build. Mater. 132, 412—424.

Nelson, ].D., Chao, K.C.G., Overton, D.D., Nelson, EJ., 2015. Foundation Engineering
for Expansive Soils. John Wiley & Sons, Hoboken, NJ, USA.

Ngun, B.K., Mohamad, H., Sulaiman, S.K., Okada, K., Ahmad, Z.A., 2011. Some ceramic
properties of clays from central Cambodia. Appl. Clay Sci. 53, 33—41.

Okeke, C., Abbey, S.J., Oti, J., Eyo, E.U., Johnson, A., Ngambi, S., 2021. Appropriate use
of lime in the study of the physicochemical behaviour of stabilised lateritic soil
under continuous water ingress. Sustainability 2021 (13), 257.

Pham, B.T., Nguyen, M.D., Nguyen-Thoi, T., Ho, L.S., Koopialipoor, M., Kim Quoc, N.,
Armaghani, D.J., Le, H. Van, 2021. A novel approach for classification of soils
based on laboratory tests using Adaboost, Tree and ANN modeling. Transp.
Geotech. 27, 100508.

Polidori, E., 2007. Relationship between the Atterberg limits and clay content. Soils
Found. 47, 887—896.

Polidori, E., 2009. Reappraisal of the activity of clays. Activ. Chart. Soils Found. 49,
431-441.

Polidori, E., 2015. Proposal for a new classification of common inorganic soils for
engineering purposes. Geotech. Geol. Eng. 33, 1569—1579.

Saito, T., Miki, G., 1975. Swelling and residual strength characteristics of soils based
on a newly proposed “plastic ratio chart”. Soils Found. 15, 61—-68.

Senol, A., Edil, T.B., Bin-Shafique, M.S., Acosta, H.A., Benson, C.H., 2006. Soft sub-
grades’ stabilization by using various fly ashes. Resour. Conserv. Recycl. 46,
365—376.

Shahri, A.A., Malehmir, A., Juhlin, C,, 2015. Soil classification analysis based on
piezocone penetration test data - a case study from a quick-clay landslide site in
southwestern Sweden. Eng. Geol. 189, 32—47.

Shotton, J., Nowozin, S., Sharp, T., Winn, J., Kohli, P., Criminisi, A., 2013. Decision
jungles: compact and rich models for classification. In: Proceedings of the 26th
International Conference on Neural Information Processing Systems, pp. 234—
242,

Smith, C.W., Hadas, A., Dan, ]., Koyumdjisky, H., 1985. Shrinkage and Atterberg limits
in relation to other properties of principal soil types in Israel. Geoderma 35, 47—
65.

Soleimani, S., Rajaei, S., Jiao, P, Sabz, A., Soheilinia, S., 2018. New prediction models
for unconfined compressive strength of geopolymer stabilized soil using multi-
gen genetic programming. Meas. 113, 99—-107.

Spagnoli, G., Sridharan, A., Oreste, P., Di Matteo, L., 2017. A probabilistic approach for
the assessment of the influence of the dielectric constant of pore fluids on the
liquid limit of smectite and kaolinite. Appl. Clay Sci. 145, 37—43.

Spagnoli, G., Shimobe, S., 2019. A statistical reappraisal of the relationship between
liquid limit and specific surface area, cation exchange capacity and activity of
clays. J. Rock Mech. Geotech. Eng. 11, 874—881.

Sridharan, A., Gurtug, Y., 2004. Swelling behaviour of compacted fine-grained soils.
Eng. Geol. 72, 9—18.

Tekin, E., Akbas, S.0., 2011. Artificial neural networks approach for estimating the
groutability of granular soils with cement-based grouts. Bull. Eng. Geol. Envi-
ron. 70, 153—161.

Tinoco, ].,, Gomes Correia, A., Cortez, P.,, 2014. Support vector machines applied to
uniaxial compressive strength prediction of jet grouting columns. Comput.
Geotech. 55, 132—140.

Venkat, B., ], PA., Sekhar, M.R,, Richard, W., 2008. Laboratory procedure to obtain
well-mixed soil binder samples of medium stiff to stiff expansive clayey soil for
deep soil mixing simulation. Geotech. Test J. 31 (3), 225—238.

Yazdandoust, F., Yasrobi, S.S., 2010. Effect of cyclic wetting and drying on
swelling behavior of polymer-stabilized expansive clays. Appl. Clay Sci. 50,
461—468.

Yilmaz, 1., 2004. Relationships between liquid limit, cation exchange capacity, and
swelling potentials of clayey soils. Eurasian Soil Sci. 37, 506—512.

Yilmaz, 1., Kaynar, O., 2011. Multiple regression, ANN (RBF, MLP) and ANFIS models
for prediction of swell potential of clayey soils. Expert Syst. Appl. 38, 5958—
5966.

Zhang, W., Goh, A.T.C., 2016. Evaluating seismic liquefaction potential using
multivariate adaptive regression splines and logistic regression. Geomech. Eng.
10, 269—-284.

Zhang, W., Zhang, R., Wu, C,, Goh, A.T.C,, Lacasse, S., Liu, Z., Liu, H., 2020. State-of-
the-art review of soft computing applications in underground excavations.
Geosci. Front. 11, 1095—1106.

Zhang, W,, Li, H,, Li, Y., Liu, H., Chen, Y., Ding, X., 2021. Application of deep learning
algorithms in geotechnical engineering: a short critical review. Artif. Intell. Rev.
https://doi.org/10.1007/s10462-021-09967-1.

Dr. Eyo Eyo is a geotechnical and civil engineer. He is
currently a lecturer in geotechnical engineering at the
University of the West of England, UK. He has also pre-
viously worked as a supervising quality control and
quality assurance engineer at Fugro GB Marine Ltd.,
Wallingford, UK. He obtained his MSc degree (with
distinction) in Civil and Structural Engineering from
Coventry University, UK. Following his MSc degree, Eyo
subsequently obtained a scholarship through the Euro-
pean Union/United Kingdom partnership SME KEEN
project in 2016 to enable him to conduct PhD research in
Geotechnical Engineering at Coventry University. His
research interest lies in ground improvement and, more
specifically, soil mixing technology (SMT). Eyo has
applied artificial intelligence (AlI) through machine learning (machine learning)
paradigms to ground improvement that has enabled precise and accurate design/
data-driven decisions and predictions of the mechanical properties of stabilised soils.
He has had about two years of prior experience working as a graduate civil engineer/
PA to the project manager at D & S Construction Company Ltd. during the construc-
tion of a 66 km road and bridge project at Auchi, Nigeria. Before joining Fugro, Eyo
worked as an Assistant Lecturer at Coventry University and Associate Lecturer at the
University of the West of England, UK. He is currently a registered member (GMICE)
of the Institute of Civil Engineers (ICE), UK.


http://refhub.elsevier.com/S1674-7755(21)00146-3/sref28
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref28
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref28
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref29
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref29
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref29
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref30
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref30
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref30
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref30
https://doi.org/10.1007/978-3-030-26622-6
https://doi.org/10.1016/b978-0-12-804491-9.00002-1
https://doi.org/10.1016/b978-0-12-804491-9.00002-1
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref33
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref33
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref33
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref33
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref34
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref34
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref34
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref35
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref35
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref35
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref35
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref35
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref35
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref36
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref36
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref36
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref37
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref37
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref37
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref37
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref38
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref38
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref38
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref38
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref38
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref39
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref39
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref39
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref40
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref40
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref41
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref41
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref41
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref41
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref42
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref42
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref42
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref42
https://doi.org/10.1016/j.clay.2020.105955
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref44
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref44
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref44
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref44
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref45
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref45
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref45
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref45
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref46
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref46
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref47
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref47
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref47
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref48
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref48
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref48
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref49
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref49
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref49
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref49
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref50
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref50
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref50
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref51
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref51
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref51
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref52
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref52
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref52
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref53
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref53
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref53
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref54
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref54
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref54
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref54
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref55
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref55
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref55
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref55
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref56
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref56
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref56
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref56
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref57
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref57
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref57
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref58
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref58
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref58
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref58
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref59
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref59
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref59
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref59
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref60
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref60
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref60
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref60
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref61
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref61
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref61
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref62
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref62
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref62
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref62
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref63
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref63
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref63
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref63
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref64
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref64
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref64
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref64
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref65
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref65
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref65
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref65
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref66
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref66
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref66
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref67
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref67
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref67
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref68
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref68
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref68
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref68
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref69
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref69
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref69
http://refhub.elsevier.com/S1674-7755(21)00146-3/sref69
https://doi.org/10.1007/s10462-021-09967-1

	Multiclass stand-alone and ensemble machine learning algorithms utilised to classify soils based on their physico-chemical  ...
	1. Introduction
	2. Methodology
	2.1. Database generation and integration
	2.2. Data wrangling and CV

	3. Machine learning algorithms
	3.1. LR
	3.2. ANN
	3.3. Tree-ensemble models
	3.3.1. DF
	3.3.2. DJ

	3.4. Meta-ensembles
	3.4.1. VE
	3.4.2. SE

	3.5. Machine learning model development and implementation
	3.6. Performance evaluation criteria
	3.7. Receiver operating characteristic (ROC) curve

	4. Results and discussions
	4.1. Assessment of machine learning models’ performance
	4.2. Multiclass prediction uncertainties
	4.3. Evaluation of machine learning feature importance
	4.4. Sensitivity analysis of the best performing models
	4.5. Comparison between different CV techniques
	4.6. Lift curve

	5. Research significance and recommendations for future study
	6. Conclusions
	Declaration of competing interest
	Acknowledgments
	References


