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Chapter Twelve

Collective Foraging: Cleaning, Energy
Harvesting and Trophallaxis

Alan F. T. Winfield, Serge Kernbach, Thomas Schmickl

12.1 Introduction

Foraging is a powerful benchmark problem in collective robotics for several rea-
sons. Firstly, sophisticated foraging observed in social insects, recently becoming
well understood, provides both inspiration and system level models for artificial
systems. Secondly, collective foraging is a complex task involving the coordination
of several - each also difficult - tasks including efficient exploration (searching) for
objects, food or prey; physical collection (harvesting) of objects almost certainly
requiring physical manipulation; homing or navigation whilst transporting those
objects to collection point(s), and deposition of the objects before returning to for-
aging. And thirdly, effective multi-robot foraging requires cooperation between
individuals involving either communication to signal to others where objects may
be found (e.g. pheromone trails, or direction giving) and/or cooperative transport
of objects too large for a single individual to transport.

There are, at the time of writing, no known examples of collective foraging
robots successfully employed in real-world applications. Most foraging robots are
to be found in research laboratories or, if they are aimed at real-world applica-
tions, are at the stage of prototype or proof-of-concept. The reason for this is that
foraging is a complex task which requires a range of competencies to be tightly
integrated within the physical robots and, although the principles of robot forag-
ing are now becoming established, many of the sub-system technologies required
for foraging robots remain very challenging. In particular, sensing and situational
awareness; power and energy autonomy; actuation, locomotion and safe naviga-
tion in unknown physical environments and proof of safety and dependability all
remain difficult problems in collective robotics.

This chapter first defines collective foraging with reference to an abstract
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model, presented in Sect. 12.2, then uses the terminology of the abstract model to
review and introduce strategies for cooperation in collective foraging (Sect. 12.3),
including information sharing, physical cooperation and division of labour. The
rest of the chapter then describes a series of three case studies in collective forag-
ing, and Fig. 12.1. shows how these case studies and their contributions are linked.
Energy foraging is the special case of collective foraging in which robots are for-
aging for their own energy, and our first case study in Sect. 12.4 describes exam-
ples in which robots are required to find and harvest their own energy from the
environment, with division of labour. Trophallaxis refers to an energy (food) ex-
change between adult social insects, or adults and their larvae, and case study
two in Sect. 12.5 introduces an information-sharing trophallaxis approach to col-
lective cleaning (i.e. foraging for dirt). The same trophallaxis-inspired approach
is enhanced with individual adaptation in Sect. 12.5.6 and the case study con-
cludes with a thought experiment which would extend the approach to true energy
trophallaxis. Sect. 12.6 then describes our third case study – a kinetic model of for-
aging – in which a robot collective must maintain energy homeostasis by foraging
for energy from fixed charging stations.

Figure 12.1. The relationship and thematic links between the three case studies in collective foraging
of this chapter
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12.2 An Abstract model of Collective Foraging

Foraging robots are mobile robots capable of searching for and, when found, trans-
porting objects to one or more collection points.

Figure 12.2. Finite State Machine for Basic Collective Foraging

Fig. 12.2. shows a Finite State Machine (FSM) representation of each robot in a
foraging collective. In the model each robot is in always in one of five states: search-
ing, grabbing, homing, depositing or avoiding. Implied in this model is, firstly, that the
environment or search space contains more than one of the target objects; secondly,
that there is a single collection point (hence this model is sometimes referred to as
central-place foraging), and thirdly, that the process continues indefinitely. Clearly
not all robots will be in the same state at the same time and the FSM of Fig. 12.2.
can be viewed as a representation of the average number of robots in each state, in
the collective. The five states are defined as follows.

(1) Searching. In this state a robot is physically moving through the search space
using its sensors to locate and recognise the target items. At this level of ab-
straction we do not need to state how the robot searches: it could, for instance,
wander at random, or it could employ a systematic strategy such as moving
alternately left and right in a search pattern. The fact that the robot has to
search at all follows from the pragmatic real-world assumptions that either
the robot’s sensors are of short range and/or the items are hidden (behind oc-
cluding obstacles for instance); in either event we must assume that the robot
cannot find items simply by staying in one place and scanning the whole en-
vironment with its sensors. Object identification or recognition could require
one of a wide range of sensors and techniques. When the robot finds an item
it changes state from searching to grabbing. If the robot fails to find the target
item then it remains in the searching state forever; searching is therefore the
‘default’ state.

(2) Grabbing. In this state a robot physically captures and grabs the item ready to
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transport it back to the home region. Here we assume that the item is capable
of being grabbed and conveyed by a single robot. As soon as the item has been
grabbed the robot will change state to homing. Clearly grabbing may fail if
there is competition between robots to grab the same object, in which case a
robot will resume searching.

(3) Homing. In this state a robot must move, with its collected object, to a home or
nest region. Homing clearly requires a number of stages, firstly, determination
of the position of the home region relative to where the robot is now, secondly,
orientation toward that position and, thirdly, navigation to the home region.
Again there are a number of strategies for homing: one would be to re-trace
the robot’s path back to the home region using, for instance, odometry or by
following a marker trail; another would be to home in on a beacon with a long
range beacon sensor. When the robot has successfully reached the home region
it will change state to depositing.

(4) Depositing. In this state the robot deposits or delivers the item in the home
region, and then immediately changes state to searching and hence resumes its
search.

(5) Avoiding. Clearly in a collective robot system robots are likely to collide with
each other, especially if two or more robots converge on the same object. Thus,
if a robot’s collision avoidance sensors are triggered when the robot is in any
of the four states above, then it must take avoiding action before returning to
that state.

There are clearly numerous variations on this basic foraging model. Some are
simplifications: for instance if a robot is searching for one or a known fixed num-
ber of objects then the process will not loop indefinitely. Real robots do not have
infinite energy and so a model of practical foraging would need to take account
of energy management. However, many variations entail either complexity within
one or more of the four basic states (consider, for instance, objects that actively
evade capture - a predator-prey model of foraging), or complexity in the interac-
tion or cooperation between robots. Thus the basic model stands as a powerful
top-level abstraction and a useful basis for extension to more complex foraging
systems. For a full description of single and multi-robot foraging, including a tax-
onomy of robot foraging, refer to [Winfield (2009)].

12.3 Strategies for Cooperation in Collective Foraging

Foraging is clearly a task that lends itself to multi-robot systems and, even if the
task can be accomplished by a single robot, foraging should — with careful design
of strategies for cooperation — benefit from multiple robots. Swarm intelligence is
the study of natural and artificial systems of multiple agents in which there is no
centralised or hierarchical command or control. Instead, global swarm behaviours
emerge as a result of local interactions between the agents and each other, and
between agents and the environment, [Bonabeau et al. (1999a)]. Swarm robotics
is concerned with the design of artificial robot swarms based upon the principles
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of swarm intelligence, thus control is completely distributed and robots, typically,
must choose actions on the basis only of local sensing and communications, [Beni
(2005); Sahin (2005)].

Foraging is therefore a benchmark problem within swarm robotics, not least
because of the strong cross-over between the study of self-organisation in social
insects and their artificial counterparts within swarm intelligence [Dorigo and Bi-
rattari (2007)]. This section will therefore focus on examples of collective foraging
from within the field of swarm robotics. Three strategies for cooperation will be
outlined: information sharing, physical cooperation and division of labour.

12.3.1 Information sharing

Figure 12.3. Finite State Machine for multi-robot foraging with recruitment - adapted from [Matarić
and Marjanovic (1993)]

Matarić and Marjanovic provide what is believed to be the first description of
a multi-robot foraging experiment using real (laboratory) robots in which there is
no centralised control [Matarić and Marjanovic (1993)]. They describe a system
of 20 identical 12” 4-wheeled robots, equipped with: a two-pronged forklift for
picking up, carrying and stacking metal pucks; proximity and bump sensors; radio
transceivers for data communication and a sonar-based global positioning system.
Matarić and Marjanovic extend the basic five state foraging model (wandering,
grabbing, homing, dropping and avoiding), to introduce information sharing as
follows. If a robot finds a puck it will grab it but also broadcast a radio message
to tell other robots it has found a puck. Meanwhile, if another robot in the locale
hears this message it will first enter state tracking to home in on the source of the
message, then state searching - a more localised form of wandering. The robot will
return to wandering if it finds no puck within some time out period. Furthermore,
while in state tracking a robot will also transmit a radio signal. If nearby robots hear
this signal they will switch from wandering into following to pursue the tracking
robot. Thus the tracking robot actively recruits additional robots as it seeks the
original successful robot (a form of secondary swarming, [Melhuish (1999)]); when
the tracking robot switches to searching its recruits will do the same. Figure 12.3.
shows a simplified FSM.
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12.3.2 Physical cooperation

Figure 12.4. Cooperative grabbing: Khephera robots engaged in collective stick-pulling. Would need
to get permission of A. Martinoli.

cooperative grabbing Consider the case of multi-robot foraging in which the
object to be collected cannot be grabbed by a single robot working alone. Ijspeert et
al describe an experiment in collaborative stick-pulling in which two robots must
work together to pull a stick out of a hole [Ijspeert et al. (2001); Martinoli et al.
(2004)]. Each Khephera robot is equipped with a gripper capable of grabbing and
lifting the stick, but the hole containing the stick is too deep for one robot to be
able to pull the stick out alone; one robot must pull the stick half-way then wait for
another robot to grab the stick and lift it clear of the hole, see figure 12.4.. Ijspeert
and co-workers describe an elegant minimalist strategy which requires no direct
communication between robots. If one robot finds a stick it will lift it and wait. If
another finds the same stick it will also lift it, on sensing the force on the stick from
the second robot the first robot will let go, hence allowing the second to complete
the operation.

cooperative transport Now consider the the situation in which the object to
be collected is too large to be transported by a single robot. Parker describes the
ALLIANCE group control architecture applied to an example of cooperative box-
pushing by two robots [Parker (1994)].

Arguably the most accomplished demonstration of cooperative multi-robot for-
aging to date is within the swarm-bot project of Dorigo and co-workers [Dorigo et al.
(2005)] (also described in Chapter X of this handbook). The s-bot is a modular robot
equipped with both a gripper and a gripping ring, which allows one robot to grip
another [Mondada et al. (2005)]. Importantly, the robot is able to rotate its wheel-
base independently of the gripping ring so that robots can grip each other at any
arbitrary point on the circumference of the grip ring but then rotate and align their
wheels in order to be able to move as a single unit (a swarm-bot). Groß et al de-
scribe cooperative transport which uses visual signalling [Großet al. (2006)]. s-bots
are attracted to the (large) object to be collected by its ring of red LEDs. The s-bot’s
LEDs are blue, but when an s-bot finds and grabs the attractor object it switches
its LEDs to red. This increases the red light intensity to attract further s-bots which
may grab either the object, or arbitrarily a robot already holding the object. The
s-bots are then able to align and collectively move the object.
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Figure 12.5. Cooperative transport by s-bots. Here s-bots are attempting to transport two objects, each
too large to be moved by a single s-bot. Image included with kind permission of M. Dorigo.

12.3.3 Division of labour

In multi-robot foraging it is well know that overall performance (measured, for
instance, as the number of objects foraged per robot in a given time interval),
does not increase monotonically with increasing team size because of interference
between robots (overcrowding), [Balch and Arkin (1994); Goldberg and Matarić
(1997); Lerman and Galstyan (2002)]. Division of labour in ant colonies has
been well studied and in particular a response threshold model is described in
[Bonabeau et al. (1996)] and [Bonabeau et al. (1998)]; in essence a threshold model
means that an individual will engage in a task when the level of some task-
associated stimulus exceeds its threshold.

For threshold-based multi-robot foraging with division of labour figure 12.6.
shows a generalised finite state machine for each robot. In this foraging model
the robot will not search endlessly. If the robot fails to find a food-item because,
for instance, its searching time exceeds a maximum search time threshold Ts, or
its energy level falls below a minimum energy threshold, then it will abandon its
search and return home without food, shown as failure. Conversely success means
food was found, grabbed and deposited. Note, however, that a robot might see
a food-item but fail to grab it because, for instance, of competition with another
robot for the same food-item. The robot now also has a resting state during which
time it remains in the nest conserving energy. The robot will stop resting and leave
home which might be according to some threshold criterion, such as its resting
time exceeding the maximum rest time threshold Tr, or the overall nest energy
falling below a given threshold.

12.3.4 Mathematical modelling of collective foraging

A multi-robot system of foraging robots is typically a stochastic non-linear dynam-
ical system and therefore challenging to mathematically model, but without such
models any claims about the correctness of foraging algorithms are weak. Ex-
periments in computer simulation or with real-robots (which provide in effect an
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Figure 12.6. Finite State Machine for Foraging with Division of Labour, adapted from [Liu et al. (2007)]

‘embodied’ simulation) allow limited exploration of the parameter space and can
at best only provide weak inductive proof of correctness. Mathematical models, on
the other hand, allow analysis of the whole parameter space and discovery of op-
timal parameters. In real-world applications, validation of a foraging robot system
for safety and dependability will require a range of formal approaches including
mathematical modelling.

Lerman, Martinoli and co-workers have developed the macroscopic approach
to directly describe the collective behaviour of the robotic swarm. A class of
macroscopic models have been used to study the effect of interference in a swarm
of foraging robots [Lerman and Galstyan (2002)] and collaborative stick-pulling
[Martinoli et al. (2004)]. Lerman et al [Lerman et al. (2006)] successfully expanded
the macroscopic probabilistic model to study dynamic task allocation in a group
of robots engaged in a puck collecting task. More recently Liu et al [Liu et al.
(2009)] have applied the macroscopic approach to develop a mathematical model
for adaptive foraging with division of labour (the algorithm described below in
Sect. 12.4); [Liu and Winfield (2010)] shows how the mathematical model of adap-
tive foraging can be used in combination with a real-coded genetic algorithm to
optimise parameters within the foraging algorithm.

12.4 Case study 1: Collective foraging for Energy

Let us consider the special case of multi-robot foraging in which robots are forag-
ing for their own energy. For an individual robot foraging costs energy, whereas
resting conserves energy. We can formally express this as follows. Each robot con-
sumes energy at A units per second while searching or retrieving and B units per
second while resting, where A > B. Each discrete food item collected by a robot
provides C units of energy to the swarm. The average food item retrieval time, is
a function of the number of foraging robots x, and the density of food items in the
environment, ρ, thus t = f (x, ρ).

If there are N robots in the swarm, Ec is the energy consumed and Er the energy
retrieved, per second, by the swarm then

Ec = Ax + B(N − x) (12.1)
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Er = Cx/t =
Cx

f (x, ρ)
(12.2)

The average energy income to the swarm, per second, is clearly the difference be-
tween the energy retrieved and the energy consumed,

E = Er − Ec = (
C

f (x, ρ)
− (A − B))x − BN (12.3)

Equation 12.3 shows that maximising the energy income to the swarm requires
either increasing the number of foragers x or decreasing the average retrieval time
f (x, ρ). However, if we assume that the density of robots in the foraging area
is high enough that interference between robots will occur then, for constant ρ,
increasing x will increase f (x, ρ). Therefore, for a given food density ρ there must
be an optimal number of foragers x∗.

Krieger and Billeter adopt a threshold-based approach to the allocation of
robots to either foraging or resting; in their scheme each robot is allocated a fixed
but randomly chosen activation threshold [Krieger and Billeter (2000)]. While
waiting in the nest each robot listens to a periodic radio broadcast indicating the
nest-energy level E; when the nest-energy level falls below the robot’s personal
activation threshold then it leaves the nest and searches for food. It will continue
to search until either its search is successful, or it runs out of energy and returns
home; if its search is successful and it finds another food-item the robot will record
its position (using odometry). On returning home the robot will radio its energy
consumption thus allowing the nest to update its overall net energy. Krieger and
Billeter show that team sizes of 3 or 6 robots perform better than 1 robot forag-
ing alone, but larger teams of 9 or 12 robots perform less well. Additionally, they
test a recruitment mechanism in which a robot signals to another robot waiting in
the nest to follow it to the food source, in tandem. Krieger’s approach is, strictly
speaking, not fully distributed in that the nest is continuously tracking the average
energy income E; the nest is — in effect — acting as a central coordinator.

Based upon the work of [Deneubourg et al. (1987)] on individual adaptation
and division of labour in ants, Labella et al describe a fully distributed approach
that allows the swarm to self-organise to automatically find the optimal value x∗

[Labella et al. (2006)]. They propose a simple adaptive mechanism to change the
ratio of foragers to resters by adjusting the probability of leaving home based upon
successful retrieval of food. With reference to figure 12.6. the mechanism works as
follows. Each robot will leave home, i.e. change state from resting to searching,
with probability Pl. Each time the robot makes the success transition from deposit
to resting, it increments its Pl value by a constant ∆ multiplied by the number of
consecutive successes, up to a maximum value Pmax. Conversely, if the robot’s
searching time is up, the transition failure in figure 12.6., it will decrement its Pl by
∆ times the number of consecutive failures, down to minimum Pmin. Interestingly,
trials with laboratory robots show that the same robots self-select as foragers or
resters — the algorithm exploits minor mechanical differences that mean that some
robots are better suited as foragers.

Recently Liu et al have extended this fully distributed approach by introduc-
ing two additional adaptation rules [Liu et al. (2007)]. As in the case of Labella
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Figure 12.7. Foraging environment showing 8 robots labelled A − H. The nest region is the grey circle
with radius Rh at the centre. Robot A is shown with its arc of vision in which it can sense food items;
robots C, E and F have grabbed food items and are in the process of returning to the nest to deposit
these. Food items, shown as small squares, ‘grow’ in order to maintain uniform density within the
annular region between circles with radius Rinner and Router.

et al individual robots use internal cues (successful object retrieval), but Liu adds
environmental cues (collisions with team mates while searching), and social cues
(team mate success in object retrieval), to dynamically vary the time spent foraging
or resting. Furthermore, Liu investigates the performance of a number of different
adaptation strategies based on combinations of these three cues. The three cues in-
crement or decrement the searching time and resting time thresholds Ts and Tr as
follows (note that adjusting Tr is equivalent to changing the probability of leaving
the nest Pl):

(1) Internal cues. If a robot successfully finds food it will reduce its own rest time
Tr; conversely if the robot fails to find food it will increase its own rest time Tr.

(2) Environment cues. If a robot collides with another robot while searching, it
will reduce its Ts and increase its Tr times.

(3) Social cues. When a robot returns to the nest it will communicate its food
retrieval success or failure to the other robots in the nest. A successful retrieval
will cause the other robots in the nest to increase their Ts and reduce their Tr

times. Conversely failure will cause the other robots in the nest to reduce their
Ts and increase their Tr times.

In order to evaluate the relative effect of these cues three different strategies are
tested, against a baseline strategy of no cooperation. The strategy/cue combina-
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tions are detailed in table 12.1.

internal cues social cues environment cues
S1 (baseline) × × ×

S2 ! × ×
S3 ! ! ×
S4 ! ! !
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Figure 12.8. Number of foraging robots x in a foraging swarm of N = 8 robots with self-organised
division of labour. S1 is the baseline (no cooperation strategy); S2, S3 and S4 are three different cooper-
ation strategies (see table 12.1). Food density changes from 0.03 (medium) to 0.015 (poor) at t = 5000,
then from 0.015 (poor) to 0.045 (rich) at t = 10000. Each plot is the average of 10 runs. Reprinted from
[Liu et al. (2007)].

Fig. 12.7. shows the simulated foraging environment used to evaluate the col-
lective foraging algorithm. Figures 12.8. and 12.9., from [Liu et al. (2007)], show the
number of active foragers and the instantaneous net swarm energy, respectively,
for a swarm of eight robots. In both plots the food density in the environment is
changed at time t = 5000 and again at time t = 10000 seconds. Figure 12.8. shows
the swarm’s ability to automatically adapt the number of active foragers in re-
sponse to each of the step changes in food density. The baseline strategy S1 shows
of course that all eight robots are actively foraging continuously; S2 − S4 however
require fewer active foragers and strategies with social and environmental cues,
S3 and S4, clearly show the best performance. Notice, firstly that the additional
of social cues — communication between robots — significantly improves the rate
at which the system can adapt the ratio of foragers to resters and, secondly, that
the addition of environmental cues — collisions with other robots — brings only
a marginal improvement. The rates of change of net swarm energy in figure 12.9.
tell a similar story. Interestingly, however, we see very similar gradients for S2 − S4

when the food density is high (on the RHS of the plot), but when the food density
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Figure 12.9. Instantaneous net energy E of a foraging swarm with self-organised division of labour.
S1 is the baseline (no cooperation strategy); S2, S3 and S4 are three different cooperation strategies (see
table 12.1). Food density changes from 0.03 (medium) to 0.015 (poor) at t = 5000, then from 0.015 (poor)
to 0.045 (rich) at t = 10000. Each plot is the average of 10 runs. Reprinted from [Liu et al. (2007)].

is medium or poor the rate of increase in net energy of strategies S3 and S4 is signif-
icantly better than S2. This result suggests that foraging robots benefit more from
cooperation when food is scarce, than when food is plentiful.

12.5 Case study 2: From Information-sharing Trophallaxis to Energy-
sharing Trophallaxis

In swarm robotics [Beni and Wang (2005); Beni (2005); Sahin (2005); Şahin and
Winfield (2008); Dorigo and Şahin (2004)], which is the physical manifestation
of swarm intelligent algorithms [Bonabeau et al. (1999b); Kennedy and Eberhart
(2001); Millonas (1994)], finding a near-optimal balance between exploration and
exploitation is a very important issue. In some sense, all swarm systems – regard-
less whether they are natural or engineered systems – have to find near-optimal
solutions to problems posed by specific internal and environmental conditions.
One typical benchmark for the ability of a swarm system to make such deci-
sions dynamically and intelligently is foraging, which means that the swarm has
to explore the environment and settle to a collective decision, that is to choose
one or more foraging targets from a set of potential targets. After this decision
is made, the swarm system has to exploit the chosen foraging targets efficiently
and, after these targets are depleted, has to quickly choose new targets which
were previously neglected. In addition to this iterative collective decision mak-
ing, which is usually based on inter-agent communication, navigation is a critical
task that has to be solved in such a foraging scenario that can be solved in sev-
eral ways, leading to different mechanisms of collective foraging: Are the swarm
members navigating individually, in groups, as (aligned) swarm/flock or is there
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even mass-exploitation by trail formation to foraging sites? All these navigation
patterns demand specific solutions concerning individual orientation and commu-
nication. Regardless of the chosen foraging pattern, some requirements are ubiq-
uitous: Both, exploration and exploitation, demand for coordination of all swarm
members, is easy to achieve in a bodiless abstract computer algorithm, for example
in ACO [Dorigo and St/”utzle (2003); Blum (2005)] or PSO [Kennedy and Eberhart
(2001)] algorithms. Coordination of agents gets tricky as soon as swarm mem-
bers are physically embodied agents which are operating in a noisy world with
imperfect actuators, sensors and communication devices. Thus robust coordina-
tion of swarm members is a crucial issue for robotic swarm performance: Biased
sensor noise often affects exploration results. Noise on communication channels
limits coordination success. Imperfect actuators negatively affect the correct execu-
tion of coordination commands. Centralized and supervised coordination quickly
reaches its limits because of scaling issues in swarms of real-world situated em-
bodied agents.

These problem sets pose characteristic challenges for swarm robotics, which
can be tackled from several sides: decentralized communication principles, for ex-
ample near-neighbour communication, can enhance the scalability of the swarm
system significantly. Redundancy, of course, might compensate for errors in this
nearest neighbour communication. However, a problem of redundant information
is the ‘validity problem’ which plays an important role in such systems: If a single
swarm member, who might be misinformed about something, is repeatedly com-
municating faulty information to other swarm members, this will significantly de-
crease the swarm’s efficiency. Even if communicated information was true at some
point in time, changes in the swarm structure or in the environment might have
caused this information to be invalid in the meantime. Thus, if redundant and
frequent repetition of communication – e.g., information spreading in a wave-like
manner throughout the swarm – is used to organize a swarm, it is important that
the communicated information has to be checked again (re-evaluated) by several
swarm members. This way, wrong or outdated information has to be rejected by
the swarm system as soon as possible, otherwise the swarm’s performance will be
harmed.

In this section, we will describe – as a case study – how a swarm robotic sys-
tem can be engineered in a bio-inspired way that is able to solve a majority of
the above-mentioned problem sets in a bio-inspired way. We will show that such
a swarm system can balance exploitation and exploration, is scalable within spe-
cific bounds and is able to perform swarm-level cognition tasks like collective per-
ception. At first we describe how a task that is collective foraging for materials
is self-organized by a mechanism based on information exchange among nearest
neighbour swarm members. Then we show how such a swarm strategy can be
enhanced by allowing the members not only to exchange information but also en-
ergy, this way opening the door to novel methods of collective energy foraging and
swarm-level energy homeostasis.

In natural systems, biological evolution through natural selection has created
many swarm systems that are able to achieve the goal of swarm wide communi-
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Figure 12.10. Trophallaxis in honeybees: Fluid food is exchanged from one adult bee to another adult
bee. In this picture, the receiver bee is a male bee (drone). In the honeybee society, fluid food is
frequently fed by worker bees to other workers, to drones and to the queen.

cation and regulation. Most prominently, eusocial insects (ants, bees, wasps and
termites) have solved the problems imposed by mass-communication and mass-
regulation in various ways [Wilson (1974); Hölldobler and Wilson (2008); Seeley
(1995); Camazine et al. (2003a); Bonabeau et al. (1999b)]. On the one hand, these
insects use direct communication, e.g., bee dances [von Frisch (1965)] and mouth-
to-mouth transfer of food (‘trophallaxis’, see [Camazine et al. (1998); Crailsheim
(1998)]) to establish a robust and scalable regime of communication. In addition,
these insect societies frequently exploit cue-based communication, where one sin-
gle individual ‘reads’ just local cues in the environment [Seeley (1995)]. In con-
trast to the classical definition of communication [Shannon (1948)], where a well-
defined message has to pass from a sender to a receiver, such cues are signals or
artefacts that are not sent intentionally by any sender. Cue based communica-
tion is communication without message. It is self-regulation by simply observing
what others do, or what others did. However, these cues were found to be valu-
able sources of information, which can inform one local worker quite well about
the global status of the colony. For example, honeybees exploit queueing delays,
which arise after foraging trips while waiting for unloading bees, to inform them-
selves about the current income status of the colony. This information is then used
to decide whether to recruit new foragers with waggle-dancing or to recruit new
nectar processors with tremble-dancing [Seeley (1989, 1992)]. The properties of this
cue-based regulation system were studied intensively by individual based mod-
elling [Anderson and Ratnieks (1999a,b); Ratnieks and Anderson (2000); Schmickl
and Crailsheim (2008b,a); Thenius et al. (2008a,b)], demonstrating the communica-
tional value of reading environmental cues. To give another example, some paper-
wasp foragers use the incoming flow of water, which is shared among wasps in
the nest, to regulate their foraging activity for water and for wood [KARSAI and
BALZSI (2002)]. In many cases, physical traces are left in the environment to act
as local cues that inform other workers in a ‘broadcast’ scheme of communication.
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These communication principles are often called ‘stigmergy’ [Grasse (1959, 1967);
Karsai and Penzes (1993); Karsai (1999); Karsai and Penzes (2000)]. For example,
ants leave pheromone marks on the ground, when they recruit other ants to their
food sources [Deneubourg et al. (1990); Goss et al. (1989); Dussutour et al. (2006)].
System theoretic analysis (modelling) of these communication networks revealed
that it is a network of positive and negative feedback loops that allow these eu-
social insect colonies to regulate their tasks in a rather homoeostatic way. These
feedbacks act mostly localy and involve specific behavioural reactions of individ-
ual workers, which lead to a self-organization of the whole colony [Camazine et al.
(2003b)]. Such behaviours that establish feedback loops can be as simple as: the
more workers are at a specific target spot, the more cues they leave in the environ-
ment, the more other workers navigate to this place (positive feedback). And in
contrast: the more workers are at this target spot, the longer it takes to reach that
spot through overcrowding and the less un-recruited workers are available to be
attracted by these cues (two negative feedback loops). Such simple behavioural
patterns (attraction and saturation) lead to dynamic equilibria in task regulation
or in foraging patterns, which represent classical building blocks in the regulation
networks of social insects.

For swarm robots, it is difficult to leave physical (chemical) marks in the en-
vironment, which would allow them to perform real stigmergic approaches, al-
though several attempts to achieve this goal have been made: In the study of
[Russell (1997)], heat trails were used to achieve a ‘stigmergic effect’. Other ap-
proaches used chemical substances, which were left behind by robots to mimic
ant pheromone trails. This was done by using chemical markers [Russell (1999)]
or by using a simple pen that paints on paper [J. Svennebring (2004)]. To mimic
evaporation effects, which are also an important feature in ants’ pheromone com-
munication, some studies used ‘disappearing ink’ [Edelen (2003)] or glow paint
[Blow (2005)]. Because real stigmegy is hard to achieve in robotics, some studies
tried to mimic such environmental cues by using ‘virtual pheromones’, which are
either projected from above onto the robot swarm [Sugawara et al. (2004); Garnier
et al. (2007)] or which are communicated messages that are shared by local com-
munication among the robots [Pearce (2003); D. Payton (2004)].

In contrast to the majority of published swarm robotic algorithms, which in-
vestigated cue-based communication by drawing inspiration from ant pheromone
trails, we chose to model the usage of a different source of information in a robotic
swarm: trophallaxis. The term trophallaxis refers to mouth-to-mouth transfer of
fluid food among organisms. It is frequently found in birds that feed their sib-
lings and also in some bats [Wilkinson (1984)], that exchange collected blood and
establish a social ’security’ network this way, keeping unsuccessful bats alive. In
social insects, trophallaxis plays an important role to establish and to regulate a
highly complex society [Camazine et al. (1998); Crailsheim (1998)]: ants, termites,
wasps and bees frequently share food or water among nestmates. The study of
[DeGrandi-Hoffman and Hagler (2000)] shows that a limited amount of nectar
quickly reaches almost all colony members in a honeybee colony. Also in other
eusocial insect colonies, the same fast distribution of material is assumed to be
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a consequence of observed trophallactic events. Despite trophallaxis, also solid
items of food (prey pieces, grass or leaf fragments) and building materials are of-
ten passed over from one nest mate to another, this way establishing a system of
task partitioning [Ratnieks and Anderson (2000)]. In parallel, frequent body con-
tacts (e.g., antennation, licking of other nest mates) lead to transfer of pheromones,
which originate from the colony’s queen in all insect societies. This way the whole
worker population of a colony is constantly informed about the queen’s current
status. In all instances, that nearest-neighbour exchange of material leads to a
diffusion-like distribution process in the society. If material is constantly added
to the system at a specific place (foraging, queen) and if it is decaying over time
(evaporation, degradation, consumption, usage), this process will automatically
form a colony-wide gradient which will point uphill to the source of material. The
swarm robotic algorithm that we present in this section is also based on a gradient
that is established by near-neighbour communication among robots.

12.5.1 The swarm robotic task: A collective cleaning scenario

In recent studies, we examined several honeybee-derived algorithms for swarm
robotics: The vector-based swarm algorithm draws inspiration from the dance
language which is used by honeybees to communicate the location of feed-
ing sites [Valdastri et al. (2006); Corradi et al. (2009)]. The BEECLUST algo-
rithm is inspired by the self-organized aggregation behaviour of young honey-
bees in the hive [Schmickl et al. (2009); Kernbach et al. (2009a); Schmickl et al.
(2009)]. The trohpallaxis-inspired algorithm is mimicking the frequent food ex-
change observable in honeybees [Schmickl and Crailsheim (2006); Schmickl et al.
(2007a,c,b); Schmickl and Crailsheim (2008c)]. The algorithm that was analysed
most intensively and which we present in the following sections is the called the
”trophallaxis-inspired” robot algorithm. It is tested and analysed in a foraging-
collectively-for-dirt scenario, which is closely related to the foraging-collectively-
for-food task, which is prominently exhibited by in all eusocial insect colonies: in
our focal scenario, a swarm of robots has to explore collectively the arena. If a
robot finds one of those dirt particles, which are aggregated around some spot in
the arena, it picks up that particle and transports it towards a designated dump
area. All robots are able to perform only close-neighbour communication within a
radius of 2-3 robot diameters. They are able to sense dirt particles and the dump
area only directly below themselves on the ground, thus they have no far-range de-
tection of dirt particles. The goal in the evaluated cleaning scenario was to control
the swarm in a way that dirt collection is performed efficiently (fast) and robustly,
which is indicated by a complete removal of dirt particles from the environment.
Due to the limited sensory abilities of these robots, the only way to achieve this
goal was by exploiting communication among neighbouring robots in a swarm-
intelligent way.

The focal robot for this scenario was the robot of the I-Swarm project [I-Swarm
(2003-2007)], which is very small (millimetre-range) and which has very limited
capabilities concerning precision of actuation, sensor reliability, communication
bandwidth and computational speed. It is actuated by vibrating 3 legs, it can com-
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municate with 4 local neighbours via light signals if they are in the line of sight,
and it can transport small particles by using a small lever. Although the I-Swarm
is made of small and rather limited robots, it was designed to be a powerful col-
lective. The power of this swarm was sought to originate from the vast number of
robots that would combine their efforts. In this sense, scalability of the used algo-
rithm is also an important issue, as the I-Swarm was aimed at reaching population
sizes of up to 1000 robots. This scalability requirement favours decentralized and
self-organized algorithms over all conceivable centralized coordination principles.
Figure 12.11. displays the basic spatial setup of the most simple experiment that we
performed, as well as the final trail-following transportation scheme that resulted
from executing the trophallaxis-inspired algorithm by the swarm robots. We per-
formed our experiments with our simulation LaRoSim, which was parametrized
in a way that it reflects the robot Jasmine [SWARMROBOT (2004-2010)], which is a
spin-off product of the development of the I-Swarm robot platform. It mimics the
communication principle of the I-Swarm robot and it is comparably imprecise in
motion.

Figure 12.11. The tested swarm robotic scenario. (A) Starting condition. The dump in the upper
right corner is still empty (yellow patches). All dirt particles are located at a spot in the lower
left corner (blue patches). All robots are unloaded (red boxes) and explore the whole arena. (B)
After some time the robots form a trail of loaded robots (blue boxes) which heads directly towards
the dump. The unloaded robots continue to explore and to deliver information via the trophallaxis-
inspired algorithm. Reprinted from [Schmickl and Crailsheim (2006)].

12.5.2 Deriving the trophallaxis-inspired algorithm from
bio-inspiration

In our trophallaxis-inspired algorithm, all robots use two memory variables Xt
1

and Xt
2, which represent their load of two distinct virtual substances at time step t.

They ingest, store, consume and exchange these virtual substances under certain
conditions, described as follows. We regard these substances to be two distinct
kinds of ‘virtual nectar’, to link back to the honeybee domain. Each time step, the
robots consume a fraction ci of the substance Xt

i , thus decreasing their individual
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values of the variable Xt
i . If an agent is located on a dirt particle, it adds an amount

of a1 to Xt
1. If an agent is located on the dump area, it adds an amount of a2 to the

variable Xt
2. Whenever two agents are within communication range, the one with

the higher value of Xt
i donates a fraction Di of the difference to the other agent, thus

the two values of Xt
i get closer. Equation 12.4 gives the ODE that can describe the

dynamics of the variables Xt
i in the focal robot j, which is located on the target (dirt

area) and which communicates with a neighbouring robot k1. As robot j is located
at the dirt area, it will have the ‘addition values’ set to a1 > 0 and a2 = 0. A robot
located at the dump will have set these values to a1 = 0 and a2 > 0. At any other
other location in the arena, all robots will use a1 = a2 = 0. In all circumstances,
the ‘consumption terms’ and the ‘diffusion terms’ will be set to positive non-zero
values: Di > 0 and ci > 0 with i ∈ {1, 2}. From these parametrisations, the
following equation

Xt
i,j

dt
= Xt

i,j(1 − ci) + ai + Di(Xt
i,j − Xt

i,k) (12.4)

establishes a swarm-wide gradient of Xt
1 pointing uphill towards dirt particle

locations and, in parallel, a swarm-wide gradient of Xt
2 pointing uphill towards

dump areas. With a frequency of 1
τ1

time steps, an unloaded agent requests values

of Xt
1 from all visible neighbours, which indicates the the local gradient towards

the dirt particles. This local information allows the agent then to turn into the di-
rection of the neighbour with the highest value of Xt

1. With a frequency of 1
τ2

time

steps, a loaded agent collects the values of Xt
2 from its neighbours, which indicates

the the gradient towards the dump. This allows the agent to turn into the direc-
tion of the neighbour reporting the highest value of Xt

2. As τ2 << τ1, unloaded
explorer robots do have some small bias towards the dirt area, but still cover huge
parts of the arena for exploration. In contrast to that, loaded robots directly head
on a trail-like route from the dirt particle areas to the dump areas, as shown in
figure 12.11.b. Cumulative densities of robot locations in this scenario are depicted
in figure 12.12.a,b. To further enhance the exploration capabilities of robots, we

introduced a threshold parameter Θ
aggregation
i . If Xt

i < Θ
aggregation
i , robots move

randomly, otherwise they move uphill in the local gradient. In addition, wider
spreading of unloaded robots and trail-like motion of loaded robots was enhanced
by introducing another threshold at which collision avoidance routines triggered

an escape turn (Θ
turn away
loaded > Θ

turn away
empty ). Figure 12.13. summarizes the algorithm

described above graphically.

12.5.3 Collective perception within a robot swarm

The trophallaxis-inspired algorithm fuses the sensory inputs of robots (e.g. addi-
tion rates triggered by the presence of dump sites and dirt sites) in a swarm-wide
manner by the diffusion of virtual nectar within the swarm collective. We were in-
terested in whether or not this fact can lead to collective decision making based on

1This ODE is solved by numerical forward integration in our simulation. Also on a micro-controller,
this ODE will be solved by a time-discrete method.
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Figure 12.12. Cumulative paths of robots in the scenario depicted in figure 12.11.. (a) Cumulative
density of unloaded robots. (b) Cumulative density of loaded robots. For these analyses we incre-
mented localized counters in the arena, whenever a robot was located at this location. Finally, all
counters were depicted as a map. The more colourful (and brighter) a patch is, the more often a robot
was located at this patch. Reprinted from [Schmickl and Crailsheim (2008c)].

environmental cues that are not recognizable for the individual swarm member. To
achieve this, we generated two dirt spots, one left and one right of the arena. These
spots were differing in size. In this experiment, the right spot was significantly big-
ger than the left spot. We altered the basic trophallaxis-inspired algorithm in a way
that just one gradient was exploited by the robots, because we didn’t allow them to
pick up the dirt particles. In consequence, they just aggregated in high densities in
the target areas. As is the case in all other experiments described here, the robots
are able to locate a target patch – and later also the dump patches – only if they
are located on it, thus there is no long-distance detection of these environmental
features. As the bigger dirt spot on the right side of the arena can accommodate
more robots, the total addition of a1 into the swarm system is more frequent on
the right side of the arena than on the left side. This leads to a steeper and higher
gradient of Xt

1 on the right side and to the attraction of more robots that aggregate
at the bigger spot, as shown in figure 12.14.. We interpret the system in this way:
the robots are a limited resource and the two target sites compete for these robots
through positive feedback, which results from the emerging gradient and from the
uphill movement. The bigger target spot on the right side of the arena imposes the
stronger positive feedback, thus it finally wins the competition with the smaller
target spot.

Both subfigures of figure 12.14. colour-code the intrinsic variable of Xt
1 in the

robots by shades of red. The brighter a robot is coloured, the higher the value of Xt
1

is. With this experiment we showed that the swarm – as a total – is able to measure
the areas of the two dirt patches and to make a collective decentralized decision,
based on a global perception of the environment.

In our studies, we compared the trophallaxis-inspired algorithm to a sim-
ple algorithm, in which the robots just increment an ‘hop-count’ which allows
them to measure how far the neighbouring robots are away from the aggrega-
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Figure 12.13. Schematic representation of the trophallaxis-inspired algorithm. (a) Flowchart of the
algorithm as it is executed by a robot i that is approaching a target. (b) Sensor model of the mod-
elled Jasmine robot. (c) Schematic drawing how the gradient is built by inter-robot communication,
omnipresent consumption and by locally restricted addition of virtual nectar Xt

i .

tion target. Such algorithms have been suggested before, sometimes called ‘virtual
pheromones’ [Payton et al. (2001); ?]. Our experiments showed that swarms that
use the hop-count algorithm are performing significantly worse in discriminating
target zones by area size compared to the trophallaxis-inspired algorithm. The
hop-count algorithm causes the swarm to break into two almost evenly sized frac-
tions, regardless of target area size, while in the trophallaxis-inspired algorithm the
vast majority of the swarm converged to the bigger target spot. In additional ex-
periments, we varied the size differences between the two target spots and found
(see figure 12.15.b) that the swarm that is using the trophallaxis-inspired algorithm
is able to allocate fractions of the swarm population to the two target spots that re-
flect the ratio between sizes of the two target spots. In contrast, the ‘hop-count’
based algorithm failed to make such decisions. Swarms running this algorithm
were not able to decide at all, as is shown by figure 12.15.a. Please note that we did
count the aggregation result always in a circular area that was slightly bigger than
the maximum-sized target spot and which was concentric with the target spots on
each side. The area of this ‘counting zone’ was never changed, regardless how big
the aggregation spot was.

Figure 12.16. shows a comparison of the emerging gradients produced by both
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Figure 12.14. Collective perception favours collective decision making in swarms running the
trophallaxis-inspired algorithm. (a) The experiment started with randomly distributed robots. Af-
ter some time steps, the robots move in trail-like formations towards the two aggregation targets.
The swarm collectively starts to select the right bigger aggregation site (blue area). Small red-white
shaded boxes indicate robots. The brighter the colour of a robot the higher is its amount of stored
virtual nectar. A single robot can only determine whether or not it is located on a blue target patch,
no long-range detection of targets is possible. (b) After more time has passed, the swarm has made
a clear collective decision and the majority of robots aggregated at the bigger target site. Reprinted
from [Schmickl et al. (2007a)].

Figure 12.15. The experiments depicted in figure 12.14. were repeated with varying size-differences
between the target spots. It was found that swarms were always able to reflect these environmen-
tal condition in its collective aggregation decision making if they used the trophallaxis-inspired al-
gorithm. In contrast, the hop-count algorithm did not allow for this collective decision making.
Reprinted from [Schmickl et al. (2007a)].

tested algorithms in an environment with a small aggregation site (r = 1 patch)
at the left side of the arena and a big aggregation site (r = 5 patches) at the right
side. It is shown that the hop-count algorithm does not change over time and is
not able to depict any environmental features, as both differently sized target sites
are barely reflected in the gradient. Please note that in the hop-count gradient, the
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Figure 12.16. Emerging gradient maps in both experiments shown in figure 12.15.. Top row:
trophallaxis-inspired algorithm. Bottom row: hop-count based algorithm. left to right: Time evo-
lution of the emerging gradients. Reprinted from [Schmickl et al. (2007a)].

robots performed a gradient-descent, while they performed a gradient-ascent in
the experiments with the trophallaxis-inspired algorithm. This is due to the fact
that the hop-count algorithm provides a distance measurement to the target site
(the closer to the target area, the smaller is the hop-count communicated by neigh-
bours), while the trophallaxis-inspired algorithm establishes an ‘emergent attrac-
tion field’: the more virtual nectar a neighbour has, the more attractive it is to
move in its direction. In comparison to the hop-count algorithm, the trophallaxis-
inspired algorithm shows a clear time evolution and the gradient map clearly re-
flects the given environmental situation (figure 12.16.). For more information on
emergent gradient maps in the trophallaxis-inspired algorithm, refer to subsection

12.5.7. In additional experiments, we varied the level of Θ
aggregation
i , which was

found to control the final aggregation pattern in the following way: With low val-

ues of Θ
aggregation
i a minority of the swarm also aggregates at the smaller target site,

while it totally neglects the smaller target site with higher values of Θ
aggregation
i .

Thus, the parameter Θ
aggregation
i can be used to parametrize how ‘picky’ the swarm

behaves.

12.5.4 Preventing obstacles and shortest-path decision

Although the individual agents perform a simple gradient ascent in the emerging
gradient field of the trophallaxis-inspired algorithm, it is still possible for them to
circumvent obstacles. The ‘intelligence’ that is needed to achieve this relies not
on individual decision-making in navigation, it originates from the ‘clever’ way in
which the shared gradient map emerges within the swarm: if any obstacles block
the way for the robots, it also blocks communication. Thus, a flux of ‘virtual nec-
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tar’ exists due to the diffusion terms in equation 12.4, which automatically ‘flows
around’ these obstacles. To test this, we constructed a more sophisticated arena
setup, in which a diagonal wall blocks the way from the dirt area to the dump area.
Only two ‘gates’ allow the robots to pass through this barrier (see figure 12.17.a).
We observed that the robots establish trails through these gates (see figure 12.17.b),
which is is an emergent property of the trophallaxis-inspired algorithm. In addi-
tion, we observed that such a swarm is able to collectively select the shortest path
from dirt to dump, if the two gates offer pathways of differing length (see figure
12.17.c).

Figure 12.17. Gate experiment with the trophallaxis-inspired algorithm. (a) Arena setup with a
diagonal wall. This wall can be passed only through two gates by the robots. The robots form trails
that pass through these gates. (b) If both paths through these two gates are of identical length, the
robots form two trails which are chosen by robots with approximately equal probability, as is shown
by the cumulative density plots. (c) In an asymmetrical setting, robots automatically favour the
shorter path. Reprinted from [Schmickl and Crailsheim (2008c)].

12.5.5 Quantitative analysis of swarm behaviours

We investigated the observed gate-choosing behaviour quantitatively by offering
arena scenarios with differing degrees of asymmetry, as shown in figure 12.18.a.
We observed in these experiments, that the collective behaviour of the swarm is a
highly non-linear reaction to linear changes in the level of asymmetry. Another im-
portant aspect of swarm robotics is swarm density: if the habitat is populated too
loosely, information cannot spread sufficiently through the swarm, thus it cannot
perform in a ‘swarm intelligent’ manner. In contrast, if the habitat is populated too
densely, then navigation of the robots is hindered and the swarm cannot perform
efficiently.

Seeing this pragmatically, one could summarize the requirements for efficient
swarm behaviour as follows: The swarm should be constituted in a way that local com-
munication and collective information procession is maximized and that the triggering of
collision avoidance routines is minimized. Such routines usually block the execution of
the swarm algorithm, thus deviating the behaviour of the swarm away from the desired
behaviour.

Our results depicted in figure 12.18.b clearly show that such an optimal swarm
density does exist for our trophallxis-inspired algorithms. Those swarms that had
a density of approximately 0.15, that is that 15% of the arena space is covered by
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robots, showed the best collective behaviour in our case study cleaning task.
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Figure 12.18. Quantitative analysis of swarm behaviour generated by the trophallaxis-inspired al-
gorithm. Reprinted from [Schmickl and Crailsheim (2008c)].

12.5.6 Individual adaptation enhances the swarm’s abilities

In the basic version of the trophallaxis-inspired algorithms all individual metabolic
rates (ai, ci, and Di) are fixed throughout runtime. This restriction could be re-
laxed by allowing individuals to adapt one of these rates at runtime, for example
if specific environmental cues are recognized. To investigate this, we enriched the
environment with so called ‘sticky patches’ in which the actuators of the robots
are assumed to slip or to stick, thus these areas slow down the robots. In such an
environment, it can be better for the swarm, if loaded robots do not always choose
the shortest path. Instead, they should choose the fastest path. In the trophallaxis-
inspired algorithm, robots always follow the gradient map uphill. We expected
it to be favourable, if such unfavourable areas are depicted as ‘valleys’ in the col-
lective gradient map. To achieve this, we allow unloaded robots to increase the
consumption rate (c2) of the gradient that points uphill to the dump (Xt

2) with
increasing stickyness of the local patch. Thus, we modified equation 12.4 by con-
verting the former constant consumption rate ci into a variable ct

i

Xt
i,j

dt
= Xt

i,j(1 − ct
i) + ai + Di(Xt

i,j − Xt
i,k). (12.5)

In this equation ct
i is a time-dependent function of the current speed, as de-

scribed by

ct
i = cmin

i (1 + k
vmax − vt

j

vmax ), (12.6)
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where k is a scaling coefficient, cmin
i is the minimum consumption rate in the

gradient i, vmax is the maximum robot speed and vt
j is the actual motion speed of

robot j in time step t.
Figure 12.19. shows a comparison between the algorithm without individual

adaptation and with individual adaptation. The simple algorithm did not allow
the loaded robots to circumvent the area of sticky patches, while the more elaborate
version of the algorithm made such routing decisions possible.

Figure 12.19. Experiment with sticky patches. (a) Initial arena setup. red boxes: unloaded robots;
blue patches: dirt particles; yellow patches: dump area; green patches: sticky area. (b) Cumulative
density of loaded robots using the original trophallaxis-inspired algorithm without individual adapta-
tion. (c) Cumulative density of loaded robots that adapt their consumption rate c2 on sticky patches.
The swarm clearly avoids those unfavourable habitats. Reprinted from [Schmickl et al. (2007b)].

Obviously, there is a continuous transition from a non-adaptive configuration
k = 0 to a highly adaptive configuration k > 1. This allows the engineer to ad-
just the swarm to the given requirements in a real-world application. On the other
hand, this variable k could be probably adaptive as well. In analyses that we per-
formed so far, we kept the value of k a constant global swarm parameter. However,
it was interesting to see if several values of k can lead to different adaptive swarm
behaviours. Figure 12.20. shows that different non-zero values of k do indeed lead
to different navigation decisions of the trail of loaded robots.

In addition, it is notable that sticky patches do not block communication of
robots, which is in contrast to walls which block communication and movement
simultaneously. It was interesting to investigate the interplay of walls and sticky
patches in the same environment, leading to another environmental scenario: this
time, the environment contained two larger areas of sticky patches. In a first run,
there was an open passage between those two areas. The swarm of robots estab-
lished a trail of loaded robots in a way that the robots navigated in an S-shaped
path between the two sticky patch areas (see figure 12.21.b). In a second run, a
wall was placed between those two sticky areas, thus blocking the passage be-
tween those areas. As a result, the swarm formed a trail which briefly crossed one
of the sticky areas and circumvented the unfavourable habitats at the outer side of
the arena (see figure 12.21.b).

Finally, we wanted to investigate how the trophallaxis-inspired algorithm al-
lows a swarm to consider sticky areas in its collective decision making. Therefore,
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Figure 12.20. Experiment with multiple sticky patches in the environment. (a) Initial arena setup.
Blue patches: dirt particles; yellow patches: dump area; green patches: sticky areas. (b) Cumulative
density of loaded robots using a moderate value of k = 10. (c) Cumulative density of loaded robots
using a high value of k = 35. Reprinted from [Schmickl et al. (2007b)].

Figure 12.21. Experiment with multiple sticky patches and walls in the environment. (a) Arena
setup. Blue patches: dirt particles; yellow patches: dump area; green patches: sticky areas; grey
items: wall elements (b) Cumulative density of loaded robots when no wall was blocking the passage
between the two sticky areas. (c) Cumulative density of loaded robots after a wall blocked this passage.
Reprinted from [Schmickl et al. (2007b)].

we generated a scenario with two dump areas and one sticky area on the path
between this dirt area and the dump area, and closer to the dirt (figure 12.22.a).
With high ‘stickyness’ of these patches, that is robots were slowed down signif-
icantly, the robots collectively chose the other dump area as deposition site and
created a trail that circumvented the sticky area (figure 12.22.b). If the robots were
slowed down only slightly on the sticky area, the robots mainly crossed this area
and collectively chose the closer dump site (figure 12.22.c). Thus we conclude from
these experiments that swarms that run the trophallaxis-inspired algorithm are
able to consider walls differently from other unfavourable features. Obviously,
those swarms are able to react to continuous (non-discrete) environmental factors
in an adaptive manner.
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Figure 12.22. Swarm-level considerations about sticky patches in a complex environment. Exper-
iment with sticky patches and multiple dump sites. (a) Arena setup. Blue patches: dirt particles;
yellow patches: dump areas; green patches: sticky areas (b) Cumulative density of loaded robots
when sticky areas decreased the robot speed significantly. (c) Cumulative density of loaded robots
when sticky areas decreased the robot speed only slightly. Reprinted from [Schmickl et al. (2007b)].

12.5.7 Dynamic, complex and emergent maps of the environment

In the trophallaxis-inspired algorithm, obstacles and areas where robots adjust
one of their intrinsic ‘metabolic rates’ (addition, consumption, diffusion/transfer-
/communication) alter the swarm’s behaviour significantly. Thus we assumed that
these areas should be well depicted in the ‘gradient map’ that does not reside in
single robots but within the whole swarm (’collective memory’). We created two
additional scenarios to investigate the properties of the gradient map. In both sce-
narios, we used one dirt site and two equidistant dump sites. In the first scenario,
two lengthy areas of sticky patches were placed on the robots’ ideal routes from
dirt to dump. One of these areas was rotated by 90 degrees, thus it required only a
short passage through sticky terrain compared to the other arena side, in which the
sticky area had to be traversed in full (see figure 12.23.a). The robots were able to
make a two-fold collective decision. They collectively crossed the short path across
the sticky terrain on the left arena side and mainly circumvented the sticky terrain
on the right side of the arena (see figure 12.24.). Looking into the collective gra-
dient map, we found that the sticky terrain was generating clearly visible valleys
in the gradient, navigating locally the robots in a near-optimal way (see figures
12.23.b,c,d). Thus one connected swarm of robots was able to make two different
decisions at the same time in different parts of the environment.

We repeated the same experimental setting in a second experiment, where we
replaced the sticky terrain with walls that blocked not only movement but also
communication between robots. In this case, the barriers were circumvented on
both sides of the arena. As figure 12.25. shows, the collective gradient map rep-
resented the walls clearly as canyon-like, deep valleys, which differ significantly
from the way sticky patches were represented. Thus we conclude that the swarm
is able to represent environmental features qualitatively in a shared memory map,
which allows the swarm to react in an adjusted manner to different environmental
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Figure 12.23. Environmental setup and maps of the emergent gradient maps in an experiment where
two differently rotated areas of sticky patches were located between the dirt site and dump sites. (a)
Arena with robots, dirt zones, dump zones and robots, as they look in the simulator. (b)Gradient
map seen from above. (c)Gradient map seen from the left side. (d) Gradient map seen from the right
side. For constructing the gradient map, we iterated over a grid of positions covering the arena space
and recorded which values of Xt

2 would be reported to a robot at this positions by its neighbours.
Reprinted from [Schmickl et al. (2007c)].
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Figure 12.24. Cumulative robot density in the experiment depicted in figure 12.23.a. The swarm
makes different decisions on either side of the arena, which are reflecting the different orientations of
sticky areas in the arena. Reprinted from [Schmickl et al. (2007c)].

qualities.

12.5.8 From ‘information trophallaxis’ to ‘energy trophallaxis’

In the experiments described above, we used ’information trophallaxis’ to control
the efficient transportation of material. The agents moved according to the vir-
tual gradient of Xt

1 and Xt
2, and not according to an actual ’dirt gradient’. This

is in contrast to social insects, where animals often do not communicate with ad-
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Figure 12.25. Environmental setup and maps of the emergent gradient maps in an experiment where
two differently rotated walls are blocking the direct way between the dirt site and dump sites. (a)
Arena with robots, dirt zones, dump zones and robots, as they look in the simulator. (b)Gradient
map seen from above. (c) Gradient map seen from the left side. (d) Gradient map seen from the right
side. For constructing the gradient map, we iterated over a grid of positions covering the arena space
and recorded which values of Xt

2 would be reported to a robot at this positions by its neighbours.
Reprinted from [Schmickl et al. (2007c)].

ditional signals or cues, instead they reuse existing cues for their communication
efforts. This is efficient and thus expected to be favoured by natural selection. In
our robotic scenario, it would be interesting if the robots’ navigation would not be
driven by a virtual gradient but by a gradient of dirt particles, as the robots col-
lect these items anyway. However, we did not manage to construct such a pure
‘stigmergic’ approach so far.

For honeybees nectar is used to store and transfer energy, it is not primarily
a substance used for communication purposes. Robots also rely substantially on
energy supply, thus it would be interesting to transform the cleaning scenario into
an energy harvesting scenario.

Imagine that the dirt areas are transformed into recharging stations, which are
located somewhere in the environment. The dump area is transferred into a des-
ignated working spot, where robots have to perform a given task that consumes
energy. Several options to configure such a swarm are plausible:

(1) The working robots perform their task until their energy reserves fall below a
defined threshold Θrecharge. At this point in time, they leave the working area
and head towards a recharging place. In this swarm configuration, there is no
division of labour in energy harvesting. However, the working robots could
still be guided by a distributed network of cheaper guidance robots, which
are spread in the environment. These robots could perform the trophallaxis-
inspired algorithm and provide the gradient map that guides the expensive
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working robots to the closest or richest recharging site. In this configuration,
division of labour is present between those workers that harvest and spend
energy, and those workers that act as pure communicating agents.

(2) A different approach would be to establish more division of labour in the robot
swarm. All dedicated worker robots can stay at the working site permanently,
as a special group of energy-transfer robots establish a trail of robots that con-
tinuously oscillates between the recharging site and the working site. This
scenario involves three-fold division of labour: Pure workers, pure energy har-
vesters and pure communicators, which guide the energy-harvesters by using
the trophallaxis-inspired algorithm. Thus, this configuration allows the high-
est possible degree of hardware specialisation of robots.

(3) However, there is another –and maybe more efficient– approach to this sce-
nario: assume that the energy harvesting robots could transfer the energy also
between each other in a trophallaxis-like manner. In this case there is no need
to distinguish between energy harvesting and communication. Instead of vir-
tual nectar that is communicated among the robots, the transferred energy is
used as a communicational cue. In the following, we describe how such an
‘energy-trophallaxis’-driven algorithm could operate.

Imagine a swarm that has to find energy sources (recharging stations) and in
which energy can be passed from one robot to another. Thus, the virtual nectar
concentration in a robot Xt

i becomes a real energy budget Et
i in an accumulator set

i inside this robot. Such robots will not need to calculate equation 12.4 at all. They
will consume amounts of their energy per time step (equivalent to subtracting ci

every time step). They will gain new energy only at charging stations (equivalent
to ai). If we assume that robots will receive energy transfers only from robots of
higher energy status compared to themselves, we have a real-world equivalent of
Di(Xt

i,j − Xt
i,k). Automatically, a gradient of energy charging states will emerge

within the robot swarm. To exploit this energy status for navigation, let us assume
that robots blink their LEDs in a frequency which correlates with their energy sta-
tus: The less energy a robot has, the slower it will move and the less frequently
it will blink. We furthermore assume that robots, which fall below a defined en-
ergy threshold Et

i ≥ Θ
recharge
i , move preferentially towards neighbours with the

high LED blinking frequency, while robots with rich energy reserves Et
i ≥ Θ

recharge
i

move preferentially towards neighbours with low blinking frequencies. As a con-
sequence of these simple rules a turn-over behaviour of agents within the swarm
will emerge, keeping the average energy level of the swarm around a homoeo-
static set point. The level of this set point can be adjusted by shifting the value of

Θ
recharge
i . We predict that robots running such an algorithm will follow trails be-

tween recharging sites and sites of high energy consumption (working sites). As
robots on the trail transfer energy from one to another, it is no longer necessary
for individual robots to make the complete passage of these trails. Instead, it is
the energy that will flow from the recharging site to the working areas, using the
robots as a channel of energy flow and communication.
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12.5.9 Future work and elaboration of the trophallaxis-inspired algo-
rithm

By elaborating the system from information trophallaxis to energy trophallaxis, the
swarm robotic algorithm moves closer to its biological source of inspiration. If the
blinking signal, which communicates the energy status of a robot is strongly cou-
pled to the energetic status of a robot, this signal becomes an ‘honest signal’, which
is an important concept in interpreting animal behaviours and their evolution in
biology. Our investigations showed that a weak point of the trophallaxis-inspired
algorithm is that agents always have to trust other swarm members. The steady
consumption of virtual nectar ci establishes a steady decay of virtual nectar, which
forces outdated, non-reinforced information to leave the system. When we intro-
duced robots that had long-lasting faulty positives in target detection, they were
overruled by other robots, which did not reinforce this information. Thus, singular
faulty robots disturbed the system but did not prevent the swarm from working.
However, if one robot increases its value of Xt

i to very high values, because it either
performs very high addition acts ai, because it performs no consumption for a long
time ci = 0 or because it communicates the value of Xt

i wrongly for other reasons,
this could indeed harm the swarm’s performance significantly. Thus, using an
‘honest signal’ in this situation would definitely increase the system’s robustness.
Such an ‘honest signal’ can be achieved by switching from ‘information trophal-
laxis’ to ‘energy trophallaxis’. Another critical issue is the question of how to
parametrize such a robotic algorithm. In the current system, we used evolutionary
computation (evolution strategy) to optimize swarm-level parameters off-line in
the simulator LaRoSim. We optimized those constants of the trophallaxis-inspired

algorithm (ci, ai, Di, Θ
aggregation
i ) on the one hand, and parameters such as swarm

density on the other. As is shown by figure 12.18.b, such parameters are critical for
the performance of swarms. After the transition from ‘information trophallaxis’ to
‘energy trophallaxis’, such an optimization could also be performed on-line on the
running robotic hardware, as the supply with energy could be a good emerging
‘fitness parameter’ or ‘cost function’ for optimization. Such an on-line, on-board
optimization is expected to achieve better results than any optimization achieved
in simulation, as it bridges the reality gaps between models, simulation and real-
ity. In addition, such optimization might be performing better on-board than in a
simulator, as the optimization would be performed in parallel by many robots, the
more robots there are in a swarm, the slower a sophisticated simulation gets, but
the more computation power resides in the robotic hardware itself.

In conclusion, we explored information trophallaxis in robotic swarms inten-
sively and found it to be extremely powerful and robust. By transforming these
algorithms to exploit energy trophallaxis, the algorithm will become simpler and
it is expected to achieve efficient, robust and flexible swarm behaviour by simple
rules and by accounting for only locally available information. Thus, this family
of swarm algorithms are clear examples of swarm intelligence in an engineering
context.
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12.6 Case study 3: A Kinetic model of swarm foraging

The previous sections of this chapter considered foraging models for discrete cases,
see for instance the equation (12.3), where a chemical or electric energy is accumu-
lated in the forms of batteries or energized particles. In this section we extend
these models for case when robots forage electric energy by a direct recharging
from docking stations. The recharging approach utilizes a kinetic relationship be-
tween behaviors of robots and an amount of energy required for these behaviors.

As demonstrated in chapter ??, kinetic models make use of an analogy between
the behavior of molecules in an ideal gas and the behavior of collective agents. This
approach is useful for modeling interactions and information transfer in a swarm
and for establishing relationships between number of agents N, swarm density
Dws, sensing and communication radii Rs, Rc, velocity of motion ϕ, consumed
energy Ec and other values. The derived relationships can be tested in real robot
swarms and verified in this way.

The topic of collective energy management based on kinetic models is dis-
cussed in Sec. ??, here we extend the topic to optimal energy foraging in swarms
with both constant and variable densities. Fig. 12.26.(a) shows the Jasmine robot
equipped with docking contacts, touch and energy sensors, and Fig. 12.26.(b)
shows a typical setup for experiments in collective energy foraging. Without loss

docking contacts

touch sensor

Figure 12.26. (a) The micro-robot “Jasmine III” with docking contacts and touch sensors; (b) Exper-
imental setup for collective energy foraging in a swarm of 50 micro-robots “Jasmine”. The docking
station, waiting zones and the working area are clearly visible.

of generality, we assume that robots can execute working tasks, look for docking
stations, wait until recharging slots become free and then recharge. The behaviors
in these tasks are denoted as “roles” R, so there are roles R0 (working), R1 (search-
ing), R2 (waiting) and R3 (recharging). We denote further the number of robots
that execute the role Ri as NRi

and the duration of the role Ri on the robot j as tRij

or in general tRi
. The available individual energy Ei is estimated in ADC values of

the corresponding voltage of the Li-Po accumulator. The efficiency Φj of the robot
j can be calculated as

Φj =
tR0j

tR0j
+ tR1j

+ tR2j
+ tR3j

. (12.7)
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Since charging and discharging currents in the Jasmine robot (i.e. time) are almost
the same, thus tR0j

= tR3j
. When tR1j

= tR2j
= 0, the efficiency achieves Φ = 1

2 =
50%. When tR3j

= 0, i.e. robot does not recharge and only works, its efficiency
Φ = 100%. In this way the value of Φ is also useful for cases tR0j

&= tR3j
and

expresses a general property of a robot’s energetic balance.
Swarm efficiency Φs and the collective energy level of the swarm Es are

Φs =
1

N

N

∑
j

Φj, Es =
1

N

N

∑
i

Ei, (12.8)

where N is the number of robots and Ei is an individual energy level of a robot.
The best swarm efficiency is achieved when tR1

= tR2
= 0; this is never achievable

in real situations, i.e. tR1
&= 0 and tR2

&= 0 in real swarms. In the following two
sections we estimate the swarm efficiency for different cases of R1 and R2 and
formulate the requirements for a good collective foraging strategy.

12.6.1 Global energy homeostasis for a constant swarm density

Swarm density Dsw is defined as the relationship between the number of robots N
and occupied by them area Ssw. Critical swarm density Dsw

crit can be derived from
the assumption that robots cover the whole area Ssw (we can neglect here the area
occupied by robots themselves), i.e. from Ssw = Nmax

crit πR2
s , where Rs is the sensing

radius of a robot

Nmax
crit =

Ssw

2π Rs
2 . (12.9)

For Jasmine robot and for an arena Ssw = 140 × 115 cm the critical maximal num-
ber of robots is 52. We can also estimate an optimal swarm density Dsw

opt from the
assumption that for the best swarm reactivity (see [Kernbach et al. (2009b)]), robots
should be within the communication radius Rc of each other

Nopt =
Ssw

2π Rc
2 . (12.10)

For the same Jasmine conditions, Nopt = 23. Maintaining N ≈ Nopt is of advantage
because it provides several super-scalable parameters [Kernbach et al. (2009b)], see
also chapter ??. Therefore in this section we calculate the global energy homeosta-
sis from the condition N ≈ Notp, i.e. with constant swarm density.

Let Ψ be the amount of energy, coming into the swarm from outside. The fol-
lowing inequality of the energy balance

Es ≤ Ψ (12.11)

says that the energy consumption should be less, or at least equal, to the energy
input. The energy consumption Ec consists of parts spent for finding the energy
source by N robots (ωtR1

N), for the waiting/docking by N robots (ωtR2
N) and

finally for moving N/2 robots (ωtR0
N/2) until other N/2 robots are recharging

(ωtR3
N/2). Setting for Jasmine robots tR0

+ tR3
= 2tR0

, we have

Es = ωN(tR0
+ tR1

+ mtR2
), (12.12)
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where the numeric coefficient m = 0, 1. In Sec. ?? we derived expression (12.12)
and obtained

Es = NωtR0
+ N2ω

πR2
c − Sr

2Rsυ
+ N2ωmλ ≤ Ψ, (12.13)

where m, λ are small coefficients. The linear term in (12.13) is in charge of do-
ing some useful job, whereas the quadratic terms represent the energy required
for supporting system-internal activities, such as collision avoidance. This means
that collective systems have an optimal size at a constant swarm density. When
a system grows further, i.e. it occupies more territory, the system-internal activi-
ties consume much more energy for internal activities than is required for useful
output of the system.

12.6.2 Collective strategies for a variable swarm density

As demonstrated in the previous section, the constant swarm density case pays a
high energetic price, expressed by the square terms in (12.13) denoting the system’s
internal activities. Therefore the main consideration for a good collective foraging
strategy consists of reducing the impact of these terms. This can be achieved with a
variable swarm density N < Nmax

crit and utilization of resulting effects. In particular,
a higher swarm density allows reducing tR1

by using the effect of overlapping
trajectories.

As shown in the previous section, when the search area is Ssw, then the covering
area Scov of randomly moving robots can be estimated as a sum of non-overlapping
local areas Sl = υt2Rs (shown in Fig. 12.27.(a)) minus overlapping between Sl .
There are two different reasons for overlapping. The first one is the swarm den-
sity, where one robot overlaps the trajectory of another robot (Sov1). The second
reason is the collision avoiding behavior of a robot itself, where it overlaps its own
trajectory (Sov2), i.e.

Scov = NSl − Sov1 − Sov2. (12.14)

The relation ∑ Scov
Ssw

defines the goodness of a covering strategy. In Fig. 12.27. we
demonstrate two cases of 2 and 13 robots moving randomly in an arena sized
140 × 115cm. When t is large enough, it is assumed ∑ Sl ≈ Ssw, whereas for short
t: ∑ Sl < Ssw. During a random motion, the local areas Sl overlap so that the
efficiency of coverage is decreased. Obviously, a good strategy has to minimize
overlapping between Sl . The overlapping is difficult to calculate exactly, however
it can be estimated by using the following ideas. The N moving robots can be
represented as Nn stationary robots in order to calculate a ”differential image” as
shown in Fig. 12.27., where n is a number of snapshots. The value of n increases
continuously, so that n = kt, where k is a coefficient of ”how often do we take
snapshots during t”. We assume that a snapshot only makes sense when robots
move more than 2Rs, i.e. k = υ

2Rs
. Randomly moving robots behave very similarly

to gas molecules, i.e. they are uniformly distributed in the covering area at t → ∞.
Statistically, the areas Sl are not overlapped, when 2RsSsw

Nυt > πR2
s (

Ntυ
2Rs

). Therefore
the value Sov1 can be estimated as

Sov1 =
πR2

s (Nυt)2 − 4R2
s Ssw

2RsNυt
. (12.15)
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(a) 2 robots (b) 13 robots

Figure 12.27. The area coverage of (a) 2 and (b) 13 robots. The figure (b) shows 10 seconds of motion
(10 images) as difference images extracted from the video sequences.

The value Sov1 is valid when Sov1 ≥ 0.
The value of Sov2 depends on the collision avoiding behavior of the robot itself.

The point is that at each collision a robot rotates so that it moves partially along
its own old trajectory. The lost area is proportional to the number of robot-robot
contacts. At each contact a robot loses the area of a triangle, shown in Fig. 12.27.(a),

which can be calculated as R2
s

tan(α/2) or R2
s

0,268 (α is collision avoiding angle ≈ 30◦).

The number of contacts C is equal to the average number of robots N
Sw

in the area

Sl (with Maxwell coefficient
√

2), i.e.

Sov2 =
2
√

2vtR3
s N

0.268Ssw
. (12.16)

Finally, we obtain the following expression of the covering area

Scov = Nυt2Rs −
πR2

s (Nυt)2 − 4R2
s Ssw

2RsNυt
− 2

√
2υtR3

s N

0.268Ssw
. (12.17)

In Fig. 12.28. we plot (12.17) in relation to time, when Ssw = 16100cm2, v =
30cm/sec, Rc = 15cm for two cases N = 2 and N = 13, as shown in Fig. 12.27..
As shown by this graph, 2 robots can cover the area in about 1 min, 13 robots
need for this about 10 sec. Both numbers correlate very well with experimental
measurement.

Equation (12.17) allows us to estimate the time tR1
needed to cover some area

for variable swarm density. Setting Sl = S, solving about t and simplifying, we
obtain

tR1
= ±

√
2

(

mSsw +

√

m
(

mSsw
2 − 16 Rc2mSsw + 4 Rc

2mSswπ + 16
√

2Rc
4
)

)

Ssw

Rc

(

−4
√

2mSsw +
√

2mSswπ + 8 Rc
2
)

vN

(12.18)
where m = 0.268. From two solutions we have to choose the positive one.

As follows from (12.17), a variable swarm density can provide better coverage
and so a minimization of system’s internal activities in (12.12). We do not expect
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Figure 12.28. Plot of covering rate from the relation (12.17).

that this approach can eliminate the square terms in expression (12.13), but it can
minimize their influence on the common energy distribution. In the next section
we formalize the requirements on a foraging strategy from the kinetic point of
view.

12.6.3 Requirements for a good swarm foraging strategy

It is obvious, that a good foraging strategy should minimize times tR1
and tR2

as
well as the number of robots NR1

and NR2
. This can be done in several ways.

1. There are several mechanisms which force swarms to Dsw
opt. In this case, the

energy balance should be considered not as Ψ ≈ tR0
N but as

Ψ ≈ tR0
S ≈ tR0

N2, (12.19)

The equation (12.19) means that energy input should be proportional to Ssw and
should be uniformly distributed in Ssw - this is an important consequence allowing
us to improve a foraging strategy. A uniform distribution enables the swarm to
minimize system-internal activities.

2. It seems that a constant swarm density does not provide efficient energetic
performance. In turn, this means that for Dsw > Dsw

opt some swarm members
will die because of bottlenecks and insufficient energy input. Individual energetic
death is a self-regulating mechanism, allowing maximal collective energetic per-
formance. Therefore a robot swarm should allow some robots to be sacrificed (e.g.
to switch them into stand-by mode) for a better energetic performance.

3. The equation (12.18) for collective search provides shorter time tR1
. However

the more robots are involved in collective search, the worse will be their collective
efficiency. The foraging strategy should maximize Φs by varying NR1

in a collective
search.

4. A good foraging strategy should minimize NR2
and tR2

by managing the
number of robots NR1

which go to recharging. In the ideal case NR1
should be

equal to the number of free slots in the docking station. The ”buffered” robots
should not cover the docking station.
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5. A good foraging strategy should adapt the ”critical energy” and ”hungry”
thresholds Sc and Sh to the current energetic state of the swarm and in this way
reduce NR2

.
From these five points, the two last ones have the greatest impact on collective

foraging. In the next section we describe several experiments, which demonstrated
a good strategy for optimizing Φs by managing NR1

, NR2
and tR1

, tR2
.

12.6.4 Experiments

We have performed several simulation and real robot experiments, with the inten-
sion of proving the following assumptions:

1. Varying swarm density Dsw > Dsw
opt will lead to increasing efficiency, but also

to dead robots.
2. A combination of different behavioral strategies can minimize the number of

robots NR1
going to recharge. This will in turn minimize NR2

and tR2
and should

increase swarm efficiency.
3. Individual thresholds for critical and hungry states Sc and Sh can be adapted

by considering Pr(Task)t related to local sensor data and local communication with
neighbors. This can lead, at a collective level, to reduction of waiting robots NR2

and so to higher efficiency.
The foraging strategy is implemented in the following way. It is firstly assumed

that all robots possess exact knowledge about their working area and can precisely
navigate in this area (so-called ”all-knowing” robots). Additionally each robot is
aware of the current energy state of all teammates. This allows precise coordina-
tion between robots. In the ”all-knowing” scenario we distinguish four sub-cases
(”best”, ”average” and ”worst”), where available global information is gradually
reduced. Finally, in the ”not-knowing” case, there is no information available
about the position of the docking station at all; robots can find the docking sta-
tion only by random search. This scenario is implemented both in simulation and,
as far as it is possible, in real robot experiments.

All real and simulated robots possess the following internal homeostasis, see
Fig. 12.29.. Firstly, in the critical state, robots should break the currently executed
activity and start looking for the docking station. Secondly, robots have a prior-
ity of currently executed activity Pr(Task) and priority of looking for food Pr(Sh)
(”hunger feeling”). When, for instance, the priority of current activity is 60%, but
hunger is 70%, a robot will look for the docking station. Finally, a robot can have
a so-called ”collective instinct”, it can recharge only until the satisfied state Ss (it
takes less time), and make a slot free for another robot (otherwise it recharges until
Sf ). The energy values Ei of each robot can vary from 120 up to 181. At Ei = 120

the robot is considered to be ”dead”, at Ei = 140 the robot is in its ”critical en-
ergy” state and should recharge as soon as possible. When Ei ≥ 181 the robot is
fully recharged. For all ”all-knowing” robots we introduced two energy thresh-
olds Th: Thhungry and Threcharged. These parameters differ through the experiments
and determine at which internal energy level the robots start to ”feel hungry” or
”feel satisfied”. We set the initial energy value Ei of each robot so that it exceeds
Thhungry.
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Figure 12.29. Structure of energetic homeostasis.

Energy constrained environment
with variable swarm density. To
prove the assumption about variable
swarm density, simulations with dif-
ferent numbers of robots in the ”best”
case scenario were conducted. The
”best” case scenario is also the ”most
suitable” scenario for such a study for
two reasons: (a) the robots have the
best possible capabilities, so that find-
ing the energy source is faster and the
time for search can be assumed to be
ts ≈ 0; (b) the perfect coordination
avoids competition among robots, i.e.
no robot has to wait and tw = 0. Thus,
if an environment does not have suffi-
cient energy sources in the ”best” case
scenario, it will definitely be energy
constrained for all other cases, where
the robots have less information. For the study, the number of robots and their
parameters are varied. Table 12.2 gives an overview of the parameter set.

Table 12.2. Parameters and results in ”all-knowing” strategies,
Threcharged=181 and Thdead = 120.

Scenario N Thhungry Thcrit Efficiency Φs [% ] Deaths

best 10 10 171 140 50 0
best 15 15 171 140 36 0
best 20 20 171 140 28,4 6
best h165 20 165 140 26,7 5,8
best c150 20 171 150 24,7 2
average 20 20 171 140 28,52 5
worst 20 20 171 140 15,04 0
not-knowing 20 20 171 140 16,02 0

Since the searching time in the ”best” scenario is very low, Nr/2 docking sta-
tions can deliver sufficient energy for Nr robots, i.e. the efficiency is 50%. Increas-
ing the number of robots to 15 in the ”best 15” simulation reduces the efficiency to
36%. The collective energy fell and stabilized at 150 and there are no dead robots.
In the ”best 20” simulation, the ratio between stations and robots is 1:4. As shown
in Fig. 12.30.(a), the swarm stabilized its efficiency at 28,4%, collective energy level
around 140 and 6 robots ”died” during the simulation. Since ”dead” robots in-
dicate insufficient energy in the area, this scenario was defined as an energy con-
strained environment, where the ratio of stations to robots is 1:4.

Influence of Thhungry and Thcrit. The hungry threshold Thhungry and the crit-
ical threshold Thcrit are thresholds for a robot to decide its own current energetic
state. Now we explore how the choice of Thhungry and Thcrit influences the per-
formance. The ”best” scenario is also used to compare different thresholds. Two
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Figure 12.30. Collective energy of different scenarios of ”all-knowing” robots (”best h171” and ”best
c140” are used for comparison and are the ”best 20” scenario).

simulations ”best h165” and ”best c150” were run with 20 robots, where Thhungry

and Thcrit were varied as shown in Table 12.2 and their collective energy is shown
in Fig. 12.30.(b). We can see that the collective energy level does not depend on
the chosen Thhungry. In both simulations, the swarm was able to maintain its ener-
getic homeostasis around the value 142. This was only possible because 6 robots
”survive”. Small differences appeared in the swarm efficiency, ”best h165” - 26,7%,
”best 20” - 28,4%.

Collective energy level for simulation with different Thcrit is shown in
Fig. 12.30.(c). Since the critical threshold is the energy value at which robots dis-
continue their work, switch to the recharge procedure and try to preserve energy,
it greatly influences the collective energy of the swarm. As Fig. 12.30.(c) shows,
the level at which the swarm is able to maintain its energy constant builds around
the chosen Thcrit. In the ”best c150” simulation, the critical threshold has a higher
value, so the robots switch to recharge role sooner than in the ”best 20” simulation.
This early interruption of work execution leads to lower efficiency (24,7% for ”best
c150”) because the robots spend more time waiting for a free slot. Obviously, in
that case they do not get really ”exhausted”, so only 2 of the robots died in the
”best c150” case. Since requirements of energy foraging postulate maximal effi-
ciency at minimal constant collective energetic level, the value Thcrit = 140 was
used for all further simulations.
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Collective energy vs. swarm efficiency. The collective energy for all ”all-
knowing” scenarios is shown in Fig. 12.30.(d), whereas the swarm efficiency and
the number of energetically ”dead” robots are presented in Table 12.2. As expected,
the ”best 10” offers the best possible performance. When limitations are imposed
on the available energy, as in the ”best 20” case, the collective energy level falls
to the critical threshold. There it is stabilized only because some robots die and
swarm size is reduced to 75% of its initial value. The achieved efficiency is around
28%. Energetic performance is comparable for both scenarios. Removing knowl-
edge about the energy state of other robots in the ”worst 20” simulation has a
deep impact on the swarm performance. Collective energy stabilizes around the
Thhungry without any ”dead” members, but the efficiency falls to approximately
15%.

The results obtained are logical consequences of the underlying behavioral
model. Robots in the ”best” and ”average” case scenarios are very social - they
coordinate their actions with the other team members and respect their needs.
This leads to longer working times for the ones that are not the ”hungriest” in
the swarm. These robots get finally ”exhausted” because they keep working until
reaching critical energetic state. In this way, the whole group achieves very high
efficiency. When there is not enough ”food”, some individuals die.

In contrast, robots in the ”worst” and ”not-knowing” scenarios are egoistic
creatures. As soon as robots are ”hungry” they start searching for ”food”. Since
there are not enough ”food places” for all, the successful robots are ”eating”,
whereas all other wait or struggle to reach the ”food”. Finally, everyone is busy
with its own survival and less collective work is done. Such egoistic behavior al-
lows the swarm to maintain a constant collective energy but the efficiency achieved
is very low.

Real experiments. Real robot experiments have been performed in several are-
nas: variable arena between 0, 2m2 − 0, 5m2, see Fig. 12.31.(a), and two fixed setups:
small 110cm × 85cm = 0, 935m2, see Fig. 12.31.(b), and large 140cm × 115cm =
1, 61m2, see Fig. 12.32.. The number of robots varies between 3 and 50, experiments
in the large arena have been performed with 30 and 50 robots. These experimental
conditions allow us to explore different swarm densities. Additionally, real exper-
iments aim to investigate different behavioral strategies, which optimize NR1

and
NR2

and to use local communication between robots to adapt Pr(Task).
There are several docking setups: without landmarks, see Fig. 12.31.(a)

and with different landmarks (robots, which indicate the docking station), see
Figs. 12.31.(b) and 12.32.. The priority of recharging Pr(Shungry) and Pr(Ss) are
set up to a maximum, so that when a robot is hungry, it breaks its current activity
and looks for the docking station. In the docking station we implemented the two-
line approach, clearly visible in Figs. 12.31.(b) and 12.32.(c),(d): the robots which
receive a direct signal from a docking station navigate along this signal for docking
and then start recharging. During recharging these robots in turn send a secondary
signal with the meaning ”docking station is here, but it is currently busy”. This
secondary signal has a larger covering area than the direct signal from the docking
station. When another robot receives the secondary signal from a robot, it reduces
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(a) (b)

Figure 12.31. (a) Experimental setup for variable arena. Shown is the two-line docking approach of
a few robots for recharging: the first line – recharging robots, the second line – robots waiting for
recharging; (b) Experimental setup for the small arena.

its own velocity and slightly rotates. In this way the waiting robots perform a local
search – when a docking slot becomes free, a robot has a higher chance to find it.
These waiting robots build a ”recharging buffer” which allows a self-regulation in
the swarm.

In order to adapt Pr(Task), the robot has to acquire feedback from the swarm.
Feedback is collected by counting the messages received from working or waiting
teammates. For estimation of the robot’s need to stay or leave its current state,
three priorities were introduced as in the simulation: prioWorkTask, prioSearchTask
and prioRechargeTask. During work, the robot increases its prioWorkTask stepwise
until the ”hungry” threshold is reached. Then, the robot starts to increase the
prioSearchTask. The speed of increase depends on the inertness coefficient which
will be determined experimentally. When prioSearchTask exceeds prioWorkTask, the
robot switches to the recharge role. The same procedure is followed while the robot
is recharging and its energy exceeds Threcharged. Then prioWorkTask competes with
prioRechargeTask and when it exceeds it, the robot switches back to the work role.

To optimize NR1
and NR2

, we used different behavioral strategies, see more
in [Kancheva (2007)], [Häbe (2007)], [Prieto (2006)], [Attarzadeh (2006)], [Jebens
(2006)] as well as in [Kernbach et al. (2010)]. Table 12.3 summarizes several results
across these experiments.

To summarize, experiments in unconstrained environments (for example 3
docking stations around the arena, large copper strips, as in Fig. 12.32.) demon-
strate the best efficiency between 47,8% and 36,58%, and collective energy between
177,8 and 157,10. Energy-constrained environments lead to a drop of efficiency be-
tween 29,56% and 13,4%, and collective energy between 144,14 and 132,06. Vari-
able swarm density leads to ”dead” robots, whose number varies between 1 and
19. ”Not-knowing” robots (i.e. robots performing random search strategy) have an
average performance around 16%, whereas mixed behavioral strategies in energy-
restricted environments provide almost twice the efficiency – around 30%.
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(a) Initial set-up. Marked robots are landmarks
with a large covering area.

(b) The macro-state 2 with the phase of collective
decision making.

(c) The macro-state 3, where the first ”hungry”
robots are approaching the docking station.

(d) The robots are docked and start recharging.

Figure 12.32. Collective energy foraging in a swarm of 50 micro-robots ”Jasmine”.

Table 12.3. Parameters and results for several experiments with 3, 6, 10, 30 and 50
robots, ”mixed” – combined behavioral strategy, see more in [Kernbach et al. (2010)],
”unconstrained” – energy-rich environment for 50 robots.

Collective Efficiency Φs

Experiments N energy [% ] Deaths
not-knowing 3 3 174,47 36,58 0
not-knowing 6 6 157,10 16,23 0
not-knowing 10 10 144,14 15,57 3,4
mixed 10 10 140,14 29,56 4
not-knowing 30 30 136,3 13,4 14
mixed 30 30 136,5 23,04 15
not-knowing 50 50 139,9 16,3 19
not-knowing (unconstrained) 50 50 166,15 38,14 0

12.6.5 Concluding remarks on the kinetic foraging model

The kinetic models considered here are useful in optimizing the foraging efficiency
of a robot swam. Experiments confirmed that a variable swarm density, Dsw=3,2
- 18,63 in robot experiments, leads to unscalable behavior (e.g. bottleneck around
Dsw

crit), but utilizes energetic self-regulating through dead robots. This mechanism
finally increases collective energetic efficiency. Both theoretical and experimental
data indicated a necessity to optimize NR1

, NR2
and tR2

. Using several bio-inspired
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behavioral strategies leads to almost a doubling of energetic efficiency in robot
swarms. It was also demonstrated that adaptation of individual thresholds for
critical and hungry states Sc and Sh by changing priorities of tasks Pr(Task) (i.e.
feedback mechanisms) leads to better collective performance. There are a few other
remarks:

• Collective knowledge greatly influences the robotic energy foraging perfor-
mance, whereas exact localization abilities have little impact over it.

• Social robots, as in the ”best” and ”average” case strategies achieved a very
good swarm efficiency but a poor collective energy level. High tolerance to-
wards the needs of the other robots led to self-destruction. The agents worked
until exhaustion and did not try to preserve their own energy. Thus, many
agents died energetically and collective homeostasis was achieved at a very
low level.

• Egoistic robots, as in the ”worst” and ”not-knowing” case strategies main-
tained their collective energy homeostasis at a high level but the swarm effi-
ciency was minimal. In this society, the agents try to work as little as possible.

12.7 Conclusion

In this chapter we have provided a comprehensive overview of collective foraging.
We began, in section 12.2, by defining robot foraging and setting out an abstract
model for generalised collective robot foraging based on a Finite State Machine
representation. We then surveyed strategies for cooperation in collective forag-
ing, including information sharing, physical cooperation and division of labour.
We presented three case studies. Case study 1, in Sect. 12.4, described the special
case in which robots are foraging for their own energy – which is distributed as
discrete ‘food’ items in the environment. Case study 2 in Sect. 12.5 introduced an
information-sharing trophallaxis approach to collective cleaning (i.e. foraging for
dirt) and the case study concluded with a proposal for extending the approach to
true energy trophallaxis. Sect. 12.6 then described our 3rd case study – a kinetic
model of collective foraging – in which the robot collective must maintain energy
homeostasis by foraging for energy from fixed charging stations.

Although the fundamentals of collective robot foraging are now well under-
stood, the engineering realisation of those principles remains a research problem.
Consider multi-robot cooperative robot foraging. Although separate aspects have
been thoroughly researched and demonstrated there has, to date, been no demon-
stration which fully integrates self-organised cooperative search, object manipula-
tion and transport in unknown or unstructured real-world environments. Such a
demonstration would be a precursor to a number of compelling real-world appli-
cations including search and rescue, toxic waste cleanup or foraging for recycling
of materials.

The future directions for collective foraging robots lie along two separate axes.
One axis is the continuing investigation and discovery of foraging algorithms
— especially those which seek to mimic biologically inspired principles of self-
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organisation. The other axis is the real-world application of foraging robots and it
is here that many key challenges and future directions are to be found. Foraging
robot teams are complex systems and the key challenges are in systems integration
and engineering, which would need to address:

(1) Principled design and test methodologies for self-organised collective foraging
robot systems.

(2) Rigorous methodologies and tools for the specification, analysis and modelling
of collective robot foraging systems.

(3) Agreed metrics and quantitative benchmarks to allow comparative evaluation
of different approaches and systems.

(4) Tools and methodologies for provable collective robot foraging stability, safety
and dependability.
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