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Abstract—It is essential for the robot manipulator to adapt to
unexpected events and dynamic environments while executing the
physical contact-rich tasks. Although a range of methods have
been investigated to enhance the adaptability and generalization
capability of robot manipulation, it is still difficult to perform
complex contact-rich tasks, e.g., rolling pizza dough and robot-
assisted medical scanning, without the assistance from a human
in the loop. We proposed a novel framework combining learning
from demonstration (LfD) and human experience to enhance
the safety and adaptability of the robot manipulation. In this
framework, dynamic movement primitives (DMPs) is employed
for manipulation skills learning from demonstrations, and human
correction is applied to update the pre-trained DMPs skills model.
We conducted experiments on the Franka Emika Panda Robot
with pizza dough rolling tasks. The results demonstrate that the
proposed framework could effectively improve the performance
of the physical contact-rich tasks, and the human correction
method through teleoperation provides a potential solution for
advanced interaction tasks with complex and dynamic physical
properties.

Index Terms—Bilateral teleoperation; Compliant movement
skills; Learning from demonstration; Force and impedance
control.

I. INTRODUCTION

ROBOT manipulators have been employed in a range
of fields, e.g., industry, medical examination and space

exploration etc. However, robot manipulators are expected
to deal with more complex contact-rich tasks; For example,
robots continuously interact with the environment physically,
which is ubiquitous during daily manipulation [1] [2] [3]. In
addition, for the autonomous execution of robot manipulators,
the programing manual is time-consuming and in-flexible
for dynamic tasks or environments. Recently, as data-driven
techniques, e.g., deep learning, imitation learning and rein-
forcement learning, are successfully employed in the robotic
community [4], the machine learning methods can also be used
to transfer human-like skills to robot manipulators [5] [6].

The contact-rich tasks, such as in Fig.1, are characterized by
high variability in dynamic tasks or environments, making it
challenging to interact autonomously [1]. Nowadays, the reac-
tive mechanism has been integrated with online planning and
control to deal with these tasks [7]. For example, optimization-
based reactive planning was proposed to generate the real-
time trajectories, and then the torque-based controller was de-
signed to track the generated trajectories [8]. Also, data-driven
methods were used to process online perceptual feedback,
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Fig. 1: Rolling the pizza dough by a robot. The dough often
varies in hardness, requiring the roller to interact with different
forces. When humans perform this task, we can naturally
adjust force, impedance, and motion. When the robot interacts
with the environment, which is deformable and difficult to
model, the robot also needs to adjust the force, impedance
and motion simultaneously.

especially deep learning technology, which is employed to fuse
multimodal feedback. However, the real-time optimization-
based methods often require high computation capacity for
the multiple degrees of freedom (DoF) manipulators. In ad-
dition, optimization-based methods usually assume that the
interaction model is known. Nevertheless, it is hard to attain
an accurate interaction model due to the complex physical
properties of the interaction process. Reinforcement learning
(RL), especially deep RL (DRL), has been proposed to deal
with complex interaction tasks [9]. Deep learning has been
successfully used for machine vision, perceptual information
extraction, etc. The integration of deep learning and RL can
further improve the generalisation capability of multimodal
perception information [10]. However, the DRL often requires
a large amount of data, which is difficult and costly to attain
for robot in practice. Hence, it remains difficult for robot
manipulators to perform contact-rich tasks autonomously [11].

Teleoperation has been widely used in robotics [12], es-
pecially when dealing with tasks in hazardous environments
or remote medical diagnostics, such as ultrasound scanning
[13]. Recently, one flexible solution has been integrating
humans with superior experience and cognitive abilities into
the execution loop of robots through teleoperation [14]. In
addition, robot skill learning from demonstration via teleop-
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eration enables the human-robot skill transfer manipulative
in a remotely feasible manner, and the human-in-the-loop
mechanism can also improve the safety of the robot execution,
especially for the physical contact tasks. However, unlike
the demonstration by observation or kinesthetic demonstration
[15], the learning from demonstration by teleoperation needs
the extra input devices. In terms of the teleoperation inter-
face for human-robot skill transfer, immersive teleoperation
interfaces have been developed to improve the intuitiveness of
the human demonstration [16] [17]. Benefiting from various
interactive devices, such as the Touch from 3D Systems, force
feedback information makes it possible for human operators
to perceive the process of robot-environment interaction [18].
The haptic devices providing tactile feedback also improve the
transparency of bilateral teleoperation [19]. And, this advan-
tage could increase the safety of teleoperation. However, the
teleoperation device also causes problems such as time delays
and significant cognition workloads, especially configuration
differences between leader and follower devices [20].

To address the abovementioned problems in bilateral teleop-
eration, several researchers have investigated interface design
in terms of software as well as hardware to reduce the
cognitive workload [21]. An intuitive teleoperation interface
is the key to transfer human-like skills from humans to robots
[22]. For example, the authors introduced a subspace method
in teleoperation, which improves the accuracy of teleoperation
and reduces the cognitive workload [23] [24]. However, most
of the existing work on skill learning through teleoperation has
focused on learning kinematic skills, such as motion skill and
velocity skill, etc [25]. It is still difficult to transfer compliant
skills from humans to robots.

In this paper, we present a framework for transferring
compliant manipulation skills from humans to robots through
bilateral teleoperation and investigate the human-in-the-loop
mechanism for robot manipulation skill learning and adapta-
tion. First, we develop a teleoperation system based on the col-
laborative robot, haptic device, depth camera, and force/torque
sensor for human-robot skill transfer through teleoperation.
The multimodal feedback, interaction force, and visual feed-
back are employed to enhance the transparency of bilateral
teleoperation. In addition, the human-in-the-loop mechanism
provides a solution to demonstrate and correct the behaviour
of autonomous robots. Compared to the literature [7], the
human-guided correction method can exploit human decision-
making and cognitive abilities to improve the adaptability and
generalization of the skill model. The main contributions of
this paper can be summarized as follows.

• We developed a hybrid control architecture for a bilat-
eral teleoperation system that includes hybrid force and
position control as well as impedance control to achieve
human-robot compliant skill transfer.

• The teleoperation-based system allows human operators
to correct the behaviour of the autonomous robot. The
updated behaviour is employed to update the pre-learned
compliant skills model.

• The proposed solution, as shown in Fig. 2, is evaluated on
the pizza dough rolling of different hardness. The updated
skill model can increase the performance of the dough

rolling, such as the success rate, and uniform force on
the dough. This solution also has the potential to extend
to other contact-rich tasks, such as medical scanning.

The remaining of the paper is as follows: Section II
presents the preliminary knowledge of robotic dynamics and
teleoperation control. The proposed framework is developed
in Section III. The design of the experiment and the results
and performance analysis are present in Section IV. Finally,
discussions and future work are given in Section V.

II. PRELIMINARY

A. Robotic dynamics and control

The dynamics of the general serial manipulator robot in
Cartesian space can be modelled as [26],

M(q)ẍ+ C(q, q̇)ẋ+G(q) = fc + fext (1)

where the M(q) is the inertia matrix in Cartesian space, the
C(q, q̇) is the Coriolis term and G(q) represents gravitational
force. fc is the control force and fext is the interaction force
with the environment. q and q̇ represent the joint position
and velocity, respectively, the ẋ and ẍ are the velocity and
acceleration of robot end-effector in Cartesian space.

For the bilateral teleoperation system, the dynamics of the
leader robot can be described as [27],

Mm(qm)ẍm + Cm(qm, q̇m)ẋm +Gm(qm) = fm + fh (2)

where Mm(qm) is the inertia matrix of leader robot,
Cm(qm, q̇m) is the Coriolis and centrifugal terms and Gm(qm)
represents the gravitational force. fm and fh are the control
and operator force, respectively. qm and q̇m are the joint
position and velocity in the joint space, respectively, the ẋm
and ẍm represents the velocity and acceleration of end-effector
in Cartesian space. Similarly, on the remote manipulator side,
the dynamics of the follower robot can be described as,

Mr(qr)ẍr + Cr(qr, q̇r)ẋr +Gr(qr) = fr + fe (3)

where the Mr(qr) is the inertia matrix of the follower robot,
Cr(qr, q̇r) is the Coriolis and centrifugal term and Gr(qr)
represents the gravitational force. fr and fe are the control and
interaction force executed on the robot, respectively. qr and q̇r
are the joint position and velocity in the joint space, respec-
tively, the ẋr and ẍr represents the velocity and acceleration
of end-effector in Cartesian space. For both the leader and
follower robots, (Ṁi−2Ci) for i = {r,m} are skew symmetry,
which represents that the remote manipulator and the leader
device are passive respectively. The control command for the
remote manipulator is generated by an impedance controller,

fr = Kr(xm − xr)−Drẋr (4)

where Kr is the stiffness matrix, the Dr represents the
damping matrix. xm and xr are the position of the leader and
follower robots, respectively. For the leader robot, the force
feedback is designed to reflect the interaction force between
the follower robot and environment,

fm = Km(−fe −Dmẋm) (5)
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Fig. 2: The overview of the proposed framework. The visual and force feedback provided perceptual information to the human
operator. The control system consists of impedance control and hybrid force and position control to generate the joint torque.
More details of the control system can be found in Fig.3. The skills learning module encodes the manipulation profile fe, pc in
Cartesian space and generates desired pose pd. The teleoperation module monitors the process and provides human correction
ph when necessary.

where Dm is the damping matrix. Km is the scaling parameter.
The stability of the bilateral teleoperation system can be
proved by passivity analysis [27]. The bilateral teleoperation
could provide force feedback for the human operator, which
allows the adaptive impedance skill transfer between the
human operator and robot.

III. METHODOLOGY
A. Dynamic movement primitive

Dynamic movement primitives (DMPs) was proposed by
Ijspeert to study motor control of humans, which was in-
spired by the dynamic systems and human motor control.
The essential of DMPs was to encode the manipulation skills
by a dynamic system. Since then, a number of improved
DMPs have been proposed, such as orientation DMPs [28],
constrained DMPs [29] and robot learning system based on
DMPs [30]. In addition, merging the separate DMPs into a
complex manipulation was also investigated [28]. DMPs can
also be employed to model multiple DoFs system, each DoF
can be modelled separately, and a canonical system achieves
the coupling among these DoFs. For readability, we introduce
the DMPs for one degree of multiple dynamic systems,

τsv̇ = αz(βz(pg − p)− v) + F (x)
τsṗ = v

(6)

where the pg represents the goal position, p represents the
current position; τs is the scaling parameter, the v is the ve-
locity, αz, βz need to be designed, however, these parameters
satisfying αz = 4βz . F (x) is the nonlinear forcing term, which
is used to affect the trajectory. Generally, the F (x) can be be
composed of the Gaussian functions [25],

F (x) =

∑N
i=1 ψi(x)wi∑N
i=1 ψi(x)

x(pg − p0) (7)

ψi(x) = exp(−hi(x− ci)
2) (8)

A canonical system was used to determine the phase variable
x, and the canonical system can coordinate different DoFs,
which can be described as,

τsẋ = −αxx, x ∈ [0, 1] ; x(0) = 1 (9)

where τs represents the scaling parameter, αx is a positive
coefficient, and the initial value of x is x(0) = 1, which can
converge to zero exponentially.

The original DMPs model is used to encode the manipula-
tion skill offline, and it is not suitable for online skill update.
Recently, a sensory-based coupling term was proposed to
achieve reactive planning and control. In addition, the coupling
term could be used to avoid obstacles based on the real-time
perception feedback. Inspired by the work [7], we proposed a
novel formation of DMPs for robot skill update online through
human-in-the-loop,

τsv̇ = αz(βz(pg − p)− v) + F (x) +H(·)
τsṗ = v

(10)

where H(·) is the human interaction terms, which provides a
human interface to update the pre-defined skill online. This
human interaction term is activated only in the shared control
mode when humans interact with the execution process since
the pre-trained skill cannot generalise to new cases. The H(·)
is approximated by a set of radial basis functions as same as
F (x), and the locally weighted projection regression (LWPR)
technique is used to calculate the weights of this term H(·).
Moreover, this term is modified only in the specific DoF, and
this interaction term could be updated iteratively.

H(·) =
{
h(s) γ = 1
0 γ = 0

(11)
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Fig. 3: The architecture of the control system. The required
poses and forces are derived from the skill model and teleop-
eration. The task interface decouples the tasks to each DoF,
and the desired commands are fed to the corresponding con-
trollers. The computed torques from the force and impedance
controllers are combined and provided to the robot.

where h(s) is the output of interaction term trained based on
the human correction. γ = 0 and γ = 1 represent autonomous
mode and human correction mode, respectively.

For the multi-step tasks, it often needs to merge several
DMPs. In this work, we adopt the first method described in
[28], which could guarantee position and orientation to be
smooth. This method requires fewer parameters than other
methods, e.g., smooth acceleration transition, and it is feasible
for multi-step merging without high requirement on efficiency.

pne = ppr vne = vpr (12)

qne = qpr ωne = ωpr (13)

where the pne, vne, qne, ωne are the initial position, velocity,
angular and angular rate of next DMP respectively; the ppr,
vpr, qpr, ωpr are for the last DMP. For the orientation control,
we adopt the unit quaternion based DMPs [28] to model the
orientation skills. The generalisation of orientation skill was
not considered in this work; the details of orientation DMPs
can refer to [28].

B. Hybrid force and position control

Impedance control, proposed by Hogan in 1985 [31],
has been investigated widely for robot manipulator control,
such as compliant control, human-robot interaction, etc. The
impedance controller is similar to a spring-damper dynamic
system, which is used to model the dynamic interaction be-
tween the robot and its environment. This control of dynamic
behaviour allows human-robot and robot-environment safety
interaction. In addition, adaptive impedance control has proven
an effective approach to improve control performance during
the interaction between robots and the environment [32] [27]
[2]. The impedance controller can be implemented in the
joint space and Cartesian space. For the tasks of end-effector
interaction with the environment, the impedance controller
in Cartesian space is more suitable. We implemented the
impedance control in the task space, and the control law can
be described as,

uic = −JT (q)(K∆xt +D∆ẋt + kt) (14)

where the uic is the command in joint space generated by the
impedance controller, the J(q) is the Jacobian matrix associ-
ated with robot configuration, K and D are the stiffness and

damping matrix, which is used to determine the characteristic
of impedance. ∆xt is the position error between the current
position and the desired position; ∆ẋt is the velocity error
between the current velocity and the desired velocity. kt is the
feedforward compensation calculated by the dynamic model
of manipulator.

The hybrid force-position approach investigates the two re-
ciprocal subspaces: twists and wrenches, regulating the contact
force and simultaneously tracking the desired motion. For the
force controller part, a proportional-integral method can be
stable for a high-stiffness control process. The force controller
can be described as [33],

∆f = ℑee(t)−ℑd(t) (15)

ufc = JT (q)[Kfp∆f +Kfi

∫
∆fdt] (16)

where the ℑee = (fTee,m
T
ee) is the wrench measured in

the end-effector coordinate system, generated by interacting
with the environment. Kfp and Kfi are the proportional and
integral gains respectively. The fee and mee are the current
force and torque measured from torque/force sensor in this
work. ℑd = (fTd ,m

T
d ) is the desired wrench, fd and md are

the desired force and torque. The command to the robot is the
combination of force controller and the impedance controller.
The combined command in joint space uc of the robot to
execute a given task can be,

uc = uic + ufc (17)

where the uic is the command generated by the impedance
controller, and the ufc is the command generated by the force
controller.

Based on the hybrid force-position controller, the control
allocation for motion tracking by the impedance controller and
force control is realized by a task matrix. We defined the task
matrix as the control allocation matrix for the n-DOF to realize
the switch among different tasks. We introduce the position
control matrix Mp; hence the force control matrix Mf can be
described as,

Mf = I6 −Mp (18)

Mp = diag(si) (19)

where the task matrix, Mf and Mp, are diagonal matrix, with
the si ∈ {0, 1}, si = 1 represents position control in this
direction, and si = 0 represents force control in this direction.

Different controllers are usually used for a multi-step task
in different stages, for example, impedance control in the
approaching stage and hybrid force and position control in the
rolling stage. It is important to design the transition strategy
when switching between different controllers to ensure smooth
transitions and reduce jitter. The transition of two controllers,
u1 and u2, is realized through the linear interpolation during
the transition windows,

u = (1− β)u1 + βu2 (20)
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where u is the control command during the transition. β=t/T
and t ∈ [0, T ]. T is the transition window. The linear inter-
polation allows for a smooth transition between two different
controllers.

C. Human correction interface

In [14], the authors proposed a shared control interface to
mix human input and autonomous commands. The modifica-
tion strategy by human operators can be described as,

x =xn + δy (21)

where xn ∈ Rm is the nominal robot state, and δy ∈ S(Rm)
is the modification to the robot state variable. S(Rm) is the
correction interface, the input is the modification command,
and the output of the correction interface is the modified
task variables. A nominal task model can be learned through
demonstration offline. A corrective command is generated by
the human operator based on the observations of any errors of
the robot state or the environment state.

The human-in-the-loop allows humans to intervene au-
tonomous execution of the robot through the teleoperation
input device. The human correction command can be modelled
an ordinary differential equation about the input of teleopera-
tion device [14],

δ̈y + bcδ̇y + kcδy = u (22)

where δy represents the human command, kc and bc are
the stiffness and damping parameter of the human correction
dynamics, u represents the output of the haptic device.

The force/torque sensor has noise; therefore, it is necessary
to filter the measurement data. In this work, we adopted the
Kalman filter to reduce the noise, and the Kalman filter’s
update equations can refer to [34]. Other robot state vari-
ables, e.g., position and velocity, are used directly from the
data provided by the Franka Control Interface (FCI), without
additional filtering processing.

IV. EXPERIMENT STUDY CASES

We evaluated the proposed framework through a typical task
in life, rolling pizza dough. This task consists of the interac-
tion of the robot with its environment, a task that requires
both appropriate contact force control and trajectory control
simultaneously. In addition, it requires the robot to adapt its
behaviour to the shape and hardness of the dough. However,
the exact hardness of the dough is practically difficult for
robots to attain in advance. The experimental setup is shown in
Fig.4, and the main components of the experimental platform
are as follows.

• A 7-DoF Franka Emika Panda 1 is used to carry a roller
to perform the dough rolling task.

• A haptic device, Touch from 3D Systems, is used as the
input device of teleoperation. The Touch has 6 DoFs and
two extra control buttons. The button states are used to
switch among the control modes. The pose of Touch is
used to correct the robot state in shared control mode.

Fig. 4: The setup of experimental platform.

Fig. 5: (a) The robot rolls the pizza dough with proper force
and motion. (b) The robot interacts with the soft dough with
a large force, so the roller gets stuck. In this case, the forces
along the X and Y axes are too large, which means that the
task has failed.

• Realsense camera (D435i), carried by Franka Emika
Panda 2, captures remote work scenes. The camera could
provide visual feedback for human operator.

• Control computer running Ubuntu 18.04, which is con-
nected to the Touch device, force/torque sensor, Franka
Emika Panda 1, and the camera. The ROS Melodic is
used to communicate with different devices.

• The force/torque sensor is used to measure the interaction
force during the tasks.

A. Rolling dough skill transfer through bilateral teleoperation

In terms of the demonstration through teleoperation, we
decoupled into two steps, motion skills in the X-Y plane
and force skills along the Z-axis, as shown in Fig. 6. First,
we teleoperate the robot to roll the dough through the Touch
input device. The translation mapping between the Touch and
the end-effector is direct mapping with a scaling parameter
in Cartesian space. And the demonstrated trajectory of the
end-effector in the X-Y plane is recorded. The demonstration
trajectory is used to encode the nominal skills in X-Y plane
motion by the DMPs model. The learned skill can generate
motion trajectories in the X-Y plane for the robot; hence the
motion of the robot on the X-Y plane can be autonomous ex-
ecution. The autonomous execution in the X-Y plane requires
only the current coordinates and goal coordinates in the X-Y
plane.

In the following demonstration, the Touch is used to demon-
strate the force control along the Z-axis alone, while the
motion in the X-Y plane is generated by the learned DMPs. In
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Fig. 6: The trajectories along the X, Y, Z axes in teleoperation
demonstration.
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Fig. 7: The interaction forces along the X, Y and Z axes during
the demonstration stage.

this shared control mode, the human operator only teleoperates
the contact force control, which could reduce the cognitive
work and improve the accuracy of teleoperation. In addition,
this also reduces communication traffic, which is helpful
to reduce the time delay in the human-robot skill transfer,
especially for the bilateral teleoperation in a long distance.
The human could demonstrate to the robot the human-like
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Fig. 8: The robot fails on the soft dough with learned force
skill. The trajectory along Y-axis and the interaction forces
along the Y-axis and Z-axis. The force along the Y-axis (
direction of motion) is larger than 6N (normally, the force
should be within 3N), which means that the roller is stuck.

manipulation skill, how to roll the dough only based on the
force and visual feedback. To reproduce the learned skill, we
let the robot roll the pizza dough with the same hardness
autonomously. The interaction forces along the X, Y and Z-
axis are shown in Fig.7.

B. Robot rolling soft doughes

When the robot rolls soft pizza dough, it needs to adjust
the contact force according to the hardness of the dough. It
cannot accomplish the task only relying on the learned force
skill offline, for example, the large contact force causing the
roller stuck, as shown in Fig. 8 and Fig.5. Although adaptive
force control may deal with the uncertainty of hardness, it is
hard to design a controller to deal with all kinds of hardness,
especially since the properties of the dough are hard to model
and attain in advance. In this case, the human could correct
the contact force on top of the learned force skill through a
shared control mechanism. For example, humans can reduce
the contact force to generate an appropriate contact force for
soft doughs. The human corrects the contact force based on
the interaction force between the roller and the dough (force
feedback via the Touch) and the deformation of the dough
shape (visual feedback via the camera).

We evaluated the learned force skill on a novel dough that is
softer than the one used in the demonstration phase to evaluate
the generalization capability to the different hardness of the
dough. As shown in Fig. 8, this is a failed case where the
roller is stuck because the contact force is too large. Because
the roller only moves along the Y-axis, we provide the motion
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Fig. 9: The human corrects the contact force along the Z-axis
through teleoperation online for the soft dough. The contact
force along the Y-axis is less than 1 N, and the contact force
along the Z-axis is less than the contact force for stiff dough
(around 5N).
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Fig. 10: Success on the soft object. The trajectory along Y
axis and the contact force along Y and Z axis. The contact
force is reduced to roll on the soft dough.

along Y-axis and contact forces along Y-axis and Z-axis. The
force along the Y-axis is too large, which means the task
fails, and the roller is stuck. In addition, we tested on a novel
dough, which is stiffer than the one used in the demonstration.
However, the robot could not accomplish the task in the given
time, and it needed more time to roll because the contact
force was too small. In these cases, human correction is

very useful to update the force skills. Compared to previous
work, the human-guided method to update the skills model is
more efficient. In addition, the human-guided method can also
ensure safety.

For the above case, the human corrects the contact force on
top of the autonomous commands (normal force) to generate
an appropriate contact force for the soft dough. The contact
force perceived by the force sensor is recorded to update the
force skill model. The difference between the corrected contact
force and the nominal force skill is used to train the human
interaction term H(·) in the DMPs. As shown in Fig. 9, for
the soft dough, the force along the Y-axis is less than 1N,
and the corrected contact force along the Z-axis is around
2N. In this work, although we showed the human operator
correct the contact force alone through the human-in-the-loop
mechanism, this method can also be employed to update other
variables, such as the orientation and motion, to meet some
specific requirements in contact-rich applications.

We test the updated skill model with another soft dough.
As shown in Fig. 10, the robot can roll the new soft dough
autonomously. The contact force along the Y-axis is less than
2N, which means that the task is successful. Moreover, the
motion pattern along the Y-axis is reproduced, which is similar
to the learned pattern in the demonstration. Hence, the updated
force skill can succeed in the novel doughs with soft hardness.
In addition, the novel skills for soft dough can be put into
the skill library as a new skill. This online correction and
learning mechanism can expand the skill library built offline.
This framework provides a solution to correct the robot’s
behaviour online through the developed interface, and the
modified behaviour can be learned to update the skill library.

V. DISCUSSION AND CONCLUSION

In this paper, we developed a bilateral teleoperation system
that includes a haptic device, collaborative manipulators, and
force sensors etc. This system can be used to transfer contact-
rich skills from humans to robots in a remotely feasible
manner. And it can provide a human interaction interface
for the human operator to interact and correct the robot’s
behaviour on top of the autonomous commands. Robots
learning to manipulate deformable objects such as dough and
medical scanning is difficult, especially since the interaction
process is hard to model in advance. These tasks often include
dynamic skills learning, such as force and stiffness, as well as
kinematic skills. Therefore the force feedback is essential for
these tasks. In addition, in some cases, humans cannot enter
hazardous environments. The teleoperation-based human-robot
skill transfer provides the solution to deal with this problem.
We adopted rolling dough as a task to evaluate the performance
of this solution, and the results show that the solution can deal
with the uncertainty of the soft object.

In the beginning, the human could teach the robot to
roll pizza dough through the shared control framework. To
deal with the soft pizza dough, the human could correct the
force command on top of the nominal skill output. And the
correction profiles are used to update the pre-learned skill.
The updated skills are put into the skill library. Compared
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with work [14], we exploited the correction behaviour and
provided the skill updated mechanism based on the improved
DMPs model. In addition, unlike the DRL method, the human-
guided skill learning and updating approach is more efficient.
Especially in some cases, it is not feasible to try and update
the skill model, such as medical scanning. The human-in-the-
loop mechanism involving the human ensures safety, and the
human interaction will benefit the robot skill learning.

Although this method can be used to correct the robot’s
behaviour online, it relies on the human to determine if human
intervention is needed. Therefore, we will study the automated
monitoring method to reason about the failure scenarios and
human then start to correct the behaviour. Currently, this
approach is used to modify the contact force, and we will
also investigate how to correct other control variables, such
as orientation and translation, simultaneously. The correction
interface can be optimized to improve intuitiveness and flexi-
bility.
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