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Abstract

Memristors have been compared to neurons (usually spélifica synapses)
since 1976 but no experimental evidence has been offeresiifgort for this po-
sition. Here we highlight that memristors naturally fornstfaesponse, highly re-
producible and repeatable current spikes which can be nseasltage-driven neu-
romorphic architecture. Ease of fitting current spikes witmristor theories both
suggests that the spikes are part of the memristive effetpasvides modeling
capability for the design of neuromorphic circuits.
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1 Introduction

Neuromorphic computing is the concept of using computerpgmmnts to mimic
biological neural architectures, primarily the mammaloain. Although an area
of current and active research, we do not know exactly hovbthm works, how-
ever it is believed that the brain is a neural net. Signalgetralong neurons via
voltage spikes known as action potentials which are caugetiedomovement of
ions across the neuron’s cell membrane, and the signaldpaseen neurons via
chemical neurotransmitters (the gap crossed betweenmeigthe synapse))l[1].
The interaction of these spikes is thought to be a cause of r@aves, thought,
learning and cognition. The long-term potentiation of w&wr is related to a
change in structure of the synaptic cleft, which is thougtresult from the Spike
Time Dependent Plasticity (STDP) of these synapses antt iredtebbian (asso-
ciative) learning([2].

The memristor is the % fundamental circuit element as predicted by Leon
Chua [[3]. First reported experimentally using this ternidigy in 2008 [4], mem-
ristors have been an object of scientific study for at leaty@@rs([5]. Memristor
theory was first demonstrated in a model of the action of naram membranes
in 1976 [6], which was proposed as an alternative to the Hiodblkixley circuit
model) and this has led to the suggestion that they would peoppate compo-
nents for a computer built using a neuromorphic architecfdi. Several simu-
lations of neural nets containing memristors have beeropegd (see for exam-
ple [7]). Recently, it was reported that circuits combinimgp memristors with
two capacitors could produce self-initiating repeatingmdmena similar in form
to brain waves [8].

Perhaps it is not merely the case that memristor models fitonelehavior,
but that neurons themselves are memristive. Thus, we woglelot that advances
in the study of memristors would explain neurological pheeaoa (as happened
with computer science and STDP). A circuit theoretic arialg$ an updated ver-
sion of Hodgkin-Huxley’s model of the neuron has been uradken [9/ 10]. The
Hodgkin-Huxley model is often used to explain the transioissf voltage spikes
along the neuron. However, this model predicts huge indwees which are not
experimentally observed in biology and it has been dematestr[9] that updat-
ing the Hodgkin-Huxley model with memristors avoids thiguiement. A recent
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paper suggested that memristance could explain the STD&uralsynapses|[[2].
The authors used memristor equations to adjust simulaikdssgound a similar-
ity to experimentally measured biological synapse actidij fnd concluded that
a memristive mechanism was behind the biological STDP phenon.

In this paper we will show experimentally that memristorikematurally and
do not require a spiking input to cause them to spike in a magunitatively sim-
ilar to neurons. We shall attempt to quantify the spikes. Wetlhaen demonstrate
that these spikes are also present in theoretical model®wofristors and discuss
the cause of them. We think that utilizing these naturattgtoring spikes will be
the most fruitful way to create neuromorphic memristor aectures.

2 Propertiesof Memristor Spikes

Memristors come in two flavours, charge-controlled (lefig) #lux-controlled (right)
as shown below in Equatién 2 wheyés the chargey, is the magnetic flux)/ is
the memristance and’ is the memductance (inverse memristance) [3]

V(t) = M(q(t)I(t), I(t) = W(e()V(t).

For a charge-controlled memristor we would input a curréngnd measure
the voltage )V . Biological neurons may be described as charge-contrbkeduse
itis the movement of ions that causes the change in voltagieggiise to a voltage
spike. Our memristors are flux-controlled and a change itagel causes a spike
in the current. Thus, creation of a neuromorphic computeéh wiemristors will
be using the complimentary effect to the one utilized by regtin that memris-
tors have voltage-change-caused current spikes and reebase current-change-
caused voltage spikes. That both types of spikes have aasifaiin arises from
the similarity in the underlying electromagnetics, in thiatuits can considered as
being constructed with either a voltage source or a curi@nts.
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Figure 1: Current spikes recorded from a memristor subjetdehe voltage square
wave in figurd 2. The spike heights are highly repeatable amditgtively resemble
neuronal spikes.
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Figure 2: Voltage square wave that the memristor measuriguire[1 was subjected
to.

Our memristors are flexible sol-gel titanium dioxide geldesysandwiched be-
tween aluminium electrodes [12,]13] and they show a distiadarge spike that
occurs when the voltage is changed. The experiments repbete were carried
out with a Keithley 2400 sourcemeter sourcing voltage. &hae no spikes in
the voltage profiles, (see Figurk 2) and no current spikeser when the same
experiment is done across a resistor. It has been suggéstethése spikes are
capacitance; however the timescale is too long. The spi&es been reported by
other groups in their memristors (see for example] [14\véa@r they are usually
overlooked or attributed to artefacts arising from the expental set-up or not
reported at all (many researchers only reportthe V' curves to demonstrate that
they have a memristor). However, the current spike is arlibcating process that
is responsible for the frequency dependence ofitheV curves. In Figurgl2 each
voltage step had 40 timesteps @.3s) to equilibrate. If the voltage is scanned
quicker than this, the current has not equilibrated and thwent is higher than
the equilbration current. Thus, a faster switching timeéases the hysteresis of
the I — V loop. This effect increases with frequency until it reaches limit
where the voltage frequency is too fast for the memristoretax at all and the
I — V curve just traces out the maximal spike currents for eactagel

These current spikes can be seen whenever a voltage chaoges across
the memristor. Unlike some neuronal spikes, the voltage do¢ need to spike.
The current spikes are highly reproducible. For the expeminshown in Figurgll
(10 pairs of positive to negative switches), the standavibtion was 0.0729% of
the mean for the negative voltages (whare= 10) and 0.1192% of the positive
voltages (wherer = 9, due to incomplete recording of the first spike)). For the
repeated spikes in figufé 3 (3 repeats each of both positidenagative ramps,
as shown in figurEl4) the largest difference between the spikent repeats was
only 3.06x10~?A and only 2.33 10~ *° A for the equilibrated current - both taken
from the positive side as it has a larger hysteresis thandbative side.

The direction of the current spikes is related to the changeitage, not its
sign, so a change from a positive voltage to zero (turningvdiiage source off)
gives a negative spike and vice versa for a negative voltageio. The spike
current still flows for a short while after the voltage souhas been turned off.
This lag is a general thing and has been recorded in sevédietedit devices. In
different devices the spikes are the same shape and seenfdfolaeng similar
dynamics. The spike current is proportional to the equalied current. Intrigu-
ingly, spike shape closely resembles that of Bi and Poo’sexpentally observed
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STDP function[[11] and thus could be used to perform a sinfiilaction.
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Figure 3: The spikes for 5 successive runs up and then dowmltzge staircase shown
in figure[4. The runs are coloured and overlap. The spikesighaytreproducible on
successive runs
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Figure 4: Voltage ramps for figufé 3. 5 sets of positive vadtagmps-negative voltage
ramps were run, to give the spike response in figure 3.

3 A Mathematical Description of the Spikes

Figure[® shows thd — ¢ response of a single spike to a voltage step like that
shown in figuréb. The current spikes are roughly the sameeslaayl thus we can
make some statements about the nature of the current spikesmristors, which
should also relate to the voltage spike in neurons. As shavigure[®, there is a
steady-state current,., a spike current, and a transition between the two which
is a time-dependent transieift). We don't currently know if thé(¢) is dependent
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Figure 5: An example of a voltage step as applied to a memristo
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Figure 6: An example Spike. Red dashed lingy; orange dotted liney; green
dot-dashedys; blue dottedrgg. Horizonal purple dot-dashed lineig, and the spike
height isig.
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Figure 7: The resistance profile for the memristor subjettetie voltage in figurgls.
Note that the ‘zero’ resistance is due to zero measuredaasis as no voltage is ap-
plied, not a true zero resistance.

onip or not. We do know thaty is related tai... Until a thorough experimental
study is undertaken, we shall assume (&tis not dependent oip as this is what
the experimental evidence seems to suggest.

Thus, the time-dependent current respoid$g), is assumed to be of the form:

I(t) = o +i(t)

whereip < i(t) < 0.
The current response to the voltage is thus:

The time taken to get té(t) = 0 the equilibration lifetime which we shall
call 7, and this lifetime is the short-term memory of the memristod relates
to its dynamical properties; from longer time spike studigth our devices, we
know thatr is approximately 3.3s. We shall define the concept of thelibga
tion frequency as the ‘frequency’ associated with changidgscretised triangular
voltage waveform such that each voltage stdpsts forr seconds.

We know that
Ge = /[(t)dt.

thus, the total measured charge in a memristor spike is
A(Ispike - / = 'L(t)dt + iooT.
t=0

This number includes all the charge carrying species inyhtem. Knowledge of
this number may help us elucidate the mechanism of the spi@sour example
system shown in figur@s 6, we haveigiof 1.37x 1078A, ani., 0f 2.40x 107 1°A,
with the 759 of 0.56s and amg of 0.84s, which shows how quick the fall off is
(andTgs of 1.13s andrgg of 2.34s, as drawn in figufé 6). The resistance profile for
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the memristor subject to a voltage step as shown in figure baas in figure Y.
This is approximately a straight-line which is interestem it is not required to
be by memristor theory and tells us that the spike currentorese depends on a
quantity in the system that is varying with linearly time.

4 The Mem-Con Theory as Applied to Mem-
ristor Spikes

The mem-con model of memristante|[16] is a recently annalitiesoretical model
that relates real worlg and¢ to Chua’s constitutive equations and has been suc-
cessful in modeling our memristors [17]. The mem-con théwy the concept of

a memory property, the physical or chemical attribute ofdéece that holds the
memory of the device. In titanium dioxide (and many other$3 related to the
number of the oxygen vacancies. The presence of oxygen siasaallows the
creation of a doped form of titanium dioxide TiO, which is more conducting
than the undoped (Ti§) form. The mem-con theory requires that we calculate the
memristance from the point of view of the memory property, ihe ions.

Theoretically, the voltage step is a discontinuous fumcimd the voltage
changes from voltage A4 to voltage B,Vs in an infinitesimal, i.e. AV =
YB2VA ¢ — §t. Experimentally this is not the case of course, but the nespo
timescale of the memristor is long enough that we needn’ryabout this ap-
proximation.

Thus to elucidate what happens to the memristor during @&ctepike, and
how the final current., is determined, we take differences of the mem-con theory.
We shall assume our device is a Bi@emristor, with oxygen vacancies acting as
the memory property [16].

As a reaction to the voltage step, we get a current spiiée,which can be
expressed as a volume current within the devicAdsas given by:

Agupo L
vol
for vacancies moving in thez direction wherey, is the charge in that volume
due to the vacancieg, is the ion mobility of vacancies and is the average
electric field causing the movement of the vacancieswaids the volume full of
moving ions. The change in the magnetic field at ppinﬁé(p) would then be:

AT ={ ,0,0}

= AJIZF

where is the permittivity of a vacuum, and# are the unit vectors fog’
and7 where7 is the vector of lengthr from the volume infinitesimad~ to point
p, given by = {r.i,r,j,r.k}.

Thus, to get a measure of the effect of the spikes, we needwe #os inte-
gral over a time-interval covering from the start of the gpi& the tail-off of the
memristor’s response. The voltage input is non-integratalg we can integrate
from the start of the step, which we shall taketés) wheren is the number of
the voltage step, which is zero for this case if it is underdtthat this is not the
zero at the start of an experiment with many steps (i.e. weamsidering a case
as in figure ) to when the memristor has responded, which i tstke asT.
Dependent on the situatidh can be one of many values, for a staircase we would
presumably wanf” = t(n + 1) wheret(n + 1) is the time that the voltage step
is input. For a response to a single step function we could tiad integral out to
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oo (which is what we shall do here). For experimental purposesnght be more
interested in integrating to or Too.
Solving the integral gives:
AB(p) = f—gLuqu{Q —xzPy,zyP.}
with

F
2 (Aw? + E2 + F2)3
1 (AwE (P2 (B2 + P2 1 a+b))
2AwEF c

( AwFE
+F arctan
FvVAw? + E2 + F?

B
2 (Aw? + B2 + F?)3
1 (BwF (B (B2 + )" +a+b))
2AWEF c

( AwF )
+F arctan
EvVAw? + E? + 2

where
a=Aw' (2E° + F?)
b= Aw® (2E* + 5E*F? + 2F*")
3
c= (Aw® + F?) (E* + F?) (Aw® + E* + F?)? .

Where the effect on the magnetic field is due to both the inffluxharge and
the resulting movement of the boundary between doped angpaadTiG,.

To calculate the change in magnetic flux through a surfacecaded with this
field, ¢, we need to take the surface integral

Ap = /A§~ dA

wheredA is the normal vector from the surface infinitesirdal.

As it is a surface integral, to calculate the magnetic flux wechto pick a
surface to evaluate over. It makes sense to choose a surtaamtrelates to one of
the surfaces of the device. Picking the surface just abaveehice ( < = < D,

0 <y < E, z = F), we use the surface normal area infinitesindal, which is
given bydA = {0,0,%7}. As is standard in electromagnetism, we integrate over
the entire area. The limits of the surface are taken to be ithertsions of the
device.

Thus we derive the general form of the magnetic flux passirautih a surface
i-j: where, because is entirely dependent of, which is time-varying, we can
include the time varying effects by taking the differergitlus

8 = L2 LpvijPeda, @)
47
And, as in mem-con theory?], by using Chua’s constitutive relation for the

memristor, we can then arrive at the change in the Chua memcis as experi-
enced by the ions:
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AM, (Aqy (1)) = UX po AP, (Agy (1)) ®)

where we have gathered up the constants and explicitlyded®.’s dependence
ongy.
EquatioriB can be considered as three separate parts:

1. U, the universal constantg2.
2. X, the experimental constant®.E' L.

3. the material variablez, Py, (calleds is ref [!IMem-Con]), this includes the
physical dimensions of the doped part of the device and tliesgieed of
the dopants.

Writing out the differences explicitly of equati@h 3 we erglwith:
M(B) = M(A) + UXpo[Pr(q5) — Pr(ga)l;

which allows us to calculate how the final Chua memristanoefknowledge
of the peak and final currents. The Chua memristance is writtethe vacancy
charge, so to put it into the standard format for the eledtroarrent we need to
scale it thus:

Ry =CuM,

whereR) is the electronic resistance of the doped part of the meonrgstdC'y,
is a fitting coefficient.

4.1 Conservation function

The memory part of the function only describes the effecthaf memristance
change on the doped part of the memristor. To cover the otheme use the
conservation function, this is most easily expressed imsenfw(t), butw(t) is
related tog(t) by
poLq(t)
w(t) = EFo,
Thus, the difference in conservation functidhR.on, Written as a difference
equation is:

(D — [w(B) — w(A)]) pos
EF

which based on the definition of resistivity and whegg is the resistivity of
the undoped part of TiQ

The mem-con model describes a memristor by being the sumeahtimory
and conservation functions (both written for the electyanrsd this then gives us
the following expression for the change in time-varyingsesice,R(¢), as mea-
sured after a change frobly — Vg as:

Rcon(B) = Rcon(A) +

_ poffD
AR(t) = CmM(A) + Rcon(A) + —EF

+errUX pio[pr(gs(t)) — pr(ga(tr))]

_ Lposipo[gs(t) — qa(tr)]
E2F2y, '

where we have substituted for. This equation has two parts:
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1. S, the time-invarient part, which is:
cmM(A) + Reon(A) + 2522

2. Y, the time variant part:
emUX po[pr(ga () — pr(ga(tr))]

_ Lpogrpvlap(t)—ga (tT)]
E2F2v, ’

the last two terms which are both dependent;gremembep;. is dependent ow
but can also be written in terms gf

In the above equatidd 4 highlights a few subtleties of theehqd, andq are
time-dependent and thus change after the voltage stepWiom» V. If we ask
the question of what the difference will be between the daaited current ats
and that al/z, AR, 5., equatiori¥ collapses to:

_ poffD
AR = cnM(A)+ Reon(A) + P22

+emUX po[pr(gs(7)) — pr(ga()))

 Lpotpiolgn (1) — qa(7)]
E2F2y, ’

which is time invariant and allows us to predict the valuehef¢quilibrated current
after a voltage step from the equilibrated current from the efore.

What if there was previous step in which the device did noflémate toi..?
This would happen if the voltage was changed quicker tham. T" whereT < 7.
Thega(tr) is notga(7) and thus needs to be shifted by its value as a proportion
of 7. As an example, if we sped the voltage ramps up to 90% of thifitegtion
frequency,ga would bega(m90) and the length of a time step would be&,. At
first glance it might appear that this would merely modul&gs dtarting point for
gz (t), which, at times under < , this would be time dependent. But there is the
interaction betweegg (t) andqa (¢7), the memristor hasn't finished responding to
V4 and that response should be mixed in wiith, further complicating predictive
efforts.

5 Modeling Memristor Spikes

The mem-con model consists of sum of two components: the mefanction,
M., and Conservation functioR.. The memory function has a fitting parameter
cm Within the model to account for the conversion between theeri@d's resis-
tance as for an oxygen vacancy and as for an electron. Them@ation function
has the fitting parametet. which accounts for the resistivity of the undoped ma-
terial, posr, Which may not be the same as the bulk titanium dioxi&g,, is the
final fitting parameter and relates to the resistivity of tbpetl material, which is
the memristor in the equilibrated state and any resistantieel wires. The fitted
equation is

Vv \%
" Ron  ceRe(t) — emMec(t)

As figured8 anfl9 shows, the mem-con model fits these spikesweil and
much better than an exponential fit. For the positive spilkg,— 3.83 x 10°,
ce = 1.76 x 10% andV/Ron = 2.97 x 10~?, with a summed square of residuals
of 1.61x10717. For the negative spike;s — 1.06 x 10°, ¢, = 1.86 x 107¢
andV/Ron, = —3.16 x 10, with a summed square of residuals of @3 ~'".
For the exponential fit] (t) = AeM, andA = 3.96, A = —19.5 with a summed
square of residuals of 2.4307'°. The exponential fit could be fit to either the
short time spike or the long time tail but not both, the shertrt spike fit goes

I(t)
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erroneously to zero and the long-term spike fit grossly @stimates the size of the
spike. Furthermore, there is no experimental justificattrusing an exponential
fit, unlike the mem-con fit. This model can be utilized to pericimulations of
memristor spiking networks to test out possible neuromigrpithitectures.
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Figure 8: A longer-term spike response fit by the mem-conrthe@he mem-con
theory fits the experimental data well, the best result §ittive data with an exponential
is added as a comparison. Blue dots: experimental datainedrhem-con fit, green
line: exponential fit to the spike.

6 What isthe M echanism?

The memory property of these memristors is the oxygen iosisally viewed as
positive holes in a semi-conducting material. We suspextttie motion of these
ions is behind both the spikes and the memristance as welatestiiat the two are
the same phenomena. The current that flowss-at0s may be the ionic current,
which would have a greater inertia, and thus takes longeiofpmpared to the
electrons, which may explain the cause of the devices regterThis current flow
can also explain the open-loop memristors (suggested Ishreand di Ventre [18]
to explain experimental results such las/ [19] which are simd ones seen in our
labs and others’). The spike shape would then be the restlieaquilibrating of
the ionic current to a change in voltage. We expect that thegcale and dynamics
of the spikes will relate to the frequency effects seen in nigtors. However, there
is much further experimental work to be done to prove thishmasm.

7 Comparison between memristorsand neurons

Chua’s definitions of his two types of memristors, flux andrgkacontrolled, was
given above. The mem-con model has the concept of a two-syetém where
we have two charge carrierg,our memory property and™ the electronic current
which is what is measured in an experiment. Level O is theiogiship between the
vacancy charge; and vacancy fluxy. This is experienced at level 1 by resistance
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Figure 9: A longer-term negative spike, demonstrating thatnegative spikes are fit
equally well by the mem-con theory. Blue dots: experimedgah, red line: mem-con
fit.

changes R(t)) which effect the electronic currenf,- . The circuit measurables
are the voltagel” and the total current wherel = % + 1.

For our memristors, driven by a voltage, the right hand sfdegare[I0 sum-
marizes the operation. There is a change in voltage, whithacthe electrons
and the vacancies, causing a change in the number of chamiered\e™ and
Aq. The change iy causes a change in the magnetic flux associated gndttd
thus a change in the Chua memristance. This, due to the catiserof space,
causes a change in the amount of material described by tlser@tion function
R., which then changes the total resistadk®&. This change in resistance will
draw more currentg™ and thus the change in the number of electrons is influ-
enced by both the change in voltage and the change in resésthat change has
caused. The change in total current is due to both the etectod the vacancies.

A neuron is the opposite way round, see the left hand sidedfifigure[10.
The cell is always pumping ions back and forth, so we have aggaurrent due
to an influx of charge carrier. This causes a change in magfiet and affects
the total resistance (the values of the memory and conseminctions for this
system have not yet been worked out). This change in resistzauses a voltage
spike. Thus, similarities can been seen between neurotiabecsspikes and mem-
ristive current spikes, in that they are the opposite waydowith respect to the
circuit measurables, in that the memristor as operatedib@reurrent response to
a voltage-sourced circuit, and the neuron is a voltage respto a current-sourced
circuit. Essentially the shape of the circuit variable, tleat which is being mea-
sured, is qualitatively similar.

8 Towards Neuromorphic Computing

It has been suggested since 1976 that neurons are memrhativexperimental
evidence for neuron-like spiking in memristors had not bastated or analyzed in
this way before. If this spiking behavior is an integral fesimemristance then it
is evidence for the suggestion that neurons may be meneristaction and further
understanding of memristor theory may further the neuioldginderstanding.

41



Neurons Memristors

o qQ 17T

+—b O

V V I

Figure 10: Scheme

This work shows that to make neuromorphic computers thatpeoenwith
spikes memristors are an obvious choice for this task asspigg naturally. Inter-
ruption to the equilibrating current curves as shown in £gig], by, for example,
changing voltage, would potentiate the connection by nyaalifthe memristance
and could thus be used to do STDP with memristors withoutireguCMOS
neurons to generate the spikes.

9 Conclusion

Memristors, when subject to a change in voltage, undergar@muspike. This
spike has been shown to be reproducible and repeatable. &heaon theory
have been shown to fit the time-dependent current behavithironly two fitting
parameters (which come from the missing material valuekertheory) suggest-
ing that this] — ¢ spike behaviour is an aspect of memristance. Rewriting the
mem-con theory as a difference equation allows the fornwiatf a predictive
equation to related the equilibrated currents at diffe(antl successive) voltages.
Application of the equilibration lifetimer() to this equation highlights where the
time-responsive interactions might arise in a memristatched faster than the
equilibration frequency.
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