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Abstract — In this study, an initial robust stability analysis 

procedure is proposed to test the performance of the designed 

U-pole placement control systems. Unlike the classical design 

procedures for non-linear control systems, the control-oriented 

U-model based non-linear control systems cancel the 

non-linearity of the non-linear models. Therefore, the closed 

loop transfer function of U-pole placement control system can 

be regarded as a linear block. Once the internal parameter 

changes, the parameter variation of the closed loop 

characteristic equation can be detected by the least squares 

method to fit measured input and output. The stability margin 

of the closed loop system can be determined by using LMI 

(Linear Matrix Inequality) based robust stability analysis 

procedure. In this study a Hammerstein model is selected to test 

the robust stability of the U-pole placement control systems. The 

simulation results demonstrate the proposed procedure 

effective. 

Index Terms—Nonlinear control systems, U-Model, 

robust stability, pole placement controller 

I. INTRODUCTION 

ontrol problems arising in a wide variety of engineering 

fields are characterised by essential nonlinearities. In this 

case, pole placement approach generally cannot be directly 

applied because the dynamic behaviour of nonlinear plants 

cannot be easily determined according to the position of zeros 

and poles. It is obviously that applying pole placement to 

nonlinear plants is to synthesise a control system in such a 

way that the nonlinearities of the nonlinear plant should be 

removed and the resultant closed loop system behaves 

linearly.  

It must be noted that the main difficulty in the design of 

nonlinear control systems is the lack of a general modelling 

framework which allows the synthesis of a simple control law 

[1]. In some instances linearizing structures have been used 

but these suffer from ‘local applicability’ [2], [3] and 

therefore, are not very attractive. In order to simplify the 
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control law synthesis part in nonlinear modelling, a new 

control-oriented model termed as the U-Model has recently 

been suggested [1]. The U-Model has a more general appeal 

as compared to other non-linear models (NARMAX model 

and Hammerstein model). Additionally, this model is 

control-oriented in nature which makes the control synthesis 

part easier. Specifically, the control law based on the 

U-model exhibits a polynomial structure in the current input 

term.  

Based on the U-Model, pole placement controllers [1] for 

non-linear dynamic plants with known parameters have 

recently been proposed. Some previous works [4], [5] 

discussed how to design a pole placement based controller 

using the method of U-Model. Other works [6]-[9] focused on 

the research of different types of controllers enhanced by 

U-Model. However, the parameters of non-linear plants in 

these studies are all regarded as given without considering the 

uncertainties. Furthermore, the robustness of U-Model based 

controllers is rarely concerned because it is hard to describe 

the control-oriented prototype as a state space expression. 

Motivated by some previous theoretical results [1], in this 

study a designed U-Model based pole placement control 

system is used for the robustness test. The uncertainty of the 

non-linear plant is taken into consideration and the parameter 

changes of the close loop system are selected for robust 

stability analysis.  

The main contents of this paper are divided into four 

sections. In section 2 the designed U-Model based pole 

placement controller is introduced to represent the 

fundamental methodologies. In section 3 the basic robustness 

analysis is introduced for implementing system robust 

stability study. In section 4 a step by step procedure is listing 

of proposed robustness analysis. In section 5 a Hammerstein 

model is selected to demonstrate the robustness analysis and 

the corresponding simulation results are presented with 

graphical illustrations. In section 6 a summary of the paper is 

presented.  

 

II. DESIGNED U-POLE PLACEMENT CONTROLLER 

The U-pole placement controller design proposed by Zhu 

and Guo in [1] will be presented in this section as the 

fundamental methodology.  

Consider single input and single output (SISO) non-linear 

dynamic plants with a NARMAX (nonlinear auto-regressive 

moving average with exogenous inputs) representation of the 

form  
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where y(t) and u(t) are the output and input signals of the plant 

respectively at discrete time instant t, n is the plant order, f() 

is a non-linear function, and the modelling error term e(t). 

The control oriented model can be obtained by expanding the 

nonlinear function f(.) as a polynomial with respect to u(t-1) 

as follows 

                             
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j tutty
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where M is the degree of model input )1( tu , parameter 

)(tj  is a function of past inputs and outputs u(t-2), …, 

u(t-n), y(t-1), …, y(t-n), and errors e(t), …, e(t-n). By this 

arrangement, the control oriented model can be treated as a 

pure power series of input u(t-1) with associated time-varying 

parameters )(tj . 

Fig. 1 shows the block diagram of the U-model based pole 

placement control system. In the U-pole placement design, 

the U-model is firstly transferred from the non-linear model. 

With the polynomial equation of U-model as a root solver, the 

Newton-Raphson algorithm can be used to find the controller 

output.  

 
Fig. 1.  Block diagram of U-pole placement control system 

 

A standard reference [10] is used to develop following 

formulations for designing pole placement controller. 

Consider the U-model of (2.2), a general controller can be 

described by 

                              )()()( tSytTwtRU                              (2.3) 

where w(t) is the reference for output target and R, S, and T 

are the polynomials of the forward shift operator q. 

The control law of (2.3) represents a negative feedback 

with transfer function –S/R and a feedforward with transfer 

function T/R. It thus has two degree of freedom. The block 

diagram of the closed loop U-pole placement control system 

is shown in Fig. 1. The output y(t) can be linked to the 

reference w(t) as 
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where polynomial cA  is the closed loop characteristic 

equation. The polynomials R S and T can be resolved by a 

Diophantine equation To make control output equals the 

desired output, which means that the steady state error equal 

to zero at the control output. The polynomial T is specified 

with )1(cAT   from equation (2.4). The key idea of the 

design is to specify the desired closed loop characteristic 

polynomial cA , then resolve. The signal U(t) can be obtained 

by (2.3) as long as polynomials R, S, and T are determined. 

With U(t) a root solver, Newton-Raphson algorithm [11], can 

be used to find the controller output u(t-1).  

The identification error and stability of the controller of the 

U-pole placement control system have been discussed in [1]. 

An enhanced Newton-Raphson algorithm is proposed to 

guarantee the stability of the controller in a minimum phase 

system [16]. 

Due to the U-model framework, the non-linearity of the 

non-linear model is cancelled. The closed loop of U-pole 

placement control system behaves similarly to that of a linear 

system. The equivalent block diagram of U-model based pole 

placement closed loop system is shown in fig. 2 

 

Fig. 2.  Equivalent block diagram of U-pole placement control system 

 

III. BASIC ROBUSTNESS ANALYSIS 

In the robustness analysis of the control systems, the 

definition of uncertainty is very significant [13]. To design an 

effective control system, a complex dynamic plant should be 

described as a relative simple model. The model uncertainty 

always exists in the control systems. Besides the uncertain of 

the simplified model expression, the uncertainties are caused 

by the environmental change, components aging, parameters 

drift and unknown errors. This uncertainty is quite different 

from the external factors such as external disturbance and 

measurement noise. In this section, the disturbance of internal 

parameter variation is picked up as the first concerned 

uncertain factor. The robustness analysis includes two 

aspects, one is the robust stability, and the other one is robust 

performance which means make control system not only has 

stability robustness, but also satisfy some performance 

constrains.  

Consider an uncertain parameter system [12] 

                               𝑥̇ = 𝐴(𝛿)𝑥(𝑡)                            (3.1) 

where 
nx R  is state vector, and ( )A   is the function of 

real parameter vector 
1[ ,..., ]T k

n R    . Assume that the 

uncertain parameter   takes value from the given set  , thus 

the uncertain system (3.1) is always asymptotical stable under 

this system robust stability condition. According to the 

uncertain parameter   is time varying parameter or not, the 

uncertain system (3.1) is analysed by the different processing 

methods. A suitable approach of studying the stability of time 

varying system is the Lyapunov stability theory.  



 

 

 

To all the uncertain parameters  , if and only if the 

positive definite matrix 0P   satisfies  

                         ( ) ( ) 0TA P PA                                    (3.2) 

The uncertain system (3.1) is quadratic stable. In such a 

quadratics stable system (3.1), the quadratic form of 

Lyapunov function is obtained from equation (3.2) 

                         ( ) ,  TV x x Px                                         (3.3) 

The equation (3.3) satisfies 
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According to Lyapunov stability theory, the uncertain system 

(3.1) is asymptotical stable. Note that the asymptotical stable 

uncertain system which is so called robustness stability can be 

obtained from the system quadratics stability.  

Generally,   is defined by an infinite set. Therefore, the 

definition of quadratic stability requires testing the feasibility 

of infinite quantities of matrix inequalities. It is obviously 

impossible to obtain results in a specific control system.  

Consider in an uncertain parameter system (3.1), the matrix 

( )A   is described as 

           
0 1 1( ( )) ( ) ... ( )k kA t A t A t A                  (3.5) 

where 
0 ,..., kA A  is known n n  real constant matrixes, and 

uncertain parameter ( )i t  is the bounded time varying 

function, where ( ) [ ( ), ],  1,2,...,i i it t i k     .  

Define a vertex set as: 

0 1{ [ ,..., ];  , 1,..., }k i i ior i k              (3.6) 

The allowed value range of uncertain parameter   is a 

convex cell of vertex set, which means that a set is constituted 

by all convex combinations of the midpoint of vertex set 0 .  

Theorem the uncertain parameter system (3.1) with the 

matrix ( )A   (3.5) has quadratic stability, if and only if a 

symmetrical positive definite matrix exists, the LMI (3.2) is 

tenable [12]. 

It should be noted that this theorem establishes a basis for 

developing the algorithm for the LMI based robust stability 

margin analysis used in this study. 

The set   is infinite, but 0  is a finite set. Following the 

theorem, the only need is to test if the LMI true or false so that 

the system quadratic stability can be estimated. The condition 

of the system quadratic stability is to judge the feasibility of 

linear matrixes based on a group of LMI. The question of the 

feasibility of LMI can be solved by the MATLAB LMI tool 

box.  

A simple approach to examine the system quadratic 

stability is using LMI tool box in MATLAB. It supplies the 

function to test the quadratic stability of the uncertain 

parameter system (3.1). This function is determined the 

maximum range of the uncertain parameter to keep system 

quadratic stability, which is the maximum quadratic stability 

area. Denote that 
1 1

( , ), ( , )
2 2

i i i i i i          , 

where ( ) [ , ]i i it    . The maximum quadratic stability 

range of closed loop system is to find an estimation  , which 

is satisfied the quadratic stability with all 

[ , ]i i i i i       .  

The least square recurrence method is used to estimate the 

parameters of the closed loop transfer function via measured 

input and output [10]. 

Consider a linear regression model 

                                 ( ) ( )Ty k h k                            (3.7) 

where )(ty  is a matrix of measurable quantity, 

 ( ) [ ( 1) ... ( )  ( ) ... ( )]Th k y k y k n u k u k m    , and 

1 2 0 1[ , ,  ... , , ,  ... ]T

k j        is an n-vector of unknown 

parameters, called parameter vector. 

The algorithm of the least square method is specified as 

( ) [ ( ) '( )] ( 1)P k I K k h k P k  
1( ) ( 1) ( )[ '( ) ( 1) ( ) 1]K k P k h k h k P k h k      

ˆ ˆ ˆ( ) ( 1) ( )[ ( ) '( ) ( 1)k k K k y k h k k         

where ( )P k  and ( )K k  are the gain matrixes. The parameter 

vector ̂  can be estimated by the previous algorithm via the 

measured input and output. 

In the U-pole placement control system, the closed loop 

transfer function can be obtained from (2.4) 
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The least square algorithm can be estimated the 

1 2 0 1[ , ,  ... , , ,  ... ]T

c c ck ja a a t t t  in 

c

T

A
.  

Due to the limiting condition of the LMI, the estimated 

discrete transfer function of closed loop system is necessary 

to be transformed into continuous transfer function. The 

following formula is used [15] 
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where F(s) is the transfer function of continuous system and 

F(z) is the transfer function of discrete system. 

 

IV. THE PROPOSED ANALYSIS PROCEDURE 

A step-by-step procedure for the robust stability study of 

U-model pole placement control system can be specified as 

the follows: 

Step 1. Design the U-model controller for the selected   

non-linear model to reach the requirement of desired 



 

 

 

closed loop characteristic equation [1]. 

Step 2. Determine the range of the uncertain parameter 

for the selected non-linear model and test the system 

response of the control system. 

Step 3. According to the measured input and output, use 

least squares data fitting approach [10] to find the 

parameter range of the closed loop characteristic 

equation (2.4). 

Step 4. Obtain the continuous system transfer function 

from the discrete system transfer function (2.4). 

Step 5. Use LMI [12] based robust stability analysis 

equation (3.5) to obtain the stability margin of the 

closed loop system. Normally MATLAB LMI 

toolbox can be used to obtain the numerical results. 

 

V. SIMULATED CASE STUDIES 

A Hammerstein model is selected for the robust stability 

test. The closed loop characteristic equation is specified with 

                      4966.03205.12  qqAc                        (4.1) 

Therefore the closed loop poles are a complex conjugate pair 

of -0.6603  j0.2463 . This design specification corresponds 

to a natural frequency of 1 rad/sec and a damping ratio of 0.7. 

To achieve zero steady state error, specify 

               1761.04966.03205.11)1(  cAT           (4.2) 

For the polynomials R and S, specify 
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21
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rqrqR
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
                                       (4.3) 

Substitute the specifications of (4.1) and (4.3) into 

Diophantine equation of (3.5), the coefficients in polynomials 

R and S can be expressed with 

                           
3205.1

4966.0
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sr
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To guarantee the computation convergence of the sequence 

U(t), that is to keep the difference equation with stable 

dynamic, let 009.09.0 21  rr . This assignment 

corresponds the characteristic equation of U(t) as 

0)01.0)(89.0(  qq . Then the coefficients in polynomial 

S can be determined from the Diophantine equation of (4.4) 

4876.04205.0 10  ss  

Substitute the coefficients of the polynomials R and S into 

controller of (3.1), gives rise to 
)1(009.0)(9.0)1(  tUtUtU  

                            )1(4876.0)(4205.0)1(1761.0  tytytw  

Therefore the controller output u(t) can be determined. 

Consider the following Hammerstein model [1] 
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The corresponding control oriented model is obtained from 

formulation (2.1) 
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2
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The system response under the proposed pole placement 

control approach has been analysed in [1]. It can be seen from 

simulation result that the resultant closed loop system 

behaves similarly to that of a linear system, which is due to 

cancellation of the nonlinearity by the proposed 

control-oriented model and controller design approach. 

However, if the internal parameter of the non-linear model 

is changed, the controller performance will not be same 

standard and that’s the proposed robust stability analysis 

procedure which is going to be studied in the simulations. 

 

Case I: For the selected Hammerstein model, the time 

varying parameter )(0 t  was determined as the unknown 

parameter. The variation of the parameter )(0 t  was selected 

as 

         0 0.1 1 1 0.1 2 ,   0.8 1 1 0.1 2t y t x t y t x t           

 

After the least squares data fitting, the closed loop 

characteristic equation is obtained as 

21

2'   qqAc
 

where are respectively 
2'(1) 0.6883 0.4336cA q q    

2'(2) 1.7580 1.4700cA q q    

where the variation range of the parameters are respectively 

 1 0.6883, 1.7580   and  2 0.4436, 1.4700  . The 

reference input and the plant output of the system 

(      0 0.8 1 1 0.1 2t y t x t      ) is shown in fig. 3. 

The result of the robust stability margin is 1.1239 which 

indicates that the U-model controller can guarantee the 

system stability within the selected range of )(0 t  and even if 

the range is increased to 12.39%.  

Case II: For the same Hammerstein model, the time 

varying parameter )(0 t  was still selected as the unknown 

parameter. The different variation of the parameter )(0 t  

was 

         0 0.5 1 1 0.1 2 ,   1.3 1 1 0.1 2t y t x t y t x t           

 

The closed loop characteristic equation can be obtained by the 

least squares data fitting method, the characteristic equation 

expression is 
2

1 2'cA q q     

The estimation results are respectively 
2'(1) 0.0752 1.9010cA q q    

2'(2) 0.4229 0.8926cA q q    

where the variation range of the parameters are respectively 

 4229.0,0752.01  and  9010.1,8926.02  . The 

reference input and the plant output of the system is shown in 

figures 4 and 5. Fig. 4 shows the U-pole placement control 



 

 

 

system is in the bound of the robust stability area. And fig. 5 

shows the U-pole placement control system is unstable in the 

range of the internal parameter variation. 

The result of the robust stability margin is 0.4139 which 

indicates that the U-model controller can only guarantee the 

system stability within 41.39% of the selected parameter 

range and in the other 58.61% the closed loop system is not 

stable with the designed U-model controller. 

Fig. 3.  Performance of Hammerstein model in case I 

 
Fig. 4.  Performance of Hammerstein model in case II 

 
Fig. 5.  Performance of Hammerstein model in case II 

 

The simulation results show that the robustness of the 

U-model based pole placement control system depends on the 

uncertainty of the non-linear model. The U-model controller 

can keep the system to be stable within a certain range of the 

parameter uncertainty. However, if the parameter of the 

non-linear model is change far away from the original one, 

the performance of the controller cannot be guaranteed. 

VI. CONCLUSIONS 

A general control oriented U-model and the corresponding 

pole placement controller design for the dynamic non-linear 

plants have been introduced to be the fundamental 

methodologies. With the modularization the procedure of 

non-linear control system design can be conducted as linear 

control system design. The robust stability study can be 

implemented to non-linear models by the help of U-model 

pole placement method. The least squares data fitting method 

is necessary in the proposed essential approach and the 

parameter variation range of the closed loop system can be 

estimated via measured data. The LMI based robust analysis 

obtained the stability margin of the closed loop system. The 

simulation results show that robust stability method can be 

successfully implemented for U-model based pole placement 

control systems. 

Further studies on the developed methodology, such as 

H-norm based state feedback controller design for U-model 

based control systems, expansion to other format controllers, 

and so on, will be conducted to provide a comprehensive 

prospectus in designing nonlinear control systems by using 

linear control system design techniques. 
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