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Abstract 

Within a network, cells may fail in multiple ways. It is important that such cells be both identified and isolated from the network as a whole to 
both allow the failing cell's tasks to be reallocated and for the prevention of cascade failures where a malfunctioning cell causes other cells to 
fail. We present a novel, low-power approach using simple memristor-based electrical circuits that provides autonomic handling of clock sync 
issues as well as supporting cell isolation by either the cell or the network and cell resurrection by the network. 
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1. Background 

A fault-tolerant electronic architecture system will 
typically have a number of tasks it must handle. For 
instance, an aircraft's systems will need to handle everything 
from keeping track of the aircraft's location and the attitudes 
required on its various control surfaces through to handling 
the air conditioning within the craft and the in-flight 
entertainment (on a passenger plane). This is typically 
handled by individual, specialized systems dedicated to each 
task. Although this approach allows for a number of 
advantages, it suffers from one main drawback; as each 
component can only perform a single task, there needs to be 
multiple instances of each component to provide 
redundancy in the case of component failure. 

An alternative route is via a flexible network. In this 
approach the system consists of a number of discrete 
flexible cells along with some form of control mechanism, 
all connected via a communications channel. These cells, 
are typically implemented using Field Programmable Gate 
Arrays (FPGAs)[1] for performance reasons, although a low 
power risc-based System On Chip would also be feasible. 

The cells are inspired by prokaryote biology and attempt to 
implement artificial biofilm organisation and resilience (see 
for example[2] for an implementation). In this paper, we 
focus on an architecture where each cell can potentially 
perform any of the required tasks of the system and is 
allocated a single task from the list. This leads to two main 
benefits over the traditional approach: 
 A spare cell can replace any failure, which, as the 

probability of a failure happening is low, means that only 
a few spare cells are required rather than duplicates of all 
components. 

 If all the spare cells are in use, a cell performing a non-
essential task can be reassigned to take over a more 
important one. 

This approach can be complicated by having cells of 
varying capability (such as in the SABRE architecture[2]), 
by having cells handle multiple tasks or by allocating 
multiple cells to a single task. In this paper we will 
concentrate only on the simple model outlined above. We 
shall suggest a novel memristor-based synchronisation 
approach which has advantages over software-based 
synchronisation by being very low power, more robust to 
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electromagnetic field and cosmic ray state-changing and an 
inherent part of the hardware which means that it can’t be 
turned off and does not rely on functioning software.  

2. Problem Specifics 

2.1. Heartbeats and the control mechanism 

For a flexible system to function there needs to be a 
controller system, either explicit or implicit, that handles 
task allocation. This may be implemented as a separate 
system to the cells, a task run on a cell, or it may be built 
into the cells using some form of consensus algorithm (e.g. 
Paxos[1]). Either way the cells must be able to 
communicate freely with each other. 

A particular issue with such networks is maintaining 
synchronisation of state between both the cells and the 
control system and/or between the cells. This can be solved 
with some form of a ‘heartbeat’: a regular signal sent 
between cells that is used as a clock for the network. 

2.2. Cell failure modes 

Cells can fail in numerous ways, and the network needs 
to be able to handle all of them. We can classify the failure 
modes as falling within one of three basic categories: 
 Dead cell - The cell stops working and no longer 

responds to outside stimulus. When this occurs the 
network needs to detect the failure and allocate a 
replacement. 

 Dying cell - The cell experiences a fatal fault but is able 
to detect the situation and can perform some form of 
orderly shutdown, similar to apoptosis in cell biology. 
These failures are the easiest to deal with, but some 
caution is required in the hardware design to ensure that 
the dead cells do not act as unintentional grounds once 
shutdown. Also, the network itself should take 
responsibility for disconnecting the cell in case the 
failure also prevents the cell from shutting itself off 
properly (turning into a zombie, as below). 

 Zombie cell - The cell is functionally broken and should 
be dead, however it is still in some (incorrect) manner 
active on the network, in comparison to biology this is 
functionally equivalent to cancer. Failures falling into 
this category are the trickiest to handle, as they require 
detection and until they are detected not only will that 
cell’s task(s) not get performed, but the cell may be 
transmitting random noise into the network, disrupting 
the activities of other nodes (potentially causing them to 
be diagnosed incorrectly as malfunctioning). 

3. The Memristor 

The memristor is the recently discovered [4] 4th 
fundamental circuit element[5] which relates magnetic flux, 

 (the time intergral of voltage), to charge,  (the time 
integral of current) via the constitutive relation: 
 

,                                (1) 

 
where  is the memristance and is dependent on the charge 
that has passed through the circuit. The linear relation 
between the intragrals of current and voltage mean that the 
device is nonlinear in V-I measurements. As the charge is 
time dependent, , the memristance also varies with 
time, but at each point in time, t, the voltage, , and current, 
, through the memristor are linearly related 

 
 ,                            (2) 

 
demonstrating that the memristors is a non-linear resistor 
whose resistance is dependent on some memory property . 
It is this memory property[6] that stores the state of the 
memristor and allows the memristor to have a memory. 
This memory gives rise to hysteresis, see Fig. 1, the 
distintive pinched shape is due to the fact that a perfect 
theoretical memristor is a passive element and thus should 
go through the origin.  
 

 

Figure 1. An example memristor I-V curve as simulated under A.C.  

3.1. Memristor Spike Addition and Subtraction 

Under D.C. voltage the memristor responds to changes in 
voltage, , with a current spike, , as shown in Fig. 2 for 
a voltage square wave between +0.1V and -0.1V, this data 
is taken from experimental tests with TiO2 sol-gel 
memristors as made in our laboratory[7]. The memristors 
take 3.3s to equilibrate to this change or equivalently, we 
can say that the memristor has a short-term memory of the 
spike for 3.3s[8].  
 
If a second  is input whilst the memristor still holds this 
short-term memory (i.e. before the device equilibrates), the 
second spike  is smaller than would be expected, see, for 
example Fig. 3. In this experiment the memristor was 
subject to the same square wave as for Fig. 2, but memristor 
was given only 1 timestep (~0.2s) to equilibrate after the 
positive spike at 20s before a negative voltage was applied. 
The short-term memory of the positive spike has interacted 
with the negative spike response, causing a reproducable 
and repeatable subtraction of the spike current. This effect 
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can also be used to do addition and has been used to make 
Boolean logic gates[9]. 
 

 

Figure 2. D.C. response of a memristor subjected to a voltage square wave. 

 

Figure 3. Memristor spike ‘addition’.  

 

Figure 4. Second current spike size depends on the time between spikes. 

 
The size of this response spike is highly dependent on when 
the second spike is input. Figure 4 shows the spike addition 
for spikes separated by the increasing time. We see that 

when the two spikes are 0.1s apart the current response of 
the second spike is the smaller than when they are separated 
by 0.2s.  
 
As the spike size is highly dependent on the time gap 
between spike events, we can use this effect (and its 
compliment spike addition) to synchronise cells in a 
network. If spiking cells fall out of synchonrisation, the size 
of the current response will rise above a threashold. We will 
now go through an example of a watchdog circuit to 
respond to this effect. 

4. The watchdog circuit 

The watchdog circuit is as shown in Fig 5. It consists of a 
low-pass filter in the form of a resistor and a capacitor, a 
voltage comparator implemented with an op-amplifier (as in 
[10]) and a D-type flip-flop with reset signal. The basic idea 
of the implementation is that the RC circuit will filter the 
spikes of current from the memristor and generate a slowly 
degrading voltage for the comparator. The capacitor will be 
charged by the current of the memristor, minus the current 
through the resistor, and then slowly discharge through the 
resistor. Selecting the appropriate values for the capacitor 
and resistor is based on the discharging equations for 
capacitors given in Eqn 3: 
 

 ,                  (3) 
 
Where  is the voltage that the capacitor has been charged 
to by the memristor’s current, defined in Eqn 4: 
 

,                                 (4) 
 
where . The comparator, which is an operation 
amplifier with positive voltage set as the power supply and 
negative voltage the ground, is comparing the output 
voltage of the capacitor with a pre-defined threshold value, 

. If , then the amplifier's output is the power 
supply value which is also the logical high for the circuit. 
As soon as a new pulse from the memristor arrives  
increases again changing the output of the amplifier to 
logical low. The transition from logical low to logical high 
and back is sensed by the D-type flip-flop as a CLK signal 
and as a result the output  is being raised driving the latch 
to disengage the cell from the bus. For the cell to be 
reconnected to the bus the controller can reset the flip-flop 
by sending a logical high pulse in the reset line. 
 
The benefit of the circuit is that is very simple and energy 
efficient, if the respective values are selected. All the 
components are widely used and standardised allowing for 
very small tolerances, thus very predictable behaviour. As a 
result the difference between  and , with the latter 
reflecting a change in , can be selected low enough so as 
to trace small variations of the synchronization of the heart 
beat signals. 
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Figure 5. The watchdog circuit

4.1. Dead cells

The watchdog’s handling of dead cells is trivial – when a 
cell dies and stops sending the heartbeat the latch trips and 
the cell is isolated.

4.2. Dying cells

Should a cell detect some form of internal error within itself 
that doesn’t (yet) result in it being unable to send the
heartbeat, then it can mimic programmed cell death
(apoptosis) mechanisms by voluntarily stopping the clocka
such as by switching off the memristor and effectively 
killing itself. An example of such a situation would be the
detection of a parity error in a memory bank.

4.3. Zombie cells

If a cell fails but in such a way that the heart-beat continues
to be sent, this causes the spike to be above a threashold and 
will be spotted by the controller which can then cut the 
signal from its side. This isolates the cell and prevents its
malfunctioning signals from causing interference
elsewhere.

4.4. Heart-beat synchronization loss

As the network requires that the cells all operate in time
with each other, a cell which is unable keep time (for 
instance if overloaded to the point where it is unable to 
process its workload quickly enough) is effectively a
zombie cell in that it’s signals will be offset from the rest of 
the network and thus be unintelligible. Specifically, the 
memristor subtraction will now be small and one of the
spikes will be above the threashold. The design of the
watchdog circuit means that this will be handled 
automatically and any cells that lose time will simply get
cut off.

4.5. Resurrection

It is possible to for the network to bring a cell back to life 

by re-instating its access via the reset line on the flip-flop.
Beyond allowing a reset of the state of the system, there are 
several situations in which this might be a useful action:

When a cell has killed itself (due to a detected internal 
fault), it may report the nature of the fault to the network 
before doing so. In extreme circumstances it may be
more desirable to reactivate this cell (perhaps assigning 
it lesser tasks) rather than not having sufficient cells in
the event of multiple cell failure.
When a cell has been cut off due to loss of 
synchronization, the cell can potentially realize this,
reset itself and start sending the heart-beat again. The 
network can, at its option, pulse the reset to see if this is
the case (it is not advisable to allow the cell to reset the
latch as a pathological case can easily be imagined 
where a zombie repeatedly resets the latch).

5. Conclusions

Memristor spike subtraction is a useful approach for a cell
synchronisation heartbeat. If current spikes from the
controller and the cell arrive within the correct time
window, the spikes up and appear below a threashold. If 
they fall out of sync or one of the spike signals fails, the 
spikes will be above the threashold. As this is a result of the
hardware, it is got for ‘free’ in a system with a changing 
voltage and will operate at a level below the software,
making it resilient to software faults.
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