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The NK model has been used widely to explore aspects of natural evolu-
tion  and  complex  systems.  Traditionally,  the  model  has  used  a  binary
representation  scheme.  This  paper  introduces  a  modified  form  of  the
NK  model  through  which  to  systematically  explore  the  effects  of  dis-
crete,  nonbinary  representations  on  evolution  over  rugged  fitness  land-
scapes.  Results  suggest  the  basic  properties  of  the  original  model
remain but changes are seen in walk lengths to optima and the sensitiv-
ity to mutation rates, in particular.  The variation to the case of coupled
fitness  landscapes,  the  NKCS  model,  is  also  extended  in  the  same  way.
Again, similarities and differences to the binary case are found. 
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Introduction1.

Kauffman  and  Levin  [1]  introduced  the  NK  model  to  allow  the  sys-
tematic  study  of  various  aspects  of  organisms  evolving  on  rugged  fit-
ness  landscapes,  and  it  has  since  been  applied  to  many  aspects  of
natural  evolution  (e.g.,  see  [2]).  Given  its  abstract  nature,  the  model
has  also  been  used  widely  within  complexity  science,  particularly
around  organization  and  management  studies  (e.g.,  see  [3]).  The  NK
model was later extended, in what is termed the NKCS model [4], to
explore  coevolution,  that  is,  the  evolutionary  dynamics  of  ecosystems
containing  multiple  species.  Again,  versions  of  the  model  have  been
applied  to  non-biological  systems,  particularly  spatially  extended
versions,  for  example,  in  “patches”  to  receiver-based  communication
optimization [5].

In  the  vast  majority  of  known  cases,  the  underlying  representation
in  the  model  is  binary.  This  is  clearly  a  significant  simplification  for
most  systems  of  interest.  Perhaps  most  markedly,  natural  biological
systems  use  an  underlying  quaternary  representation,  of  course.  That
is, both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are
made  up  of  four  nucleobases.  Moreover,  synthetic  biologists  have
recently  created  four  new  bases  (e.g.,  [6]),  opening  the  possibility  of

https://doi.org/10.25088/ComplexSystems.31.1.87

https://doi.org/10.25088/ComplexSystems.31.1.87


up  to  octal  representations  in  DNA  in  the  future.  This  paper  intro-
duces a new parameter to the NK and NKCS models that enables the
systematic  exploration  of  the  effects  of  altering  the  size  of  the  alpha-
bet A of the underlying representation. Results suggest that a number
of  the  basic  properties  of  the  original  binary  models  remain,  while
aspects  such  as  the  time  taken  to  reach  optima,  the  sensitivity  to  the
number  of  mutations  experienced  and  the  alphabet  used  by  coevolv-
ing partners can significantly vary behavior.  

The NK Model2.

In  the  standard  NK  model,  the  features  of  the  fitness  landscapes  are
specified  by  two  parameters:  N,  the  number  of  genes  in  a  genome;
and K, the number of genes that have an effect upon the fitness contri-
bution  of  each  gene.  Hence  increasing  K  with  respect  to  N  increases
the  epistatic  linkage,  increasing  the  ruggedness  of  the  fitness  land-
scape.  The  increase  in  epistasis  increases  the  number  of  optima,
increases  the  steepness  of  their  sides  and  decreases  their  correlation
(see [7]). As noted earlier,  genes are traditionally from a binary alpha-
bet  A  2.  The  model  assumes  all  intragenome  interactions  are  so
complex  that  it  is  only  appropriate  to  assign  random  values  to  their
effects  on  fitness.  For  each  of  the  possible  K  interactions,  a  table  of

AK+1
 fitnesses  is  created  for  each  gene  with  all  entries  in  the  range

0.0 to 1.0, such that there is one fitness  for each combination of traits
(Figure  1).  The  fitness  contribution  of  each  gene  is  found  from  its
table.  These  fitnesses  are  then  summed  and  normalized  by  N  to  give
the selective fitness of the total genome.

K0 K1 Fitness

0 0 0.76

0 1 0.23

1 0 0.56

1 1 0.98

Figure 1. An example standard NK model. Here N  3, K  1, A  2, show-

ing  how  the  fitness  contribution  of  each  gene  depends  on  K  random  genes

(left). Therefore there are A(K+1)
 possible allele combinations per gene, each of

which is assigned a random fitness.  Each gene of the genome has such a table
created  for  it  (right,  left  gene  shown).  Total  fitness  is  the  normalized  sum  of
these values.

Kauffman  [7]  used  a  mutation-based  hill-climbing  algorithm,
where  the  single  point  in  the  fitness  space  is  said  to  represent  a  con-
verged  species,  to  examine  the  properties  and  evolutionary  dynamics
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of the NK model. That is, the population is of size one and a species
evolves by making a random change to one randomly chosen gene per
generation. A mutation here means that a new value in A is chosen at
random to replace the current value. The “population” is said to
move to the genetic configuration of the mutated individual if its fit-
ness is greater than the fitness of the current individual; the rate of
supply of mutants is seen as slow compared to the actions of selec-
tion. Ties are broken at random. Figure 2 shows example results. All
results reported in this paper are the average of 10 runs (random start
points) on each of 10 NK functions, that is, 100 runs for 20 000 gen-
erations. Here 0 ≤ K ≤ 7, for N  10 and N  100.

(a) (b)

(c) (d)
Figure 2. Typical behavior and fitnesses reached after 20 000 generations on
NK landscapes of varying ruggedness K and length N with binary genes
A  2. Error bars show min and max values.

Figure 2 shows examples of the general properties of adaptation on
such rugged fitness landscapes identified by Kauffman (e.g., [7]),
including a “complexity catastrophe” as K tends to N. When K  0,
all genes make an independent contribution to the overall fitness and,
since fitness values are drawn at random between 0.0 and 1.0, order
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statistics  show  the  average  value  of  the  fit  allele  should  be  0.66.
Hence a single global optimum exists in the landscape of fitness  0.66.
At low levels of K (0 < K < 8), the landscape buckles up and becomes
more rugged, with an increasing number of peaks at higher fitness lev-
els,  regardless  of  N.  Thereafter  the  increasing  complexity  of  con-
straints  between  genes  means  the  height  of  peaks  typically  found
begins  to  fall  as  K  increases  relative  to  N:  for  large  N,  the  central
limit  theorem  suggests  reachable  optima  will  have  a  mean  fitness  of
0.5  as  K  tends  to  N.  Figure  2  shows  how  the  optima  found  when
K > 6  are  significantly  lower  for  N  10  compared  to  those  for
N  100 (T-test, p < 0.05). 

As  described,  in  the  traditional  NK  model  each  of  the  N  elements
is  seen  as  a  gene  with  one  of  two  possible  values,  that  is,  A  2.  The
size of the alphabet can also be varied; for example, with A  4, each
of the N  elements can be seen as representing the (transcribed) nucle-
obase values of DNA. Figure 3 shows the effects of doubling A in this
way over the same parameter ranges used in Figure 2. As can be seen,

(a) (b)

(c) (d)

Figure 3. Typical  behavior  and  fitnesses  reached  after  20 000  generations  on

NK  landscapes  of  varying  ruggedness  K  and  length  N  with  a  quaternary

alphabet, that is, A  4.
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the  same  well-established  general  properties  and  behavior  mentioned
previously  are  again  observed.  Figure  4  shows  examples  of  how  this
remains  the  case  for  2 ≤ A ≤ 16,  with  fitnesses  not  significantly
changed (T-test, p ≥ 0.05). 

(a) (b)

(c) (d)

(e) (f)

Figure 4. Typical  behavior  and  fitnesses  reached  after  20 000  generations  on

NK landscapes of varying ruggedness K and length N with alphabets of differ-

ent sizes A.
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While  the  general  properties  of  the  NK  model  appear  to  be  main-
tained with larger alphabets, it is clear by comparing Figures 2 and 3
(left)  that  the  time  taken  to  reach  optima  increases  with  A.  Figure  5
shows  how  the  walk  length  increases  with  increasing  A  for
2 ≤ A ≤ 16. However,  as can be seen, despite the representation capac-
ity  increasing  exponentially,  the  average  walk  length  increases
roughly linearly with A. 

(a) (b)

Figure 5. Typical  walk  lengths  on  landscapes  of  varying  ruggedness  K  and

length N for various alphabet sizes A.

As  has  been  noted  elsewhere,  an  increase  in  the  alphabet  would
potentially  have  increased  the  mutation  rate  early  in  evolution  (e.g.,
[8]).  One  way  to  consider  this  effect  while  maintaining  the  single
mutation point scheme used earlier is to compare the behavior of indi-
viduals  whose  length  is  altered  in  a  way  proportional  to  their  alpha-

bet such that AN
 is constant. Figure 6 shows results where lengths are

adjusted  using  A  4  and  N  10  or  100  as  the  baseline.  Hence  the
equivalent  case  with  A  2  has  N  20  or  200,  and  with  A  16  has
N  5  or  50.  No  significant  difference  in  fitnesses  is  seen  (T-test,
p ≥ 0.05).  Alternatively,  as  shown  in  Figure  7,  the  number  of  muta-

tions  per  offspring  M  can  be  increased  proportionally  to  A,  here
M  A / 2.  Perhaps  coincidentally,  A  4  is  always  either  the  single
fittest  alphabet  or  in  the  set  of  fittest  alphabets,  with  A  16  almost
always  the  opposite.  More  specifically,  all  alphabets  perform  equally
well  when  K  0,  regardless  of  N,  except  A  16  is  significantly
worse when N  10 (T-test, p < 0.05). When K  1, with N  10, the

equally  fit  alphabets  are  A  4, 6,  reducing  to  A  4  with  N  100.
When  K  2,  with  N  10,  the  fittest  alphabets  are  A  4, 6, 8,
increasing to A  4, 6, 8, 16 with N  100. 
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Typical  behavior  and  the  fitness  reached  after  20 000  generations

on  landscapes  of  varying  ruggedness  K  and  alphabets  A.  Length  N  is

decreased proportional to alphabet size, starting with A  2 and N  20 (left

column) and N  200 (right column).
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Typical  behavior  and  the  fitness  reached  after  20 000  generations

on landscapes of varying ruggedness K and length N with alphabets of differ-

ent sizes A and A  2 mutations per reproduction event.

Figure  8  further  shows  the  effects  of  varying  the  number  of  muta-
tion  points  in  an  offspring;  here  0 < M ≤ 5  for  various  A.  With
N  100,  there  is  very  little  effect  from  varying  M.  However,  with
N  10,  fitnesses  are  typically  highest  when  M ≥ 3,  with  the  notable
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exception  of  A  2,  where  fitnesses  become  significantly  lower  under
such conditions when K < 2 (T-test, p < 0.05). That  is, for low K and

high M, higher values of A are beneficial. 

(a) (b)

(c) (d)

(e) (f)

Figure 8. Typical  behavior  and  the  fitness  reached  after  20 000  generations

on landscapes of varying ruggedness K and length N with alphabets of differ-

ent sizes A and A  2 mutations per reproduction event.
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The NKCS Model3.

Kauffman  and  Johnsen  [4]  subsequently  introduced  the  NKCS  model
to  enable  the  study  of  various  aspects  of  coevolution.  At  an  abstract
level, coevolution can be considered as the coupling together of the fit-
ness  landscapes  of  the  interacting  species.  Hence  the  adaptive  moves
made by one species in its fitness  landscape cause deformations in the
fitness  landscapes of its coupled partners. In this extension to the NK
model,  each  gene  is  also  said  to  depend  upon  C  randomly  chosen
genes in each of the other S species with which it interacts. The  adap-
tive  moves  by  one  species  may  deform  the  fitness  landscape(s)  of  its
partner(s).  Altering  C,  with  respect  to  N,  changes  how  dramatically
adaptive  moves  by  each  species  deform  the  landscape(s)  of  its  part-
ner(s).  Again,  for  each  of  the  possible  K + (SxC)  interactions,  a  table

of AK+SxC+1
 fitnesses  is created for each gene, with all entries in the

range 0.0 to 1.0, such that there is one fitness for each combination of
traits. Such tables are created for each species (Figure 9, the reader is
referred to [7] for full details). 

Figure 9. An  example  standard  NKCS  model.  Each  gene  is  connected  to K

randomly chosen local genes and to C randomly chosen genes in each of the S
other  species.  A  random  fitness  is  assigned  to  each  possible  set  of  combina-

tions  of  genes.  These  are  normalized  by  N  to  give  the  fitness  of  the  genome.
Connections and table shown for one gene in one species for clarity.

Figure 10 shows example results for one of two coevolving species
where the parameters of each are the same and hence behavior is sym-
metrical.  All  results  reported  in  this  paper  are  the  average  of  10  runs
(random  start  points)  on  each  of  10  NKCS  functions,  that  is,  100
runs  for  20000  generations.  Here  0 ≤ K ≤ 4,  1 ≤ C ≤ 3,  for  N  10
and N  100. 

When  C  1,  Figure  10  shows  examples  of  the  general  properties
of  adaptation  on  such  fitness  landscapes  identified  in  the  NK  model,
that  is,  where  C  0.  Figure  10  further  shows  how  increasing  the
degree  of  connectedness  C  between  the  two  landscapes  causes  fitness
levels  to  fall  significantly  (T-test,  p < 0.05)  when  C ≥ K  for  N  10.

That  is,  as  K  tends  to  N,  a  high  number  of  peaks  of  similar  height
typically  exist  in  each  of  the  fitness  landscapes  and  so  the  effects  of
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switching  between  them  under  the  influence  of  C  is  reduced  since
each  landscape  is  very  similar.  Note  this  change  in  behavior  around
C  K  was  suggested  as  significant  in  [7],  where  N  24  only  was
used  throughout.  However,  Figure  10  also  shows  how  with  N  100
fitness  always  falls  significantly  with  increasing  C  (T-test,  p < 0.05),

regardless of K. That is, an increase in the degrees of freedom in move-
ment  over  a  larger  fitness  landscape  is  generally  more  disruptive  to
the search process when the landscapes are coupled. 

(a) (b)

(c) (d)

Figure 10. The  fitness  reached  after  20 000  generations  M  1  on  landscapes

of varying ruggedness K, coupling C and length N, with binary genes A  2.

As  in  the  traditional  NK  model,  the  size  of  the  alphabet  in  the
NKCS  model  can  also  be  varied.  Figure  11  shows  the  effects  of  dou-
bling A over the same parameter ranges used in Figure 10. As  can be
seen,  the  same  general  behavior  with  A  2  is  again  observed  with
A  4. 

Using N  24 and A  2, Kauffman and Johnsen [4] explored vary-
ing  the  number  of  mutations  per  offspring  in  the  NKCS  model,  with
0 < M ≤ 24.  For  various  K  and  C  1,  they  report  fitnesses  are
typically  highest  for  2 ≤ M ≤ 4,  and  with  increasing  C  the  optimal
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mutation  rate  M  typically  decreases.  Figure  12  shows  how  increasing
the alphabet to A  4, with N  10, various K and C  1, has no sig-
nificant  effect on coevolution. When C  3, the optimal mutation rate
typically  decreases  with  K  3  but  fitnesses  drop  significantly  com-
pared  to  A  2  when  M > 2  and  K  1  (T-test,  p < 0.05).  With

N  100,  fitnesses  with  A  4  are  almost  always  significantly  higher
than  with  A  2,  and  fitnesses  are  typically  higher  with  lower M.
Hence such coevolutionary systems appear more sensitive to the muta-
tion  rate  as  the  size  of  the  alphabet  increases  compared  to  the  stan-
dard NK model. 

(a) (b)

(c) (d)

Figure 11. The  fitness  reached  after  20 000  generations  M  1  on  landscapes

of  varying  ruggedness  K,  coupling  C  and  length  N,  with  quaternary  genes

A  4.

The  standard  NKCS  model  assumes  symmetry  among  all  species,
with  all  experiencing  the  same  N,  K  and  C.  Kauffman  and  Johnsen
[4]  explored  varying  the  K  value  of  two  coevolving  species,  finding
that a high-K partner increased the relative fitness  of a low-K partner,
for  example.  Similarly,  the  standard  model  assumes  all  species  evolve
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at the same rate. Bull et al. [9] introduced a new parameter R to spec-
ify  the  relative  rate  of  reproduction,  showing  how  increasing  R,  with
high  C,  can  result  in  a  rapid  drop  in  fitness  of  the  slower  partner(s),
for example. 

(a) (b)

(c) (d)

Figure 12. Typical  behavior  and  the  fitness  reached  after  20 000  generations

on landscapes of varying ruggedness K, coupling C and length N, with a dif-

ferent number of mutations in a genome per generation M.

Figure 13 shows example results from coevolving species using dif-
ferent  alphabets,  one  with  A  2  and  one  with  A  4.  With  N  10,
regardless of C, there is no significant  difference in behavior for either
species  in  comparison  to  coevolving  with  a  partner  species  with  the
same  A  (not  shown).  The  same  is  true  for  N  100  when  C  1  (not
shown).  However,  when  C  3,  the  A  4  species  experiences  a  sig-
nificant drop in fitness, whereas the A  2 species experiences a signif-
icant increase in fitness  (T-test, p < 0.05). Moreover,  an A  2 species

coevolved with an A  6 partner does even better than with an A  4
partner  (not  shown).  It  is  here  suggested  that  being  partnered  with  a
species  with  a  longer  typical  walk  length  to  an  optimum,  due  to  a
higher A, can be beneficial to the species with the shorter walk length. 
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(a) (b)

Figure 13. Typical  behavior  and  the  fitness  reached  after  20 000  generations

on  larger  landscapes  N  100  of  varying  ruggedness  K,  with  higher  coupling

C  3 between an A  4 (left) and A  2 (right) species.

Conclusion4.

The  well-known  NK  model  assumes  a  discrete  representation  scheme
for  its  genes/component  parts,  where  these  have  almost  exclusively
been binary.  This  paper has explored the effects of increasing the size
of  the  alphabet  within  the  model,  finding  that  the  general  properties
of the landscapes are seemingly preserved. That  is, landscapes become
increasingly rugged with increasing K and experience increasingly sim-
ilarly sized optima as K approaches N. Similarly,  the extended version
of  the  NK  model  to  the  case  of  coupled  adapting  systems,  the  NKCS
model,  again  appears  to  maintain  its  general  properties  as  the  alpha-
bet  is  increased  from  the  binary  case.  Differences  were  seen  in  terms
of the typical walk length to optima and the sensitivity of alphabets to
different mutation rates.

That  the  alphabet  of  biological  systems  consists  of  two  base  pairs,
that is, A  4, has been suggested as a frozen property from an origi-
nally  RNA  world  where  it  was  potentially  optimal  in  terms  of  cat-
alytic activity (e.g., [8]). That is, despite the later shift to the improved
catalytic  power  of  proteins,  the  alphabet  did  not  subsequently
increase.  In  the  NK  model  here,  for  shorter  genome  lengths  and  low
epistasis, a quaternary alphabet was shown to be robust to an increas-
ing  amount  of  mutation  (Figure  8).  Such  small,  simple  systems  with
low  replication  accuracy  can  be  envisaged  as  typical  early  in  evolu-
tion.  Specifically,  when  N  10,  K  0  or  1,  and  M  4,  A  4  was
shown  to  be  beneficial  over  both  A  2  and  A  6  (T-test,  p < 0.05).

A  4  was  also  shown  to  be  beneficial  over  both  A  2  and  A  6
when  M  5  and  K  1  (T-test,  p < 0.05),  and  over  A  2  when
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M  5  and  K  0  (T-test,  p < 0.05),  with  no  difference  over  A  6

(T-test,  p ≥ 0.05).  For  larger  N,  such  benefits  disappear  but  reappear

when  an  explicit  degree  of  coupling  to  other  adapting  entities  is
included, that is, in the NKCS model, where A  4 is again seen to be
generally  significantly  beneficial  over  A  2  (Figure  11).  There  is  no
significant  difference with A  4 compared to A  6 (T-test, p ≥ 0.05,

not  shown).  Thus,  the  results  here  suggest  a  relatively  widespread
selective advantage to a low—but not the lowest—alphabet. 

References

[1] S.  A.  Kauffman  and  S.  Levin,  “Towards  a  General  Theory  of  Adaptive
Walks  on  Rugged  Landscapes,”  Journal  of  Theoretical  Biology,  128(1),
1987 pp. 11–45. doi:10.1016/S0022-5193(87)80029-2.

[2] L.  Bull,  The  Evolution  of  Complexity:  Simple  Simulations  of  Major
Innovations, London: Springer,  2020. 

[3] B.  McKelvey,  M.  Li,  H.  Xu  and  R.  Vidgen,  “Re-thinking  Kauffman’s
NK  Fitness  Landscape:  From  Artifact  and  Groupthink  to  Weak-
Tie  Effects,”  Human  Systems  Management,  32,  2013  pp.  17–42.
doi:10.3233/HSM-130782.

[4] S.  A.  Kauffman  and  S.  Johnsen,  “Co-evolution  to  the  Edge  of  Chaos:
Coupled  Fitness  Landscapes,  Poised  States  and  Co-evolutionary
Avalanches,”  in Artificial  Life II: Held February 1990 in Santa Fe, New
Mexico  (C.  G.  Langton,  C.  Taylor,  J.  D.  Farmer  and  S.  Rasmussen,
eds.), Redwood City,  CA: Addison-Wesley,  1992 pp. 325–370.

[5] S. A. Kauffman, At Home in the Universe: The Search for Laws of Com-
plexity, New York:  Oxford University Press, 1995. 

[6] H. Hoshika, N. Leal, M. J.  Kim, M. S. Kim, N. B. Karalkar,  H. J.  Kim,
A. M. Bates, et al., “Hachimoji  DNA and RNA: A  Genetic System with
Eight  Building  Blocks,”  Science,  363(6429),  2019  pp.  884–887.
doi:10.1126/science.aat0971.

[7] S.  A.  Kauffman,  The  Origins  of  Order:  Self-Organization  and  Selection
in Evolution, New York:  Oxford University Press, 1993. 

[8] E.  Szathmáry,  “Four  Letters  in  the  Genetic  Alphabet:  A  Frozen  Evolu-
tionary  Optimum?,”  Proceedings  of  the  Royal  Society  of  London  B,
245(1313), 1991 pp. 91–99. doi:10.1098/rspb.1991.0093.

[9] L.  Bull,  O.  Holland  and  S.  Blackmore,  “On  Meme-Gene  Coevolution,”
Artificial Life, 6(3), 2000 pp. 227–235. doi:10.1162/106454600568852.

Nonbinary Representations in the NK and NKCS Models 101

https://doi.org/10.25088/ComplexSystems.31.1.87

https://doi.org/10.1016/S0022-5193(87)80029-2
https://doi.org/10.3233/HSM-130782
https://dx.doi.org/10.1126%2Fscience.aat0971
https://doi.org/10.1098/rspb.1991.0093
https://doi.org/10.1162/106454600568852
https://doi.org/10.25088/ComplexSystems.31.1.87



