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Abstract

Over the past century, abdominal surgery has seen a rapid transition from open
procedures to less invasive methods such as laparoscopy and robot-assisted mini-
mally invasive surgery (R-A MIS). These procedures have significantly decreased
blood loss, postoperative morbidity and length of hospital stay in comparison with
open surgery. R-A MIS has offered refined accuracy and more ergonomic instru-
ments for surgeons, further minimising trauma to the patient.

This thesis aims to investigate, design and prototype a novel system for R-A MIS
that can provide more natural and intuitive manipulation of soft tissues and, at the
same time, increase the surgeon’s dexterity. The thesis reviews related work on sur-
gical systems and discusses the requirements for designing surgical instrumentation.
From the background research conducted in this thesis, it is clear that training
surgeons in MIS procedures is becoming increasingly long and arduous. Further-
more, most available systems adopt a design similar to conventional laparoscopic
instruments or focus on different techniques with debatable benefits. The system
proposed in this thesis not only aims to reduce the training time for surgeons but
also to improve the ergonomics of the procedure by focusing on the gap between
R-A MIS and open surgery.

In order to achieve this, a survey was conducted among surgeons, regarding
their opinions on surgical training, surgical systems, how satisfied they are with
them and how easy they are to use. A concept for MIS robotic instrumentation
was then developed and a series of focus group meetings with surgeons were run to
discuss it. The proposed system, named µAngelo, is an anthropomorphic master-
slave system that comprises a three-digit miniature hand that can be controlled using
the master, a three-digit sensory exoskeleton. While multi-fingered robotic hands
have been developed for decades, none have been used for surgical operations. As
the system has a human-centred design, its relation to the human hand is discussed.
Prototypes of both the master and the slave have been developed and their design
and mechanisms are demonstrated. The accuracy and repeatability of the master
as well as the accuracy and force capabilities of the slave are tested and discussed.
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Cholecystectomy Surgical procedure for the removal of the gall bladder. 1, 9, 21,
61, 63
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CMC Carpometacarpal (Figure 4.1). 68, 69, 72, 76, 80, 83–86, 88, 89, 91, 94, 103,
111, 139, 149
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der. 15, 16
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114–116, 122, 123, 125–133, 136, 139, 153–158, 161–163, 210–213, 216

FDA Food and Drug Administration. 2, 16, 21

FK Forward Kinematics. 70, 86, 89, 101, 141–143, 149, 151, 154

FLS Fundamentals of Laparoscopic Surgery. 23, 34, 164

FRS Fundamentals of Robotic Surgery. 22

Fulcrum effect It creates the need for surgeons to move their hand in the opposite
direction in which the tip of the instrument is intended to go. 19, 61

Fundoplication A surgical procedure in which the upper portion of the stomach
is wrapped around the lower end of the oesophagus and sutured in place as a
treatment for the reflux of stomach contents into the oesophagus. 22

HALS Hand-assisted laparoscopic surgery: the surgeon inserts a hand through a
small incision in the abdomen. 11, 12, 18, 21, 36, 45, 56, 65
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Glossary

Haptics Tactile feedback technology which takes advantage of the sense of touch
by applying forces, vibrations, or motions to the user. 41, 82

Hernia An internal part of the body pushes through a weakness in the muscle or
surrounding tissue wall (such as an abdominal surgical wound that has not
fully healed). 11, 12, 20, 45, 53, 56

IK Inverse Kinematics. 149, 151, 154

Insufflation The process of injecting gas into the abdominal cavity in order to
create more space for the surgical tasks. 10, 56

IP Interphalangeal (Figure 4.1). 68, 73, 76, 80, 81, 86, 91, 93, 97, 98, 111, 153, 154

Laparoscope A slender tubular camera-tool inserted through an incision in the
abdominal wall for viewing the operating field. 10, 18, 20, 26

Laparoscopy Conventional MIS technique: the surgeon uses hand held tools to
operate on the patients body through small incisions on the abdomen. 1, 10,
11, 13, 14, 18, 21, 23, 45, 51–56, 60, 61, 65, 166

Learning curve Graphical representation of surgical performance against gained
experience. 15, 21, 29, 60, 62

Likert-scale In response to such a question, respondents specify their level of agree-
ment or disagreement on a symmetric agree-disagree scale for a series of state-
ments. 51

MCP Metacarpophalangeal (Figure 4.1). 68, 69, 73, 76, 80, 81, 83–86, 89, 91, 93,
97, 98, 111, 138, 147, 149, 151, 153

MIS Minimally Invasive Surgery. 1–4, 7, 9, 11, 16, 18, 20–22, 27, 29, 30, 34, 36,
45, 46, 49–53, 55, 56, 60–62, 65, 67, 159, 163, 164, 166, 167

MRI Magnetic Resonance Imaging. 35

Nitinol Metal alloy of nickel and titanium. 34

NOTES Natural Orifice Translumenal Endoscopic Surgery. 17, 18, 31–33, 39, 46

Open-ended question Unstructured question in which (unlike in a closed-ended
question) possible answers are not suggested and the respondents answers in
their own words. 50

Peritoneum Abdominal wall. 32

PIP Proximal interphalangeal (Figure 4.1). 68, 75, 76, 80, 83, 86, 93, 97, 98, 111,
138, 147–149, 151, 153

Pneumoperitoneum Air or gas in the abdominal (peritoneal) cavity. 12
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Glossary

Prostatectomy Surgical procedure for the removal of the prostate. 16, 61

PTFE Polytetrafluoroethylene. Synthetic material. 125–127

R-A MIS Robot-Assisted Minimally Invasive Surgery: the surgeon remotely op-
erates articulated instruments attached to the end of robotic arms. 2, 3, 7,
12–16, 18, 22–24, 41, 46, 49–51, 53, 55, 56, 58, 60–62, 65, 67, 73, 138, 159,
160, 166–168

Randomised trials Study where the participating patients are randomly allocated
one or other of the different treatments with ultimate goal to statistically
determine which is the best. 61

Rapid Prototyping Group of techniques for quick manufacturing and prototyp-
ing. In this project: 3D printing of parts of an assembly using its CAD
drawings. 4

Retractor A surgical instrument with which a surgeon can either actively separate
the edges of a surgical incision or can hold back underlying organs and tissues.
36, 63, 161

Robotic cart The surgical unit that carries the robotic arms and instruments. 15

SMA Shape Memory Alloy. Wire which when heated it returns to its original
shape. 8, 35, 39, 40, 99, 104–109, 130–132

SPA Single Port Access. 18–21, 31, 32, 34, 39, 40, 46, 52, 56, 65, 160

Sternotomy Surgery in which an incision is made along the sternum, after which
the sternum itself is divided, or ‘cracked’. 33

STT Similar Triangle Transform. Proposed method for mapping the thumb, index
and middle finger to those of a robotic hand. 141, 142, 147, 150–154, 157, 162

Triangulation Trocars are usually placed in a triangular fashion in order to facil-
itate smooth instrument manipulation. 18–20

Trocar A sharp-pointed surgical instrument used to create ports in the abdomen
as a means of introduction for laparoscopic cameras and tools. 10, 11, 18, 20,
36
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∆Lmax Maximum distance that the cable can be pulled so that the joint covers its
entire range of motion

γg Radius of the gear supporting the pulley that the cable wraps around

γm Radius of the gear attached to the motor’s shaft

ΓS Radius of the pulley around which the cable wraps

γs Radius of the pulley around which the cable wraps and which is attached to
the centre of the gear

λ Similarity proportion between distances A and a

Ωq Projection of Ωt on z axis

Ωt Radius of the two cones’ common base formed with pi and pm as vertices and
all possible solutions for pt as base perimeter

Ω Centre of the common circular base formed with pi and pm as vertices and
all possible solutions for pt as base perimeter

ω31-ω36 Angle limits for the 3rd DOF of the instrument’s thumb, which define the
path of the cable tJ5

ω41-ω45 Angle limits for the 4th DOF of the instrument’s thumb, which define the
path of the cable tJ5

ω51-ω512 Angle limits for the 5th DOF of the instrument’s thumb, which define the
path of the cable tJ5

φI Angle between A and B

φi Angle between a and b

θj Angle of joint j

θI Angle vector of the exoskeleton’s index finger’s joints

θi Angle vector of the instrument’s index finger’s joints

θM Angle vector of the exoskeleton’s middle finger’s joints

θm Angle vector of the instrument’s middle finger’s joints

θt Angle vector of the exoskeleton’s thumb’s joints

θt Angle vector of the instrument’s thumb’s joints
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A Distance between the tips of the exoskeleton’s index and middle fingers

a Distance between the tips of the instrument’s index and middle fingers

B Distance between the tips of the exoskeleton’s index finger and thumb

b Distance between the tips of the instrument’s index finger and thumb

C Distance between the tips of the exoskeleton’s middle finger and thumb

c Distance between the tips of the instrument’s middle finger and thumb

d Projection on the z axis of the distance between pi and pt

e Projection on the z axis of the distance between pm and pt

E4 Tangential point on the O4 shaft of the instrument’s thumb

E5 Tangential point on the O5 shaft of the instrument’s thumb

ej Mapping error (relative distance) between the exoskeleton’s and the instru-
ment’s digits

FA Point where the cable intersects the horizontal from O5

FB Tangential point on the O5 shaft as the cable extends to E4

G5 Point of narrowing on the shaft of link ‘2’ of the instrument’s thumb

GB Point where cable ‘tJ5’ exits the thumb and enters a sheath of constant length
until it connects to the actuating motor

G31 G33 Diametrical points of the through hole of link ‘a’ of the instrument’s thumb

G32 Point at the edge of link ‘a’

IK Tangential point on the O4 shaft as the cable tJ5 extends to G31, where
K = AorB depending on which routing is used

in Projection of pi on z axis

k Offset that is calculated from the three sensors when the MCP joint is at 0
position

Oj Origin of frame {j}, coincident with the centre of the shaft of the instrument’s
thumb’s DOF j, where j = 1, 2, 3, 4or5

p′TI Modified translation vector of the hand’s index base {I} with regard to the
thumb base {T} for use in iterative STT mapping

p′TM Modified translation vector of the hand’s middle base {I} with regard to the
thumb base {T} for use in iterative STT mapping
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P2 Position of the ‘locking’ pin in link ‘1’ of the instrument’s thumb, where the
cable tJ2 is attached

P5 Position of the ‘locking’ pin in link ‘3’ of the instrument’s thumb, where the
cable tJ5 is attached

pI Position vector of the exoskeleton’s index finger’s tip

pi Position vector of the instrument’s index finger’s tip

pM Position vector of the exoskeleton’s middle finger’s tip

pm Position vector of the instrument’s middle finger’s tip

pT Position vector of the exoskeleton’s thumb’s tip

pt Position vector of the instrument’s thumb’s tip

pTI Translation vector of the hand’s index base {I} with regard to the thumb
base {T}

pti Translation vector of the instrument’s index base {i} with regard to the thumb
base {t}

pTM Translation vector of the hand’s middle base {I} with regard to the thumb
base {T}

ptm Translation vector of the instrument’s middle base {i} with regard to the
thumb base {t}

qj MCP angle in degrees, derived using the three sensors around this joint

Rd Range of the MCP joint measured experimentally

Rr Range of the sensor value before joint calibration

rs Radius of the joint shafts of the instrument’s thumb

RTI Rotation matrix of the base of the index/middle finger base {I} with regard
to the thumb base {T} (for both the human hand and the instrument)
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Chapter 1

Introduction

Minimally Invasive Surgery (MIS) refers to a wide range of surgical procedures

where the size of the incisions made on the patient’s body is limited as opposed to

wider incisions used in open surgery. MIS made it “possible for surgeons neither to

look directly nor touch the tissues or organs on which they operate” (Mack, 2001).

Keyhole surgery or laparoscopy is a type of MIS, performed through small incisions

on the patient’s abdomen.

Examples of efforts in designing primitive versions of minimally invasive instru-

ments have been recorded since 400 B.C. by Hippocrates. Later, in 1806, Philip

Bozzini produced a tool that exploited reflecting light from a series of mirrors. Al-

though not being accepted by the medical community of the time, it later set the

grounds for endoscopy (St Peter and Holcomb, 2008). A variation of this instru-

ment, called the cystoscope, made the first laparoscopy in an animal possible in

1901. Despite many advancements towards MIS in various medical procedures over

the years, many consider that the revolution in MIS really began in 1987 when Philip

Mouret performed the first laparoscopic cholecystectomy1 (Mack, 2001; St Peter and

Holcomb, 2008; Park and Lee, 2011), five years after the development of a high res-

olution camera that could be attached to the endoscope.

MIS procedures are becoming more common in hospitals because of their nu-

merous advantages, such as decreased blood loss, reduced post-operative pain and

morbidity, better cosmetic results, shorter hospital stay and thus, lower cost (Alle-

mann et al., 2010). For example, laparoscopic hysterectomies increased from 17.7%

to 46% between 2006-2009 (Jonsdottir et al., 2011). Park and Lee (2011) state that

1For terminology see the Glossary at the beginning of the thesis
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if there had been no MIS approaches invented, the volume of patients nowadays

could not possibly have been accommodated by existing hospitals.

Robotic technology, an evolution of the hand-held laparoscopic instruments, was

introduced to surgery in order to add to and enhance the benefits of MIS. Robot-

assisted MIS (R-A MIS) offers the possibility of improved precision, dexterity and re-

fined accuracy, helping surgeons overcome limitations of current surgical techniques

(Allemann et al., 2010). This, in combination with the more ergonomic surgical

instruments, has consequently added to the popularity of the technique (Freschi

et al., 2012). Furthermore, the indirect control of the surgical instruments creates

the possibility of remote surgery, e.g. Lindbergh operation by Marescaux (2002),

providing the ability to operate on patients at isolated locations or astronauts in

space (Thirsk et al., 2007).

In 2000, the Food and Drug Administration (FDA) approved the teleoperated

Da Vinci Surgical System (frequently referred to as Da Vinci) for various surgical

procedures (Intuitive Surgical, 2016). At the time of writing this thesis, the Da

Vinci remains the only commercially available R-A MIS system for general and ab-

dominal surgery. Teleoperated R-A MIS systems, such as the Da Vinci, include

two main components: the robotic manipulation unit with slender instruments that

can be inserted into the operating field for carrying out surgical tasks and a sur-

gical interface to remotely control the instruments. As will be discussed later, the

main criticism of such systems is related to the high costs, the necessity of a large

space in operating theatres and the limitations of their instruments (Baik, 2008).

In fact, their efficiency and extent of contribution are doubted by a large part of

the surgical population (Greenberg, 2013). In order to improve patient safety and

the surgeon’s efficiency, as well as increasing the number of surgical procedures for

which these technologies can be applied, great efforts are being put into designing

new MIS instruments by both the academic and industry sector. Additionally, the

way that the instruments are controlled affects not only their efficacy, but also the

ergonomics and learning process for the surgeon. It is, therefore, necessary that new

2



1.1. Research Questions

surgical instruments are partnered with appropriate controllers to form a complete

teleoperated system. Research in such systems could have a significant impact in

the advancement of R-A MIS.

1.1 Research Questions

“The fact that there is a multiplicity of solutions on offer suggests that

none of them are perfect. And if there was one ideal solution, we would

all have adopted it. So the fact that the choice of instruments that

are being developed is not finalised yet, indicates that there is room for

development.”

Krukowski et al. (2010)

The purpose of this thesis’ research has been to investigate, design and build a

novel prototype of MIS robotic instrumentation for manipulation of soft tissue, such

as in general surgery. For simplicity in this thesis, the term MIS refers to abdominal

surgery unless stated otherwise.

Through the study of MIS techniques, review of existing surgical systems and

devices as well as their limitations, the research presented in this thesis has aimed

to further the understanding and use of robotics in the field of surgery. In order

to achieve this, the following questions concerning the specifications of the system

needed to be answered.

i. What are the issues and setbacks in R-A MIS when compared to other MIS

techniques and open surgery?

ii. Can R-A MIS instruments be designed to utilise dexterous manipulations and

ergonomics associated with open soft tissue (abdominal) surgery?

iii. How can an appropriate user interface be designed to match the dexterity of

the instruments and enable remote manipulation?

3



1.2. Methodology

1.2 Methodology

The research conducted in order to answer these research questions can be sum-

marised in the following objectives:

1. Investigation of issues in MIS and review of existing systems and devices.

2. Further exploration of existing challenges in manipulation, ergonomics and

requirements in MIS using feedback from surgeons.

3. Design of a novel master-slave concept for MIS instrumentation that could

overcome identified challenges.

4. Development of kinematic models of proposed systems that agree with the

kinematic model of the human hand and hence, offer the surgeon intuitive

manipulation.

5. Computer-aided design (CAD) and rapid prototyping (RP) for implementation

of the slave instrument to demonstrate feasibility of production and miniatur-

isation.

6. CAD and RP for implementation of a master device that is adjustable.

7. System trials to evaluate capabilities in grasping force and master-slave map-

ping to demonstrate possibility for effective teleoperation.

Each part has had a significant role in forming the succeeding phase of the

research, revisiting previous phases and including iterations of previous designs when

required. The methodology can be represented as in Figure 1.1.

1.3 Published Work

As a result of the research activity, parts of the thesis have been published in four

conference proceedings, one journal and two relevant conference workshops. Further-

more, a journal paper describing the master-slave mapping of the µAngelo system
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Figure 1.1: Research methodology

and the accuracy experiments of the exoskeleton and the surgical instrument is cur-

rently under development. More specifically (abstracts can be found on page 165):

• Edited versions of Sections 3.2, 4.1 and 5.1 have been published in:

Tzemanaki, A., Dogramadzi, S., Pipe, T., and Melhuish, C. (2012). Towards

an anthropomorphic design of minimally invasive instrumentation for soft tis-

sue robotic surgery. In Advances in Autonomous Robotics. Springer, pages

455-456.

• An edited version of Section 4.3.1 has been published in:
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1.3. Published Work

Tzemanaki, A., Gao, X., Pipe, A. G., Melhuish, C., and Dogramadzi, S. (2013).

Hand exoskeleton for remote control of minimally invasive surgical anthropo-

morphic instrumentation. In Yang, G.-Z. and Darzi, A., eds., The 6th Hamlyn

Symposium on Medical Robotics. Imperial College London, pages 81-82.

• Edited versions of Sections 3.1, 3.3 and 5.2 have been published in:

Tzemanaki, A., Walters, P., Pipe, A. G., Melhuish, C., and Dogramadzi, S.

(2014). An anthropomorphic design for a minimally invasive surgical sys-

tem based on a survey of surgical technologies, techniques and training. The

International Journal of Medical Robotics and Computer Assisted Surgery,

10(3):368-378.

• Edited versions of Sections 4.3.2, 5.3.1 and 5.3.5 have been published in:

Tzemanaki, A., Burton, T. M., Gillatt, D., Melhuish, C., Persad, R., Pipe, A.

G., and Dogramadzi, S. (2014). mAngelo: A novel minimally invasive surgical

system based on an anthropomorphic design. In 2014 5th IEEE RAS EMBS

International Conference on Biomedical Robotics and Biomechatronics, pages

369-374.

• Edited versions of Sections 5.3.2, 5.3.3 and 6.1 have be published in:

Tzemanaki, A., Fracczak, L., Gillatt, D., Koupparis, A., Melhuish, C., Persad,

R., Pipe, A. G., Rowe, E. and Dogramadzi, S. (2016). Design of a multi-DOF

cable-driven mechanism of a miniature serial manipulator for robot-assisted

minimally invasive surgery. In 2016 6th IEEE RAS EMBS International Con-

ference on Biomedical Robotics and Biomechatronics, pages 55-60.
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Presentations:

• Tzemanaki, A., Pipe, A. G., Melhuish, C., and Dogramadzi, S. (2013). Hand

exoskeleton for remote control of minimally invasive surgical anthropomorphic

instrumentation. In ’Simulation, Robotics and Telemedicine’ Conference of

the Royal Society of Medicine and the Severn Deanery, Bristol, UK.

• Tzemanaki, A. and Dogramadzi S. (2015). mAngelo: A Novel System for

Robot-Assisted Minimally Invasive Surgery. In 2015 Women in Robotics

Workshop of the Robotics Science and Systems conference. Rome, Italy.

1.4 Thesis Roadmap

In Chapter 2, different types of MIS techniques are briefly described and the related

issues are identified, leading to a discussion about the requirements of R-A MIS.

Surgical systems that have been commercially available, as well as a few under-

development, are reviewed.

In Chapter 3, a survey of surgical systems, training and techniques conducted

among surgeons is presented and its findings are discussed. Furthermore, the concept

of the proposed system (mAngelo surgical system) is introduced and feedback from

surgeons is presented.

In Chapter 4, the proposed surgical interface (master) is described. A study of

the joints and kinematics of the human hand and an investigation of an anthropo-

morphic approach using a commercial data glove are conducted. Following on from

this, the development of various versions of the exoskeleton prototypes using Hall-

effect sensors is demonstrated with tests for accuracy and repeatability. Although

the final exoskeleton prototype includes provision for haptic feedback, this is not

implemented as part of this thesis.

Chapter 5 describes the design of the anthropomorphic slave instrument of the

mAngelo system and compares its kinematic model to that of the master exoskeleton.

Two prototypes using different actuation mechanisms are described: shape memory
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alloy (SMA) and cables connected to motors. Two ways of routing the cable-driven

mechanism of the second prototype are further investigated and the method of

deriving the input-output functions that drive the mechanism is explained. The

theoretical model is tested experimentally using simple open-loop position control

and the accuracy of the input-output functions is discussed.

Chapter 6 considers the master and slave as an integrated functional system.

Firstly, it discusses the bio-inspiration of the slave instruments and their resem-

blance to the human hand to verify the degree of anthropomorphism in the design.

Consequently, it suggests a method of mapping between the instruments and the ex-

oskeleton and, by extension, the human hand. Using the proposed mapping method,

simpler system designs with fewer degrees of freedom are considered and their per-

formance in position accuracy is compared to the mAngelo design.

In Chapter 7, conclusions are drawn about the thesis’ research and its contribu-

tions. Finally, limitations of the work are discussed and future directions for further

research are identified.
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Chapter 2

Background and Related Issues

Advances in MIS as well as related technologies in the course of the recent decade

have led to a convergence of techniques available for treatment of various conditions.

However, different surgical specialities use MIS techniques and routines that vary

significantly, depending on which part of the body is operated on (e.g. abdominal

surgery, neurosurgery), and hence, this research focuses mainly on general surgery

(especially abdominal such as urology, gynaecology and colorectal surgery). Prostate

cancer is the fourth most common cancer (12% all of cancer cases) and the most

common cancer in men accounting for 25% of all cases in males in the United

Kingdom in 2009 (Cancer Research UK, 2012), while bowel cancer accounts for

13% of all cancer incidents in the UK (2009). In addition, cholecystectomy (gall

bladder removal) is one of the most frequent procedures, more than 80% of which

are undertaken using MIS (Solly et al., 2006).

A brief presentation of the most popular MIS techniques will be followed by an

overview of the existing commercial systems, as well as a number of relevant research

activities and systems in the field. Comparison of different operating techniques will

be made in order to help with understanding possible issues and challenges, while

the importance and level of difficulty in training for these techniques will also be

discussed.
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Figure 2.1: Basic laparoscopic instruments
( c©1999-2016 WeBSurg R© IRCAD R©, All

Rights Reserved)

Figure 2.2: Laparoscopic instruments and
their handles (Matern et al. (2001), under

CC BY-NC-ND 3.0 license)

Figure 2.3: Rigid Laparoscope (with
permission from Xion-Medical GmbH)

Figure 2.4: Laparoscopic trocars
( c©1999-2016 WeBSurg R© IRCAD R©, All

Rights Reserved)

2.1 Types of MIS

2.1.1 Laparoscopic Surgery

There are usually three main incisions made in the abdomen during laparoscopy.

Two are intended for the instruments (Figures 2.1 and 2.2) and the third is made

for a laparoscope, a slender tube with a light source and a camera (Figure 2.3). The

instruments and laparoscope are inserted, removed and swapped through trocars

(Figure 2.4) in order to minimise the trauma to the abdominal wall and to stabilise

the instrument’s point of rotation as much as possible. As soon as the laparoscope

is inserted into the body cavity, a gas (CO2 in most cases) is used to insufflate the

abdomen above the organs, in order to elevate the abdominal wall and make space

for the instruments’ movement (insufflation).
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Specific Challenges Although the diagnostic value of laparoscopy has been

proven since the 1960s, emergency therapeutic application is relatively recent, e.g.

for acute abdominal pain (Golash and Willson, 2005), with specific complications

during the procedure. According to Hashizume et al. (1997), 37.5% of complica-

tions are caused by incidents that occur during needle and trocar positioning, 70%

of which occur during the positioning of the first trocar. Although rare (5 per 10,000

to 3 per 1,000 cases), these potentially preventable injuries have serious consequences

with a mortality rate of 13% of the injured patients (Chandler et al., 2001).

The most common complication is the development of hernias, sometimes leading

to the necessity of a follow-up operation for hernia repair. The risk increases with the

diameter of the trocar (although it can also be due to abdominal wall trauma during

the procedure). Kadar et al. (1993) reported one patient with hernia development

out of 429 (0.23%) when a 10 mm trocar was used and 5 out of 161 (3.1%) when the

diameter of the trocar was 12 mm. Furthermore, the bigger the size of the hernia,

the higher the recurrence rate is in the following years (Hesselink et al., 1993).

Additionally, complications have been associated with increasing operative time

in laparoscopy (Jackson et al., 2011), making advancement of instruments and tech-

nologies imperative, in order to improve surgical efficiency and speed.

2.1.2 Hand-Assisted Laparoscopic Surgery

Hand-Assisted Laparoscopic Surgery (HALS) is not a purely laparoscopic approach;

the surgeon can insert a hand through a small incision in the abdomen (7-10 cm

(Scott-Conner, 2012)), using it for sensory perception (tactile feedback) and to guide

the surgical instruments, facilitating the mobilisation of the organs. It is used instead

of a full conversion to open surgery, as it ensures better control and a significant time

gain compared to laparoscopic techniques, especially true in complex procedures

(Meijer et al., 2000; Scott-Conner, 2012). Conversion rates from MIS to HALS

differ between hospitals and procedures, but range from 0 to 15% (Lin and Liu,

2015). Meijer et al. (2000) states:
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“HALS is a safe and efficient method by which it is possible to com-

bine the established convenience and safety of open surgery with the

advantages of minimally invasive surgery.”

The main disadvantages of this technique include reduced working space taken

up by the hand, potential for loss of pneumoperitoneum (CO2) due to leaking and

the cosmetic issues associated with an upper abdominal incision (also hernia devel-

opment risk) (Rané and Wolf, 2005). Additionally, the surgeon’s hand can block

the visibility of the site (Scott-Conner, 2012).

In order to make this technique safer, several hand-assistance devices have been

developed. An example of first generation devices is IntroMit (Figure 2.5), while

GelPort (Figure 2.6) belongs to the second generation devices, which are more user-

friendly but also more expensive (30% more than the first-generation devices) (Rané

and Dasgupta, 2003).

Figure 2.5: Intromit (reprinted from the
work by Stifelman and Nieder (2002) with

permission from Elsevier)

Figure 2.6: GelPort (Patel and Stifelman,
2004). Reprinted with permission from

JOURNAL OF ENDOUROLOGY (Volume
18 & Issue 7), published by Mary Ann

Liebert, Inc., New Rochelle, NY

2.1.3 R-A MIS and Commercial Systems

Since R-A MIS has been in use for less than 20 years, the commercially competi-

tive environment of surgical robotics could be considered to be still in its infancy.

Available systems for abdominal surgery are not autonomous but constitute master-
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slave, remotely controlled systems. The surgeon performs surgery using a computer

console that remotely controls small instruments attached to the robot.

The surgeon is usually able to perform more operations per day experiencing less

fatigue due to improved ergonomics in comparison with laparoscopy. Furthermore,

R-A MIS significantly improves the surgeon’s technical capability, promotes surgical

safety and consistency, recording detailed information for every procedure (Taylor,

2006). This allows better analysis and comparison between the outcomes of pro-

cedures which ultimately benefit training and future procedures in terms of safety.

In laparoscopy, everyone shares the same view of the big screens leading to better

collaboration between the surgeon and the medical staff during the procedure. In

R-A MIS, this can be further improved with the addition of a mentoring console

where surgeon and resident can operate on one patient simultaneously.

2.1.3.1 Da Vinci Surgical System

The most commonly used robotic system, and the only commercially available at

the time of writing, is the Da Vinci Surgical System (Figure 2.7). Here, the sur-

geon operates by controlling the master handle shown in Figure 2.8. The system

scales, filters and translates the surgeon’s hand movements into more precise micro-

movements of the instruments, which operate through small incisions in the body

(Intuitive Surgical, Inc., 2016a).

Figure 2.7: Da Vinci Surgical system
(Intuitive Surgical, Inc. (2016c), c©2016

Intuitive Surgical, Inc.)

Figure 2.8: The Da Vinci master handle
( c©2005 by John Wiley & Sons)
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Generally, laparoscopy is found to be faster (e.g. in rectal cancer as reported

by Park et al. (2011) and endometrial cancer by Cardenas-Goicoechea et al. (2010))

or at least comparable to R-A MIS (in prostatectomy as reported by Rozet et al.

(2007)), although the Da Vinci system offers some advantages in precision during

finer tasks. In certain procedures, the Da Vinci improves visualisation and decreases

the operator’s distance from the surgical field, such as in rectal surgery due to the

narrow pelvic cavity (Baik, 2008) or in laryngeal surgery (Hillel et al., 2008).

The instruments of the Da Vinci (Figure 2.9) carry a gripper with a wrist-like

movement (named EndoWrist) at the end of a shaft. The shaft can be as small as

5 mm in diameter. The gripper comprises three Degrees Of Freedom (DOFs) and

90◦ of articulation, but its shaft is attached to a robotic arm resulting in a total of

seven DOFs (Intuitive Surgical, Inc., 2016a) per instrument/arm. It is argued that

the seven DOFs resemble the number of DOFs in the human arm; however, since

its shaft is straight and rigid (lacking an elbow), the rotation at the point of the

abdominal insertion has the same axis as the one at the EndoWrist joint and hence,

the Da Vinci arm seems to have six DOFs when compared to the human arm which

is considered to have seven (Hillel et al., 2008).

Figure 2.9: Da Vinci instruments (Intuitive Surgical, Inc., 2016a)

2.1.3.2 Zeus Robotic Surgical System

The Zeus Robotic Surgical System (Jones, 2011) was an alternative to the Da Vinci,

originally produced by Computer Motion and later bought by Intuitive Surgical Inc.,

the company that produces Da Vinci (Lysaght, 2005), eliminating the competition

and consequently establishing their monopoly in the field. According to Trehan
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and Dunn (2013), lack of competition has allowed cost to be higher than necessary,

although this could change with existing patents expiring in 2016 (Hoffman, 2010).

Zeus’ layout and ergonomics were very similar to Da Vinci, with the addition of

the AESOP robotic arm (Automated Endoscopic System for Optimal Positioning)

which was voice activated and used to hold the endoscope. The Zeus robotic system

was also being tested for wireless space surgery (Jones, 2011).

When comparing the two systems, Dakin and Gagner (2003) found that Da Vinci

outperformed Zeus with regard to speed, attributing this to the articulation of the

EndoWrist. Two years earlier, Sung et al. (2001) had concluded that the learning

curve and operative time were shorter and movements also more inherently intuitive

when using the Da Vinci System. These studies suggest that the Da Vinci is, at the

moment, the only widely acceptable surgical robot.

2.1.3.3 Considerations

The benefits of the Da Vinci are often questioned due to its great size and cost

(both purchase and maintenance), the lack of tactile feedback as well as the time-

consuming docking and separation procedure of the robotic cart and the patient

(Baik, 2008). The total population of the developed countries covers 14.6% of the

world population, while the other 85.4% live in developing countries (Malik, 2013).

Although a stay in a hospital in the UK or the US is considered expensive and efforts

are focused on reducing it by treating the patients faster, in developing countries

where the cost of hospital stay is not as high, e.g. the price in the US is more than

60% above the average (Koechlin et al., 2010), hospitals are not inclined to disperse

funds for buying and maintaining expensive equipment such as the Da Vinci robot.

The cost becomes even greater as hospitals may require permanent presence of a

specialist for technical troubleshooting of the robotic system (Al-Naami et al., 2013).

Although R-A MIS in such procedures may offer decreased blood loss and trans-

fusion rates, operative times are significantly longer compared to open techniques

in complex procedures such as radical cystectomy. Open surgery is still the stan-
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dard approach for them (Novara et al., 2015). It has been reported that only 3% of

the R-A MIS cystectomies in the United States were completed without converting

to the open technique (Smith et al., 2012). The slow adoption is perceived to be

increased difficulty due to handling of sensitive structures as well as working in a

confined space.

In 2013, the FDA conducted a survey with experienced surgeons who used the

Da Vinci in a variety of procedures to understand arising challenges compared to

conventional techniques (Center for Devices and Radiological Health et al., 2013).

All respondents considered it to have a complex user-interface as time is needed for

learning how to use the foot pedals, acquiring effective hand-eye coordination and

performing procedures without the ability to use their hands to feel tissues, organs

or use sutures. The biggest challenge of all might be how to position the arms to

avoid collisions between them as well as in relation to the patient’s incisions.

Furthermore, robotic surgery was named one of the top 10 health technology

hazards for 2015 by the Emergency Care Research Institute (ECRI Institute, 2014).

Factors contributing to events of patient harm were identified as i) the need to repo-

sition team members, the patient (also accidental movement) or equipment mainly

because of the size of the Da Vinci and ii) lapses in team communication. This

agrees with the study by Wright et al. (2014) on 87,514 patients comparing compli-

cation rates and costs related to two types of surgeries when done laparoscopically

or using the Da Vinci. R-A MIS in both types of surgery had statistically signif-

icant higher complication rates than those of conventional MIS, while the related

costs were increased by $2,504 (oophrectomy) and $3,310 (cystectomy) per patient.

Similarly, in the case of R-A MIS prostatectomy, complications such as eye injuries

can arise due to the combination of long surgical duration and the patient being

positioned head down. This position is specifically required for this procedure for

better exposure and optimal robotic arm positioning (Sampat et al., 2015).

Main recommendation of the ECRI institute is better training, not only for the

surgeon but also for the rest of the surgical team, including nurses, anaesthetists
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Figure 2.10: NOTES approaches (a) Transgastric nephrectomy (endoscopic access to
the kidney via the stomach), (b) Transrectal nephrectomy (the instruments are

progressed through the wall of the colon), (c) Tranurethral prostatectomy and (d)
Transvaginal nephrectomy (Tyson and Humphreys (2014), permission by Nature

Publishing Group1)

and ancillary staff. This type of recommended training is exclusively related to

the existing robotic technology, forcing surgeons to specialise and adapt to specific

problems. However, a different approach could be that robotic technologies should

instead adapt to the surgeon’s needs.

2.1.4 Natural Orifice Translumenal Endoscopic Surgery

Natural Orifice Translumenal Endoscopic Surgery (NOTES) is a surgical technique

that requires no external incisions. Instead of making a skin incision, an internal

incision is made via a natural orifice (transgastric, transvaginal, transcolonic or tran-

srectal) in order to reach internal organs. A variety of approaches is demonstrated

in Figure 2.10. In some cases, as a hybrid technique that combines NOTES and

a direct access approach, additional laparoscopic instruments are inserted through

an incision in the umbilicus (Arulampalam et al., 2009). Robotic systems are also

being developed specifically for this surgical technique (some are mentioned in Sec-

tion 2.3.2).

1www.nature.com/nrurol/journal/v11/n6/full/nrurol.2014.96.html
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At the time of writing this thesis, NOTES is considered an experimental surgical

technique and is still in early stages of development. It entails high risks of infec-

tion and problems in closure of the internal incisions. More robust technologies or

techniques will be needed in order to overcome the technical challenges (Flora et al.,

2008).

2.1.5 Single Port Access

Single Port Access (SPA) or Single Access Surgery was developed as an alternative

to conventional multi-port laparoscopy in order to improve some of the MIS results.

Using one incision instead of many, it is expected to have better cosmetic results

and less post-operative pain. Figure 2.11 shows one of the commercial devices

used in SPA for introducing the laparoscope and instruments into the body cavity.

Although a variety of such multichannel devices is on offer, they are expensive or

even unaffordable for hospitals. Khiangte et al. (2010) present an improvised SPA

glove port made out of readily available materials; however the suitability of some

of the materials for human use is questioned by Uygun et al. (2013).

Figure 2.11: SILS Port (Ito et al. (2010), c©2010 by John Wiley & Sons)

In the techniques discussed in the preceding Sections (laparoscopy, HALS and

R-A MIS), trocars are usually placed in a triangular fashion (Figure 2.12) in or-

der to facilitate smooth instrument manipulation along with adequate visualisation.

Using multiple instruments through a single insertion generates internal and exter-

nal clashes, while achieving triangulation of the instruments (for example camera,

grasping forceps and scissors) forces the surgeons to cross their hands and instru-
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Figure 2.12: Triangulation of instruments in multi-port surgery (left) and SPA (right)
(red dot: target organ) (Chiu et al. (2011), with permission of Springer, original caption:

“Standard triangulation (left) and single-incision laparoscopic (SIL) appendectomy
triangulation (right)”)

Figure 2.13: Position of hands in
conventional SPA (Allemann et al. (2010),
image courtesy of Pierre Allemann M.D.,

c©Archive of surgery, JAMA Surgery)

Figure 2.14: Dapri curved grasping
forceps and scissors ( c©KARL STORZ -

Endoskope, Germany)

ments in a non-ergonomic fashion as shown in Figure 2.13 (Allemann et al., 2010).

This is often referred to as the ‘fulcrum effect’.

The use of specialised curved instruments (Figure 2.14), where the curve is inside

the patient’s body, has been proposed and tested in order to overcome these conflicts

(Dapri et al., 2011). It is claimed that, thanks to the double curvature, perfect

triangulation of the tools is achieved at all times, despite the fact that they are

working through a single incision. Allemann et al. (2010) compare two types of SPA

surgery using externally semi-curved instruments: standard SPA where the surgeons

hold the instruments and robot-assisted SPA surgery using the Da Vinci robot and

a single-port device. In the case of the R-A approach, the surgeons operate the

left instrument indirectly using their right hand and vice versa (the control of the

instruments is inverted). This study showed that the mean operating time and the

19



2.1. Types of MIS

Figure 2.15: Schematic of SPA (adapted from the work by Rottman et al. (2010),
under CC BY-NC-ND 3.0 license)

rate of internal and external conflicts were lower when using the R-A approach,

while the junior surgeon’s mean operative time when using the robot was similar to

the senior surgeon’s mean time when using the standard SPA approach.

The principle of triangulation is necessary in order to regain acceptable er-

gonomic conditions and reproduce important manoeuvres used in multi-port MIS.

Nevertheless, the incision size is also an important issue. Despite minimising the

number of incisions, SPA, not surprisingly, requires a larger port than the ones in

multi-port MIS. Rao et al. (2011) report incisions anywhere between 17 and 50 mm

depending on the port and the organ to be accessed/removed. Rottman et al. (2010)

report a case where the umbilical single incision was 15 mm long and through which

two 5 mm trocars for the instruments were inserted, as well as a trocar for a 5 mm

laparoscope (Figure 2.15). However, one of the 5 mm trocars had to be up-sized

to a 12 mm one in order to accommodate a larger diameter instrument. The au-

thors report no complications or hernia formation after 18 months of the successful

operation. Nevertheless, this cannot be considered a statistically significant result

(only one patient included in the study). The benefits of SPA surgery, besides cos-

metic, are not unambiguously proven and accepted by all surgeons due to extended

operating times and higher risk of hernia (Zhang et al., 2012).

The Da Vinci robotic system was initially introduced into SPA by some inno-

vative surgeons, such as Stein et al. (2010), using GelPort (Figure 2.6, page 12),
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which, as previously mentioned, is intended for HALS. However, being originally

designed for multi-port laparoscopy, it was argued whether the Da Vinci, a bulky

robotic system, was suitable for SPA surgery due to the collision of its arms (Nam

et al., 2011). Subsequently, Intuitive Surgical received FDA approval to market

its single-site instrumentation for cholecystectomy procedures (Intuitive Surgical,

2011). Kroh et al. (2011) reported the successful results of thirteen such cases using

the new Da Vinci single-site platform.

2.2 Surgeon’s Needs

Da Vinci surgery is now widespread and is used by many surgeons. Although most

hospitals proudly advertise the fact that they own one, “some have kept it low key”

(Greenberg, 2013), being sceptical and cautious about its use. The benefits that

robotics could bring to the surgical field are manifold but it is evident that a number

of questions remain. Do the existing systems satisfy their users? Do surgeons suffer

from bad ergonomics? And finally, has the surgical training experience improved

with the use of technology? The following Sections give a brief overview of the

existing literature on the subject.

2.2.1 Surgical Training and Techniques

Acquisition and mastery of basic laparoscopic skills is a prerequisite for performing

complex laparoscopic operations, and thus, training surgeons in MIS procedures is

becoming increasingly time-consuming (Society of American Gastrointestinal and

Endoscopic Surgeons, 2009). When learning a new procedure, performance tends to

improve with experience. The learning curve phase constitutes a very stressful part

of a surgeon’s career, while it is extensively cost inefficient and induces complications

for the patients (Dankelman et al., 2010). In order to minimise this phase, the

training of a new surgeon is intense and as efficient as possible, a fact stressed

by Soot et al. (1999) and Tan et al. (2002), when discussing the transition from
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open to laparoscopic fundoplication. The Society of American Gastrointestinal and

Endoscopic Surgeons (2009) suggests that MIS training should be integrated into the

surgical residency training and be done simultaneously with open surgery training,

since this would provide a synergistic effect in the surgical education (Kano et al.,

2010).

Apart from laparoscopic training, many surgeons undergo robotic training as

well. Herron and Marohn (2007) point out the need for a simulator that could

provide adequate training, equivalent to using the actual robotic system. Relevant

information can also be obtained from the survey by Liu et al. (2003), which in-

vestigates and praises the usefulness of surgical teaching simulators. The survey

by Duchene et al. (2006) examines to what extent surgical residents participate in

R-A MIS operations. Only 38% of the respondents rated their laparoscopic training

experience satisfactory, a number that did not increase even 7 years later (Furriel

et al., 2013). Gobern et al. (2011) show that most frequently there is no formal

curriculum in place, which limits the ability to incorporate robotic training into

residency.

The use of surgical robotics could enhance and shorten the learning process:

multiple big screens with better vision capabilities lead to better collaboration and

communication between the surgeon and the medical staff, which also means that

the trainees can learn faster. Besides, it has been shown that the mentoring console

of the Da Vinci (where surgeon and resident operate on one patient simultaneously)

enhances training and improves performance in complex surgical tasks (Hanl et al.,

2006). The ‘Red Dragon’ is a simulator for training in MIS procedures which,

through its manipulator and graphical interface, measures position and orientation

of the tools as well as the forces and torques applied to them by the surgeon (Gunther

et al., 2007). Its purpose is to objectively assess the skills of the surgeon and to

study translation from a simulation environment to animal trials. Additionally,

intensive training with Da Vinci using the Fundamentals of Robotic Surgery (FRS),

a simulation-based training curriculum for R-A MIS analogous to the Fundamentals
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of Laparoscopic Surgery (FLS) (Ragle, 2012), is very important for any resident

before they feel confident to perform surgery on a patient (Macgregor et al., 2012).

2.2.2 Ergonomics

Studies have shown that surgeons frequently report problems such as neck, shoul-

der/arm, hand/wrist and back pain/stiffness, while suffering from mental fatigue

after a series of laparoscopic procedures (Doné et al., 2004; Reyes et al., 2006). It is

also mentioned that surgeons are not able to perform precise motions and that they

find the instruments awkward to manipulate (Doné et al., 2004). The adjustability

of the device is a significant factor, and as Berguer and Hreljac (2004) have reported,

laparoscopic instrument users with smaller hand size have difficulty operating them

and also experience musculoskeletal problems.

Increasingly, R-A MIS is replacing conventional laparoscopic surgery and it is

essential to determine whether robotic systems are adjusted to the surgeons’ needs

and comfort. In the survey by Santos-Carreras et al. (2012) among 24 surgeons with

R-A MIS experience, 28% complained about neck and finger discomfort, followed by

20% complaining about back pain. Generally, however, Da Vinci operations scored

better than laparoscopy and open surgery regarding the surgeons’ comfort during

the procedure.

2.2.3 Need for Innovation

“The operating room of the year 2030 will be a totally different environ-

ment than today. Mass screening and early diagnosis will have a major

impact on the type and invasiveness of required surgical procedures.”

Sir Alfred Cuschieri, MD, 2000

Apart from instruments and robotic systems, the operating room also needs to be

adjusted and improved (Herron and Marohn, 2007). At the moment, the Da Vinci

system has entered hospitals and is hosted in the same operating rooms that had
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been used even before laparoscopic procedures had been established. This suggests

that the system’s operating conditions are not optimally suited. Its docking and un-

docking procedure is long, while the volume of the robot leaves limited free space

in the operating room, even leading to patient harm as previously discussed (ECRI

Institute, 2014).

Instead, special operating rooms for R-A MIS procedures could be tailored ac-

cording to the advantages of the robotic systems so that they offer the optimal

conditions for best patient care. Al-Naami et al. (2013) anticipate improvements

including more flexible robotic arms that can be pulled from the ceiling and with

automatic loading and unloading of the instruments (instead of the manual proce-

dure currently performed by the surgical assistant). Ease of use is also a very signif-

icant factor; ideally, a tele-surgical system integrated with every surgeon’s computer

would simplify the procedure.

For true innovation and progress, the current systems should be reconsidered

and the established surgical routines challenged. The need for more articulated and

efficient instruments is apparent, as is the need for more universal instruments able

to perform a variety of tasks without having to change between them frequently.

Mutter and Marescaux (2004) state that “the change in instrument position is the

most time-demanding part of the operation”.

Although this thesis is dedicated to surgical instruments that are in direct con-

tact with the operating field and less, for example, with the robotic arms that may

hold them, it is useful to consider the system and environment as a whole. More

specifically regarding the use and manipulation of robotic surgical instruments, im-

portant attributes to surgeons would include dexterity that expands surgical capa-

bility, improved flexibility for further reach in the abdomen without reconfiguration,

and haptic feedback (Herron and Marohn, 2007). “Research in surgical robotics

should not be tethered to the surgeon-at-a-console paradigm” (Herron and Marohn,

2007) but instead could adopt modular and portable systems with ‘plug and play’

capabilities. Furthermore, ability to customise the system for different users could
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Figure 2.16: Phantom Omni with a
modified tip

Figure 2.17: Raven II instrument
(Hannaford et al. (2013), c©2013 IEEE)

contribute to good ergonomics and avoid musculoskeletal problems, as Berguer and

Hreljac (2004) report.

2.3 Surgical Systems in Development

The following Sections present a review of various research robotic surgical systems.

This does not aim to be exhaustive but to present examples of robotic systems

intended for use in the surgical techniques mentioned previously and to highlight

their main aspects. A comparison table summarising some of their features can be

found on page 48.

2.3.1 Master-Slave Systems

Raven is a system similar to the Da Vinci but aimed towards academic research

(Hannaford et al., 2013). The surgical manipulators have seven DOFs (Lum et al.,

2009) and the surgeon is using a Phantom Omni (Geomagic, 2013) to control the

position and orientation of the instrument’s tip (Figure 2.16). Initially being funded

by the US military for treating soldiers on the front line as soon as possible after

an injury, seven systems of the 2nd generation of the robot, Raven II, were dis-

tributed to universities in the USA in order to advance the technology even more

by collaboration. The instrument used for the Raven II is shown in Figure 2.17.

MiroSurge is another research master-slave platform (Thielmann et al., 2010). It

includes the surgeon’s console and three surgical robotic arms (MIRO) that carry two
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Figure 2.18: MIRO arm and MICA instrument (Thielmann et al. (2010), c©2010 IEEE)

surgical instruments (MICA) and a stereo video laparoscope (Figure 2.18). Surgeons

are using an Omega7 (Figure 2.19), which, through its parallel kinematics, tracks

the hand/arm movements and transfers them to the robotic arms and instruments.

The MIRO arms have seven joints, each with serial kinematics resembling a human

arm (shoulder, upper arm, elbow, forearm and wrist) (Hagn et al., 2010). Due to

the robot’s light weight (10 kg), unlike the Da Vinci, alternative setups including

ceiling/wall mounting are feasible. Furthermore, the elbow joint of the MIRO arm

can contribute to arm collision prevention.

Unlike the Da Vinci instruments, MICA has force feedback capabilities, using

one six-DOF force/torque sensor integrated into its two-DOF wrist, as well as a

gripping force sensor for its functional end-effector. The three motors that control

these movements are integrated into the instrument for versatility: the tool is de-

tachable with standalone actuation and sensing capabilities for the same platform

to be used for different procedures. Issues related to cost and maintenance of such

specialised instruments after multiple sterilisations are likely to arise. Although

MiroSurge and Raven II look promising as alternatives to Da Vinci, their concept is

similar in respect to the instrument design, which is also the concept of conventional

laparoscopic instruments: long shaft with an articulated gripper at its end.

In a similar context, RobIn Heart (Figure 2.20 (a)) is a master-slave robot in-

tended for cardiac surgery (Niewola et al., 2013). Its slave arm has one translational

and three rotational DOFs and holds the tool which has two DOFs, as well as

opening and closing of the tooltip. This arm is mounted on a column next to the
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Figure 2.19: Omega7 haptic device (Courtesy of Force Dimension, Switzerland)

(a) (b)

Figure 2.20: Robin Heart (a) master-slave and (b) tool and tooltips (Niewola et al.
(2013), c©2011-2016 by Walter de Gruyter GmbH)

surgical table, while an additional arm (one translational and three rotational DOF)

is mounted on the operating table to hold the endoscope. Finally, the master ma-

nipulator has six DOFs that control the corresponding DOFs of the arm and tool

as well as a capability to open and close the tooltip. The user can switch between

controlling the endoscope arm and the one that holds the tool. The system supports

two major innovations: i) the tools can have changeable tooltips (Figure 2.20 (b)),

which reduces the time needed for removing the tool and attaching the new tool to

the arm before re-entering the operating field (Niewola et al., 2013) and ii) the tools

can be attached to a separate holder that allows conversion to manual MIS in the

case of emergency (Nawrat and Kostka, 2014).

Arata et al. (2005) developed a master-slave system where two master arms (three

rotational, three translational DOFs and opening/closing of the grasper) control

two arms that hold the instruments and one that holds the endoscope. The master

(desktop) arms are equipped with encoders for position tracking but also support

force feedback. The developed instrument that the slave arm holds also has grasping
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(a) (b)

Figure 2.21: ARES (a) module and assembly and (b) master device (Watanabe et al.
(2010), c©2010 IEEE)

force sensing capability. However, the design of the instrument is not very different

from the Da Vinci, as it is a two-DOF gripper.

A divergent approach followed by the robotic system ARES (Assembling Re-

configurable Endoluminal Surgical System) involves the patient swallowing 10-15

robotic modules which are then assembled in the stomach cavity in a planned con-

figured topology (Watanabe et al., 2010). They propose tissue sample collecting

and storing, while the camera module enables vision. The authors go on to suggest

that the sample could be brought out of the body through normal excretion, which,

however, could involve great technical difficulties. In order to control the robot,

a master device configured to the exact specifications of the slave module is being

developed (Figure 2.21 (b)).

Likewise, Sang et al. (2011) developed their own master manipulator for their

system ‘MicroHand A’. The slave manipulator, shown in Figure 2.22, has two arms,

each having a three-DOF instrument at the tip and a third arm for the camera. Each

arm has a six-DOF passive part for adjustments before surgery, and a three-DOF

active part which accommodates the instruments. The overall design is similar to

the Da Vinci and was developed as its alternative, specifically targeting the Chinese

market (Zhang et al., 2013). In fact, the instruments have the same number of DOFs

as the Da Vinci instruments (Figure 2.22).

The master manipulator that was developed is shown in Figure 2.23 (a) and is a

serial robot with seven DOFs, which include position, rotation, force and grasping
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Figure 2.22: ‘Microhand A’ slave manipulators and 3-DOF instrument (Sang et al.
(2011), c©2011 by John Wiley & Sons)

information in a similar way to the previously mentioned Phantom Omni (Fig-

ure 2.16). An alternative master manipulator for the ‘MicroHand A’ slave robot

was developed by Zhang et al. (2013), based on the concept of a more direct manip-

ulation of the instruments so that surgeons do not need specialised training for MIS

after their open surgery training. Figure 2.23 (b) shows the knife-master and the

forceps-master which are used to control the position and orientation of a surgical

knife and forceps respectively. Using sensors and an electromagnetic tracking sys-

tem, it allows hand motions similar to those executed in open surgery. This concept

dictates manufacturing of a variety of master devices in order to control the various

surgical instruments such as scissors and hooks, possibly resulting in a high-cost set.

Furthermore, as the masters do not incorporate motors, force feedback to the sur-

geon cannot be implemented. The authors propose a safety procedure for tracking

the master’s position integrated into the control architecture and use of graphical

feedback by augmenting the visual display in relation to the applied force as re-

placement to the force feedback. Experiments using the mechanical master device

and the forceps-master showed that the learning curve was steeper with the latter,

indicating that a direct relationship between the master and the slave can improve

the efficiency of the procedure.

Direct manipulation is also demonstrated in the ‘Hyper Finger’, developed by
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(a) (b)

Figure 2.23: ‘Microhand A’ (a) mechanical master and (b) forceps-master and
knife-master (Sang et al. (2011); Zhang et al. (2013), c©2011,2013 by John Wiley & Sons)

Figure 2.24: (a) Slave and (b) gripper of the ‘Hyper Finger’ (Ikuta et al. (2003),
c©2003 IEEE)

Ikuta et al. (2003), where the slave is a miniature version (10 mm diameter) of the

master (Figures 2.24 and 2.25). Each finger is tendon-driven and has multiple links

with nine DOFs and a detachable gripper. Ikuta et al. (2003) have shown that one

finger can sufficiently grasp and hold a porcine liver.

Finally, a different approach has been adopted by Dikaiakos et al. (2014). Al-

though not a master-slave system, this mechatronic MIS instrument (Figure 2.26)

has the same number of DOFs as the Da Vinci gripper. The design is inspired by

the movement of the human eye and is controlled by antagonistic cables that allow it

to have a wrist-like movement. The device is handheld by the surgeon who controls

the gripper at the distal end, using the thumb-stick and button at the proximal end

Figure 2.25: Master of the ‘Hyper Finger’ (Ikuta et al. (2003), c©2003 IEEE)

30



2.3. Surgical Systems in Development

of the shaft. It has motors incorporated into the handle, which could inhibit its

use due to the added weight. Furthermore, the device has a re-configurable joint,

which allows the surgeon to change the orientation of the shaft for more efficient

and ergonomic access to the operating field.

Figure 2.26: (a) Handheld mechatronic instrument and (b) its gripper (Dikaiakos et al.
(2014), c©2014 IEEE)

2.3.2 SPA and NOTES Robots

Although SPA surgery (page 18) is not widely accepted as it encompasses many

risks and difficulties (Zhang et al., 2012), many researchers believe that this is a

step forward in surgical robotics. The SPRINT system (Single-Port lapaRoscopy

bImaNual roboT) (Figure 2.27) comprises two miniature arms, each with six DOFs

and a gripper. The arms are inserted through a 30 mm incision in the umbilicus

(Piccigallo et al., 2010). The arms have a diameter of 23 mm and length of 142

mm and are actuated by four on-board brushless D.C. motors for the four distal

DOFs (elbow and wrist) and by two external motors for the two proximal DOFs

(shoulder). The authors propose that a stereoscopic camera holder and a third

arm could also be inserted. A real-time control architecture is implemented using

a custom environment (Sánchez et al., 2011) while the robot is controlled using an

Omega7 master manipulator (Figure 2.19).

Alternative forms of the slave instrument, camera design and control are required

for NOTES, since the rigid laparoscopic instruments are not suitable for this tech-

nique. The ViaCath instrument (Figure 2.28) has a flexible steerable three-DOF

shaft of 16 mm diameter and 90 cm length which provides two manipulating arms
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Figure 2.27: Prototype of the SPRINT slave robot (Sánchez et al. (2011), c©2011
IEEE)

with seven DOFs each, able to manoeuvre a variety of end-effectors. In addition,

a camera, a light source and a suction channel are included (Abbott et al., 2007).

The system was developed at EndoVia Medical which was later bought by Hansen

Medical (Boston Business Journal, 2005).

Figure 2.28: ViaCath system (reprinted from the work by Yeung and Gourlay (2012)
with permission from Elsevier)

A different concept for use in SPA is proposed by Natali et al. (2012): miniature

robotic arms and a camera enter the body cavity through a single entry point and

are operated by external robotic arms via a trans-abdominal active magnetic linkage

on the peritoneum. Following the same idea, Montellano Lopez et al. (2012) present

an intra-abdominal robot which is able to carry a small camera and attach itself to

the peritoneum. In contrast to the work by Natali et al. (2012), this robot does not

use a magnetic field, but has adhesive surfaces made of a bio-compatible polymer

nano-imprinted with a pattern inspired by geckos (tree frogs).

Continuum Surgical Robots

A very popular configuration, especially for SPA surgery and NOTES, incor-

porates continuum mechanisms that mimic snake movement. The previously men-
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tioned ‘Hyper Finger’ belongs to this category (Ikuta et al., 2003). Another of these

mechanisms is shown in Figure 2.29, where a flexible endoscope is illustrated. It

includes two modules, each with two DOFs, while a spring backbone is responsible

for the flexibility and back-drivability of the system, i.e. the actuators react to the

external force, making collisions with tissue and organs safe (Yoon et al., 2010). A

scaled-up version was developed as its master manipulator (Yoon and Yi, 2015).

Figure 2.29: 4-DOF flexible continuum robot (reprinted from Yoon et al. (2010) with
permission from the authors

A surgical robot, called ‘i-Snake’, is developed and intended for NOTES using bi-

ologically inspired articulation (Shang et al., 2011). It has a serial joint architecture

with five segments and seven independently actuated DOFs (two universal joints and

three one-DOF joints). The robot (Figure 2.30) is mounted on a rigid shaft, while

each DOF is actuated by a micromotor embedded in the corresponding segment.

The surgeon is controlling the robot via a handle equipped with potentiometers, a

thumb-stick and a push switch. Inside the robot, one sheath is used for the camera

and power wires. The robot essentially acts as a vehicle, with another sheath used

for passing surgical instruments to the operating field. During preclinical animal

trials, a complete surveillance of the workspace was achieved and an endoscopic clip

was delivered through the ‘instrument sheath’. Tissue manipulation is limited due

to the lack of triangulation (Vitiello et al., 2013), while real-time control has to deal

with the non-intuitive toggling between each joint.

Ota et al. (2008) designed the CardioARM (Figure 2.31) and presented the pre-

liminary tests obtained in animal and cadaver studies for cardiac surgery. Flexible

instruments, unlike rigid-type systems, can navigate through complex tridimensional

paths and a full sternotomy can be avoided. The 35 mm radius arm is composed

of 50 rigid cylindrical links serially connected by three cables. The links are not
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Figure 2.30: ‘i-Snake’ instrument (Shang
et al. (2011), c©2011 IEEE)

Figure 2.31: CardioARM (reprinted
from Ota et al. (2008) with permission

from Elsevier)

Figure 2.32: IREP robot for SPA (Xu et al. (2009); Xu and Zheng (2012), c©2009,
2012 IEEE)

controlled individually, but implement a ‘follow the leader’ configuration.

Xu et al. (2009) analysed a workspace of a seventeen-DOF Insertable Robotic

Effector Platform (IREP) for SPA surgery, composed of two snake-like arms and a

controllable stereoscopic camera (Figure 2.32). The skeleton of the arms consists of

super-elastic nitinol tubes. A simulation-based comparison between three different

configurations of the continuum arms concluded that the optimal comprises three-

DOF continuum segments and one-DOF rotary wrist (Xu and Zheng, 2012). After

the integration of IREP into a master-slave system using a Phantom Omni (Bajo

et al., 2012), experiments in basic tasks from the FLS (Ragle, 2012) demonstrated

good dexterity, with the exception of suture passing which proved difficult due to

the limited rotation of the wrists (±60◦).

Snake-like units were also used in the development of a slave system for MIS of

the upper airway by Simaan et al. (2004), carrying four super-elastic nitinol tubes.

This design supported miniaturisation and removed dependency on small universal

joints and wires, hence reducing the manufacturing cost. There is one central and

34



2.3. Surgical Systems in Development

Figure 2.33: MINIR schematic and initial design (Ho et al. (2011), c©2011 IEEE)

Figure 2.34: Revised layout of MINIR (Ho and Desai (2012), c©2012 IEEE)

primary backbone and three surrounding tubes for secondary support. The authors

showed that the load on the central backbone can be significantly reduced because

of the secondary ones, preventing the thin backbone from buckling (Simaan, 2005).

Ho et al. (2011) developed an MRI compatible Minimally Invasive Neurosurgi-

cal Intracranial Robot (MINIR) structured by several links and actuated by shape

memory alloy (SMA). The robot consists of four revolute joints (Figure 2.33), each

of which is connected to two antagonistic SMA wires using temperature as feedback.

Using a tendon-sheath mechanism (Figure 2.34), the SMA springs were transferred

outside of the main robot body, achieving ±45◦ rotational range of each joint (Ho

and Desai, 2012). The maximum force that each SMA spring can generate is 5.3 N

at 50◦ C, in contrast to a maximum of 1.4 N at 75◦ C generated using the previous

design (Ho et al., 2011).

Robots in the form of flexible needles also belong to this category, and are in-

tended as an alternative to straight and rigid needles when it is required to reach an

area by avoiding ‘risk zones’. One method to achieve this is using concentric tube

robots. These are composed of multiple pre-curved tubes that are nested inside

their subsequent one, in such a way, that the relative rotation between them allows
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the robotic sequence to change shape and move along curved paths and around

obstacles. However, the number of tubes composing the body of the robot limits

the number of curves in the path and consequently the range of their application

(Ko and Rodriguez y Baena, 2013). Conversely, Morimoto et al. (2016)propose that

concentric tube robots can not only be 3D printed but also be both patient and

procedure specific while they have developed a virtual reality based environment

for surgeons to design such robots ‘on-the-fly’ according to the patient’s specific

anatomy. In a different and biologically inspired approach, aiming to improve the

applicability of such robots, Ko and Rodriguez y Baena (2013) proposed a steerable

needle, called STING (Soft Tissue Intervention and Neurosurgical Guide). STING

uses a “programmable bevel” to control its tip angle and to steer by adjusting the

relative offset between its segments. An electromagnetic sensor embedded into the

prototype measures position and orientation of its tip so that they two-segment

needle can follow a 2D trajectory.

2.3.3 Robotic HALS

HALS was described in Section 2.1.2 as a semi-conversion from MIS to a more

invasive approach. In order to exploit the advantages of this technique, Ohshima

et al. (2008) have developed a three-fingered miniature hand with five DOFs (named

‘3f5d hand’ and shown in Figure 2.35) that could carry out assistive tasks in surgery

as the non-dominant hand of the surgeon. The total number of fingers is based on

the assumption that two fingers are not adequate to push aside an organ, while a

hand with more fingers would be too complex. Each unit of the ‘3f5d hand’ has a

diameter of 12 mm so that they can be individually inserted through a trocar and

assembled together in the abdomen. The assembly process requires two free trocars

and can be time consuming and difficult to achieve. The best achieved assembly time

was 74 seconds after repeated practice, and during animal trials it was 6 minutes.

This would prevent quick removal of the instrument in case of an emergency. While

this instrument can be used as an assistive surgical retractor, more complex tasks

36



2.3. Surgical Systems in Development

cannot be carried out due to the limited number of DOFs.

The ‘3f9d hand’ is the second version of the instrument by Oshima et al. (2010)

and has nine DOFs in total, three actuated DOFs for each finger. The combination

of the three base joints of the fingers acts as a three-joint alternative to a wrist.

It can perform a few different types of manipulation, including grasping, pushing

and holding. The assembly process is simplified and faster as the connection to the

actuation module happens externally (after the assembly). However, the concept of

the assembly still seems problematic as it requires incisions for two trocars which

are placed diametrically on the patient’s abdomen. Such incisions are not common

as they do not support triangulation of the instruments. The authors propose the

use of one of these incisions for the trocar that will hold the assembled hand; even

if this trocar in the specific location is useful for the surgeon, the second (diamet-

rical) incision might be impractical for the surgeon to use during the operation.

Furthermore, as discussed on page 11, the complexity that this assembly introduces

during the instruments’ insertion to the abdomen can contribute to more patient

complications.

Figure 2.35: Three-fingered five-DOF hand (Ohshima et al. (2008), c©2008 IEEE)

Luo and Wang (2011) designed a three-digit gripper (Figure 2.36a) with ten

DOFs which is deployed in the patient’s abdomen through a single 24 mm incision

using a four-bar mechanism. This hand is controlled by a master glove carrying

potentiometers (Figure 2.36b), which are mapped to the joints of the instruments

depending on its layout and how it is used at any given time. For this mapping,

the master glove is adjusted manually by the surgeon to correspond to the new

instrument kinematics.
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Figure 2.36: (a) Three-digit gripper and (b) master glove by Luo and Wang (2011)
( c©2011 IEEE)

Two vs. Three-digit Grasp in Surgery

The two robotic HALS systems mentioned use miniature hand-like instruments

with three digits. The rationale behind such a design is worth considering further.

Wolfe et al. (2010) categorised seven basic functions of the hand to include precision

pinch, opposition pinch, key pinch, chuck grip, hook grip, span grasp, and power

grasp. According to the authors, these functions, apart from power grasping, can

be performed using the thumb, index and middle fingers. This is also supported by

Napier (1956), stating that precision grips of small objects require only these three

digits while the ring and little fingers simply provide extra stability. Furthermore,

experiments with primates with opposable or pseudo-opposable thumbs showed that

these three digits accounted for 86% of the observed precision grips (Costello and

Fragaszy, 1988). More specifically in surgery, Zhang et al. (2006) found that the

fingertips of the thumb, index and middle fingers are mainly involved in the move-

ments of surgeons during ‘soft tissue’ open surgical procedures. They classified these

observed motions and types of contact with tissues as precision grasping.

On the other hand, two-digit grippers, as in the Da Vinci, may be able to grasp

objects firmly, however, they allow “manipulations to only be done by movements

of the wrist and arm” (Iberall, 1987), limiting the surgeon’s dexterity. A third

digit could add stability but more importantly enhance capabilities of manipulation

and palpation, as observed in open surgery. Furthermore, its functionality could be

extended by carrying tools that assist e.g. in suturing (see Sections 3.2 and 6.1.1).
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2.3.4 Actuation Mechanisms

Systems discussed in the previous Sections are summarised in Table 2.1 (page 48).

Note that opening and closing of an end-effector has not been included in the num-

ber of DOFs and that the DOFs in continuum robots may not be independently

actuated. In the actuation mechanism column, the generalised term ‘cable’ is used

which could be substituted by tendon, wire or super-elastic NiTi depending on the

specified robot.

Table 2.1 also offers a comparison between cable-driven mechanisms in robotic

instruments or fingers. Cable-driven mechanisms impose coupling of the joints’

motion and complicate their actuation and control, while there is also the risk of

tendons breaking during an operation. Arata et al. (2005) use a rigid link mechanism

with the drive unit integrated into the instrument’s shaft to avoid cable breaking.

The literature also shows that there is a compromise between the size of a manip-

ulator and the number of its independently actuated DOFs. For example, MICA’s

end-effector (universal joint) is controlled by a cable-pulley system via a 10 mm

diameter shaft. The Da Vinci (Intuitive Surgical, Inc., 2016b) and the Raven in-

struments (Hannaford et al., 2013) use a cable and pulley system as well. The shaft

of Da Vinci instruments is 8 mm in diameter, with a few exceptions at 5 mm. In a

non-surgical context, the DLR (Deutsches Zentrum für Luft und Raumfahrt e.V. -

German Aerospace Centre) Hand has fingers that have 4 actuated DOFs each using

an antagonistic pair of tendons for each DOF and a total of 8 motors, while its size

is comparable to a human hand (Grebenstein et al., 2011).

SMA springs are an alternative method of actuation as they have the property

to contract when heated. These actuators are small enough to be integrated into

the structure of a miniature robot, without posing problems of coupling between

the joints. An example of such a mechanism is MINIR (Ho et al., 2011).

Robotic instruments with snake-like motion are very common in techniques such

as NOTES or SPA. Especially in NOTES, such mechanisms can offer good ma-

noeuvrability as they can navigate through complex paths, avoiding structures and
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penetrating deeper into otherwise inaccessible areas. For SPA, they offer possibility

for the required triangulation of the instruments without needing additional joints

as for example with the SPRINT robot (Figure 2.27). On the other hand, snake-like

motion differs from the human hand and digit motion and thus, can be difficult to

map to a master device operated by surgeons, as was the case for i-snake (Vitiello

et al., 2013).

Force Requirements

The number of DOFs and size of a robotic instrument or finger determine the

magnitude of exerted force at the tip. Ability to produce adequate manipulation

forces is an important attribute of a surgical instrument. Cable-driven mechanisms

seem to be more successful in produced forces at the end-effector. Ho et al. (2011)

were able to triple the produced force of their robot (MINIR) when adding a tendon-

sheath mechanism (5.3 N).

Although coverage of this critical subject is incomplete in the literature, Madhani

et al. (1998) carried out tests where surgeons pulled tissue samples with similar forces

as they would do during surgery (as judged empirically by the surgeons). According

to their results, average pulling forces lie in the range of 2-9 N, while the required

force to hold a needle securely is approximately 48 N. Moreover, in a study with five

expert level surgeons, the ‘Red Dragon’ (previously mentioned on page 22) measured

forces of up to 30 N while suturing (Gunther et al., 2007).

To address challenges of miniaturisation and force capabilities, Raghavaiah et al.

(2005) combined a motor and SMA to create a hybrid actuator of 5 mm diameter

and 40 mm length. The actuator was used to actuate 10 mm long needle driver

jaws, generating a gripping force of 5.5 N. Similar forces are produced by some of

the reviewed systems (shown in Table 2.1).
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2.3.5 Haptics

Another issue often addressed in R-A MIS is the lack of haptics for the surgeon.

Haptics, generally, refers to the sense of touch; the surgeon performing a R-A MIS

procedure uses a teleoperated system and hence indirectly controls the instruments.

Without special measures taken, this removes valuable information regarding the

force being applied by the instruments or the texture and type of tissues. Having

the ability to provide this feedback to the surgeon could vastly help with tasks

requiring highly dexterous manipulation of tissues within the body (Meijden and

Schijven, 2009). Haptic feedback can be tactile (‘feeling’ of edges and shape of an

object or texture) or kinaesthetic (force). As the field of surgical haptics is a very

broad one and is beyond the scope of this thesis, only a brief review will follow.

Tholey and Desai (2007) presented a modular laparoscopic grasper with tridi-

rectional force measurement capability during grasping and palpation tasks. In a

similar context, Roke et al. (2012) created a deformation-based tactile feedback sys-

tem and tested it for palpation of soft tissues. Their experiments demonstrated

detection of objects inside the tissues with better accuracy and in less time com-

pared to when there was only visual and kinaesthetic feedback. Haptic systems can

be integrated in manipulators such as the two-finger gripper of Spiers et al. (2012),

a closed chain serial manipulator that imitates the rolling motion of the thumb and

index finger.

An example of visual and visual-audio (different auditory tones) feedback, as an

alternative solution to kinaesthetic feedback, is the work by Tavakoli et al. (2006)

and Kitagawa et al. (2005) . The signal from sensors is used to either augment the

visual display by graphically representing the applied force of the instrument’s tip

in the height and shade of coloured bars or play a single tone when the exerted force

reaches a certain magnitude. As mentioned previously, these techniques are the only

possibility for haptic feedback in master devices such as the one of ‘MicroHand A’

(Zhang et al., 2013). Gwilliam et al. (2009) reported that any form of feedback con-

tributes to better control and prevents unnecessarily large gripping forces. However,
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visual feedback did not improve the accuracy of experienced surgeons who instead

performed better with kinaesthetic feedback.

2.3.6 Master Interfaces

In the previous Sections, a few physical (as opposed to graphical) master interfaces

were described. Phantom Omni (Figure 2.16) and Omega7 (Figure 2.19) are master

devices with force feedback that can be used for various applications. If the instru-

ments to be teleoperated were more complex, more complex master devices would be

required. Custom made ones that fit the properties of their slave robots include the

master arm of RobIn Heart (Figure 2.20 (a)), the ARES master device (Figure 2.21

(b)), the ‘Microhand A’ mechanical master manipulator or its forceps/knife-masters

(Figures 2.23 (a) and (b), page 30) and the master of the ‘Hyper Finger’ (Figure 2.25,

page 30).

A common property of these master devices is that their design emulates the

motion of the surgeon’s hands (and arms). Simorov et al. (2012) have reviewed

various surgical platforms and user interfaces, including the use of arm exoskeletons

to control surgical instruments, as well as data gloves with ‘motion-detecting sensors’

attached to the joints of the surgeon’s hand. However, problems such as cost, lack in

precision and durability have been overlooked (Dipietro et al., 2008). It is useful to

explore hand/arm tracking not necessarily intended for surgery; specifically, user-

worn hand/arm devices with an addition of a 3D vision headset for the surgeon

can increase the portability of a system, improving its ergonomics further (Simorov

et al., 2012).

Generally, current devices for hand motion tracking span from on-the-hand hard-

ware, based on flexible sensor technology or rigid links with encoders for each joint

(such as the master glove by Luo and Wang (2011)), to external imaging systems

based on intensive image processing and often covering a limited field of view. Rigid

joint mechanisms can give precise joint flexion angles but can be heavy and restric-

tive to the operator’s hand during prolonged use.
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Data gloves are typically lightweight and can be cheap to manufacture but joint

resolution could be too low for surgical use as the sensors give a more generalised

impression of a gesture rather than detailed joint tracking. Furthermore, such gloves

lack durability, are non-adjustable and cannot suit all users (Dipietro et al., 2008).

The WB-1R system by Zecca et al. (2007) can measure the movements of the head,

arms and hands. It uses a fifteen-DOF custom-made data glove with flexible sensors

that detect bending due to the change of resistance. The angle error in the WB-1R

system can be as great as 27◦, showing only intention of the user (Zecca et al., 2007).

Cyberglove, on the other hand, is a commercial data glove that offers higher joint

resolution with 22 flex sensors and 1◦ accuracy (Liarokapis et al., 2013). However,

it requires calibration for each user and has a prohibitively high cost. Cyberglove

supports haptic feedback only if another device, Cybergrasp, is worn at the same

time by the user (CyberGlove Systems LLC, 2016). Apart from negating the major

advantage of a data glove, i.e. being lightweight and comfortable, Cybergrasp has

been criticised for posing difficulty with applying small forces (Peer et al., 2008).

Other low-cost sensors, such as Kinect (Microsoft, 2016) and Leapmotion (Leap

Motion Inc, 2016) have been frequently used for body, arm or hand tracking. Leap

Motion has sub-millimetre accuracy (Weichert et al., 2013) and has been used as

a user controller for manipulating virtual bone fragments (Dagnino et al., 2015).

Kinect lacks the precision for hand digit tracking but has good application in hand

gesture recognition (Qian et al., 2013). Another example of optical tracking is

‘Digits’, a wrist-worn real time hand tracker which avoids burdening of the hand

with extra load although it comprises a structure attached to the user’s forearm

(Kim et al., 2012). The structure accommodates a camera-based sensor for hand

digit tracking and an IMU for wrist and forearm movements. The authors state that

tracking wrist rotations (or when the wrist is completely straight) is problematic

using this method. Limitations of such systems include occlusions resulting from

overlapping fingers. Vision systems also depend on environment lighting and this

can be problematic for surgical application. Finally, they are unable to support

43



2.3. Surgical Systems in Development

haptic feedback without additional hardware.

2.3.7 Human and Robot Hand Mapping

In teleoperation, depending on the nature of the master-slave system, a mapping

algorithm that correlates the behaviour of the master to the slave is required. The

algorithm is more complex when the master and slave systems are not of a corre-

sponding design. Some of the most common methods for kinematic mapping in the

literature include i) joint-to-joint mapping, where there is a simple correspondence

between the joints of the two systems without any transformation, ii) pose mapping

where the pose of the master is detected among known poses and then replicated in

a similar predetermined way in the slave and iii) point-to-point mapping where the

fingertip position of the master is the input to the inverse kinematic (IK) model of

the slave.

An example of pose mapping is the work by Gorce and Rezzoug (2004), where

neural network algorithms were used for learning grasping gestures of multi-fingered

hands. Although pose mapping is an appropriate solution for simple, easily distin-

guished hand postures, it could be unsuitable for precision movements required in

surgical applications. This is mainly due to possible unpredictable switching be-

tween different grasps even with small changes in the master (Peer et al., 2008;

Gioioso et al., 2013). Joint-to-joint mapping is mostly suitable for anthropomorphic

manipulators. Even in such cases, the kinematic models of the master and slave are

not typically identical and grasping gestures can fail.

When precision grasps are considered, point-to-point mapping is more suitable.

Peer et al. (2008) mapped a human hand wearing Cyberglove with Cybergrasp to a

three-fingered under-actuated robot hand (BarretHand2). Both kinematic and force

mapping are attempted using a projection of the human finger workspace onto an

estimated trajectory of the robot finger. Using this method, the authors state that

no knowledge about the object properties or library of pre-defined grasps is required.

2www.barrett.com/products-hand.htm
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However, not all of the workspace of the human hand could be mapped to robot

motions. Furthermore, although a soft grasp could be distinguished from a strong

grasp, smaller steps in force were not detected due to the difference between the

robot’s sensors (torque sensors in the joints) and the human hand sensing technique

(force sensing at fingertips).

To address the lack of generality of the aforementioned methods, Gioioso et al.

(2013) presented a procedure where human hand synergies are mapped to robotic

hands with dissimilar kinematics. In this method, a ‘virtual sphere’ represents the

minimum volume that includes a set of reference points on the fingertip of the human

hand. When the human hand moves, motion of these reference points is generated

resulting in motion of the virtual object (sphere) ‘held’ by the robot hand. Such

techniques are based on neuroscience research (Santello et al., 1998) that suggests

that there are very few combinations that are used in basic grasps. Although this

can be true for every-day-life grasps (Gioioso et al., 2013), precision movements in

surgical tasks do not necessarily adhere to such classification.

In a combination of methods, Liarokapis et al. (2013) use demonstrations of users

and forward/inverse kinematics (point-to-point) for mapping the human-robot arm

motion and joint-to-joint mapping for the human-robot hand. Their method, ‘func-

tional anthropomorphism’, has as priority the execution of a task and subsequently

optimises the motion to be more human-like.

2.4 Summary

After reviewing MIS techniques and considering the surgical requirements as well as

the difficulties during resident training, it has been made clear that there is room

for research and improvement. In laparoscopy, most complications occur during the

positioning of the first trocar while the risk of hernia development increases with

the diameter of the instruments’ shaft. This risk is even greater in HALS, with

additional issues regarding reduced visibility and workspace, loss of insufflation gas
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and non-cosmetic surgical outcome. Although NOTES and SPA focus on producing

the best cosmetic result after the surgery, these techniques pose different concerns. In

NOTES, there are difficulties in closing the internal incisions and the risk of infection

is greater, while SPA is time consuming and involves expensive equipment as well as

bad ergonomics for the surgeon. Finally, the Da Vinci robot is a costly, bulky high-

maintenance system with no haptic feedback, has a time consuming patient docking

and separation procedure, and thus, its use is not endorsed by many surgeons.

Nevertheless, robotic systems can make a significant contribution to the surgi-

cal field. Further research should be conducted, to determine how challenging the

training for surgeons is and how they adapt to the new robotic techniques. The

relevant research projects are innovative in their approach but focus more on new

surgical techniques, such as SPA or NOTES, which are not accepted by many sur-

geons. These techniques entail many problems and it seems that the technology to

support them is not readily available.

Despite surgical instruments (both commercial and under-development) having

a high degree of dexterity for manipulation of soft tissues, the surgeon still has to be

thoroughly trained to use them, just like with conventional laparoscopic instruments.

The present paradigm is a limited one (Herron and Marohn, 2007); the layout of

the Da Vinci has to be evaluated, and improved if needed. Systems such as the

‘MicroHand A’ and the ‘Hyper Finger’ (Zhang et al., 2013; Ikuta et al., 2003),

adopting a more direct manipulation method, seem promising in terms of ease of

control and ameliorating the learning process. The design and concept of robotic

instruments should be revised, so that their manipulation is more intuitive for the

operating surgeon.

Furthermore, new teleoperation interfaces should improve surgical efficacy, so

that their applicability is expanded to more complex surgical procedures. For ad-

vanced and more complex surgical operations, open techniques are used instead of

R-A MIS (Novara et al., 2015). Therefore, a proposed master-slave system forMIS

should attempt to close the gap between open surgery and R-A MIS techniques. It
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should therefore be surgeon-centred with increased dexterity as well as easy manip-

ulation through an intuitive user interface. With a goal to reduce operation time

and using a simple process for the instruments’ abdominal insertion, complication

rates could also be reduced (page 11). With regard to technical specifications, the

diameter of each incision should be as small as possible for minimal risk of hernia

development (page 11). Finally, grasping/pulling forces for soft tissue should be in

the range of 2-9 N and the needle-grasping force approximately 30 N.
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Chapter 3

Concept Design and Evaluation

The preceding background research and review of the related literature has offered

a good understanding of R-A surgery, the incidental technological advances and

limitations. Several MIS techniques were described and their challenges were iden-

tified. This will help answer the first research question of Section 1.1 (page 3).

Surgeons, however, may still be sceptical about the benefits of robotic surgical sys-

tems (Greenberg, 2013) and further investigation should be conducted to identify

why this technology adoption, with all its patient benefits, is not in widespread use

at the time of writing.

Close collaboration and discussions with surgeons have been instrumental in

getting an insight into problems that surgeons encounter when using R-A MIS.

Therefore, an initial step into this research was to conduct a survey to gather sur-

geons’ views on surgical training and transition from open to MIS techniques. The

surgeons also expressed their views on preferred surgical techniques, the ease of use

of MIS systems and accompanying instrument design. Following on from the survey,

a novel concept for MIS was designed based on dexterous manipulation that can po-

tentially reduce training time for new surgeons. This concept was further discussed

with surgeons in a short series of focus group meetings.

This Chapter presents the results of the survey as well as outlines the rationale of

a novel user-centred MIS system. Finally, the outcome of the focus group meetings

is compared with the survey results and feedback regarding the proposed system is

reviewed.

The research presented in Sections 3.1, 3.2 and 3.3 is an edited version of the

work published in the following conference proceedings and journal:
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Tzemanaki, A., Dogramadzi, S., Pipe, T., and Melhuish, C. (2012). Towards

an anthropomorphic design of minimally invasive instrumentation for soft tissue

robotic surgery. In Advances in Autonomous Robotics. Springer, pages 455-456

(with permission of Springer).

Tzemanaki, A., Walters, P., Pipe, A. G., Melhuish, C., and Dogramadzi, S.

(2014). An anthropomorphic design for a minimally invasive surgical system based

on a survey of surgical technologies, techniques and training. The International

Journal of Medical Robotics and Computer Assisted Surgery, 10(3):368-378.

3.1 Surgeons’ Survey

The survey, in the form of questionnaires, was designed to establish current ex-

periences of surgeons and explore advantages and limitations in current surgical

techniques. Based on real needs of MIS, the ultimate goal was to define a novel R-A

MIS concept. Qualitative and quantitative (statistical) data were used to establish

sufficient requirements.

3.1.1 Survey Preparation

The questionnaire comprised a selection of both ‘open-ended’ and ‘closed-ended’

questions to elicit information including the following:

• Duration of laparoscopic/robotic training

• Laparoscopic/robotic training complexity/difficulty

• Difficulty in adjusting from open surgery to MIS

• Satisfaction with the cost/performance of the existing systems

• Willingness to adapt to new methods/instruments

• Preference of surgical techniques
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• Posture and ergonomic issues

• Preferences in surgeon-system interfaces

Two methods were used for extracting information with the questionnaire:

i) hand it directly to the participants and allow two weeks for response (local hospi-

tals) and ii) send the web link of an electronic version to the surgeons (contacted via

personal email or via the medical centre they were affiliated with). In some cases,

questionnaires were translated into the user’s language before being sent.

Eleven questionnaires were first sent to a target group as a pilot to ensure that the

questions were not misinterpreted. No problems were encountered amongst seven

collected responses, and hence, the survey moved to the main phase. According to

the respondents of the pilot phase, the questionnaire took between 5 and 20 minutes

to complete.

As suggested by Boynton and Greenhalgh (2004); Boynton (2004); Walonick

(2010), the questionnaire started with the most important questions and ended

with demographic and personal details of the user. Different types of closed-ended

questions, such as multiple choice, Likert-scale and rating scale formats were used

in order to make the survey more interesting to the participants.

Population Sample

Out of approximately 90 questionnaires that were sent, 35 surgeons responded.

Despite being a limited sample, the responses were considered sufficient for exploring

the topics in question and defining requirements.

The respondents were surgeons from the UK (16), Spain (15), France (2), Japan

(1) and USA (1), 35-64 years old, of both genders (the ratio of women to men being

1:4) and experience in at least one MIS technique. 91% had more than six years

of experience in open and 77% had more than six years using MIS (this included

both laparoscopy and R-A MIS). 12 respondents had never performed a R-A MIS

operation on a patient, although most of them had limited R-A MIS experience.

Their surgical specialities included general surgery, urology, gynaecology, digestive
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system and bariatric surgery. Their level of seniority in open and MIS surgery, as

they would personally rate themselves, is shown in Figure 3.1. The questionnaire

can be found in Appendix I.

Figure 3.1: Experience of the respondents in surgical techniques

3.1.2 Surgical Systems

In one of the questions, the respondents were asked to list the main benefits (Fig-

ure 3.2) of the Da Vinci Surgical System. Their answers praised it for the 3D vision

(mentioned by 43% of the respondents), articulation of instruments (31%), intu-

itive manipulation (28%) and better precision (23%) compared with conventional

laparoscopy. Regarding the cost-performance balance of the Da Vinci system, more

than 45% responded that the system is too expensive to buy, 40% thought that it

is expensive but worth buying, while no respondent believed that the price is fair.

Besides its high cost, respondents mentioned the size of the robot, the long docking

process (preparation and installation of the robot near the patient) and possible

equipment failures as shortcomings.

3.1.3 Surgical Training and Techniques

Questions related to SPA surgery showed that 32 out of 35 surgeons prefer multi-port

to SPA. Their responses regarding the benefits of SPA (compared to multi-port) in-
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Figure 3.2: Main benefits the Da Vinci Surgical System

cluded mainly ‘more cosmetic results’ (21 surgeons) and ‘less incisions to be healed’

(6 surgeons), while two respondents considered it to have no benefits. The draw-

backs included difficult operation of instruments (22 surgeons), increased duration

of operation (6 surgeons), limited movements and poor dexterity (5 surgeons), poor

ergonomics (4 surgeons) and increased risk of hernia development (4 surgeons), the

latter being a fact also discussed by Zhang et al. (2012).

When asked how complex they considered their laparoscopic surgery training to

be (Figure 3.3), 25 surgeons (out of the 34 that had such training - 73.5%) responded

with ‘very complex’ or ‘complex’ opposed to only 9 surgeons believing that it is ‘not

so complex’ or ‘simple’. The numbers regarding R-A surgery were 15 (out of 28 -

53.5%) and 13 surgeons respectively. This shows that training for R-A surgery is

generally considered simpler.

However, all but 1 respondent had previously undergone training for laparoscopy,

which possibly affected their answers since they trained in R-A MIS after being al-

ready accustomed to the basic concept of MIS. Anticipating this, the issue of tran-

sition from one surgical technique to another needed to be discussed (Figure 3.3).

Although R-A MIS techniques differ from the ones used in laparoscopy, only 3 par-

ticipants found the transition from conventional to R-A MIS to be difficult. In

addition, surgeons seemed to be divided into two categories: those who had experi-

ence in basic or advanced laparoscopy and then moved on to do robotic training, and
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Figure 3.3: Surgical training and transitions between surgical techniques

those who were trained directly in R-A surgery after completing their open surgery

training. After being trained in open surgery, about 56% of the respondents found

it ‘very difficult’ or ‘difficult’ to get adjusted to laparoscopy, in contrast to only 29%

having trouble to adjust from open to R-A surgery.

3.1.4 Ergonomics in R-A Surgery

Figure 3.4 presents the data concerning the surgeons’ satisfaction with their posture

during surgery. Despite the fact that 25 surgeons stated being ‘very happy’ or

‘happy’ with their posture during laparoscopy, 21 respondents mentioned preferring

a seating position, while only 3 favoured standing. This could be an indication of

eagerness to change or try different techniques, instead of settling for what their

hospital has to offer.

Figure 3.4: Posture during MIS
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Subsequently, a rating scale was used to determine how willing they are to try

new instruments. This was distinguished into two categories: i) those that do not

change their routine during MIS and ii) those that would suggest adapting to new

methods that may change their routine. Results showed that in both cases they

were willing to try new instruments with 32 surgeons answering ‘I am very happy

to try’ in the first case and 28 surgeons willing to adapt to new routines.

3.1.5 Main Ideas

All of the respondents knew of the Da Vinci and half of them were aware of the Zeus

system as well. With Da Vinci being the only commercial surgical system in use,

R-A MIS was understood specifically as Da Vinci surgery. The results of the survey

agree with Baik (2008) and the report by the ECRI Institute (2014) regarding the

shortcomings of the Da Vinci (e.g. long docking process and possible equipment

failures).

The results also agree with the FDA survey (Center for Devices and Radiological

Health et al., 2013), as the respondents found the transition to R-A MIS after

laparoscopy training simple. In addition, not all surgeons performing R-A surgery

have experience in laparoscopic techniques. If, in fact, it is not necessary to be

trained in laparoscopy before using robotic systems, a question to be asked is, why

do robotic instruments have to resemble laparoscopic instruments? “Are they merely

an adjunct to manual MIS?” (Marcus et al., 2013)

It is, therefore, necessary to go beyond the incremental results of the current

robotic methods and adopt more progressive approaches. The suggestion that a new

concept of instruments for R-A MIS could separate itself from the design of existing

laparoscopic tools was well received by the respondents. Manipulating tissue with

laparoscopic instruments (e.g. forceps) is more difficult than using the hands; organs

and tissue slipping from the grasp of the instruments is common, and perhaps this

indicates that the design of laparoscopic graspers is not as effective as it could be

(Heijnsdijk et al., 2002). At the same time, surgeons are not satisfied with the level
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of dexterity and ergonomics of current instruments available for laparoscopy or R-A

MIS (also reported by Doné et al. (2004)).

Finally, an important finding of this exploration was that SPA is seen in a neg-

ative way by most surgeons, as being unnecessary or even having no benefits at all.

Zhang et al. (2012) suggest that this is due to the many risks and difficulties entailed

in such a procedure.

3.2 Concept of an Anthropomorphic MIS System

Following on from the completion of the survey and towards answering the second

research question (page 3), a concept for MIS robotic instruments was developed.

Multi-port MIS and HALS are the starting points of this research. The overall

system layout is similar to the master-slave system of the Da Vinci system and con-

sists of two basic subsystems: the instruments and the surgeon’s interface. Three

incisions are needed: one for the camera and two for the instruments. Each instru-

ment carries an articulated three-digit robotic mechanism that represents and can

imitate the movements of the surgeon’s thumb, index and middle finger. Therefore,

one digit has five DOFs (‘thumb’ of the instrument) while the other two have four

DOFs (more on the kinematics of the instrument in relation to the human hand in

Sections 4.1 and 6.1). The three-digit concept, as discussed on page 38, is based

on the fact that the thumb, index and middle fingers are responsible for precision

grips (Napier, 1956). The hand-like instrument design approach is illustrated in

Figure 3.5.

In abdominal surgery, the insufflation of the abdomen allows for safe unfolding

of the instruments into an open position. At the same time, the desired maximum

diameter is 15-20 mm so that risk of hernia is minimised (page 11). Therefore, the

thumb in the multi-joint anthropomorphic structure is foldable to minimise the total

diameter of the instrument (Figure 3.6) during insertion and retraction.

Furthermore, each digit could carry a different tool: a combination of two digits
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Figure 3.5: Proposed instruments with camera inside the abdomen

Figure 3.6: Folded – extended position

could be used as grasping forceps, while the third could be used for extra support.

Alternatively, the third digit could also carry a retractable blade or other knot-tying

assisting gripper. This leads to a surgical concept where one surgeon could be able to

use two tools with one hand, reducing the need for a surgical assistant: for example,

one hand could create traction with the thumb and middle finger (equivalent of

grasping forceps) and operating a blade with the index finger while the other could

operate Maryland forceps - using electrocautery and an irrigation tool.

The anthropomorphic system design aims to i) reduce the ‘cognitive gap’ be-

tween the way that instruments are manipulated and the surgeon’s natural hand

movements (Figure 3.7), ii) offer increased dexterity and workspace reachability and

iii) allow more demanding manoeuvres to be done. Through these properties, the
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Figure 3.7: Comparison of concept drawing with a hand (the ‘index’ of the instruments
has a retractable blade inside its last link)

system will enable R-A MIS to be adopted in more complex procedures that include

sensitive structures and where manipulation is difficult due to limited workspace

(Novara et al. (2015), see page 15). Therefore, the way that the instruments are

controlled is very important. The manipulation of the instruments affects not only

their efficacy, but also the ergonomics and the learning process for the surgeon. For

this reason, the master device needs to be lightweight, adjustable and have a provi-

sion for sensing movement of the surgeon’s digit joints in order to translate them to

movements in the hand-like instrument’s joints.

As discussed in Section 2.3.6, hand exoskeletons tend to be bulky and heavy when

they are aimed at actuation of hands or arms, e.g. for hand rehabilitation from a

stroke (Wege and Hommel, 2005; Burton et al., 2011). By removing the motors,

the design can be simplified. The design of the master device that teleoperates the

proposed anthropomorphic instruments is presented in Chapter 4. The final design

is an adjustable sensory exoskeleton with lightweight sensors.

The proposed surgical system has been named µAngelo. The relationship be-

tween its components in comparison with the Da Vinci surgical robot is shown in

Figure 3.8. The Da Vinci has a fixed master, whereas the µAngelo exoskeleton is

portable. Furthermore, the slave instruments of the Da Vinci have limited DOFs

and a design that requires long training to get accustomed to. The µAngelo slave

instrument aims at increased dexterity with DOFs and a user-centred design.
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Figure 3.8: System schematic and comparison with the Da Vinci main components

3.3 Focus Group Analysis

The anthropomorphic master-slave concept was evaluated by conducting two focus

group meetings with surgeons. The first one comprised one moderator and four

surgical registrars from the Bristol Urological Institute, UK and lasted 1.5 hours.

The second focus group meeting, lasting 25 minutes, included two senior surgeons

(UK and Italy) and two moderators, one of which was a surgeon (UK).

Each session was audio/video recorded, then transcribed and processed using

content analysis, i.e. deriving information from the transcripts using techniques for

data coding such as identifying ‘signed vehicles’ and their frequency of occurrence

to locate important structures and provide a meaningful reading (Krippendorff,

2004). ‘Signed vehicles’ can be a set of words or even gestures and facial expressions

that carry information that should not be overlooked. More specifically, deductive

category application was initially used to code the transcript with predetermined

themes related to the concepts that were read (Mayring, 2000). Following the first

method, inductive category development was applied to code ideas not previously

identified, but deduced in a step-by-step manner (Mayring, 2000).

The participants were given three concepts to read (the material presented to

them can be found in Appendix I). The first concept described a surgeon claiming

that a patient should have open surgery as a treatment, while in the second concept a

different surgeon counter-proposed that the same patient should choose R-A surgery

instead. The major themes emerging from these two concepts (Focus Group 1) were:
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• advantages of open compared to R-A surgery

• advantages of R-A surgery compared to conventional laparoscopy

• differences between learning curve techniques of all three surgical techniques

The third concept (Focus Groups 1 and 2) described in detail the design of

the anthropomorphic master-slave system (Section 3.2) and the emerging themes

included:

• value of hand-like movement for surgical tasks

• potential applications and how it would be used in MIS

• suggestions/alterations of the design

The questions for each of the three concepts were:

i. What do you think is good about the concept?

ii. What do you think is bad about the concept?

iii. What do you think could be done differently?

The following Sections represent the analysis of the discussions between the

participating surgeons.

3.3.1 R-A MIS vs. Open Surgery

The participants claimed that R-A MIS surgery takes longer than the open equiva-

lent. With R-A MIS, the surgeon has difficulty replicating open surgery techniques,

ascribing this to i) the limited field of view, also reported by Paul et al. (2013), ii) a

range of movements of the surgical robot (“its arms often clash with each other”)

and iii) its big volume. In addition, the lack of tactile feedback during R-A surgery

was considered a big issue. This was reported as: “you cannot use your fingers to

do what the fingers do”.
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With respect to complex procedures, the participating surgeons said that they

would generally prefer using the open technique. This was attributed to what is

considered as the ‘gold standard’ for a surgical procedure at a given time, which they

connected directly to the statistical success of a certain technique and indirectly to

its cost. “If R-A MIS was less expensive, conventional laparoscopy could become a

thing of the past”. Despite R-A MIS requiring a big investment, as hospitals have

to also disburse funds for disposable robotic tools, medical and economic benefits of

the system are not clearly proven yet, with no randomised trials comparing the Da

Vinci surgery to other MIS techniques (Paul et al., 2013). Furthermore, surgeons

training on R-A MIS start with simple procedures: according to Al-Naami et al.

(2013), cholecystectomy is the most suitable procedure for beginners.

In favour of R-A surgery, reduced pain and blood loss, quicker recovery and

better cosmetic results were mentioned.

3.3.2 R-A MIS vs. Conventional Laparoscopy

The main benefits of R-A MIS compared to conventional MIS were narrowed down to

the 3D vision, which was emphasised as an asset that foregrounds R-A surgery. The

next important benefit accounts for improved ergonomics. Conventional MIS is often

considered a more tedious and physically demanding process (e.g. for prostatectomy)

as the surgeon has an unnatural upper body posture for often more than three hours.

R-A MIS was also considered to be more intuitive and straightforward to famil-

iarise with than conventional MIS. High instrument articulation, flexible movement,

reduced blood loss, less post-operative required analgesia and quicker recovery were

all considered to be advantages of R-A MIS. The fulcrum effect, being eliminated in

R-A MIS, was mentioned as a downfall of conventional MIS.

3.3.3 Learning Curve

It has been noted in the literature that the learning process for MIS is longer than

that for open surgery (Duchene et al., 2006; Gobern et al., 2011; Furriel et al., 2013)
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and this agreed with the participants’ experience. They believed that happened

because their training began with open surgery and they were exposed to MIS

techniques only much later in their careers. The participants also associated this

with the ‘gold standard’ and the way surgery has evolved over the years. They

stated that they used MIS techniques only for simple procedures initially (as also

mentioned by the Society of American Gastrointestinal and Endoscopic Surgeons

(2009)). They believed that with wider acceptance of MIS in simple procedures, the

technique would spread to more complex ones.

When comparing conventional with R-A MIS, however, the learning curve of

the former was viewed as being much longer than the latter. This was attributed

to better ergonomics, ease of instrument control and enhanced vision during R-A

surgery.

3.3.4 Feedback for the Anthropomorphic Concept

Table 3.1 summarises the main points of the discussion regarding the proposed con-

cept of anthropomorphic instruments and master controls for R-A MIS (Section 3.2).

The participants supported the hand-like instrument concept by describing it as an

extension of their fingers with added versatility and attributes that make it possible

to perform tasks that they cannot do using just their hands. Apart from noting that

tactile feedback would be very important, they commented more specifically on the

actual movement of the instrument. They welcomed the idea of an instrument that

behaves exactly like their hands and thought that its manipulation would be easy.

In addition, the ability to work symmetrically using both of their hands in the same

way as well as to perform more anthropomorphic grasps would help reproduce the

movements they use during open surgery.

When considering potential uses of such an instrument and its advantages over

the existing ones, the surgeons mentioned the ability to perform more actions using

a single hand. Figure 3.9 shows four types of manipulations which occur during

surgery, as observed by Ohshima et al. (2008). Apart from being able to perform
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Table 3.1: Focus group feedback summary

Hand-like movement Potential usage Suggestions/modifications

Behaves the same as your hand More actions using one hand Scissors preferred to a blade
Natural movement of manipulation As a retractor Integration of irrigation system
Grasping without pinching/traumatising As both grasper and needle holder Integration of a hook

Ability to work symmetrically
Traction using 2 digits, cutting
with the 3rd

Tips should be strong enough
to hold a needle

Ability to follow the natural curve of an
organ

Bowel surgery (large diameter ob-
ject grasping)

Extension of the fingers with added ver-
satility

Ability to use all links or just tips

Reproduction of movements during open
surgery

Smoother grasping (e.g. ureter)

Advantages of the hand plus tips able to
perform tasks the hand cannot do

Liver surgery, cholecystectomy (re-
traction with one hand, surgery
with the other)

these movements, the participants noted that surgeons would potentially use their

thumb and middle finger for traction (Figure 3.9 d) and the third (index finger) to

dissect tissue (if it carried a blade or scissors), while the other hand (three more

digits) could be used as a retractor. This would minimise the need for an assistant,

as for example in the case of cholecystectomy, where the assistant needs to retract

the liver while the surgeon is using both hands for traction and dissection of gall

bladder.

Furthermore, the instrument’s digits could support dual grasping. In one config-

uration (digit-mode) grasping would be performed using all digit links in a similar

way that the human hand grasps an object. The digits would then wrap around the

contour of the organ or tissue using all available DOFs as shown in Figure 3.9a, es-

pecially if it is of a large diameter (e.g. in bowel surgery) and without traumatising

it (e.g. sensitive structures such as the ureter or liver). In the second configuration

(forceps-mode), two digits (thumb and index) would be used with all links but the

last (end-effector) joined together to yield a more conventional grasper with strong

tips, for example for needle-holding (similar type of grasp as in Figure 3.9 c).

Figure 3.9: Manipulations performed during surgery ( c©2008 IEEE)
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The integration of a blade inside one of the digits was not popular among the

participants. Instead, scissors were preferred, while the integration of a hook or

irrigation system that comes out with a push button (or foot pedal) seemed appeal-

ing. The discussion on potential tools for the fingertips of each instrument led to

the concept of instruments with interchangeable tips. Such a feature would offer

added flexibility to the surgeon as well as reduce the time-consuming changing of

instruments. There could be two types of possible fingertips:

• Interchangeable ones, fitting over the digit’s last link: i) single surfaced, e.g.

hook, scalpel, which are carried by one digit and ii) double surfaced, e.g.

graspers, needle holders, clamps etc., which require two digits (middle finger

and thumb) in order to form the tool.

• Permanent ones that have an intricate mechanism included inside the digit.

For example, irrigation requires a tube inside the digit and shaft, while scissors

involve two surfaces on one digit (Figure 3.10) as well as an external button

in the master device for the surgeon to control opening/closing.

Figure 3.10: Example of scissors on a digit’s last link (Dikaiakos et al. (2014), c©2014
IEEE)

3.4 Summary

The survey presented in Section 3.1 helped to define inadequacies of the existing sys-

tems and consequently form a better understanding of how they could be improved.

The analysis emerging from the first focus group meeting confirmed the preceding
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results from the survey regarding the cost as well as the benefits of the Da Vinci Sur-

gical System, which mainly regarded its vision capabilities and ergonomics. Despite

this, the ergonomics of the Da Vinci are still not comparable to those of conventional

open surgery, in which there is a wider range of possible instrument movements.

The chosen design (Section 3.2) aims to combine the best aspects of the cur-

rent surgical approaches (open, laparoscopy, HALS and R-A MIS). It differs from

approaches in use at the moment as it includes an opposable thumb, which the sur-

geon could use to manipulate tissues and organs as in open surgery. By applying

such techniques and adopting ergonomics of open surgery, use of R-A MIS could be

extended to more complex procedures.

In addition, beyond being simple miniature hand replicas, each digit of the instru-

ments could be equipped with a different tip. For example, one of the instruments

could have two tips that, when joined together, form a grasper, while the third digit

carries a set of scissors (as suggested in the focus groups). The other instrument

could have two tips that form a needle driver and one for irrigation. This way, two

hand-like instruments would be equivalent to having four different surgical tools

being operated by one person at the same time. Furthermore, as discussed in the

focus groups, the ability to actuate each joint of the digits provides surgeons with

the option of using the instrument’s digits as their own for manipulation and grasp-

ing of larger surfaces or using them as normal miniature forceps by collapsing all

links but the last together.

Therefore, the concept design meets the requirements arising from the survey

such as the need to improve articulation and ergonomics. Justified by the survey,

the proposed design focuses on the concept of multi-port MIS (32 out of 35 surgeons

answered that they prefer multi-port to SPA). Furthermore, the feedback from the

surgeons during the focus group meetings was positive, supporting the intuitiveness

of the concept. On reflection of the feedback regarding the instruments (summarised

in Table 3.1), strong grasping with the fingertips needs to be addressed, while the

concept of having interchangeable tips on the digits of the instruments should be
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explored.

Finally, for an anthropomorphic based surgical end-effector, the most intuitive

interface for surgeons to use is one that fits around their hand and allows control of

the instrument as if it is simply an extension of their own body. The user-interface

must simplify teleoperation, while surgeons can choose their preferred body posture.

Therefore, the master controls (Figure 3.8, page 59) must be lightweight, adjustable

and allow for unrestricted motion.
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Chapter 4

Master manipulator

The survey and focus groups that were presented in the previous Chapter agree with

the literature review (Sections 2.2.2 and 3.3.1) in that although surgeons experience

better ergonomics in R-A MIS compared to conventional MIS, there is still room

for improvement, especially when compared to the ergonomics of open surgery. Re-

ported impacts on their health (Santos-Carreras et al., 2012) can also affect their

efficacy and competence, which directly affects patient outcomes.

In order to control anthropomorphic instruments such as the ones outlined in

Section 3.2 and to allow surgeons to execute hand movements similar to those of

everyday life, a system for hand and digit motion capturing is required. Hand mo-

tion capturing systems are discussed in Section 2.3.6 but their inherent limitations

render them unsuitable for the surgical environment. Bad ergonomics (heavy and

bulky mechanisms) and lack of required precision are the main limitation. At the

same time, vision based systems suffer from occlusions between fingers and depend

on lighting conditions, while integration with haptics would need a separate com-

plementary system.

Exploring what constitutes a suitable master manipulator is carried out in this

chapter through a brief study of the human hand. This has contributed to the

understanding of hand kinematics and required motions that a surgical master would

need to follow. In order to identify requirements for an ergonomic and efficient design

in more detail, a commercial data-glove was initially used to capture hand motion.

Finally, the design of the master developed for the µAngelo system is presented.

The prototypes of the master described in this chapter focus on the tracking of

the hand digits’ position, while inclusion of haptics is only catered for and will be
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implemented in future work.

The research presented in Sections 4.1, 4.3.1 and 4.3.2 is an edited version of the

work published in the following conference proceedings:

Tzemanaki, A., Dogramadzi, S., Pipe, T., and Melhuish, C. (2012). Towards

an anthropomorphic design of minimally invasive instrumentation for soft tissue

robotic surgery. In Advances in Autonomous Robotics. Springer, pages 455-456

(with permission from Springer).

Tzemanaki, A., Gao, X., Pipe, A. G., Melhuish, C., and Dogramadzi, S.(2013).

Hand exoskeleton for remote control of minimally invasive surgical anthropomorphic

instrumentation. In Yang, G.-Z. and Darzi, A., eds., The 6th Hamlyn Symposium

on Medical Robotics. Imperial College London, pages 81-82.

Tzemanaki, A., Burton, T. M., Gillatt, D., Melhuish, C., Persad, R., Pipe, A. G.,

and Dogramadzi, S. (2014). mAngelo: A novel minimally invasive surgical system

based on an anthropomorphic design. In 2014 5th IEEE RAS EMBS International

Conference on Biomedical Robotics and Biomechatronics, pages 369-374 ( c©2014

IEEE).

4.1 Joints of the Human Hand

Examining the joints of the human hand and constructing a kinematic model is

instrumental in understanding the specifics of its movement. Figure 4.1 depicts the

joints of the fingers and the thumb. The proximal interphalangeal (PIP) and distal

interphalangeal (DIP) joints of the fingers are hinge joints capable of only flexion and

extension (one DOF each). The metacarpophalangeal (MCP) joints at the base of

the index and middle finger, however, are saddle joints, and hence capable of abduc-

tion and adduction as well (two DOFs). The thumb can also be modelled by having

two 1-DOF (interphalangeal-IP and MCP) and one 3-DOF (Carpometacarpal-CMC)

joints. Although some authors consider the base joint of the thumb (CMC) to have

two DOFs (Weghe et al., 2004; Cerveri et al., 2007), there is a considerable rotation
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at the base, even when the axial rotation (pronation/supination of the thumb) is

constrained (Buchholz and Armstrong, 1992).

Figure 4.1: Joints of the human hand digits (sydneyhandsurgeryclinic.com)

Using a different model, the hand can be represented by a rigid linkage system

incorporating 22+3 DOFs (three added DOFs for the wrist). This model considers

the MCP and the CMC joints of the thumb having two and three DOFs respectively,

which means six DOFs in total for the thumb (Yang et al., 2007; Choi, 2008).

Dragulescu et al. (2007) also consider four DOFs for the fingers and three DOFs

for the thumb, adding three DOFs for the wrist. Furthermore, Cobos et al. (2008)

suggest that each of the index, middle, ring and little fingers is defined by five DOFs

and four links, while the thumb is defined by four DOFs and three links.

The model that was adopted in this research (regarding the thumb, index and

middle finger) is summarised in Table 4.1. Each digit has three links and the model

has 13 DOFs in total. This was considered adequate for all functional moves and

was chosen for its relatively low degree of complexity.

Kinematic Model

Figure 4.2 illustrates the model of the thumb and index finger (the middle finger is

similar to the index) as described in Table 4.1. The Denavit-Hartenberg parameters

of the hand model are given in Table 4.2. The lengths of the digit links are denoted

69



4.2. Data Glove

Table 4.1: Model of the human digits

Digits Type of joint DOFs

Index and middle
distal interphalangeal (DIP) 1

proximal interphalangeal (PIP) 1
metacarpophalangeal (MCP) 2

Thumb
interphalangeal (IP) 1

metacarpophalangeal (MCP) 1
Carpometacarpal (CMC) 3

`t and `i for the thumb and index respectively and {tj} is the frame of the fingertip.

The base of the thumb was used as the reference frame. The virtual model of the

three digits is shown in Figure 4.3, while a detailed forward kinematics (FK) model

is given in Appendix II.

Figure 4.2: Graphical model of a 5-DOF
(thumb, j=0) and 4-DOF finger (index, j=1)

Figure 4.3: Virtual model of the human
thumb, index and middle fingers

4.2 Data Glove

The 5DT Glove Ultra (Fifth Dimension Technologies, 2005), shown in Figure 4.4, is

a commercial data glove based on fibre optics technology and measuring individual

digit flexion and abduction. An optical fibre inside the glove is connected to a light

source; the light beam travels through the fibre which has core and cladding made

of materials with different refractive indices, allowing detection of the fibre flexion.
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Table 4.2: Denavit-Hartenberg parameters for 5 and 4-DOF manipulators

5-DOF digit

joint aj αj dj θj
1 0 -90 0 θt1
2 0 -90 0 θt2
3 `t1 0 0 θt3
4 `t2 0 0 θt4
5 `t3 0 0 θt5

4-DOF digit

joint aj αj dj θj
1 0 -90 0 θi1
2 0 0 0 θi2
3 `i1 0 0 θi3
4 `i2 0 0 θi4

The model which was used in this work has 14 sensors in total: two on each digit

and one between two adjacent digits. The three digits of interest (thumb, index and

middle) therefore have eight sensors.

The data from the sensors are being transmitted to a PC in packets of 29 bytes

using Bluetooth. The glove must be calibrated to the user’s hand by reading in

sensors values for the entire range of motion of each digit and storing maximum and

minimum values (‘maxSensor’ and ‘minSensor’). These values are then scaled to a

predetermined angle range for each sensor, from 0◦ to a maximum (‘MaxAngle’), as

given in Table 4.3. The values in degrees for each sensor are calculated by linearly

scaling the raw sensor data (sensorRaw) to the corresponding angle. For the sensors

of the digits, the following formula is used:

sensorAngle =
MaxAngle

maxSensor −minSensor
|sensorRaw −minSensor| (4.1)

For the abduction between thumb/index and between index/middle fingers, in-

creasing sensor values correspond to decreasing flexion angles, and the formula is:

sensorAngle =
MaxAngle

maxSensor −minSensor
|maxSensor − sensorRaw| (4.2)

Digit Tracking Using the Data Glove

Using a simplified version of the kinematic model presented in Section 4.1, a sim-

ulation environment can be created, where a user wearing the data glove can interact

with virtual objects. This can evaluate the data glove as a master manipulator and
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Sensor Digit Joint Max. Angle

1
Thumb

MCP 90
2 IP 90

3 Thumb-Index abduction 60

4
Index

MCP (flexion) 90
5 PIP 90

6 Index-Middle abduction 45

7
Middle

MCP (flexion) 90
8 PIP 90

Table 4.3: Maximum angle values

Figure 4.4: Using the 5DT glove to interact with a simulation environment

identify its potential as a surgical master.

A basic 2D environment, shown in Figure 4.4, has been created in MATLAB. It

involves two digits with two DOFs and two links manipulating a cubical object (the

cube has one DOF) in real time. Only data from the two flexion sensors in each digit

were used in this experiment. In a second experiment (Figure 4.5), the abduction

sensor between the thumb and index finger was used, as well as the flexion sensors

of the two digits. Therefore, each of the two displayed digits has three links and

three DOFs. The third DOF of the base joint of the thumb (CMC) is not detected

(Table 4.1) and hence, the inaccurate registration of the thumb in 3D space led to

unsuccessful pinch grasps during this test.

As expected, the experiments proved that the glove lacks the precision required

for hand tracking in surgical tasks as it provides insufficient data for the CMC joint

of the thumb and no data for the DIP joints of the fingers. Furthermore, its size

cannot be adjusted, which means that the same sensor could be aligned with the
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Figure 4.5: Attempting a pinch grasp

thumb’s IP joint in small hands or the MCP joint in larger hands. This can lead to

further inaccuracies in digit and grasp tracking.

4.3 Sensory Exoskeleton

The preceding exploration of the data glove helped to determine issues in digit

motion capturing. Concluding from the experiments and the inadequacy of the data

glove for detailed joint tracking, it was decided to develop a hand tracking device

which will address the identified challenges. In Section 2.3.6, a few such systems

were reviewed, with rigid joint mechanisms (a.k.a. hand exoskeletons) being one of

the concepts. The µAngelo exoskeleton is not ‘active’, i.e. will not be aimed at

actuation of the hands, and hence can be lighter than the exoskeleton designs found

in the literature.

Design Criteria

As part of the design process for a hand exoskeleton, a number of requirement

criteria needed to be prioritised to make it suitable for R-A MIS. Namely, the ex-

oskeleton must:

• Accurately obtain joint angles during digit flexion and abduction/adduction

as well as thumb pronation/supination for precision tracking of the surgeon’s

digits.
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• Be lightweight to prevent fatigue during extended periods of use.

• Correspond to the full hand model presented in Table 4.1, so that it does not

impede normal hand function and the surgeon can have full dexterity during

operations.

• Correspond to the motion range of the slave instrument’s joints.

• Be adjustable so that it fits a wide range of hand sizes and, hence, not being

limited to use by a single surgeon.

• Have a design with provision for haptic feedback to the surgeon, which, as

seen in the literature, could vastly help with tasks requiring highly dexterous

manipulations of tissue within the body.

Following on from the set criteria, three prototypes were developed and are

presented in the following Sections. These passive hand exoskeletons can sense the

movements of the surgeon’s digits’ joints and translate them to movements in the

instrument’s joints.

4.3.1 Prototype 1

4.3.1.1 Joint Tracking

In order to track the motion of the hand digits, small and lightweight sensors should

be integrated with the exoskeleton. Two types of Hall-effect sensors where chosen:

MLX90316 and MLX90333 (Melexis, Belgium) can measure the change of an angle

in 1-DOF and 3-DOF respectively. Hall-effect sensors’ output voltage varies in

response to the change of a detected magnetic field perpendicular to the current

across the conductor. The MLX90316 is only sensitive to the flux density applied

orthogonally to its surface, while the MLX90333 sensor is also sensitive to the flux

density applied parallel to it1.

1More information can be found in the datasheets and the manufacturer’s web-
site: https://www.melexis.com/en/product/MLX90316/Absolute-Rotary-Position-Sensor-IC and
http://www.melexis.com/mlx90333
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The sensors were chosen for their small size and simple design. They have 10-

bit angular accuracy and 12-bit resolution and can be calibrated to any angular

range. A PTC-04 (Melexis, Belgium) commercial programmer was used to precisely

calibrate the sensors to the required operating range. The 1-DOF sensor can give

absolute angular position of a small diametric magnet located parallel to the sensor

in a rotary type joint, while the 3-DOF sensor detects orientation of an axial magnet

and can be suitable for a ball type joint.

4.3.1.2 Kinematic Model

As a first exploration of a simplified exoskeleton design, the PIP and DIP of the index

and middle fingers were considered coupled. In fact, these joints in the human hand

are often considered coupled, with Kamper et al. (2003) deriving an approximate

relationship between their motion during reach-and-grasp tasks. An example of this

relationship is shown in Figure 4.6. This approximation seems insufficient for the

precision required in surgical applications and, hence, was not used in the subsequent

prototypes of the exoskeleton. In prototype 1, however, the goal was also to evaluate

this approach as early as possible, hence the prototype carries only one sensor for

the PIP joint, while the position of the DIP is approximated by the relationship

between the PIP and the DIP.

Figure 4.6: Example of relation between
PIP and DIP joint of the same digit

(Kamper et al., 2003)
Figure 4.7: CAD drawing of the

exoskeleton assembly
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Figure 4.8: Ball joint prototype and range of motion calculation

(a) (b)

Figure 4.9: Revolute joint (a) CAD and (b) 3D printed part

4.3.1.3 Layout and Assembly

The CAD drawing of the exoskeleton assembly is shown in Figure 4.7. The overall

structure was designed to be as compact as possible and it has eleven DOFs. Apart

from the lack of two DOFs of the DIP joints, the design followed the model of

Table 4.1 (page 70). It comprises seven sensors in total: three 3-DOF sensors for

the MCP joints of the index and middle fingers (only two of these DOFs were used)

and the CMC of the thumb, and four 1-DOF for the PIP joints of the index and

middle fingers and the IP and MCP of the thumb. The MCP and CMC joints

were designed as ball joints in order to reduce the volume and the complexity of

the component. The sensors are attached to the non-contacting parts at the side of

each joint (Figures 4.8 and 4.9).

The typical range of motion of each joint can be considered as: 0-90◦ for the

MCP, 0-110◦ for the PIP and 0-70◦ for the DIP. From the parameters of Figure 4.8,

76



4.3. Sensory Exoskeleton

Figure 4.10: Testing the exoskeleton on one finger

the range of the ball joint can be calculated using equation (4.3).

2θ = 2(90− φ1 − φ2) = 2(90− sin−1(
d

R2

)− sin−1(
r

R2

)) (4.3)

To ensure unrestricted motion, the range of the ball joint was set to be at least 90◦,

by choosing R2 = 6 mm, d = 3 mm and r = 1.5 mm.

The exoskeleton was fabricated using 3D printing (NanoCure, Envisiontec, Ger-

many). Figure 4.10 shows part of the exoskeleton fitted on the side of the index

finger and the electronics attached to the wrist.

4.3.1.4 Adjustability

Each exoskeleton joint is fastened to the digit with an adjustable attachment and the

joints are connected to each other via double threaded links (Figure 4.11) that make

it possible to vary the link lengths according to the digit links of the user. One side

of a double threaded link has a left-hand thread, while the other has a right-hand

thread: by rotating the link, it can be extended (clockwise) or shortened (anti-

clockwise). The double thread links not only make the mechanism adjustable, but

also allow the exoskeleton to be lightweight (approx. 130 gr for one digit including

electronics), without added material for modifications. The two opisthenar attach-

ments (base of fingers and wrist) are also connected to each other via adjustable

links.
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(a) (b)

Figure 4.11: Double-threaded link (a) printed part and (b) working principle

4.3.1.5 Evaluation

Figure 4.12 shows a snapshot from the initial tests to link the data from the sensors to

the virtual model of the index finger (4 DOFs) in order to simulate the movement of

the user’s finger. The virtual model could, in general, follow the motion of the user’s

finger. However, the exoskeleton could not be firmly attached to the fingers, which

occasionally led to inaccurate measurements. Encouraged by these early results of

joint tracking, it was decided to improve the design in the form of a second prototype

which would include i) secure attachments to the digits ii) sensing of the DIP joints

and iii) more robust design.

Figure 4.12: Simulation of the user’s index finger motion

4.3.2 Prototype 22

The new design was based on previous work on hand exoskeletons in the Bristol

Robotics Laboratory presented by Burton et al. (2011). The new exoskeleton was

designed to comfortably fit around the 5th to 95th percentile of hand lengths and

2Section 4.3.2 was collaborative work with by Dr Thomas M.W. Burton in the BRL in 2013.
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breadths (5th percentile - 173 mm and 78 mm respectively and 95th percentile - 205

mm and 95 mm respectively) as described by Pheasant and Haslegrave (2006). The

equations by Buchholz et al. (1992) were then used to estimate the maximum and

minimum required length for the index, middle and thumb digit lengths. Designing

the mechanism’s digit lengths using these equations means that the device is able to

have its joint axes aligned with the natural joint axes of the surgeon as in the work

by Burton et al. (2011). Furthermore, it allows for the same Hall-effect sensors used

in prototype 1 to be accurately positioned so that the correct joint angle is measured

(1 mm distance from the magnet and 0.5 mm offset from the joint axis). This is an

important aspect of the design as it means that the device is comfortable to wear

for the surgeon while allowing for accurate information about the joint position to

be extracted.

This prototype weighs 154 gr in total and is scalable to the range of hand sizes

listed above via lead screws embedded into the mechanism, allowing each segment

length of a digit to be elongated or contracted to suit an individual person’s anatomy.

Adjustment is achieved via a hex key inserted into each segment to turn the screw.

This mechanism is shown in Figure 4.13.

Figure 4.13: Mechanism for adjusting the lengths of the exoskeleton’s segments to fit
different sized hands
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Figure 4.14: The DIP, PIP (left) and the MCP (right) joint mechanisms of the
exoskeleton

4.3.2.1 Operation of the Exoskeleton

The new exoskeleton takes all joints of the digits into account to provide more

accurate digit tracking and has a total of 13 DOFs. The DIP and PIP joints of the

index and middle finger as well as the IP and MCP of the thumb use the 1-DOF

sensors to detect angular rotation of the joint. The joints of each segment operate

around miniature bearings placed either side of the joint to reduce friction. Use of

the lead screw adjustment mechanism allows for the bearings to be positioned with

their axes aligned with each joint’s natural axis of rotation. The mechanisms and

sensors for the IP joints are shown in Figure 4.14 (left).

However, the MCP joints of the fingers and the CMC of the thumb require

more complex mechanisms to track their respective motions. For the index and

middle MCP joints a ball and socket mechanism along with a 3-DOF sensor were

used, combined with a 1-DOF sensor for the redundant link joint, to obtain MCP

flexion/extension and abduction/adduction angles. The mechanism for this can be

seen in Figure 4.14 (right).

The CMC joint of the thumb is a highly intricate and complex mechanism.

The device developed for this joint has a similar mechanism to that used for the

fingers’ MCP joints in that a ball joint was used to allow for flexion/extension and

abduction/adduction of the thumb with a 3-DOF sensor and the 1-DOF sensor of
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the thumb MCP joint for the redundant link as well. However, unlike the fingers,

the thumb has much larger segment lengths between the ball joint on the hand plate

and the IP mechanisms. To ensure correct movement of the ball joint, an additional

unconstrained four-bar mechanism was added to the design as shown in Figure 4.15.

Figure 4.15: Thumb MCP joint mechanism showing ball joint and four bar mechanism

All of the electronics are electrically grounded onto a plate mounted onto the

dorsal side of the hand. Digits were constrained to the exoskeleton via soft and

adjustable straps to ensure a snug fit for correct operation as shown in Figure 4.16.

Each sensor was also equipped with an LED to indicate power. This would provide

the user with an indication of the type of problem, should one of the sensors fail.

The full design in different digit configurations can be seen in Figure 4.17, which

demonstrates its high digit manoeuvrability during dexterous tasks.

Figure 4.16: Mechanisms attached to hand plate. Also shown are the LED indicators
and the straps to hold the mechanism to the hand
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Figure 4.17: The Exoskeleton in different digit configurations

4.3.2.2 Suitability for Haptic Feedback

As mentioned in the design criteria (page 73), an important aspect of a teleoperated

robotic surgical system is the ability to provide haptic feedback during operations.

While not implemented as part of this thesis, the design is based around the work of

Burton et al. (2011) in which similar mechanisms were actuated to provide hand re-

habilitation for stroke patients. The work of Burton et al. (2011) was not focused on

digit tracking but, instead, used motors to actively actuate the digits and facilitate

the opening of the patient’s hand.

As shown in Figure 4.18, using an open-pulley design with the centre of rotation

coincident with the joint’s axis, forces could be applied to each individual phalanx

via a cable-driven system. Force applied to the cable at ‘i’ around the guide at ‘ii’

produces a force on the digit around the joint at ‘iii’ via the ‘open-pulley’. This

could in turn be used to provide haptics to surgeons during operations in the form

of a resistive force as they flex their digits.
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Figure 4.18: Force feedback module

4.3.2.3 Evaluation

The exoskeleton is linked to a virtual model, as in Section 4.3.1.5. Figure 4.19

illustrates parts of the simulation of the DIP and PIP joints of the user’s middle

finger. The visualization of the user’s motions is successful, apart from the joints at

the base of each digit, where the 3-DOF Melexis sensing range does not cover the

joint range. In prototype 3 of the exoskeleton, in order to address this issue, the

ball joints are replaced, despite their compact and lightweight design. The 3-DOF

sensors are replaced by three 1-DOF sensors for the CMC joint of the thumb and

the MCP joints of the index and middle fingers.

Figure 4.19: The user controls a virtual model of the finger using exoskeleton
prototype 2

4.3.3 Prototype 3

The exoskeleton prototype 2 has been slightly modified, so that it comprises simple

rotary joints which accommodate 1-DOF sensors, as these have proven to be more

accurate compared to the 3-DOF ones. Specifically:

• The ball joints aligned with the MCP joints of the index and middle fingers

have been removed and instead, the flexion of each of these MCP joints is
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Figure 4.20: MCP1, MCP2 and MCP3: sensors measuring flexion of MCP joint.
MCP4: sensor measuring abduction/adduction of MCP joint

calculated by the combined values of three 1-DOF sensors (Figure 4.20).

• The abduction/adduction of the index and middle fingers is measured by an

additional 1-DOF sensor positioned at a 90◦ offset with respect to the flexion

measuring sensors.

• The ball joint of the thumb has also been removed and the mechanism is

similar to the ones of the fingers, with three 1-DOF sensors detecting the CMC

flexion angle (similar to the MCP1, MCP2 and MCP3 of Figure 4.20), and two

1-DOF sensors placed at 90◦ offset measuring the CMC abduction/adduction

and pronation/supination.

Figure 4.21: Modified exoskeleton for index and middle fingers

The index and the middle fingers of prototype 3 have six sensors each, while

the thumb has seven sensors in total. Figures 4.20 and 4.21 show the mentioned

modifications. The additional links of the MCP joint mechanism are necessary in
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Figure 4.22: Additional sensors and relation with the flexion of the MCP joint of the
index and middle fingers or the CMC flexion of the thumb

order for the exoskeleton to follow the natural motion of the user without restricting

it. Figure 4.22 shows the three sensors around the MCP joint: for the particular

mechanism, to calculate the position of the MCP joint flexion, three measurements

are needed.

Figure 4.23 illustrates the principle: the angles that the sensors measure as well

as the MCP angle that needs to be calculated are shown. Two triangles are formed:

ABD and BCE. Without the MCP2 sensor (Figure 4.20), there are only two known

parameters for each triangle: θ1 and θ3 are the values from the sensors MCP1 and

MCP3, while L1 and L2 are known link lengths from the exoskeleton design speci-

fication. Therefore, these triangles cannot be defined without an additional sensor.

If θ2 is the MCP2 sensor measurement, it can be derived from triangle BCE:

α = 180− θ2 − (90− θ1) = 90− θ2 + θ1 (4.4)

From the triangle AEO:

MCP = 180− (180− α)− θ3 = α− θ3 (4.5)

They combination of equations (4.4) and (4.5) yields

MCP = 90 + θ1 − θ2 − θ3 (4.6)
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Figure 4.23: Geometrical calculation of the MCP or CMC flexion

4.3.3.1 Evaluation

In order to test the tracking accuracy of the exoskeleton, a series of tests were

conducted. The exoskeleton was adjusted so that its joints are aligned with the

digit joints of the user. For this experiment, coloured adhesive markers were placed

at the side of each joint. The motion of these markers was tracked using image

processing in order to compare their position to the joint position derived from

the exoskeleton sensors. Image processing techniques included colour detection and

blob tracking while each test was performed in a single plane of motion to avoid

occlusions of the fingers as seen from the camera view. Figure 4.24 illustrates the

different planes of motion: (a) side of index finger (DIP, PIP and flexion of MCP)

(b) top of index finger (abduction/adduction of MCP) (c) side of thumb (IP, MCP

and flexion of CMC) (d) top of thumb (abduction/adduction of MCP).

For each test, only the corresponding exoskeleton sensors were used. By calibrat-

ing the sensors to the correct angle range of each joint (smaller than the original 360◦

that they are calibrated to by the manufacturer) better resolution can be achieved.

Following the calibration and using equation (4.6), the data from the sensors are

input into the FK model of the hand so that the position of the joints and fingertip

can be plotted. The procedure is illustrated in Figure 4.25.

Figure 4.26 (a) (in comparison to Figure 4.24 (a)) shows the first step of image

processing where the video was colour-graded so that green is the most prominent

colour. The joint and fingertip positions are exported and then plotted to simulate
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(a) (b)

(c) (d)

Figure 4.24: Planes of motion when tracking the digit joints using image processing
(green markers): (a) side of index finger (b) top of index finger (c) side of thumb (d) top

of thumb

the finger (Figure 4.26 (b)). The two types of plot are then compared. Figures 4.27

(a)-(d) show the trajectories captured by the two methods in the same graph: to

achieve this, i) the trajectories derived by image processing were enlarged to fit the

scale of the exoskeleton trajectories and ii) their orientation was manipulated to

fit the orientation of the exoskeleton trajectories. The reason for this processing is

that the distances between the markers captured by the camera are not necessarily

the real lengths of the exoskeleton joints as this would change depending on the

Figure 4.25: Accuracy testing procedure
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(a) (b)

Figure 4.26: (a) Frame of the side of the index video after colour-grading and (b)
corresponding snapshot of the simulation using the green markers’ position

distance and the angle between the camera and the exoskeleton. This also explains

why the trajectories are not identical. Missing data from blob tracking is due to

light reflections on the markers, as for example in Figure 4.27 (c).

The comparison shows that the trajectories match. However, in Figure 4.27 (b),

there is considerable difference between the measured angles of motion. Figure 4.28

(a) shows these two trajectories: the sensor measures 4◦ of motion while the image

processing gives a measurement of 10◦. This can be due to false calibration of the

sensor, as the corresponding measurement for the thumb was successful. This can

be seen in Figure 4.28(b).

In a separate experiment, the user was asked to move the index finger from left

to right while the palm lying flat on the table. This experiment was repeated eight

times. Figure 4.29 shows the trajectory of the fingertip during one of the tests

when repeating this motion seven times. By enlarging a small area of the graph,

the greatest error can be calculated to be 12µm for this trial. The order of the

maximum error was consistent in all five tests, with an average of 8µm (σ = 0.005).

4.3.3.2 Mapping to the Theoretical Model

The preceding evaluation includes all sensors but the CMC pronation/supination of

the thumb. During all tests, the specific sensor did not record any significant change

in angle. It has been concluded that the position of this sensor on the exoskeleton
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(a) (b)

(c) (d)

Figure 4.27: Comparison of trajectories derived by image processing with those derived
using the exoskeleton sensors (a) side of index finger (b) top of index finger (c) side of

thumb (d) top of thumb

is not optimal and therefore does not track the corresponding motion. Despite this,

the exoskeleton has been mapped to the theoretical model with successful tracking

of the digits’ motion.

The data from the sensors simply constitute the input to the FK model for all

joints except for the MCP joints of the index and middle finger and the CMC of

the thumb, for which calibration is needed. The calibration consists of finding the

extremes of the user’s range of motion for the specific joints and using equation (4.7),

where θj is the input to the FK for joint j, qj is the sensor angle value in degrees

(derived by equation (4.6)), k is the sensor angle value when the joint is at position
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(a)

(b)

Figure 4.28: Measured angle between left and right movements of (a) index finger (b)
thumb

0 (this offset can be negative or positive), Rd is the range of the joint measured

experimentally (approximate value using a protractor) and Rr is the range of the

sensor value before joint calibration.

θj = (qj + k)
Rd

Rr

(4.7)

Figure 4.30 shows different types of grasp that were executed between thumb-
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Figure 4.29: Seven trajectories during a left-right movement of the index finger

index finger and thumb-middle finger. Two examples of simulated grasps are shown

in Figure 4.31. Among 11 trials, the error was calculated as the difference between

the tip positions of the thumb and the index finger (or middle finger, depending on

which formed the grasp in cooperation with the thumb). The minimum error was

5.39 mm, with a mean of 11.18 mm (σ = 2.53). This error can be due to impre-

cise calibration and the lack of complete data from the CMC joint. Furthermore,

although the exoskeleton can be adjusted to fit the length of the user’s digits, more

improvements and adjustments are required to make it a better fit. It was observed

that occasionally, the exoskeleton would ‘slip’ out of the predetermined position, af-

fecting mostly the MCP joints of the index and middle fingers. This has contributed

to the error magnitude as well as to the relatively high standard deviation.

4.3.3.3 Coupling Between Digit Joints

In comparison with prototype 1, prototype 3 includes sensors for the DIP and IP

joints as this addition can offer a more precise illustration of the digit motion. In a

series of experiments, the user performed i) movements of the three digits covering

their entire range of motion and ii) index-thumb and middle-thumb pinch grasps.
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Figure 4.30: Types of pinch grasps between the thumb and index finger

(a) (b)

(c) (d)

Figure 4.31: Successful simulated pinch grasps between thumb-index (a-b) and
thumb-middle finger (c-d)
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These experiments aimed to determine the degree of coupling between the DIP and

PIP of the index/middle finger and between the IP and MCP of the thumb and how

necessary the additional sensors are.

Figures 4.32 (a)-(f) (page 96) demonstrate a comparison between these joints

during pinch grasp motions (such as in Figure 4.30). Figures 4.32 (a), (c) and (e)

show that some correlation exists between the movement of the joints, although

this has not been true for all attempted grasps. This is evident from Figures 4.32

(b), (d) and (f) where the motion of one joint is plotted against the motion of its

consecutive joint in the corresponding digit, in a similar way to Figure 4.6 (page 75)

by Kamper et al. (2003). In the specific grasp examples of Figures 4.32, the relation

of these joints in the index finger seems more reliable than the ones in the middle

and the thumb. However, this has not been consistent in all experiments. It can be

concluded that the index and middle fingers tend to have some correlation between

the two joints in question while the thumb joints showed no evidence of maintaining

any constant relationship.

Although some correlation has been demonstrated in some experiments, the

repeatability and accuracy of this model would be unacceptable for high precision

tasks required during surgical applications. This conclusion is supported by the

fact that the correlation between these joints dissipates entirely during non-grasp

motions, as demonstrated in Figures 4.33 (a)-(f) (page 97). Therefore, the sensors

at the last joint of each digit are a necessary addition.

4.4 Summary

This Chapter presented a study on the kinematics of the human hand and detailed

the research conducted in order to determine an efficient method of capturing the

motion of a surgeon’s hand digits according to the specified design criteria. Sec-

tion 2.3.6 briefly reviewed a selection of such devices on offer and in research that

comprise the state of the art. Amongst those, the master interfaces that capture
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direct digit motion involve a variety of setbacks. Lack of detailed joint tracking

and, thus, lack of the required information would not allow the model of the human

hand presented in Section 4.1 to be used. Furthermore, the lack of adjustability

to different users is not addressed in these devices, while vision based data gloves

(e.g. Cyberglove) or trackers (e.g. Leapmotion) cannot support haptic feedback as

standalone devices.

In order to help identify potential challenges in this endeavour, a readily avail-

able data glove was used. The experiments with the commercial 5DT Glove Ultra

were not meant as a comparison, but rather to explore fibre optics technology as

a sensing method and to highlight issues occurring in hand tracking, such as the

opposition of the thumb. Following from this, three prototypes of a custom-made

hand exoskeleton with ergonomic design for hand digit motion capture have been

developed.

The final prototype’s 13 DOFs allow for unrestricted motion, corresponding to

the hand model of Section 4.1, and obtaining high resolution data of the joint angles.

While these sensors have a resolution of 0.1◦ (for a range of 360◦), depending on

the calibration of the sensors to the required working range, the resolution of the

sensors could be as low as 0.02◦ (for a range of about 80◦). This level of joint

sensing resolution can offer accurate information that will lead to precise tracking

in comparison with other sensing methods that offer a more generalised depiction

of the finger’s curvature (as is the case for the 5DT Ultra Glove).

Prototype 3 of the exoskeleton has been the most successful with 19 sensors in

total. It can capture the motion of all three digits and has excellent repeatability

(error in the order of µm in digit abduction/adduction). The successful tracking

of the digit motion and grasping is due to its high number of DOFs. However, the

pronation/supination of the thumb’s CMC joint was not successfully tracked. This

did not inhibit tracking of the thumb’s motion or attempted grasps. Nevertheless, it

is possible that the lack of this measurement would limit motions of the thumb that

can be tracked. Strategic repositioning of this sensor on the exoskeleton should be
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carried out in future work to determine this. The design of the exoskeleton would

also benefit from having a tighter fit on the user’s hand to improve accuracy and

repeatability of the joint measurements at the base of the hand digits.

Despite some degree of coupling between the joints, the trajectories that con-

secutive joints follow can differ significantly. Independent sensing of each joint is

important for accurate depiction of the position and orientation of the fingertip in

the Cartesian space. This is true even for the joints closest to the fingertips where

the addition of sensors has proven necessary. Detection of these joint angles is of-

ten omitted in hand tracking devices (e.g. 5DT glove). Therefore, the tracking of

the µAngelo exoskeleton is more detailed compared to hand tracking systems that

detect only the general curvature of a digit and can help represent the motion of

the user better. In future work, comparison with simpler tracking systems could

determine whether this is advantageous in surgical teleoperation.

The exoskeleton also includes potential for force feedback to the user, an impor-

tant aspect in surgical procedures, while it is also lightweight to facilitate portability.

The exoskeleton is adjustable to a range of digit lengths, however it does not include

scaling for different digit diameters, a feature that, although beyond the scope of

this thesis, should be included in future work. The exoskeleton was 3D printed in

VeroWhitePlus (plastic material by Stratasys, UK) which made the manufacturing

process fast and low-cost. However, using this material, the exoskeleton is not as ro-

bust as regular use would require. This can be improved in future work with the use

of different materials such as Nanocure (Envisiontec, Germany), which prototype 1

and 2 of the exoskeleton were made of.

The simulation of the exoskeleton captured motion constitutes a basis for a

surgical simulation environment, where the surgeon will be able to test the concept

of anthropomorphic instruments in training. Further on, the surgeon can use the

exoskeleton to directly control the instruments. The development of the µAngelo

instrument is presented in the following Chapter.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.32: Comparison between the DIP and PIP joints of the index/middle finger
and the IP and MCP of the thumb during execution of pinch grasps. (a),(c),(e):
index-thumb during 50-150 and 300-400 sampling time and middle-thumb during

200-300. (b),(d),(f): graph of the relation between the corresponding joints of each digit
during the pinch grasps
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(a) (b)

(c) (d)

(e) (f)

Figure 4.33: Comparison between the DIP and PIP joints of the index/middle finger
and the IP and MCP of the thumb during execution of non-grasping digit motion.

(a),(c),(e): moving only the thumb during 30-75 and 290-320 sampling time, only the
index during 100-140 and 320-350, only the middle during 150-180 and 350-380 and all

digits during 200-270. (b),(d),(f): graph of the relation between the corresponding joints
of each digit
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Chapter 5

Slave System

The concept of anthropomorphic instruments was introduced in Section 3.2, while

an exoskeleton that controls the instrument has been developed and presented in

Chapter 4. A first attempt to prototype an anthropomorphic instrument was made

following the discussion and feedback from the focus group meetings and the re-

sults are described in this Chapter. The mapping between the exoskeleton and the

instrument is discussed in Chapter 6.

The study of the human hand and the simulation of its joints (Section 4.1)

have helped to develop instruments that could reproduce the motion of the hand

digits. The surgical instruments are designed in CAD software and 3D printed.

The prototypes are scaled up in comparison to the desired product size, in order to

facilitate production using limited resources and budget. However, miniaturisation

has been attempted to an extent in order to understand consequent challenges.

Methods of actuation using SMA springs as well as a cable-driven mechanism have

been considered.

The first prototype, actuated by SMA, facilitated an initial exploration of the

concept and brought up a number of limitations and design challenges. Its develop-

ment process is demonstrated and the potential of the materials used and actuation

method are assessed. A second prototype, based on a cable-driven actuation mech-

anism, was developed in order to address the inadequacies of the first prototype.

Two ways of routing the cable-driven mechanism have been investigated to optimise

the cable control and their correspondence to the joint angle changes. The focus

has been on the mechanism design and its kinematics and not the implementation

of a complete system. For this reason, only open-loop control has been attempted.
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The prototype analysis includes its workspace, capabilities for different grasping

configurations and force measurements.

The research presented in Sections 5.1, 5.2, 5.3.1 and 5.3.5 is an edited version
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(with permission from Springer).
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(2014). An anthropomorphic design for a minimally invasive surgical system based
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5.1. Kinematic Model of the Surgical Instrument

5.1 Kinematic Model of the Surgical Instrument

As the final goal is that the instruments have the potential to mimic the surgeon’s

hand, their kinematics should correspond to the kinematics of the human hand.

Using the same model for the five and four-DOF digits as the one described in

Section 4.1, the FK for the surgical instrument was solved. The main difference

between the human hand and the instrument models is the relative position of the

reference frames of each digit. In both models, the base frames of the index and

middle fingers are expressed in the frame of the thumb base. Figure 5.1 shows the

comparison of the relations between frames in the two models. The rotation matrix

of the base of the index/middle finger base {I} with regard to the thumb base {T},

for both models, is:

RTI =


0 1 0

0 0 1

1 0 0

 (5.1)

For the model of the human hand, the translation vectors of the index base {I} and

the middle base {M} with regard to {T} are respectively:

pTI =


0

DY

DZ

 (5.2) pTM =


±DX

DY

DZ

 (5.3)

where DX , DY and DZ are measured parameters of the user’s hand, with −DX for

the right and +DX for the left hand. In Figure 5.1, and for a specific user of the

exoskeleton, DX = 30 mm, DY = 0 mm and DZ = 75 mm.

For the model of the anthropomorphic instrument, the thumb is placed between

the index and middle finger. This is necessary as symmetry contributes to the

reduction of the shaft diameter that accommodates the instrument digits (and thus,

the size of the required surgical incision). The corresponding translation vectors are:
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5.1. Kinematic Model of the Surgical Instrument

(a) (b)

Figure 5.1: Comparison between the kinematic model of (a) a human hand and (b) the
µAngelo instrument

pti =


Dx

Dy

Dz

 (5.4) ptm =


−Dx

Dy

Dz

 (5.5)

where in Figure 5.1, Dx = 4.5 mm, Dy = 8.3 mm and Dz = 8.5 mm. Figure 5.2

shows both models in the same graph for comparison of their size.

Figure 5.2: Size comparison of the instrument model (in grey) with the model of a
human hand (in black)
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5.1. Kinematic Model of the Surgical Instrument

Table 5.1: Range of the joints of the instruments

Digits Type of joint DOFs Range (degrees)

Index and middle

DIP 1 [0, 90]
PIP 1 [0, 90]

MCP 2
[0, 90]

[-27, 27]

Thumb

IP 1 [0, 90]
MCP 1 [0, 90]

CMC 3
[-180, 0]
[-35, 35]
[-20, 20]

In order to reduce the diameter of the shaft even further, the first joint of the

instrument’s thumb (corresponding to the flexion of the CMC) has a range of 180◦

(instead of 90◦ as in the human hand). This allows the digit to be folded into the

shaft when the instrument enters the patient’s abdomen. Figure 5.3 shows the two

instruments along with the camera in the folded and extended position.

Figure 5.3: Simulation of instruments and camera in a folded and extended position

Table 5.1 summarises the chosen angle range of the different joints of the in-

strument. An experiment with ten participants (ratio of women to men being 1:1)

showed that the opening between their index and middle fingers was never greater

than 54◦ (the minimum being 17◦ with an average of 33.3◦ and a standard deviation

of 12.3) and hence, the range for the MCP (abduction) joint was chosen to be [-27◦,

27◦]. Likewise, the ranges of the thumb CMC were chosen to be [-20◦, 20◦] for the

pronation/supination and [-35◦, 35◦] for the abduction/adduction.
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5.2. SMA-Driven Prototype

Figure 5.4: Links and joint of the digit in CAD software

5.2 SMA-Driven Prototype

The first (scaled-up) prototype was based on SMA helices which enable actuation

by contracting when heated, similar to the methods used by Ho and Desai (2012).

As with the exoskeleton, all parts were designed in CAD software (Figure 5.4), man-

ufactured using 3D printing and assembled. However, not all parts are rigid: the

robotic digit, with an overall length of 9.7 cm, comprises three rigid links which

are connected via two soft links which assume the role of joints. The links were

fabricated in a rigid, high temperature-resistant resin (NanoCure, Envisiontec, Ger-

many) and the joints in a soft elastomer material (TangoPlus, Objet Geometries,

Israel). The detailed drawings are given in Appendix III.

Each part can accommodate SMA helix actuators (Biometal Micro Helix, Toki,

Japan), so that each joint is actuated by one or two antagonistic pairs of helices,

which enable motion in one or two DOFs respectively.

The goal of this prototype was to explore the capabilities of this actuating method

and to evaluate the use of compliant and rigid manufacturing materials, without de-

veloping a complex prototype with the full number of required DOFs employed by

the kinematic model and the hand exoskeleton. At the same time, quick manufac-

turing and actuation of the prototype enabled better demonstration of the concept

by visualisation of the instruments in order to understand their configuration and

functionality.
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5.2. SMA-Driven Prototype

Figure 5.5: Operation of the SMA helix actuator

5.2.1 Material Properties and Operation

SMA actuators have been mentioned in the preceding literature review and briefly

in Section 2.3.4. Most commonly, SMA wires are composed of nickel and titanium

(thus frequently called NiTi). This alloy has two distinct temperature-dependent

crystal structures called martensite (lower temperature) and austenite (higher tem-

perature). When martensite NiTi is heated, at a specific temperature it starts to

transform into austenite until the transformation is complete. In the reverse, when

austenite NiTi is cooled, it begins to change into martensite until it is completely

reverted. This process is characterised by a hysteresis as the temperature range

for the martensite-to-austenite transformation is higher than that for the reverse

transformation upon cooling (Mihálcz, 2001).

The SMA helix used in this work has a diameter of 0.62 mm and is composed of

a 0.15 mm diameter wire. Each helix is elongated (200% of its original size) and is

fixed into the structures. When current passes through the helix, it contracts due

to the produced heat and two opposite forces F1 and F2 from either end result in

actuating the joint. This operation principle is shown in Figure 5.5.

However, these actuators can only be used in the direction of contraction. Fur-

thermore, due to the aforementioned hysteresis, the response time can be slow and
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5.2. SMA-Driven Prototype

the resulting asymmetry complicates the position control. Pairs of helices, acting

antagonistically, could improve response times and offer movement in two directions.

5.2.2 Range of Motion

The movement of the soft joint is depicted in Figure 5.6 and is similar to the one

demonstrated by Walters and McGoran (2011). Compared to Figure 5.7, it is evident

that the rigid structures limit the range of motion.

Figure 5.6: Angle measurement for current of 0.35/0.5 A

Figure 5.7: Tentacle-like structure actuated by antagonistic SMA (Walters and
McGoran, 2011)

The helix, while integrated into the digit, was tested using a maximum of 500

mA, as greater current would considerably shorten the life of the SMA helix. The

maximum range of the joint movement can be seen in Figure 5.6: [-58◦, 55◦] for

current of 350 mA and [-63◦, 66◦] for 500 mA. The particular design is thus ad-

vantageous to the one presented by (Ho and Desai, 2012), as the range of motion

demonstrated is greater than ±45◦.

The asymmetry observed is due to small length differences between the helices
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5.2. SMA-Driven Prototype

of each side of the digit as well as to the imprecision between the fixing points of

each helix on the rigid structures. However, both of these factors can be controlled,

while it is also possible to improve the range of the angle generated by changing

the length of the helix. For this reason, screw terminals were fitted inside the rigid

links to enable the active length of the SMA actuators to be adjusted and achieve

the maximum angular displacement.

5.2.3 Degrees of Freedom

As already mentioned, the two pairs of antagonistic helices enable two independent

DOFs, by enabling motion in two directions (pitch and yaw). Therefore the joint

behaves as a universal joint, having the surface of a hemisphere as workspace.

The greatest advantage of the SMA actuators, apart from their small size, is

the fact that they allow independent movement for each joint. As illustrated in

Figure 5.8, the joints are not coupled and the second (top) joint moves without

affecting the first one. This provides an advantage over cable-driven mechanisms

where joint coupling complicates the control.

The combined motion of two digits is demonstrated in Figure 5.9, where the

last link (end-effector) is also shown in more detail. The design is such that, when

the two end-effectors are united (combinations of thumb-index and thumb-middle

finger), their surfaces resemble those of laparoscopic forceps, in order to make the

grasp more efficient. Since the control can allow the movement of the last link to

be independent from the rest of the digit, it would be possible, when necessary, to

use two digits as standard forceps by joining the bottom two links of each digit

together and opening and closing the combination of the top links (as suggested in

Section 3.3.4).

Three-digit grasping of a sphere (20 mm diameter, 5 g) made of compliant mate-

rial was attempted (Figure 5.10) with three two-DOF digits, in a layout resembling

a thumb, index and middle finger. This experiment was achieved by simply control-

ling the current passing through the SMA springs, rather than with a user-interface.
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5.2. SMA-Driven Prototype

Figure 5.8: Actuation of each joint independently

Figure 5.9: Two-digit grasping

Due to the arrangement of the SMA helices in the rigid structures, the type of grasp

shown here is not similar to the way human digits grasp an object. Nevertheless, it

was observed that the sphere was evenly grasped by all three digits and as a result

there was little compression, while no complex control was needed for a secure grasp.

5.2.4 Force Measurement

Producing adequate force is a significant factor when choosing a method of actuation.

As discussed in Section 2.3.4, force ranged between 2-9 N is required for pulling tissue

Figure 5.10: Three-digit grasping
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5.2. SMA-Driven Prototype

(e.g. when suturing), while a force of a maximum of 48 N is needed for grasping

a large needle (Madhani et al., 1998). One 20 mm SMA helix can produce 0.2-0.4

N and hence, an SMA only actuated prototype cannot be suitable for such tasks.

However, a more complex network of SMAs in combination with other actuating

methods could be considered, such as the hybrid actuator in the work by Raghavaiah

et al. (2005).

In order to assess the SMA digits, the maximum applied force was measured

when using i) a single SMA and ii) two SMA acting simultaneously. Figure 5.11

shows the set-up of the experiment when using a digit with two links and one joint.

For this experiment, a pressure sensor (FS01, Honeywell, USA) with a sensing range

of 0-6.7 N and ±0.2 N accuracy was used. In order to distribute the applied force

evenly on the sensing area and generate a more consistent output, a 3D printed

hemisphere was attached on top of the sensor.

The maximum force observed when activating one SMA, using a current of 350

mA, was 0.18 N. This measurement is approximate and could underestimate the

force applied due to the sensor’s limitations, as the accuracy of the sensor is 0.2 N and

the measuring force is at the low side of the sensing range. Nevertheless, the force is

smaller than expected (0.4 N) and inadequate even when two SMA helices were used

simultaneously (the maximum observed force was 0.25 N). The configuration of the

SMA by Ho et al. (2011) produces a maximum of 1.4 N which the authors consider

advantageous for applications in neurosurgery. However, this actuating method

seems to be inadequate for the surgical grasping tasks of abdominal surgery, as the

number of SMAs appropriate for achieving the required force is such that it would

make it impossible to accommodate them in a miniature structure.

Although the miniature size and the relatively low cost of the SMA actuators

make them advantageous compared with other methods, the produced force is too

limited. Consequently, different actuation methods needed to be explored.

108



5.3. Cable-Driven Prototype

Figure 5.11: Testing the applied force using one and two SMA helices simultaneously

Figure 5.12: SMA and cable-driven versions of the three-digit instrument

5.3 Cable-Driven Prototype

As seen from Table 2.1 (page 48), one of the common methods of actuation is via

cable/pulley mechanisms. Although such mechanisms can increase system complex-

ity, produced forces seem closer to the desired range. Building on the knowledge

gained from the first prototype, the second version of the anthropomorphic instru-

ment carries a cable-driven mechanism, accommodated inside the digits and through

the shaft supporting them. The configuration is kept similar to the first prototype:

Figure 5.12 shows a comparison between the two prototypes.

5.3.1 The Instrument Design

The CAD drawings and the dimensions of the various components of the cable-

driven prototype are shown in Figure 5.13 (index and middle fingers are identical)

and can also be found in Appendix III. The digits were fabricated in VeroWhitePlus

(Stratasys, UK), with the texture of the last links of the digits similar to the previous
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5.3. Cable-Driven Prototype

Figure 5.13: Computer-aided design of the structure (all dimensions in mm)

prototype for efficient grasping but with a smaller digit shaft diameter (6 mm).

The instrument has 13 DOFs, following the kinematic model presented in Ta-

ble 5.1 (page 102) and matching the exoskeleton’s motion sensing capabilities. The

DIP and PIP joints of the index and middle fingers (Figure 4.1, page 69), as well as

the IP and MCP of the thumb, are rotary joints with one DOF each. Figure 5.14

depicts the mechanism of a single DOF joint connecting the last and the middle link

of a digit via two bearings and a shaft. Each DOF is controlled by two antagonistic

cables attached to one of the links. The MCP joints of the index and middle fingers

have two DOFs (flexion and abduction) and thus, each joint is controlled by two

pairs of cables acting in two vertical directions. Similarly, the three DOFs of the

thumb’s CMC joint are controlled by three pairs of cables. The cable routing is anal-

ysed in Section 5.3.2. The cables are connected to the motors via springs, pulleys

and gears (Section 5.3.3), which are located at the proximal side of the instrument.

As mentioned on page 102, the thumb is initially (before entering the abdomen)

inside the shaft and beneath the index and middle fingers in order to make the

instrument more compact and to minimise the required incision in the patient’s body.

Using such an arrangement, the overall diameter of the demonstrated instrument is

18 mm. This diameter is large in comparison with the Da Vinci instrument shaft

(diameter of 8 mm). Nevertheless, this instrument includes a higher number of
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5.3. Cable-Driven Prototype

Figure 5.14: Mechanism of one-DOF joint: a) 3D aspect b) cross section

DOFs and increased potential dexterity. Compared to surgical instruments found

in the related literature and which are summarised in Table 2.1 (page 48), the 18

mm diameter is a promising miniaturisation for an initial prototype. The three-digit

gripper by Luo and Wang (2011) has a shaft diameter of 24 mm, while the ‘3f9d’

hand by Oshima et al. (2010) has a smaller shaft diameter of 12.7 mm but needs

assembling after insertion in the patient’s abdomen.

After insertion in the abdomen, the thumb is unfolded from inside the shaft

so that the surgeon can manipulate the digits. The unfolding is executed with a

minimum workspace trajectory. The greatest distance of the compacted thumb from

its base during this sequence is 42 mm (Figure 5.15). It is assumed that this distance

is safe as, during this process, the abdominal cavity is inflated and hence, there is

negligible risk of injuring surrounding tissues.

Different layouts and dimensions of the instrument are also shown in Figure 5.16

in more detail; a) insertion (initial position), b) unfolding, d) manipulation and e)

grasping. The extended length of the instrument during insertion is 131 mm (the

thumb is folded at this time - Figure 5.16a) and 66 mm when the thumb is unfolded

(Figure 5.16c). Although the actual combined workspace of the three digits is more

complex, it is possible to approximate it as the 3/4 of a 66 mm radius sphere

(Figure 5.15).
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5.3. Cable-Driven Prototype

Figure 5.15: Workspace of the instrument during insertion and operation (dimensions
in mm and measured to the edge of each body)

Figure 5.16: Different positions of the instrument

Each digit has a length of 66 mm (about half the length of an average human

finger). This length is a compromise between having a miniaturized instrument

and giving it the ability to grasp tissues or large organs without inflicting trauma.

This is exceptionally important when the organ is sensitive, such as the liver, which

could also be as heavy as 4 kg. Pinching it with a small gripper (e.g. forceps)

could result in dangerous haemorrhage. Nevertheless, for when precision grasping

is required, the digits are miniaturised to such an extent that the last link (7 mm

length of grasping surface) of each digit has a similar size to the end-effector of

standard surgical forceps (Da Vinci: needle drivers - 5 mm, Maryland forceps - 11

mm, prograsp forceps - 14 mm).

This miniaturisation agrees with suggestions from the focus groups regarding the
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Figure 5.17: Dual grasping mode: the instrument can grasp and manipulate organs
and tissues of large diameter as well as perform precision grasps

potential dual grasping mode of the instrument (Section 3.3.4). Figure 5.17 shows

grasping modes of the µAngelo end-effector. Spheres of 2.5 cm and 6 cm diameters

simulate different size organs.

Illustration of surgical concept

The proposed instrument corresponds to the envisioned concept that was pre-

sented in Section 3.2. More specifically, Figures 5.18 (a)-(h) demonstrate the sim-

ulated surgical concept, showing insertion and unfolding of the anthropomorphic

instruments. The illustrated mesh represents the patient’s abdomen. After the in-

struments enter the inflated abdominal cavity, the thumbs are carefully unfolded, so

that they occupy the minimum possible workspace. Then, the surgeon takes con-

trol and manipulates the digits (wearing the hand exoskeleton). At the end of the

surgery, the digits return to the initial folded configuration and exit the abdominal

cavity.

5.3.2 Cable routing

As the index and middle fingers of the instrument are identical and less complex

than the thumb, having one DOF less, the description of the cable routing will centre
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Figure 5.18: Concept of surgery using the anthropomorphic instruments: a)-c) entering
the abdomen, d) unfolding of the thumb, e)-f) manipulation by the surgeon, g) folding

back the thumb, h) exiting the abdominal cavity

on the thumb. The method of finding the driving equations of the index and middle

finger can be derived from that of the thumb.

Unlike some of the aforementioned designs (Arata et al., 2005; Seibold et al.,

2008), motors are located outside the instrument and connected to the joints via

cables, as this can reduce the cost of the motors, their size being of little importance.

As already mentioned, each of the thumb’s five DOFs (Figure 5.19) is controlled by

an antagonistic pair of cables, with two DOFs having axes that share a common

origin ({1} and {3}). Ten cables in total offer potential for high precision when

trying to imitate the surgeon’s digits using the exoskeleton, as each joint can be

actively controlled. Unlike robotic hands and grippers of a larger size, however, the

µAngelo digits have a 4 mm inner diameter and thus lack the space to accommodate

pulleys (with the exception of the 1 mm joint shafts) or sheaths that will define

specific cable paths inside this shaft. In order to achieve manipulation, a unique

strategy of variable contact cable topology is hereby used.

Tension in the cables is assumed to be constant and cable elasticity and friction

to be negligible. Each pair is attached to the link located above the corresponding

joint. This means that for DOF {5} cable ‘tJ5’ of the thumb is attached to link ‘3’

(Figure 5.19). Likewise, cable ‘tJ4’ is attached to link ‘2’, ‘tJ3’ is attached to link

‘a’, ‘tJ2’ to link ‘1’ and ‘tJ1’ to link ‘b’.

Cable ‘tJ5’ has the most complex control because its length is not only affected

by DOF {5}, but also by DOF {4}, {3} and {2} (DOF {1} does not contribute to
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Figure 5.19: Degrees of freedom of the thumb, their axes and names of links (l0 = 33.6
mm, l1 = 27.8 mm, l2 = 19.5 mm)

any change on the length of cables ‘tJ5’-‘tJ2’, as its axis coincides with the axis of

the digit as well as with the path of these cables). Therefore, the following analysis

will focus on cable ‘tJ5’, as the equations that drive the other cables can be derived

in a similar manner. Section 5.3.2 presents two ways of routing the cable inside the

digit as well as the method of deriving the equations of the cable’s motion when

affected only by DOF {3}, {4} and {5}. Section 5.3.2.4 discusses the effect that

DOF {2} has on the same cable.

The following investigation distinguishes between cable routing and the paths

that occur during motion. The way that each DOF affects each cable is dependent

on the geometry of the digit links. In order to find the path that the cable follows,

it is required to determine the key contact points that limit the space that the

cable can move in. These points can be found from the design and are shown in

Figure 5.20 (c). Generally, Qx denotes a point Q that is referenced in frame {x}

and the points can be described as follows:

• P5: position of the ‘locking’ pin in link ‘3’, where the cable is attached

• G5: narrowing of the shaft of link ‘2’
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(a) (b) (c)

Figure 5.20: Two ways of cable routing: the cable is tangential to (a) the ‘front’ of the
O4 shaft or (b) the ‘back’. (c) Key contact points of the cable inside the digit

• G31 and G33: diametrical points of the through hole of link ‘a’ (inner diameter

of a bearing placed inside this link)

• G32: edge of link ‘a’

• GB: this point belongs to the reference frame of the instrument {B} which is

coincident with frame {3} when φ3 = 0. Cable ‘tJ5’ exits the thumb at this

point and enters a sheath of constant length until it connects to the actuating

motor.

The coordinates of each of these points are given in Table 5.2 with respect to

their reference frame (e.g. P5 is measured with regard to frame O5. The distances

between the reference frames (joint axes) are shown in Figure 5.19, while the shaft

of each joint has a radius of rs = 0.5 mm.

Figures 5.20 (a) and (b) demonstrate two different methods of routing the cable

that drives DOF {5}. The manipulator shown is at φ2 = φ3 = φ4 = φ5 = 0. In

Figure 5.20 (a), cable ‘tJ5’ (cyan) starts at point P5 and it is then tangential to an

arc belonging to the ‘front’ (left in Figure 5.20) side of the O5 shaft. It extends

vertically until it touches the ‘front’ side of the O4 shaft, continues to point G31,

116



5.3. Cable-Driven Prototype

Table 5.2: Design parameters

Point Ref. frame X(mm) Y(mm)

P5 {5} 1 1.5
G5 1.2 16.3
G31

{3}
0.75 2.5

G32 5 2.5
G33 0.75 2.5
P2 {2} 1.25 1.5
GB {B} 5.95 2.5

through G32 and finally exits at GB. In Figure 5.20 (b), the cable (green) is instead

tangential to the ‘back’ (right in Figure 5.20) side of the O4 shaft. Below, these two

routes are denoted by La and Lb, to match the representation of Figures 5.20 (a)

and (b).

5.3.2.1 La routing

Depending on φ3-φ5, the cable will pass through all or some of the key points of

Figure 5.20c. The initial position as described in Figure 5.20 (a) in the previous

Section can be symbolised as follows:

P5 → S(O5)→ S(O4)→ G31 → G32 → GB

where S(Oi) denotes that the cable is tangential to the Oi shaft (‘front’ side).

There are 22 possible paths for this configuration, denoted by Ai and summarised

in Table 5.3. The specific path that the cable follows depends on φ3 − φ5. Using

the limits shown in Table 5.4 (ω31-ω36 for φ3, ω41-ω45 for φ4 and ω51-ω512 for φ5),

the combinations of φ3 − φ5 can be classified into fifty different categories (denoted

AC in the Tables). These limits depend on the geometry of the digit and can also

be functions of φ3 and/or φ4. The method of calculating ω32 and ω43 is shown in

Appendix IV as an example. Table 5.5 (page 134) summarises the categories (AC) of

different angle combinations. For example, Table 5.3 shows that path A6 is followed

when AC=131, which means that (from Table 5.5) φ3 ∈ [0, ω31], φ4 ∈ [ω42, 90] and

φ5 ∈ [0, ω55].
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Table 5.3: Paths of cable ‘tJ5’ when it passes ‘in front of’ the O4 shaft

Symbol Path AC*

A1 P5 → S(O5)→ S(O4)→ G31 → G32 → GB 111

A2 P5 → S(O4)→ G31 → G32 → GB 112

A3 P5 → G31 → G32 → GB 113, 122

A4 P5 → S(O5)→ G31 → G32 → GB 121

A5 P5 → G5 → G31 → G32 → GB 123, 132

A6 P5 → S(O5)→ G5 → G31 → G32 → GB 131

A7 P5 → S(O5)→ S(O4)→ G31 → GB 211, 311

A8 P5 → S(O4)→ G31 → GB 212, 312

A9 P5 → G31 → GB 213, 222, 313

A10 P5 → S(O5)→ G31 → GB 221

A11 P5 → G5 → G31 → GB 223, 232

A12 P5 → S(O5)→ G5 → G31 → GB 231

A13 P5 → GB
314, 322, 413, 422,
512, 612

A14 P5 → G5 → GB
323, 332, 414, 423,
432, 513, 522

A15 P5 → S(O5)→ GB 321, 421, 511, 611

A16 P5 → S(O5)→ G5 → GB 331, 431, 521

A17 P5 → S(O5)→ S(O4)→ GB 411

A18 P5 → S(O4)→ GB 412

A19 P5 → G33 → GB 613, 712

A20 P5 → G5 → G33 → GB 614, 622, 713, 722

A21 P5 → S(O5)→ G5 → G33 → GB 621, 721

A22 P5 → S(O5)→ G33 → GB 711

*AC: Angle Category (See Table 5.5)

At the initial position, the length of the cable is:

(5.6)LA0 = P5E5 +
_

E5FA + l2 +
_

E4IA + IAG31 +G31G32 +G32GB

where E5 is a tangential point on the O5 shaft (Figure 5.21a); FA is the point where

the cable intersects the horizontal from O5; E4 is a tangential point on the O4 shaft;

IA is a second tangential point on the O4 shaft as the cable extends to G31. The

above distances are calculated by:

(5.7)R =
√
x2
p + y2

p

(5.8)P5E5 =
√
R2 − r2

s

(5.9)
_

E5FA =
πrs
180

(
180− tan−1 yp

xp
− cos−1 rs

R
− φ5

)
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Table 5.4: Limits for φ3, φ4 and φ5

For La Description Value or Range (deg)

ω31 G31G32//G32GB 45.58

ω32 G5G31//G31GB f(φ4) ∈ [102.21, 104.39]

ω33 IAG31//G31GB 104.91

ω34 E5IA//IAGB 117.44

ω35 G5G33//G33GB f(φ4) ∈ [116.99, 119.06]

ω36 E5G33//G33GB f(φ4) ∈ [119.46, 119.62]

ω41 E5IA//IAG31 1.98

ω42 E5G5//G5G31 5.77

ω43 E5G5//G5GB f(φ3) ∈ [3.36, 6.07]

ω44 E5IA//IAGB f(φ3) ∈ [0.03, 1.98]

ω45 E5G5//G5G33 3.39

ω51 P5FA//FAE4 49.79

ω52 P5IA//IAG31 f(φ4) ∈ [49.79, 76.35]

ω53 P5E5//E5G31 f(φ4) ∈ [47.33, 49.79]

ω54 P5G5//G5G31 f(φ4) ∈ [47.33, 90]

ω55 P5E5//E5G5 47.33

ω56 P5G31//G31GB f(φ3, φ4) ∈ [49.79, 90]

ω57 P5E5//E5GB f(φ3, φ4) ∈ [47.33, 49.86]

ω58 P5G5//G5GB f(φ3, φ4) ∈ [84.62, 90]

ω59 P5IA//IAGB f(φ3, φ4) ∈ [49.79, 76.35]

ω510 P5G33//G33GB f(φ3, φ4) ∈ [47.33, 84.62]

ω511 P5G5//G5G33 f(φ4) ∈ [47.33, 84.62]

ω512 P5E5//E5G33 f(φ4) ∈ [47.33, 49.53]

For Lb Description Value (deg)

α31 G31G32//G32GB 45.93

α32 IBG31//G31GB 106.03

α33 IBG33//G33GB 120.73

α51 P5E5//E5E4 52.73

(5.10)
_

E4IA =
πrs
180

(ω41 − φ4)

(5.11)IAG31 =
√
O4G2

31 − r2
s

(5.12)O4G31 =
√
x2
G31

+ (l0 + yG31)
2

(5.13)G31G32 = xG32 − xG31

(5.14)
G32GB =

√
O3G2

B +O3G2
32 − 2 ·O3GB ·O3G32·

· cos

(
tan−1

yG32

xG32

+ tan−1
yGB

xGB

− φ3

)
In a similar way, we can derive equations for each category of Table 5.3.
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(a) (b)

Figure 5.21: Close up of a) La and b) Lb routing when φ3 = φ4 = φ5 = 0 (not actual
dimensions)

5.3.2.2 Lb routing

The route is similar to the previous case, with the exception that the cable is tangen-

tial to the back of the O4 shaft. This simplifies the computation greatly as there are

only eight possible paths (also, eight combinations of φ3 − φ5 in Table 5.5), shown

in Table 5.6 (page 135). The cable length at the initial position is:

(5.15)LB0 = P5E5 +
_

E5FB + FBE4 +
_

E4IB + IBG31 +G31G32 +G32GB

where E5 is a tangential point on the O5 shaft (Figure 5.21b); FB a second tangential

point on the O5 shaft as the cable extends to E4 which is a tangential point on the

O4 shaft; IB is a second tangential point on the O4 shaft as the cable extends to

G31. The above distances are calculated:

(5.16)
_

E5FB =
πrs
180

(
270− tan−1 yp

xp
− cos−1 rs

R
− cos−1 2rs

l2
− φ5

)

(5.17)FBE4 = 2

√(
l2
2

)2

− r2
s
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(5.18)
_

E4IB =
πrs
180

(
180− cos−1 2rs

l2
− cos−1 rs

O4G31

− tan−1 xG31

xG31 + l0
+ φ4

)

5.3.2.3 Comparison

Despite the computational simplicity of routing Lb, simulation shows that it is not

ideal. This can be seen in Figures 5.22 (a) and (b), where the length difference (or

cable pull) is shown for both routes for the entire range of one DOF while the other

are at constant angles. These graphs essentially simulate the effect of each DOF

on the cable as if it was independent from the others. DOF {4} (purple dotted

line) almost cancels out the effect that DOF {5} (black dotted line) has on cable

‘tJ5’. Routing La seems to be the one that will give the most accurate results as

otherwise, it would be possible to achieve more than one set of solutions with the

same pull using Lb. For example, for φ2 = 20◦ (for DOF {2} contribution, see

Section 5.3.2.4) and φ3 = 135◦, if φ4 = φ5, the cable pull is always 5.85 mm for any

value of φ4, φ5 ∈ [0, 90].

DOF {3} and {5} have an almost identical effect in both cases, especially when

other DOFs are close to 0◦. However, for greater angle values, La gives a greater (al-

though constant) length difference. This is also beneficial as the resolution is higher

and thus positioning can be more precise (a greater cable length range corresponds

to the same angular range).

5.3.2.4 Abduction-adduction

DOF {2} of the instrument’s thumb, as seen in Figure 5.19 (page 115), is the cor-

responding abduction/adduction motion of the human thumb and hence its axis is

perpendicular to the axes of DOFs {3}, {4} and {5}. In order to include the effect

that DOF {2} has on cable ‘tJ5’, the superposition principle was applied: the total

cable pull is the sum of the difference in length caused individually by DOF {2} and

the combination of DOFs {3}, {4} and {5}.

The length difference caused by DOF {2} is calculated starting from shaft O5,

O4 or point G5 until point G31, GB or G33, depending on φ3-φ5 and the path being
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(a) (b)

Figure 5.22: Difference in cable pull as a function of one DOF when the others are at
(a) 0◦ and (b) a constant value

La - red: DOF {5}, green: DOF {4}, blue: DOF {3}, yellow: DOF {2}
Lb - black: DOF {5}, purple: DOF {4}, cyan: DOF {3}, grey: DOF {2}

followed. For example, for A13 and A15 the cable length is calculated from shaft O5

until GB and subtracted from that of the initial position (when all joints are 0◦).

The routing and possible paths for each cable of all the DOFs of the thumb,

index and middle fingers are given in Appendix IV.

5.3.3 Pulley and Gear Design

The calculation of the cable pull corresponding to each joint’s angular change also

contributes to calculations in order to design pulleys that will be attached to the

shafts of the motors. Using La, we can find that the maximum pull for ‘tJ5’ happens

at φ2 = 35◦, φ3 = 129.49◦ and φ4 = φ5 = 90◦ (path A20 in Table 5.3) and is 11.7 mm.

The digit at this configuration is illustrated in Figure 5.23. Using this maximum,

we can find the pulley radius for best resolution.

The motor that actuates the cable rotates from -90◦ to 90◦ (half a circle). For
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Figure 5.23: Position of the µAngelo ‘thumb’ at the maximum length difference from
the initial position

(a) (b)

Figure 5.24: Two designs for cable ‘tJ5’ pulleys and gears: using equations (a) (5.19)
and (b) (5.20)

maximum resolution, the maximum cable pull should be equal to the half circle

circumference:

πΓS = ∆Lmax (5.19)

where ΓS is the radius of the pulley around which the cable wraps, shown in Fig-

ure 5.24 (a). From (5.19), ΓS= 3.7 mm for cable ‘tJ5’.

For cables ‘miJ1’-‘miJ4’ of the index or middle finger this radius would be too

small for 3D printing resolution. Therefore, the gears shown in Figure 5.24 (b) have

been designed. The radii of these gears can be found using the following equation:

γs =
∆Lmaxγg
πγm

(5.20)
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where γg is the radius of the gear supporting the pulley that the cable wraps around

and γm refers to the gear attached to the motor’s shaft. For example, for ’tJ4’ it can

be calculated that ∆Lmax = 7.4 mm, and hence, a combination that satisfies (5.20)

is γs = 4 mm, γg = 8.4 mm and γm = 5 mm. Table 5.7 (page 135) sums up the

maximum cable pull for all cables of the three digits as well as the chosen radii for

the corresponding pulleys and gears.

The analysis of Section 5.3.2 allows for control of the cable that bends a joint,

taking into account all DOFs acting on it. However, since each joint is controlled by

an antagonistic pair of cables, it is important to create a model for both the agonist

and antagonist. In some joints of the instrument, the models of the two cables are

not a perfect match. This is more evident in the effect that DOF {3} has on ‘tJ5’

and ‘tJ4’: both cables (agonist/antagonist) of each pair exit at GB, which is located

at one edge of link ‘a’ (see Figures 5.20 and 5.19 (c)) and hence the cable routings

are asymmetric. In order to account for this difference in certain DOFs, the agonist

and antagonist could be actuated by two motors instead of one, as in the work by

Grebenstein et al. (2011). As this would considerably increase the cost, springs can

instead be added between the antagonists and the motors.

5.3.4 Accuracy test

Figure 5.25 depicts a test rig of the instrument (painted in silver) including 13

motors. Each of the cables exits the shaft of the instrument at a specified point and

enters a sheath of constant length. The sheaths are fixed both at the exit point of

the shaft as well as at the test rig. Each cable exits the sheath and wraps around

the pulley of the corresponding motor. The agonist-antagonist parts are wrapped

clockwise and counter-clockwise respectively around two runners of the same pulley

(the runners can be seen in Figure 5.24).

The sheaths are made of polytetrafluoroethylene (PTFE), which was used for its

low friction coefficient. The sheath that was used in the test rig of Figure 5.25 has

an inner diameter of 0.71 mm and an outer diameter of 1 mm. Its thin wall made
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Figure 5.25: Instrument with all cables attached to the gears of the motors

it difficult to effectively pull the cable and move the joint, as even low tension on

the cable (e.g. 1 N) would cause the sheath to buckle. For the mechanism to work

correctly, the sheaths could not be bent which complicated the process of attaching

the cables to the motors. To address this problem, PTFE sheaths of 0.5 mm inner

and 1.6 mm outer diameter were used. This challenge delayed the manufacturing

process and, consequently, only one digit (index) of the instrument was used for the

accuracy tests. As the index and the middle finger of the instrument are identical,

testing the theoretical model on the index finger was considered sufficient to identify

possible issues.

The digit is shown in Figure 5.26. Eight sheaths deliver the eight cables to the

pulleys attached to the gears of the four motors (1.02 Nm maximum torque). A

spring with an experimentally measured constant of 530 N/m connects each of the

antagonistic cables of DOFs {3} and {4} to the pulleys to account for the difference

in maximum possible pull between the agonist and antagonist. The cable used in

this experiment is high performance polyethylene fibre with 0.12 mm diameter and

89 N tensile strength.

In order to compare the behaviour of the 3D printed digit to the theoretical

calculation, the process followed is similar to the one used for accuracy testing of
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Figure 5.26: One digit of the instrument connected to the pulleys through constant
length PTFE sheaths and gears

(a) (b) (c) (d) (e)

Figure 5.27: 3D printed digit when [φ1 φ2 φ3 φ4] is equal to (a) [0 0 0 0]◦, (b) [0 0 45
45]◦, (c) [0 0 60 60]◦, (d) [0 0 90 90]◦ and (e) [0 45 45 45]◦

the exoskeleton which is illustrated in Figure 4.25 (page 87). Figures 5.27 and 5.28

demonstrate the digit motion when actuating different combinations of its joints.

Green markers are placed perpendicular to the axes of all DOFs and at the side

and front of the end-effector for tracking them using video processing. The posi-

tion of each green marker is tracked and links connecting the markers are plotted.

Figures 5.29, 5.30 and 5.31 show a comparison of the expected result from simu-

lation (black) and the produced result in hardware (purple). Blue dots indicate

the expected end-effector’s position and green dots indicate the position of the real

end-effector tracked with image processing.

Figures 5.29 (a) and (b) illustrate the flexion of the digit while Figures 5.31 (a)

and (b) show the abduction. To simplify the theoretical model, it was assumed that
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(a) (b) (c) (d) (e) (f)

Figure 5.28: 3D printed digit when [φ1 φ2 φ3 φ4] is equal to (a) [27 0 0 0]◦, (b) [0 0 0
0]◦, (c) [-27 0 0 0]◦, (d) [-27 0 45 45]◦, (e) [-27 0 90 0]◦ and (f) [-27 0 90 90]◦

(a) (b)

Figure 5.29: Comparison of the experimental (purple) with the theoretical (black)
result when actuating (a) DOF {3} and (b) DOFs {3} and {4}

friction and cable elasticity are negligible. As expected, this affects the joint angle,

especially when actuating DOF {2} at the same time as DOFs {3} and {4}. The

cable elasticity also introduces a degree of compliance in the joints which can lead

to inaccuracy.

Figure 5.29 shows that even at the starting position ([φ1 φ2 φ3 φ4] = [0 0 0 0]◦),

the simulated and the 3D printed digit differ slightly at DOFs {3} and {4} by -6◦ and

-8◦ respectively. This is due to additional tension created by the springs attached

127



5.3. Cable-Driven Prototype

Figure 5.30: Comparison of the experimental (purple) with the theoretical (black)
result when [φ1 φ2 φ3 φ4] = [0 45 45 45]◦

(a) (b)

Figure 5.31: Comparison of the experimental (purple) with the theoretical (black)
result when actuating (a) DOF {1} and (b) DOFs {1}, {3} and {4}

to the antagonistic cables responsible for extending the two joints. The springs also

contribute to the compliance in the digit. At the disadvantage of increasing the

cost and complexity, using one motor per cable (two per DOF) could address this

uncertainty. In addition, the resolution could be improved by using higher precision

motors and gears with larger diameters and an increased number of teeth. Special

cables, for example made of fluorocarbon or titanium alloy, with negligible elasticity

could also improve the result.

As the process followed for the comparison includes video and image processing,

the links’ lengths can appear smaller or larger depending on the distance between

the camera and the 3D printed digit. Therefore, the plot of the tracked digit was
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enlarged so that the length of link ‘1’ (Figure 5.19) matched that of the corresponding

link of the simulated digit. It can be seen from Figures 5.30 and 5.31 (b) that the

maximum observed error of the end-effectors’ position is 8 mm, with a mean of 3.4

mm (σ = 2.2). The angular error of each joint depends on the values of the rest of

the joints at a given time. For example, the average error over all trials for DOF

{1} is 5.6◦ (σ = 4.3), whereas in trials that only DOF {1} is actuated the average

error is 2.8◦ (σ = 1.5). The average error and standard deviation for each DOF is

given in Table 5.8 (page 135).

5.3.5 Digit force

Figure 5.32 shows an one digit experiment based on the cable-spring-pulley mecha-

nism, as in the previous experiment. DOFs {4} and {3} (DIP and PIP joint) of the

instrument’s index finger are actuated to assess force exerted by the end-effector.

For this experiment, one cable per each joint was attached via a pulley to the shaft

of a motor, while the other cable was connected to a linear spring applying tension

to the cable and keeping the joint at 0◦.

Figure 5.32: Testing one digit of the instrument using two servo-motors

In order to compare the two prototypes (SMA vs. cable and motor), the same

method of force measurement as presented in Section 5.2.4 (page 107) was used.
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The same pressure sensor (FS01, Honeywell, USA) was used while both DOFs {4}

and {3} were active (Figure 5.33). The maximum measured force was 3 N (mean

of 10 tests with σ=0.1). The elasticity of the cable and the introduced compliance

means that the maximum force could be greater in a rigid mechanism where each

cable is connected to an individual motor. However, the force capability of this

prototype greatly exceeds the 0.18 N measured with the SMA-driven prototype. It

is also within the range of required forces when pulling tissue as determined by

(Madhani et al., 1998). This result can be further improved by using motors of a

higher maximum torque.

Figure 5.33: Testing the maximum applied force

5.4 Summary

This Chapter has presented the development of surgical instrument prototypes, in

response to the second research question of Section 1.1 (page 3). The kinematic

model of the instruments has been compared to the model of the human hand and

the developed exoskeleton. As discussed on page 38, although evidence is sparse,

studies suggest that three digits are adequate for precision grasping tasks (Zhang

et al., 2006; Costello and Fragaszy, 1988). This finding is supported with regard to

surgery by the participating medical collaborators of this project. In continuation,

two instrument prototypes using different actuation methods were investigated.

The first prototype, based on SMA actuation, combines rigid and soft materials

and the digit bends around the centre of the soft structures. Such flexible joints

are of benefit, compared to a simple hinge, since it constitutes a simple way of cre-

ating multiple DOFs. Furthermore, using individual SMA segment helices for each
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joint enables independent actuation for each DOF, further simplifying the actuation

mechanism. Despite this, and although the range of motion achieved in each DOF,

was satisfactory for grasping tasks, use of SMA includes force limitations. A net-

work of such helices in combination with other actuating methods would potentially

produce the required forces. However, this would prevent adequate miniaturisation.

In order to overcome the challenges of insufficient grasping force, the following

prototype comprised a cable-driven mechanism. For increased dexterity, active ac-

tuation of each DOF has been attempted using an antagonistic pair of cables. Apart

from the inevitable coupling between joints, the high number of cables required in

combination with the narrow digit shafts impose a complex and computationally

expensive way of actuation. For this reason, a unique strategy of variable contact

cable topology is proposed which is based on the geometry and design of each digit

of the instrument. This design strategy could allow further miniaturisation as it

does not require pulleys.

The control of the instrument’s motion and grasping has not been covered in

this study but constitutes future work. The study of the instrument has focused

on the mechanism design and its kinematics. The theoretical model of the cable-

driven mechanism has been described with two ways of possible cable routing being

investigated. The method of deriving the cable pull as a function of the joint angles

accounts for all DOFs acting on each cable. Due to resulting asymmetry between the

routing of the antagonistic cables of each joint, two motors are required to actuate

each joint.

The theoretical model was experimentally tested on the index finger of the instru-

ment, as its design is simpler to realise in hardware and it was considered sufficient

to identify potential issues with the design or hardware implementation. In order to

reduce the cost, each joint was actuated by only one motor. One of the cables for

each of DOFs {3} and {4} was attached to a spring to absorb the difference in cable

pull between agonist and antagonist. DOFs {1} and {2} had both cables attached

directly to the corresponding pulley as the design of these joints is more symmetric.

131



5.4. Summary

The springs introduced a degree of compliance in the digit which, along with cable

friction and elasticity, had an impact on the accuracy of the model. Although, the

observed error of the end-effector’s position had a maximum of 8 mm, better accu-

racy would be required for surgical tasks. The angular error of each DOF ranged

from 0◦ to 14◦ depending on the values of the other DOFs, due to the coupling

between the joints. The error generally increases when more DOFs are actuated at

the same time, as the actuation becomes more complex with friction and elasticity

having a greater impact. This error can be minimised by using i) two high precision

motors for each asymmetric joint instead of the spring-motor system and ii) low

elasticity and friction cables. It is also possible for the error to be further corrected,

intuitively by the user, during teleoperation. As the slave imitates the master, the

user of the master can, through visual feedback and interaction with the slave and

its environment, update executed motions and grasps to achieve the desired result.

This is a process which, at least to a small degree, will occur due to the differences

between the lengths of the master’s and slave’s digit links.

Following the requirements arising from the survey and the focus group meetings,

the design of the instrument adopts additional articulation, using an anthropomor-

phic approach which could facilitate movements occurring during conventional open

surgery. At the same time, miniaturisation has been attempted during the design

and manufacturing process, which made it possible to address subsequent challenges

such as cable routing and actuation. The 18 mm diameter of the instrument shaft

is the minimum that can be achieved when the instrument is manufactured by 3D

printing, due to the resolution of the machine and the robustness of the material. 3D

printing, becoming ever more affordable and accessible, has enabled fast prototyping

and optimisation of the design. However, the prototype can have better resolution

and smaller size when using other manufacturing methods such as metal sintering

and micro-machining.

The cable’s tensile strength is also reduced due to friction and buckling of the

cable inside the digit. Future iterations of this assembly could utilise ‘kink free’
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titanium alloy wires with higher tensile strength. The prototype demonstrated a

maximum force of 3N, which lies among the desired range of forces used in surgical

tasks. This force can be further improved with use of higher torque motors, higher

strength cables and manufacturing in different materials (such as surgical steel).

The identified differences between the kinematic models of the master and the

slave impose the need for a mapping process between them during teleoperation,

which is presented in the following Chapter.
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5.4. Summary

Table 5.6: Paths of cable ‘tJ5’ when it passes ‘behind’ the O4 shaft

Symbol Path AC*

B1 P5 → S(O5)→ S(O4)→ G31 → G32 → GB 811
B2 P5 → S(O4)→ G31 → G32 → GB 812
B3 P5 → S(O5)→ S(O4)→ G31 → GB 821
B4 P5 → S(O4)→ G31 → GB 822
B5 P5 → S(O5)→ S(O4)→ GB 831
B6 P5 → S(O4)→ GB 832
B7 P5 → S(O5)→ S(O4)→ G33 → GB 841
B8 P5 → S(O4)→ G33 → GB 842

*AC: Angle Category (See Table 5.5)

Table 5.7: Maximum cable pull and radii (in mm) of corresponding pulleys and gears
for cables of the thumb (tJx), index and middle fingers (miJx)

Digit Cable Range (deg) Max. cable pull Γs γs γm γg

Thumb

tJ1 [-20, 20] 21.9 7 - - -
tJ2 [-35, 35] 13.8 4.4 - - -
tJ3 [0, 180] 14 4.5 - - -
tJ4 [0, 90] 7.4 - 4 5 8.4
tJ5 [0, 90] 11.7 3.7 - - -

Index
and

middle

miJ1 [-27, 27] 3.1 - 2.3 5.2 12
miJ2 [0, 90] 1.24 - 1.2 5.2 15.7
miJ3 [0, 90] 3.9 - 2.2 5.4 9.5
miJ4 [0, 90] 8.1 - 3.7 5 7.2

Table 5.8: Average angular position error and standard deviation for the DOFs of the
instrument’s index finger

DOF Average error σ

1 5.6◦ 4.3
2 3.2◦ 2.6
3 4.6◦ 4.1
4 8.2◦ 2.5
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Chapter 6

Kinematic mapping of the

master-slave system

The preceding two Chapters presented the development of a sensory hand exoskele-

ton and an anthropomorphic surgical instrument. While control of the slave instru-

ment is not the focus of the research of these two subsystems, this Chapter examines

the correspondence of the two from a theoretical point of view. First, the relation

of the instrument’s design to the human hand and its degree of anthropomorphism

is discussed. This description provides insight into the specific differences between

the two subsystems and, in combination with the theoretical models presented in

previous Chapters, a kinematic mapping between the two is devised. The analysis of

the mapping process is presented and the correspondence of the user’s hand motion

to the instrument is demonstrated. Finally, the proposed mapping method is used

to explore simpler configurations of the master and slave subsystems.

The research presented in Section 6.1 is an edited version of the work that will

be published in:

Tzemanaki, A., Fracczak, L., Gillatt, D., Melhuish, C., Persad, R., Pipe, A.

G., and Dogramadzi, S. (2016). Design of a multi-DOF cable-driven mechanism

of a miniature serial manipulator for robot-assisted minimally invasive surgery. In

2016 6th IEEE RAS EMBS International Conference on Biomedical Robotics and

Biomechatronics, pages 55-60 ( c©2016 IEEE).
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6.1. Anthropomorphism in the µAngelo instrument

6.1 Anthropomorphism in the µAngelo instru-

ment

While the human hand digits (fingers and thumb) are an intricate mechanism, the

µAngelo instrument provides a carefully chosen subset of human functional be-

haviour. Although it resembles a miniature hand, exact imitation would be unnec-

essary for R-A MIS applications. The following Sections compare the anthropomor-

phic instrument to the human hand, demonstrating their similarities as well as their

differences.

6.1.1 Structure

As mentioned on page 38, the thumb, index and middle fingers are those primarily

responsible for carrying out precision tasks in surgery. For this reason, and to

keep the diameter of the instrument minimal, the µAngelo surgical instrument has

only three digits. The index and the middle finger of the human hand have three

phalanges, while the thumb has two. However, the first metacarpal bone of the

thumb is ossified in the same manner as the phalanges, and this has led anatomists to

regard the thumb as having three phalanges (Gray, 1919). Similarly, each µAngelo

digit has three links.

Furthermore, the possibility of attaching different surgical tips for each digit has

already been mentioned (page 64). The instrument would then be an extension

to the surgeon’s hand with added versatility, making it possible to perform tasks

that they cannot do using just their hands. This offers the option of independently

performing actions that normally require the help of an assistant.

6.1.2 Degrees of Freedom

The index and middle fingers comprise three joints each. Two (DIP and PIP)

are responsible for flexion/extension of the phalanges while the MCP controls both

flexion/extension and abduction/adduction. The thumb has three joints with the
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6.2. Mapping Algorithm

addition of the CMC which offers pronation/supination, especially important for

opposition (Brüser and Gilbert, 1999).

Similarly, each of the index and middle finger of the µAngelo have two 1-

DOF joints (flexion/extension) and one 2-DOF (flexion/extension and abduc-

tion/adduction). The thumb has three 1-DOF joints and one 2-DOF joint: in

Figure 5.19 (page 115), flexion/extension of the µAngelo thumb is indicated with

frames {5}, {4} and {3}, abduction/adduction with {2} and pronation/supination

with {1}. The joints of the µAngelo are simple rotary joints with range of motion

similar to the corresponding joints of the hand, apart from DOF {3} of the thumb

which has a range of 180◦, so that it can fold into the shaft of the instrument.

6.1.3 Actuation

The digits of the human hand are remotely controlled; there are no muscles inside

them. They are located in the palm and in the mid forearm, connected to the bones

of the digits by tendons, which pull on and move the joints. The exact actuation

system is complex, with each joint action controlled by one or more tendons. These

agonist-antagonist tendons control the stiffness of the joints and the accuracy of the

movement by co-contraction (Gribble et al., 2003). Likewise, µAngelo is controlled

via a cable-driven mechanism which maintains the principal quality of the muscular

actuation: each joint is controlled by a pair of antagonistic cables. The 13 rotary

DOFs of the µAngelo are actuated by a minimum of 13 motors.

The digits also include smaller bones (sesamoids) which provide a smooth surface

for tendons to slide over similarly to the µAngelo cables that slide over the joint

shafts.

6.2 Mapping Algorithm

The similarities between the human hand and the surgical instrument can facilitate

simple and direct teleoperation. Some methods of kinematic mapping have been
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6.2. Mapping Algorithm

Figure 6.1: Comparison of the user’s digit motion with the instruments’ digit motion
when using simple joint-to-joint mapping. The coloured dots indicate the end-tip of each

digit: blue-index, purple-middle and red-thumb

reviewed in Section 2.3.7. From these, joint-to-joint mapping suits anthropomorphic

manipulators (Peer et al., 2008), which makes it appropriate for the µAngelo system.

However, the differences indicated in the previous Section as well as the comparison

of their kinematic models presented in Section 5.1, and specifically in Figure 5.1,

(page 101), impose the use of a more complex mapping process between the two.

The system, therefore, adopts a hybrid method where both joint-to-joint and point-

to-point mapping strategies are used.

Figure 6.1 shows a snapshot of a user’s digit motion while attempting a pinch

grasp between the thumb and the middle finger (similar to the one in Figures 4.31

(c) and (d), page 92) and compares it to the configuration of the instrument’s

digits when using simple joint-to-joint mapping. Using this method alone, grasping

attempts will fail. This is mainly due to the different position of the thumb’s base

with respect to the base of the index and middle fingers in the human hand and the

instrument, but also due to the dissimilar lengths of the corresponding links, which

can also differ between different users.

Nevertheless, the layout of the index and middle finger is similar in the two mod-

els and, thus, the mapping for these digits could be a joint-to-joint correspondence.
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6.2. Mapping Algorithm

This can simplify the process greatly, with the thumb being the only digit that needs

a complex mapping algorithm.

The proposed mapping process is summarised in Figure 6.2. It is based on the

relative position between the fingertips of the user’s hand, which can be considered

as the vertices of a triangle. The geometry of such a system can be manipulated

through triangle similarity to derive a relationship between the relative positions of

the instrument’s end-effectors. This method will be referred to as Similar Triangles

Transform (STT). The data for all three digits are derived from the exoskeleton’s

sensors and the following steps are subsequently taken:

i) With the angles of the exoskeleton joints as input, the FK model of the surgical

instrument is used to derive the positions of the tips of the index and middle

finger (pi and pm). The aim is to find the position of the thumb’s tip pt.

ii) The FK model of the human hand is modified so that the layout of the digits

is similar to the layout of the instrument’s digits (vectors (6.1) and (6.2)). It

is then used to derive the positions of the tips of the hand digits (pI , pM and

pT ).

iii) Points pI , pM and pT constitute the vertices of a triangle with sides A, B and

C, which can be found as the magnitude of the vector connecting the vertices

(equations (6.3)).

iv) A similar triangle with sides a, b and c can be formed for the tips of the

instrument’s digits. For this reason, the proportion of similarity is taken as

the ratio of A to a (a is the magnitude of the vector connecting points pi and

pm, equations (6.4) and (6.5)).

v) Sides b and c are calculated using the aforementioned ratio λ (equation (6.6)).

vi) The lengths of sides a, b and c are used to determine the location of the

instrument’s thumb pt.
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6.2. Mapping Algorithm

vii) As there are multiple solutions for pt, an additional condition is required.

Consequently, the pt coordinate on the z axis (zt) is calculated from the cor-

responding coordinate of the hand model using ratio λ (equations (6.7)).

viii) Conditions for zt are derived and checked that they are satisfied (equa-

tions (6.19)).

ix) The orientation Rt is derived using the FK model of the instrument’s thumb

and the angles of the exoskeleton joints.

x) The combination of Rt and the calculated pt is the input into the IK model of

the instrument’s thumb to derive the required values of its joints.

Figure 6.2: Similar Triangle Transform (STT) method for mapping the user’s digit joint
angles to the instrument’s joint angles in order to mimic the user’s hand digit motion
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6.2. Mapping Algorithm

For the modification of the FK of the human hand, the translation vectors of

the frames of the index and middle fingers with regard to the frame of the thumb

are replaced. In Section 5.1 the translation vectors were given as:

pTI =


0

DY

DZ

 (5.2) pTM =


±DX

DY

DZ

 (5.3)

For the mapping process, these vectors are replaced with:

p′TI =


−DX

2

DY

DZ

 (6.1) p′TM =


DX

2

DY

DZ

 (6.2)

Without this modification, the position of the thumb’s tip is located at the far side

of the index finger (left hand). Conversely, vectors (6.1) and (6.2) place the tip of

the thumb in an area between the index and middle finger, which is beneficial due

to the layout of the instrument’s digits. Although the distance between the tip of

the thumb and the other two fingertips changes, this modification is paramount at

a later stage of the algorithm, when using the z coordinate of the thumb’s tip’s

position to calculate the desired pt as will be shown from the conditions (6.7).

Figure 6.3 shows the two similar triangles formed with the tips of the digits as

vertices, coloured with green (modified human hand) and yellow (instrument). The

sides of the green triangle can be calculated as follows:


A =

√
(xI − xM)2 + (yI − yM)2 + (zI − zM)2

B =
√

(xI − xT )2 + (yI − yT )2 + (zI − zT )2

C =
√

(xM − xT )2 + (yM − yT )2 + (zM − zT )2

(6.3)

where (xj, yj, zj) are the coordinates of pj, for j = I,M, T . Similarly, side a of the
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6.2. Mapping Algorithm

(a) (b)

Figure 6.3: Triangles formed with the tips of the digits as vertices: (a) I, M and T for
the user’s index, middle and thumb (green triangle) and (b) i, m and t for the

instrument (yellow triangle). In (b), two solutions for zt satisfy the polynomial (6.20)
and are represented with red and cyan coloured dots

yellow triangle is calculated by:

a =
√

(xi − xm)2 + (yi − ym)2 + (zi − zm)2 (6.4)

where (xj, yj, zj) are the coordinates of pj, for j = i,m. The similarity proportion

is chosen as:

λ =
A

a
(6.5)

and, therefore, sides b and c of the yellow triangle can be derived:
b = B

λ

c = C
λ

(6.6)

In order to limit the possible solutions for pt the following assumption is made:


if |zT − zI |≤ |zT − zM |: zT−zI

zt−zi = λ⇒ zt = zi + zT−zI
λ

if |zT − zM |< |zT − zI |: zT−zM
zt−zm = λ⇒ zt = zm + zT−zM

λ

(6.7)

However, this solution for zt may not always be possible as the following set of
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6.2. Mapping Algorithm

equations must be satisfied at the same time:


(xi − xt)2 + (yi − yt)2 = b2 − d2

(xm − xt)2 + (ym − yt)2 = c2 − e2

(6.8)

where d = zi− zt and e = zm− zt. It can be observed from Figure 6.3 that two

cones are formed with vertices pi and pm and a common base of radius Ωt, where

Ω(xω, yω, zω) is the centre of the circular base. For equations (6.8) to be satisfied,

zt must belong to the area that is covered by the base of the cones. The heights iΩ

and mΩ are aligned with side a of the yellow triangle and constitute the axis of the

two cones. By finding Ωq (projection of Ωt on z axis), the allowed range of zt can

be calculated. Angle φi has the same measure as angle φI due to the similarity of

the triangles. From cosine law:

φi = cos−1A
2 +B2 − C2

2AB
(6.9)

It follows that

Ωt = |b sin(φi)| (6.10)

iΩ = |b cos(φi)| (6.11)

The axis (side a) of the two cones can be described as a line in 3D space using the

following parametric equations:


x = (xm − xi)t+ xi

y = (ym − yi)t+ yi

z = (zm − zi)t+ zi

(6.12)

where t is a parameter expressing a point on the line. If t = 0 when (x, y, z) ≡

(xi, yi, zi) and t = 1 when (x, y, z) ≡ (xm, ym, zm), then (x, y, z) ≡ (xω, yω, zω) for
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6.2. Mapping Algorithm

t = tω which can be calculated as:

tω =
iΩ

a
(6.13)

From equation (6.12), zω can be calculated:

zω = (zm − zi)tω + zi (6.14)

It can also be seen from triangles nim and qΩm, in Figure 6.3, that ˆnim = ˆqΩm.

Using cosine law:

ˆqΩm = cos−1(
a2 + in2 − nm2

2a · in
) (6.15)

where in = |zi| and nm =
√

(xm − xi)2 + (ym − yi)2 + z2
m. When point t is at the

lowest possible point, the projection Ωq is aligned with plane (i,m, t) and, thus,

equation (6.15) is used to find angle ˆqΩt:

ˆqΩt = 90− ˆqΩm (6.16)

Finally, it can be calculated that

Ωq = Ωt cos( ˆqΩt) (6.17)

The vertical distance Ωq can be used to derive the limits for zt:

zt ∈ [zω − Ωq, zω + Ωq] (6.18)

Subsequently, it is examined whether the calculated value of zt (equation 6.7)

satisfies the range (6.18). Depending on the result, its value may change to the
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6.2. Mapping Algorithm

upper or lower limit:


ifzt < zω − Ωq ⇒ zt = zω − Ωq

ifzt > zω + Ωq ⇒ zt = zω + Ωq

(6.19)

With zt known, equations (6.8) can be combined to give the following polynomial:

(k2
2 + 1)y2

t + 2(xik2 − k1k2 − yi)yt + k2
1 − 2k1xi + x2

i + y2
i − b2 + d2 = 0 (6.20)

where k1 =
x2i−x2m+y2i−y2m−b2+c2+d2−e2

2(xi−xm)
and k2 = yi−ym

xi−xm . The roots of the polynomial

(represented with red and cyan coloured dots in Figure 6.3) are the solution for yt,

while xt can be calculated by:

xt = k1 − k2yt (6.21)

Figures 6.4 (a)-(c) show the layout of the instrument’s digits as the result of the

STT mapping method and Figure 6.5 demonstrates the similarity between the two

triangles. In comparison with Figure 6.1, the digits of the instrument go beyond

simply indicating the intention of the user: they are representative of the user’s digits

by imitating their layout but are also set for successful grasping. The angle vectors

of the exoskeleton joints of Figure 6.4 and the joints of the surgical instrument

post-mapping are respectively:


θI = [3.55 25.13 1.95 0.02]

◦ T

θM = [8.77 25.45 89.98 41.97]
◦ T

θT = [0 0.06 75.66 34.59 23.96]
◦ T

(6.22)


θi = [3.55 25.13 1.95 0.02]

◦ T

θm = [8.77 25.45 89.98 41.97]
◦ T

θt = [0 23.77 44.22 106.54 75.49]
◦ T

(6.23)

The same process can be used, if the correspondence between master and slave

for the index and middle finger changes. For example, Figure 6.6 (a) shows the

layout of the slave when the PIP and flexion of MCP joints of the index and middle

fingers are 2/3 of the value of the equivalent exoskeleton joints. In comparison with
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6.2. Mapping Algorithm

(a) (b) (c)

Figure 6.4: Comparison of (a) the user’s digits’ pose with (b) the modified hand model
and (c) the instruments’ digits’ pose after the mapping process

Figure 6.5: Demonstration of similarity of the triangles that are formed between the
digit tips of the master (green) and the slave (yellow)

Figures 6.6 (b) and (c) where the layout of instrument and the human hand are

shown respectively, the index and middle finger imitation of Figure 6.6 (a) is not

as accurate. Nevertheless, the joint angles of the thumb are not at the extremes of

their range and thus, impossible positions due to hardware limitations can be more

easily avoided. The PIP joint of the instrument’s thumb is at 106◦ in Figure 6.6

(b) and 43◦ in 6.6 (a), while this joint in the 3D printed prototype has a range of
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6.2. Mapping Algorithm

(a) (b) (c)

Figure 6.6: Comparison of the digit layout for (a) the instrument when the PIP and
flexion of MCP of the index and middle fingers are equal to 2/3 of the value of the

equivalent joint of the user’s hand (b) the instruments when the index and middle fingers
have a direct joint-to-joint mapping and (c) the user’s hand

[0, 90◦]. The angle vectors for the instrument’s joints in Figure 6.6 (a) are:


θ′i = [3.55 16.76 1.3 0.02]◦ T

θ′m = [8.77 16.97 59.99 41.97]◦ T

θ′t = [0 2.03 95.71 43.59 86.96]◦ T

(6.24)

The mapping process uses the orientation RT of the user’s thumb, calculated by

the corresponding FK model, as the orientation Rt which is used as input to the

instrument’s IK model. It has to be noted that the combination of this orientation

and the desired end-effector position is not always feasible. Besides, as mentioned

on page 88, the pronation/supination sensor of the CMC joint of the exoskeleton’s

thumb records no angle change due to its position. This sensor would provide useful

information regarding the orientation of the user’s thumb which would contribute to

determining the correct orientation of the instrument’s thumb, especially in relation

to the orientation of the index and middle fingers when attempting grasping. To
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6.2. Mapping Algorithm

address this challenge, the algorithm initially uses RT as input to the IK model of

the instrument and when this is not a valid orientation for the desired position, it

investigates the closest feasible orientation that suits the grasp.

The STT method can be used to represent most poses of the user’s digits. Fig-

ures 6.7 and 6.8 illustrate the digit layout of the user’s hand in comparison to the

mapped instrument. However, when the hand is in full open position and the digits

are extended, the thumb’s extension is not reproduced, as can be seen from Fig-

ure 6.9. This happens because the process gives priority to the relative distance

between fingertips which, through the IK model, leads to different joint angles.

Figure 6.7: Correspondence between the
instrument (right) and the user’s hand
(left) before an attempted index-thumb

grasp using the mapping process

Figure 6.8: Correspondence between the
instrument (right) and the user’s hand (left)

before an attempted middle-thumb grasp using
the mapping process

Using the STT, the mapping error during an attempt for grasping can be con-

sidered as the difference:

ej =
norm(pT − pJ)

λ
− norm(pt − pj) (6.25)

where j can be either i or m if the finger that is collaborating with the thumb for the

grasp is the index or the middle respectively (the algorithm uses data of the finger

with its tip closer to the tip of the thumb), pT and pJ are the position of tip of the

user’s thumb and J finger, λ is the similarity ratio as calculated from equation (6.5),
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6.2. Mapping Algorithm

Figure 6.9: Correspondence between the instrument (right) and the user’s hand (left)
when the hand is open and the digits fully stretched using the mapping process

pt and pj are the position of the end-effectors of the instrument’s thumb and j digit,

and norm indicates the length of the corresponding vectors. For the specific joint

angles of the user’s digits (angle vectors (6.22)), the error is 3.04 mm for the case

of Figure 6.6 (b) and 2.37 mm for Figure 6.6 (a) (angles of PIP and flexion of MCP

are equal to 2/3 of the exoskeleton value).

Iterative STT Mapping

This result can be improved using a modification in the mapping process, where

an iterative step is added: the STT is first applied to the ‘modified human hand

model’ of step ii (page 140) and then, again, to the instrument model. Therefore,

instead of simply modifying the FK model of the human hand to position the thumb

between the index and middle fingers using vectors (6.1) and (6.2), the position of

the thumb’s end effector is calculated through the IK model of the hand using the

STT method.

Figures 6.10 and 6.11 show the result of the modified mapping process when the

angles of PIP and flexion of MCP are equal to the full or 2/3 of the exoskeleton

value respectively. The error (6.25) is 0.028 mm and 0.034 mm respectively, while
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6.2. Mapping Algorithm

(a) (b) (c)

Figure 6.10: Result using the modified mapping process: (a) the user’s digits, (b)
modified hand model, (c) the instruments’ digits

the resulting angle vectors of the instrument’s thumb are:

θ′′t = [0 11.23 53.79 94.23 78.23]◦ T (6.26)

θ′′t2/3 = [0 3.73 99.65 44.09 82.52]◦ T (6.27)

This modification, however, makes mapping problematic when the digits of the

user are extended to an opened hand. This is due to the position of the thumb’s tip,

which, when the thumb is extended, is located away from the possible instrument’s

workspace. The algorithm, therefore, cannot find a feasible orientation for the thumb

for such positions. A combination of joint-to-joint mapping (when the hand is

opened) with the iterative STT during grasping attempts could lead to more accurate

depiction of the user’s motion.
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(a) (b) (c)

Figure 6.11: Result using the modified mapping process when the angles of PIP and
MCP are 2/3 of the exoskeleton values: (a) the user’s digits, (b) modified hand model,

(c) the instruments’ digits

6.3 Effect of Design Simplification on Accuracy

Section 4.3.3.3 examined the relationship between the PIP and DIP joints of the

index and middle fingers and between MCP and IP joints of the thumb. The data

from the exoskeleton suggested that there is little or no correlation between the

motions of these joints. Despite some degree of coupling, the position of the PIP

and MCP joints cannot generally be used to determine the position of DIP and IP

respectively. This further indicates that hand tracking devices with simpler designs

that do not account for all digit joints could be problematic in fine motions that

require precision such as pinch grasping.

To examine this matter further and evaluate the effects, this has been tested on

the µAngelo system. The following two sections consider a simplified system design

with fewer DOFs, where the exoskeleton has one less sensor and the instrument

one less joint on each digit or where only the instrument has decreased number

of DOFs. Such design alterations would reduce the complexity of actuation and

decrease the cost of the system. In both cases, the exoskeleton has been mapped to

the instrument using the iterative STT mapping method.
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6.3.1 Reduced Number of Exoskeleton and Instrument

DOFs

This experiment aims to evaluate the result of the mapping if i) the exoskeleton did

not include sensors for the DIP joints of the index and middle fingers and the IP of

the thumb and ii) the instrument digits did not have these joints, thus one less joint

on each digit (10 DOFs instead of 13). To accomplish this, the same FK models

were used except for the last joint which was kept at 0◦ while the IK models were

modified accordingly.

(a) (b) (c)

Figure 6.12: Result of mapping using exoskeleton sensors for 10 (solid line) or 13
DOFs (dotted line): (a) user’s hand (b) modified hand for the mapping process and (c)

instrument

Figure 6.12 (a) illustrates the actual layout of the user’s digits with all DOFs

(according to the model of Section 4.1) with dotted lines, while the solid lines rep-

resent the model that does not include the additional sensors. The dotted lines

represent the same layout as in Figure 6.4. Figure 6.12 (b) shows the ‘intermediate’

step of modifying the hand model. Here, the thumb is not mapped joint-to-joint to

the exoskeleton thumb, but instead derived using the iterative STT which employs

the IK model of the thumb. Likewise, Figure 6.12 (c) compares how the instrument

digits would be mapped using 10 (solid line) or 13 (dotted line) DOFs.
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For the configuration of Figure 6.12, which can be described with vectors (6.22)

except for the last angle which is kept at 0◦, the error given by equation (6.25) is

6.87 mm. In comparison with the error of 0.028 mm that occurs when all 13 DOFs

are used, it is obvious that, using the specific mapping method, the lack of these

sensors and joints affects the accuracy of the hand tracking and mapping to the

instrument greatly.

6.3.2 Reduced Number of Instrument DOFs

It would be interesting to examine the results of the proposed mapping process if

all exoskeleton sensors were used, tracking 13 DOFs in total, while the instrument

only had 10 DOFs, omitting the last joint of each digit.

(a) (b) (c)

Figure 6.13: Result of mapping using all exoskeleton sensors for a 10 (solid line) or 13
DOFs (dotted line) instrument: (a) user’s hand (b) modified hand for the mapping

process and (c) instrument

Similar to the previous Section, Figure 6.13 compares the result of using all ex-

oskeleton sensors and a 13-DOF instrument (dotted line) with the result of using

all exoskeleton sensors and a 10-DOF instrument (solid line). In this case, the er-

ror (6.25) is 0.42 mm, which is about 6% of the error occurring when the exoskeleton

does not include the additional sensors. Although this error is 15 times greater than
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the error when using all DOFs of the instrument, it could still be within accept-

able limits for surgical tasks, depending on the desired accuracy. Figure 6.14 shows

the error during a grasping attempt sequence between the thumb and the middle

finger for the three configurations between exoskeleton and instrument that were

discussed.

Figure 6.14: Error in the distance between digits during a thumb-middle finger grasp
attempt

6.4 Summary

This Chapter examined the relationship between the master and slave subsystems

of the mAngelo system as well as the similarities and differences of the slave and

the human hand. Based on this comparison, the anthropomorphic nature of the

system was determined. The design follows the utilities of the human hand, such

as supination, adduction and rotation. The range of each joint is similar to the

corresponding joint in the human hand, apart from the flexion of the thumb which

has a range of 180◦. This allows the thumb to fold inside the shaft of the instrument

as well as to increase the operating workspace of the instrument.

The resulting anthropomorphism makes it possible for a simple joint-to-joint

mapping to be applied between the exoskeleton and the instrument. Using this

mapping method, the motion of the user’s digits has been replicated in simulation.
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However, joint-to-joint mapping fails when performing a pinch grasp. The combi-

nation of a joint-to-joint and point-to-point method has been proposed, where the

position of the instrument’s thumb is calculated in relation to the position of the

index and middle fingers (STT). While the position and layout of the slave’s thumb

is derived through the model’s IK, the layout of the index and middle fingers is

acquired via a joint-to-joint relation to the master. The lengths of the user’s digit

links are not only greater than the corresponding links of the slave, but also do

not have a specific correlation to them, as the exoskeleton is adjustable to different

hand sizes. Therefore, the exact position of each of the slave’s end-effectors is not

as important as the relative distance between the three end-effectors.

The experiments using the proposed mapping method included tracking of dif-

ferent grasps involving the thumb and one of the index or middle fingers. Note that

even when only two digits are used, the mapping algorithm takes into account the

relative position of all three digit tips to form the similar triangles. Following this

method, three-digit grasps can be further explored in future work. The experiments

demonstrated an error in the order of 10−2mm during grasping attempts. For open

hand and extended digit motions, joint-to-joint mapping has better results for imi-

tation of the thumb and therefore, a combination of the two approaches can be used.

This hybrid solution, however, could lead to unpredictable ‘jumps’ between differ-

ent end-effector positions, orientations and eventually unsafe poses. Determining an

algorithm that smooths transition between approaches includes future work.

The necessity of multiple DOFs has been investigated by considering the ex-

oskeleton and the instrument to lack one joint per digit. This is common among

exoskeletons, e.g. the one by Luo and Wang (2011), and data gloves, e.g. 5DT Glove

Ultra, found in the literature. Using the specific mapping method, the experiments

show an increase in the error, unsuitable for surgical applications, when both the in-

strument and the exoskeleton lack three DOFs. No information about the last joint

of each digit places the end-effector of all digits of the instrument at configurations

unfit for grasping. This case should be investigated by exploring different mapping
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methods in future work. Nevertheless, when information from the exoskeleton is

complete for all joints, the proposed mapping process balances the largest part of

the error even when the instrument digits lack three DOFs.

The desired number of DOFs for the instrument can be decided based on the

requirements for specific types of surgery. For example, vascular surgery would

require submillimetre accuracy, whereas millimetre accuracy could be sufficient for

abdominal surgical tasks. However, more factors need to be considered such as

reduction of the instrument’s workspace without the additional joint and last link

of the digit. Furthermore, as mentioned on page 113, the last link and joint offers

the possibility for different operation modes that include using the index and middle

finger of the instrument as common forceps when fine grasping is required.
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Chapter 7

Conclusion and Future Work

7.1 Thesis Conclusions and Contributions

This thesis has presented the investigation for the development of novel instrumen-

tation for MIS of soft tissue. The research focused on both the design and construc-

tion of a teleoperation system with application in abdominal surgical operations.

Through a user-centred design and the anthropomorphic nature of its instruments,

the system aims to bridge the gap between R-A MIS and open surgery by enabling

three-digit movements commonly performed during the latter.

The background research that was presented helped to shape the methods of

investigation as well as to determine the concept design of the system. In answer

to the first research question “What are the issues and setbacks in R-A MIS when

compared to other MIS techniques and open surgery?”, Chapters 2 and 3 examined

existing systems and techniques used in the literature as well as presented studies

carried out for acquiring surgeons’ views on the matter.

One of the thesis contributions has been the quantitative and qualitative research

presented in Chapter 3, which further identified challenges and limitations of R-A

MIS and other surgical techniques currently used. According to the survey, surgeons

encounter challenges when transitioning from open surgery to MIS or R-A MIS (al-

though to a lesser degree for the latter) due to the large gap between the nature of

the techniques. Increased dexterity, manoeuvrability, larger instrument workspace

and more natural manipulation could lead to adoption of R-A MIS in more com-

plex surgical procedures. The survey and the focus group meetings suggested that

surgeons are not satisfied with the current approaches in surgery and the dexterity
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and ergonomics of available systems. This agreed with the existing literature on the

subject, such as the findings of the Center for Devices and Radiological Health et al.

(2013) where experienced surgeons considered the Da Vinci to have a complex user-

interface. Additionally, the results of the survey, conducted as part of this thesis,

further challenge the use of SPA as a valuable surgical technique.

In answer to the research question “Can R-A MIS instruments be designed to

utilise dexterous manipulations and ergonomics associated with open soft tissue

(abdominal) surgery?”, the mAngelo slave instruments have been proposed. Multi-

port R-A MIS surgery combined with benefits of HALS has been the foundation

of this research, taking into account their limitations and attempting to integrate

elements of open surgery techniques. Discussions with surgeons about the concept

of the system have been valuable in determining positive and negative elements

in it. The system has the potential to contribute to different type of grasps, as

pinch-grasping is not its only capability because of its opposable thumb.

The thesis also posed the research question: “How can an appropriate user in-

terface be designed to match the dexterity of the instrument and enable remote

manipulation”. In answer to this, Chapter 4 detailed the development and the

components of the master off the mAngelo system, while Chapter 6 discussed the

mapping between the master and the slave to enable teleoperation.

Consequently, a contribution of the thesis is the concept of anthropomorphism

in teleoperation and especially in surgery. The mAngelo exoskeleton can track the

user’s hand digits in detail with a design that has provision for haptic feedback. It

comprises a lightweight, portable and wearable surgical interface with a user-centred,

adjustable design. The three prototypes were developed in an effort to improve on

the performance of the data glove that was initially used for motion tracking. Each

prototype helped identify challenges and problems in capturing the complex motion

of the human hand. Prototype 3 has 19 sensors in total, with high resolution and

accuracy and can offer detailed data of the angular position of the user’s digit joints.

The experiments showed that motion tracking has a few millimetres accuracy which,
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however, due to the sensors’ high performance, can be reduced with a more stable

and tighter fit of the exoskeleton on the user’s hand. This can be also extrapolated

from experiments including only the abduction/adduction of the digits. During this

motion, the exoskeleton stays in place and the results showed high repeatability.

A third contribution of the thesis regards the developed surgical instruments,

which resemble human hands, having a miniature thumb, index and middle finger.

The concept of anthropomorphism in surgical instruments is novel and, while a

few multi-fingered designs exist in the literature, these are mainly aimed for use as

simple retractors or for executing basic movements. Successful manipulation of soft

objects is a critical issue for surgery and, consequently, the mAngelo instruments

were designed for high dexterity with multiple DOFs. The instrument comprises

three digits instead of five, as in the human hand, so that the incision is kept to

a minimum. Besides, the thumb, index and middle finger can be adequate for

most precision movements carried out in surgical tasks. Based on this concept,

the two prototypes aspired to adhere to requirements for miniaturisation and force

capabilities. The SMA instrument prototype demonstrated a wide range of motion

in its joints and, therefore, could exhibit good manoeuvrability in confined spaces

and around obstacles. As the miniature SMA helix actuators that were trialled in

this prototype could not produce satisfactory pushing/grasping force, the second

prototype was actuated by a cable-driven mechanism with the motors located away

from the instrument’s body. Miniaturisation of such a mechanism constitutes a

challenge due to the lack of space for pulleys and specified routes for the cables

inside the digits. Through a detailed inspection of the geometry of each digit and

by identifying possible pathways for the cables, an input-output function was derived

for each cable. This theoretical model for the cable actuation accounts for all DOFs.

With the angle values of every DOF as input, the function outputs the length of

each cable that needs to be pulled so that the joints move and the digit adopts

the specified configuration. The cable pull is then converted to angular rotation

of each motor. During the experiments, each cable was controlled by one motor,
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whereas springs connected some cables to the corresponding motors to account for

differences in maximum cable pull between the antagonistic cables. However, the

compliance originating from the springs, in combination with effects from friction

in the cables, contributed to positional inaccuracy. Two motors per DOF could

eliminate the compliance and reduce the error.

A final contribution is the proposed STT algorithm that is presented in Chap-

ter 6, a novel method to map the movements of the master to the slave that can be

applied to any three-fingered robotic hand. It is a hybrid method of joint-to-joint and

point-to-point mapping, with stress on the relative distance between the user’s fin-

gertips, which is preserved, although scaled down, in the slave’s end-effectors. While

more generalised methods can be found in the literature (Gioioso et al., 2013), STT

comprises a simple method that guarantees that the layout of the slave’s index and

middle fingers is imitating the corresponding fingers of the master, while the thumb

is positioned for successful grasping.

The importance of tracking the distal joints of the hands’ digits was examined

by comparing their trajectories to the ones of their proximal joints. Often, hand

tracking devices disregard sensing for these joints and, instead, assume coupling be-

tween them and their proximal ones. Nevertheless, using data from the exoskeleton,

little or no correlation was determined, suggesting that the position of the distal

joint cannot be extrapolated from the proximal. Testing this in simulation using

the STT algorithm, the error increased greatly when no information about the dis-

tal joints was available. On the contrary, the experiments showed that with the

STT method, it is possible for the slave to have a simpler design and fewer DOFs

and still correspond to the operation of the master, as long as information about

all joints of the master is available. In such a case, however, the capability of the

instrument to operate in ‘dual mode’ would have to be reviewed. This regards the

mentioned concepts of digit-mode vs. forceps-mode (Figure 5.17, page 113); as the

goal is also to be able to grasp tissues or organs of a large diameter, the ‘middle’

link of each digit (becoming the last link when the distal joint is removed) cannot
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be small. However, this would inhibit precision grasping during ‘forceps mode’.

In summary, the advantages of the proposed design over the existing ones include

higher number of DOFs, anthropomorphic design of instruments, possibility for in-

terchangeable tips and dual grasping mode for the instrument, adjustable sensory

exoskeleton and potential for integration of haptic feedback. By adopting a design

similar to the human hand, the system could make robots more accessible not only

in the surgical domain, but, beyond, in areas that benefit from teleoperation, mecha-

tronics and user-centred design, as well as in areas where safety issues prevent use

of autonomous robots, such as assistive technologies and nuclear industry (Nagatani

et al., 2013).

7.2 Limitations and Future work

One of the major challenges in this research has been the process of prototyping the

two subsystems. The material of the 3D printed prototypes of both the exoskeleton

and the instrument is not as robust as required when parts are built to a small scale

to make the design lightweight or miniature. Other methods of manufacturing can

be expensive and also escape the scope of this thesis. However, modifications to

the design of the prototypes can improve the robustness of the prototypes. The

exoskeleton could include both rigid and flexible parts in order to improve usability

and have a snug fit. A comparison of the exoskeleton to other hand digit tracking

methods (e.g. data gloves) would evaluate it further.

Furthermore, having pinpointed issues of the instrument actuation using the

index finger, actuation should be extended to the thumb and the middle finger,

using two motors to actuate each DOF. This would also increase the force generated

in both directions of movement (when bending the digits as well as when extending

them). This way, it will be possible not only to grasp tissues, but also to push them

and use the digits to create traction, as is frequently needed in MIS. Furthermore,

it has been mentioned that three digits can be adequate for precision grasps and
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motions as indicated in the literature. It would also be interesting, through tests of

the proposed system, to assess the concept of three-digit grasping versus two-digit

grasping, especially in the context of surgical tasks.

A topic for future work, and integral for the implementation of the system as a

whole, is the development of the control module for the slave instrument. Despite

being a teleoperated system, control strategies will be required for grasping as well

as to ensure the correct positioning of each instrument digit and, thus, representative

mapping. This is a challenging topic as due to miniaturisation, the instrument lacks

the space for additional sensors to track position. This is also the case for sensors

that provide information about the applied force. However, such information is

required for implementation of haptic feedback. It can be attempted to derive

information about the force generated at the tips using the torque of the motors

while sensing the motor current.

The improvements and additions to the master-slave system mentioned in the

previous paragraphs will help to conduct more experiments and user studies in

order to validate the mAngelo surgical system concept further and compare it with

existing MIS techniques. This would address another limitation of the thesis, i.e.

the lack of usability testing of the system. Considering the duration and scope of the

thesis, the focus group feedback presented in Chapter 3 was believed to be adequate

for an initial exploration of this aspect of the research. In future work, however,

participants, both experienced and non-experienced in surgery, will be asked to

complete a series of tasks similar to the FLS (Ragle, 2012), such as pick and place

an object with precision, cut a circle and tie knots, in a comparison study using the

i) mAngelo surgical system, ii) laparoscopic instruments and/or iii) the Da Vinci

instruments. A continuation of this exploration would be a second survey among the

participants of the aforementioned user study, in order to receive additional feedback

and identify points for improvement. Subsequently, studies where the cognitive load

and the fatigue of the users are assessed should be carried out to further evaluate

the mAngelo system in terms of ergonomics.
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The existing mAngelo system can be extended in order to create a more realistic

surgical set-up: the exoskeleton’s wrist will be attached to a haptic device such as

the Virtuose 6D desktop (Haption, France) in order to provide information about

the wrist and arm movements of the user and position the instrument in 3D space

(Figure 7.1). Similarly, the instruments will be attached to the end of a (commer-

cially available) robotic arm in order to emulate the robotic arms of the Da Vinci

robot.

Figure 7.1: Envisioned system setup for future work:
M1 - sensory exoskeleton, M2 - Haptic device,

S1 - slave anthropomorphic instrument, S2 - 6 DOF slave arm

Although the concept promises to reduce the cognitive gap between surgical in-

strument operation and everyday hand gestures, surgeons need more options and

flexibility during procedures. Therefore, additions to the system such as dual oper-

ation mode (digit-mode vs. forceps-mode) and potential for interchangeable tools

should be realised and tested in hardware.

Finally, the mapping of the two subsystems that was presented in Chapter 6

included an algorithm that maps the master to the slave with minimal error during

grasping attempts. Mapping has also been discussed for the case that the digits

are extended. However, the combination of these two methods, which will ensure

a smooth transition between them, constitutes future work. Furthermore, future

work should also include a comparison of the proposed mapping algorithm to other

mapping methods.
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Publication Abstracts

The progress made so far has led to the publication of articles, the abstracts of which

are as follows:

Towards an Anthropomorphic Design of Minimally Invasive

Instrumentation for Soft Tissue Robotic Surgery

Minimally invasive procedures, such as laparoscopy, have significantly decreased

blood loss, postoperative morbidity and length of hospital stay. R-A MIS has offered

refined accuracy and more ergonomic instruments for surgeons, further minimising

trauma to the patient. On the other hand, training surgeons in minimally invasive

surgical procedures is becoming increasingly long and arduous. In this paper, we

outline the rationale of a novel design of instruments for robotic surgery with in-

creased dexterity that will provide more natural manipulation of soft tissues. The

proposed system will not only reduce the training time for surgeons but also improve

the ergonomics of the procedure. (Tzemanaki et al., 2012)

Hand exoskeleton for remote control of minimally invasive

surgical anthropomorphic instrumentation

MIS has evolved from traditional laparoscopy to robotically assisted surgery. Ad-

vances in the design, articulation and flexibility of the instruments have added to the

popularity of robotically assisted MIS. Nevertheless, the way that these instruments

are controlled affects not only their efficacy, but also the ergonomics and the learn-

ing process for the surgeon. This paper reports on the development of a lightweight

and adjustable hand exoskeleton that can sense movements of the surgeon’s fin-

ger’s joints and translate it to movements in the joints of a hand-like instrument.

(Tzemanaki et al., 2013)
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An Anthropomorphic Design for a Minimally Invasive

Surgical System based on a Survey of Surgical Technologies,

Techniques and Training

Background Over the past century, abdominal surgery has seen a rapid transition

from open procedures to less invasive methods such as R-A MIS. This paper aims to

investigate and discuss the needs of MIS in terms of instrumentation and to inform

the design of a novel instrument.

Methods A survey was conducted among surgeons regarding their opinions on

surgical training, surgical systems, how satisfied they are with them and how easy

they are to use. A concept for MIS robotic instrumentation was then developed and

a series of focus groups with surgeons were run to discuss it. The initial prototype

of the robotic instruments, herein demonstrated, comprises modular rigid links with

soft joints actuated by shape memory alloy helix actuators; these instruments are

controlled using a sensory hand exoskeleton.

Results The results of the survey, as well as the ones of the focus groups, are

presented here. A first prototype of the system was built and initial laboratory tests

have been conducted in order to evaluate this approach.

Conclusions The analysed data from both the survey and the focus groups justify

the chosen concept of an anthropomorphic MIS robotic system which imitates the

natural motion of the hands. (Tzemanaki et al., 2014b)

mAngelo: A Novel Minimally Invasive Surgical System

Based on an Anthropomorphic Design

Abdominal surgery has seen a rapid transition from open procedures to R-A MIS.

The learning process for new surgeons is long compared to open surgery, and the

desired dexterity cannot always be achieved using the current surgical instruments.
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Furthermore, the way that these instruments are controlled plays an important role

in their effectiveness and the ergonomics of the procedure. This paper presents the

mAngelo surgical system for abdominal R-A MIS, based on an anthropomorphic

design comprising two three-digit surgical instruments and a sensory hand exoskele-

ton. The operation of these subsystems and the efficacy of their corresponding

performance are demonstrated. (Tzemanaki et al., 2014a)

Design of a multi-DOF cable-driven mechanism of a

miniature serial manipulator for robot-assisted minimally

invasive surgery

While multi-fingered robotic hands have been developed for decades, none has been

used for surgical operations. µAngelo is an anthropomorphic master-slave system

for teleoperated robot-assisted surgery. As part of this system, this paper focuses

on its slave instrument, a miniature three-digit hand. The design of the mechanism

of such a manipulator poses a challenge due to the required miniaturization and the

many active degrees of freedom. As the instrument has a human-centred design,

its relation to the human hand is discussed. Two ways of routing its cable-driven

mechanism are investigated and the method of deriving the input-output functions

that drive the mechanism is presented. (Tzemanaki et al., 2016)
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Questionnaire title:  

Optimal minimally invasive instrumentation design and laparoscopic 
and robotic surgery training survey 

 
 
 
 
 
 
Thank you for participating in this survey. Your feedback (regardless whether you are a junior or a 
senior surgeon) is invaluable and constitutes a fundamental part of our research. 
 
The particular research project focuses on determining and designing new instrumentation for 
minimally invasive robotic surgery, in order to expand the already proven benefits of this type of 
surgery, but also on improving the ergonomics of the procedure for the surgeon. The project is 
being funded by the Bristol Urological Institute via North Bristol NHS Trust. 
 
This survey should take about 15 minutes of your time. This questionnaire is the first part of two, 
the second being the use of your expertise and professional opinion to evaluate and test the final 
design. 
We would appreciate if you could return the questionnaire within 15 days.  
 
Your answers will be treated with confidentiality and anonymity. Your personal and contact 
information will be kept private and will not be shared or revealed to anyone. 
 
We are based at the Bristol Robotics Laboratory in Bristol, UK, which is collaboration between two 
Bristol universities: the University of the West of England and the University of Bristol. Please feel 
free to contact us for information and further questions: 
 
www.brl.ac.uk 
 
Antonia.tzemanaki@brl.ac.uk 
 
Sanja.dogramadzi@uwe.ac.uk 
 
 
 

With kind regards, 
 

Antonia Tzemanaki 
 

Bristol Robotics Laboratory 
T Building 

Frenchay Campus 
BS16 1QY 
Bristol, UK 

+44 (0)117 328 3394 
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1 
 

Optimal minimally invasive instrumentation design and laparoscopic 
and robotic surgery training survey 

 
 
Instructions: 
 
Please read each question first before answering. The questionnaire consists of open as well as 
closed questions. You can use as much white space for your answers as you need, and also feel 
free to add explanations where you consider that it is needed. All the questions are marked in 
italics, please answer all them (writing N/A = not applicable where appropriate). 
 
 
 

 
Please indicate which of the following robotic surgical systems you have already heard of. 
(Please select all that apply to you) 

1 
 
  

DaVinci Surgical System   

  
  

Zeus Surgical System   

  
  

CyberKnife   

  
  

ARAKNES project   

  
  

MiroSurge System   

  
   

  Others (please specify):  

   

 
 

 
Please indicate which of the following robotic surgical systems you have already used. (Please 
select all that apply to you and/or add others that are not mentioned) 

2 
 
  

DaVinci Surgical System   

  
  

Zeus Surgical System   

  
  

CyberKnife   

  
  

Others (please specify):  
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2 
 

 
How satisfied are you with the following systems? 3 

 

  
Very 

satisfied 
Satisfied Dissatisfied 

Very 
dissatisfied 

I have not 
used it 

 

DaVinci Surgical System 

               

                

                
 

Cyberknife 

               

                

                

 
 

 
What in your opinion are the main benefits of the DaVinci Surgical System (N/A if you have not 
used it)? Please write in capitals. 

4 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
What in your opinion are the main shortcomings of the DaVinci Surgical System (N/A if you 
have not used it)? Please write in capitals. 

5 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
How would you rate the cost of the DaVinci Surgical System in relation to its performance?  6 

 
  

Too expensive 
to buy 

 
Expensive, 
but worth buying 

 Fair 
cost/performance 
balance 

 

I have not used it      
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3 
 

 
How experienced would you consider yourself in the following types of surgery? 7 

 

  
I have never  

performed one 
Junior surgeon Intermediate Senior surgeon 

 

             

Open surgery             

             

 

             

Laparoscopy             

             

 

             

Robotic surgery             

             

 
 

 
How long was the duration of your training for open surgery (estimation of duration in hours, or 
please write “none” if you did not have any)? Please write in capitals. 

8 
 

 
 
 

 
 

 
How long was the duration of your (traditional) laparoscopic surgery training (estimation of 
duration in hours, or please write “none” if you did not have any)? Please write in capitals. 

9 
 

 
 
 

 
 

 
How long was the duration of your robotic surgery training (estimation of duration in hours, or 
please write “none” if you did not have any)? Please write in capitals. 

10 
 
 
 

 
 

 
How would you rate the complexity of the following types of surgery training? 11 

 

  
Very 

complex 
Complex 

Not so 
complex 

Simple N/A 

 
Traditional laparoscopic 
surgery training 

               

                

                
 

Robotic surgery training 
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4 
 

 
How would you rate the following transitions? 12 

 

  Very difficult Difficult Manageable Easy N/A 

 
Open surgery to 
Laparoscopy 

               

                

                
 

Laparoscopic to Robotic 
surgery 

               

                

                
 

Open to Robotic surgery 

               

                

                

 
 

 
Which type of minimally invasive surgery do you prefer to practice? 13 

 
  

Multi-port access 

 

Single port access 

 
Single port, but I do not have the option 
in my place of work 

    

    

 
 

 
What in your opinion are the benefits of single port (or single incision) surgery? Please write 
in capitals. 

14 
 
 
 
 
 
 
 
 

 
 

 
 What in your opinion are the drawbacks of single port (or single incision) surgery? Please 

write in capitals. 15 
 
 
 
 
 
 
 
 

 

 
What do you consider as the maximum size of a surgical incision in minimally invasive 
surgery, without high risk of hernia? (please answer in mm) 

16 
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5 
 

 There are cases where the incisions during a minimally invasive surgery are minimal, 
however in the end the surgeon has to lengthen one of them in order to remove a large piece 
of tissue e.g. the prostate. How important is miniaturisation to you and would you prefer other 
ways of avoiding big incisions (e.g. morcellation or breaking the specimen into smaller pieces 
prior to removal)? Please write in capitals. 

17 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
Which do you think is the most demanding task during minimally invasive surgery (e.g. 
suturing) and why? Please write in capitals. 

18 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Are there certain movements that you would like to perform but are unable to, due to the 
limitation of the existing instrumentation? (during robotic surgery or laparoscopy) Please write 
in capitals. 

19 
 
 
 
 
 
 
 
 

 
 

 How willing are you to try new instrumentation that does not change the main concept of the 
method you are using during minimally invasive surgery? Please rate in the scale of 1-4 : 
1=I do not want to try new tools, 4=I am very happy to try new tools 

20 
 
  

1 

 

2 

 

3 

 

4      
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6 
 

 How willing are you to adapt to new methods of manipulating instruments that may change 
your routine during minimally invasive surgery? Please rate in the scale of 1-4 : 
1=I do not want to adapt to a new concept, 4=I am very happy to try 

21 
 
  

1 

 

2 

 

3 

 

4      

     

 
 

 
How happy are you with your position and posture during the following types of surgery? 22 

 

  
Very 

unhappy 
Unhappy Happy Very happy N/A 

 
Traditional laparoscopic 
surgery 

               

                

                
 

Robotic surgery 

               

                

                

 
 

 What would in your opinion be the optimum posture and surgeon-machine interface during a 
minimally invasive surgery? E.g. sitting down/ standing up, away/on top of the patient, head in 
a monitor or watching a wider screen, wearing gloves that control the instruments/ 
manipulating tools that control the instruments. Please write in capitals. 

23 
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7 
 

Please fill your details below; they will be kept confidential and will only be used to derive statistical 
data. 

 
Name: 
 
 

  

Male 

 

Female    

   

 
Company: 
 
 

 
Speciality: 
 
 

Age: 
  

30-34 

 

35-39 

 

40-44 

 

45-49 

 

50-54 

 

55-59 

 

60-64 

 

64-70          

         
 

 
How many years have you been performing open surgery: 
  

Less than 1 

 

1-2 

 

3-4 

 

5-6 

 

More than 7       

      

 
How many years have you been performing minimally invasive surgery (traditional or robotic): 
  

Less than 1 

 

1-2 

 

3-4 

 

5-6 

 

More than 7       

      
 

 
Email address: 
 
 

Would like to be contacted for the 2nd part of the survey? 
(evaluation of a new design of instrumentation for robotic minimally invasive surgery of soft tissue) 
  

Yes 

 

No    

   
 

Would like to be notified about the results of this survey? 
  

Yes 

 

No    
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Focus Group Sessions – Total time: 65 min 

 

1. Refreshments, settling down and camera setting. (5 minutes) 

The participants introduce themselves and the moderator explains the procedure. (5 

minutes) 

2. The moderator reads Part I and gives the participants time to read it again. After 

reading, A is discussed for 10 minutes. Comparisons with B may occur (in such a case, 

this will last 20 minutes). If B is not being covered, the moderator takes at least another 

10 minutes for B. Key questions: 

 What is good about the surgical approach in this scenario? 

 What is bad? 

3. The moderator reads Part II and gives the participants time to read it again. Key 

questions: 

 What is good about this scenario? (10 min) 

 What is bad? (10 min) 

 How could this scenario be different? (extend it, change it) / what are your 

 expectations for a new device? (10 min) 

 

Part I 

 

Archie is a 45 year old man and suffers from a condition that requires him to have 

abdominal surgery. 

A. His surgeon, Mr Turner, told him that there are different ways of performing this 

intervention: open surgery or minimal invasive surgery (MIS) using robotic 

technology. Mr Turner has had thorough training in open surgery and according to 

him this approach would be the best option. He explains to Archie that performing 

the operation in this way would be the current “gold standard” with excellent long 

term results, compared to the MIS approach, where such results are still missing. He 

points out that the main advantage of the open approach would be that the surgeon 

could use the best tool - the human hand. 

B. Not knowing the exact benefits of MIS, Archie got a second opinion. The second 

surgeon, Ms Blue, recommended using the newest robotic surgical technology, the Da 

Vinci Surgical System. After her training in open surgery, she underwent extensive 

training in robotic surgery and has been performing the procedure for years. Despite 

not having long term results yet, Ms Blue believes in this approach. Questioned, she 

admits that the current instruments, although highly articulated and intuitively 

controlled, are not yet ideal. However, she claims that apart from the excellent visual 

system that the robot offers, there are several advantages to it, such as better 

precision, tremor reduction and enhanced ergonomics. 
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Part II 

 

Ms Blue knows that many patents held by Intuitive Surgical (the company of Da Vinci) are 

due to expire relatively soon and that there are competitors developing new surgical 

systems. 

One of the systems she is aware of focuses on instrument design. The instruments (fig. i) 

that the robot carries are hand-like and each comprises three fingers that are foldable in 

order to enter the abdomen through a small incision. Two fingers are used as grasping 

forceps (or Maryland forceps), while the third is used for extra support and also carries a 

retractable blade or other knot-tying assisting gripper. 

The surgeon remotely controls the instruments via a 3-finger exoskeleton (fig. ii) that 

he/she wears on his/her hands. This way, the surgeon uses natural hand movements to 

grasp organs/tissues. 

 

 

Fig. i - Hand-like instruments 

 

 

Fig. ii - Example of an exoskeleton 
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Forward Kinematics of a 5 DOF digit 

 

 
The next two tables illustrate the Denavit-Hartenberg parameters: 
 

Proximal (Craig) Approach 

joint ai-1 αi-1 di θi 

1 0 0 0 θ1 

2 0 -90 0 θ2 

3 0 -90 0 θ3 

4 ℓ1 0 0 θ4 

5 ℓ2 0 0 θ5 

t ℓ3 0 0 0 

 
Terminology: 

i
 Length of the finger’s i  link 

i  The angle of the finger’s i  joint 

 
Auxiliary variables: 

10 1 3 2 34 3 345h c c c   , 
12 2 34 3 345h c c  , 

14 3 345h c  

11 1 3 2 34 3 345h s s s   , 
13 2 34 3 345h s s  , 

15 3 345h s  

 The axes of the 3rd, 4th and 5th joints of the system are parallel and make the finger move as 
if it was planar. Therefore, the variables 

10h και 
11h  describe the fingertip’s distance from the 

vertical axes of the plane that the 1st and 2nd joints define. 
 
The homogenous transformations 

ijg  that relate the consecutive links i , j  are: 
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1 2 1 2 1

1 2 1 2 1

02

2 2

0

0

1 0

0 0 0 1

c c c s s

s c s s c
g

s c

  
 


 
  
 
 

, 

1 2 3 1 3 1 2 3 1 3 1 2

1 2 3 1 3 1 2 3 1 3 1 2

03
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0
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g
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04

2 34 2 34 2 1 2 3

0 0 0 1

c c c s s c c s s c c s c c c s s

s c c c s s c s c c s s s c c c s
g

s c s s c s c

     
 

     
   
 
 

, 

 

   

   

 

1 2 435 1 345 1 2 345 1 345 1 2 1 2 1 3 2 34 1 1 3 2 34

1 2 345 1 345 1 2 345 1 345 1 2 1 2 1 3 2 34 1 1 3 2 34

05

2 345 2 345 2 2 1 3 2 34

0 0 0 1

c c c s s c c s s c c s c c c c s s s

s c c c s s c s c c s s s c c c c s s
g

s c s s c s c c

       
 

       
    
 
 

 

 
The homogenous transformation that connects the fingertip to the inertial frame and 

consists of the fingertip position vector 
0tp  and its rotation matrix 

0tR  is the following: 

 

1 2 345 1 345 1 2 345 1 345 1 2 1 2 10 1 11

0 1 2 345 1 345 1 2 345 1 345 1 2 1 2 10 1 11

0

1 3 2 345 2 345 2 2 10
0 1

0 0 0 1

t

t

c c c s s c c s s c c s c c h s h

R s c c c s s c s c c s s s c h c h
g

s c s s c s h

     
 

              
 
 

0tp
 

 
The Jacobian matrix of the fingertip 

tJ  maps the joint velocity vector to the fingertip velocity 

expressed in the fingertip’s frame  t . The columns 
itJ  of the Jacobian can be calculated using 

the corresponding homogenous transformation 
 

0 0 0 1

x x x x

y y y y

it

z z z z

n o a p

n o a p
g

n o a p

 
 
 
 
 
 

 

using the formulas: 
 

tx x y y xV n p n p    
ty x y y xV o p o p    

tz x y y xV a p a p    

tx zn    
ty zo    

tz za   

it

it

it

V
J
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Also: 

5 5 5 3 2
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Substituting, we derive: 

 

 

 
2 1 45 2 5 1 45 2 5 2 5

2 1 45 2 5 3 1 45 2 5 3 2 5 3 3

2 11 10

1 2 3 4 5

2 345 345

2 345 345

2
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t t t t t t
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The system’s Jacobian J  can be calculated from fingertip’s Jacobian as follows: 
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Forward Kinematics of a 4 DOF digit 

 
The analysis that follows is identical to the one for the 5 DOF digit, and hence, it will be less 
detailed. 

 

Proximal (Craig) Approach 

joint ai-1 αi-1 di θi 

1 0 0 0 θ1 

2 0 -90 0 θ2 

3 ℓ1 0 0 θ3 

4 ℓ2 0 0 θ4 

t ℓ3 0 0 0 

 
Auxiliary variables: 

20 1 2 2 23 3 234h c c c   ,  
22 2 23 3 234h c c  , 

24 3 234h c  

21 1 2 2 23 3 234h s s s   , 
23 2 23 3 234h s s  , 

25 3 234h s  

 
Homogenous transformations: 
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Fingertip’s Jacobian 
tJ : 

 

3

4

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

tg

 
 
 
 
 
 

,  

4 4 2 3 4

4 4 3 4

3

0

0

0 0 1 0

0 0 0 1

t

c s c

s c s
g

  
 
 
 
 
 

,

34 34 1 2 3 3 34

34 34 2 3 3 34

2

0

0

0 0 1 0

0 0 0 1

t

c s c c

s c s s
g

   
 


 
 
 
 

, 

234 234 20

1

234 234 21

0

0 0 1 0

0

0 0 0 1

t

c s h

g
s c h

 
 
 
   
 
   

 

1 34 2 4 2 4

1 34 2 4 3 2 4 3 3

20

234

234

0 0

0

0 0 0

0 0 0

0 0 0

0 1 1 1

t

s s s

c c c

h
J

s

c
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Appendix III
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Figure 7.2: CAD drawings of SMA-driven instrument prototype (assembly and soft
joint)
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Figure 7.3: CAD drawings of cable-driven instrument prototype (assembly)
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Appendix IV
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Limit Angles of Cable ‘tJ5’

Calculation of ω32

In the following equations, xi and yi denote the x and y coordinate of point i with regard to

its reference frame as presented in Table 5.2.

When φ3 = ω32, the points G5, G31 and GB are aligned as shown in Fig. 7.4a, hence, it can

be written as G5G31//G31GB . G′31 is the pivot point when φ3 = 0 and G31 when φ3 = ω32, i.e.

the angle between G′31 and G31 is ω32. Using cosine law, we get:

ψ0 = cos−1
(
O3G

2
5 +G5G

2
31 −O3G

2
31

2 ·O3G5 ·O3G31

)
(Iα)

where:

O3G5 =

√(
O4G5 sin

(
φ4 + tan−1

xG5

l2 − yG5

))2

+

+

(
O4G5 cos

(
φ4 + tan−1

xG5

l2 − yG5

+ l0

))2

O4G5 =
√
x2G5

+ (l2 − yG5
)
2

O3G31 =
√
x2G31

+ y2G31

G5G31 =
√

(xG31 +O4G5x)
2

+ (l0 + yG31 +O4G5y)
2

O4G5x = O4G5 sin
(
φ4 + tan−1

xG5

l2−yG5

)
O4G5y = O4G5 cos

(
φ4 + tan−1

xG5

l2−yG5

)
Again, using cosine law, length G5GB can be derived as the root of the polynomial:

G5G
2
B + 2O3G5 · cosψ0 ·G5GB +O3G

2
5 −O3G

2
B = 0 (Iβ)

Furthermore,

ψ1 = cos−1
O3G

2
B +O3G

2
31 −G31G

2
B

2 ·O3GB ·O3G31
(Iγ)

where G31GB = G5GB −G5G31 and O3GB =
√
x2GB

+ y2GB
. Finally:

ω32 = 180− γ0 − γ1 − ψ1 (I)

where γ0 = tan−1
xG31

yG31
and γ1 = tan−1

xGB

yGB
.

207



(a) (b)

Figure 7.4: Geometry for calculation of ω32 and ω43 (not actual dimensions)

Calculation of ω43

When φ4 = ω43, the cable is tangential to the O5 shaft and passes straight through G5 and

GB (Fig. 7.4b), i.e. E5G5//G5GB . In this case:

γ3 = 180− sin−1 rs
O5G5

− tan−1 yG5

xG5

− tan−1 l2 − yG5

xG5

(IIα)

where O5G5 =
√
x2G5

+ y2G5
. For angle ψ2, there are two cases; i) when GB is on the right side

and ii) left side of O4:

ψ2 =

 tan−1
O4GBx

O4GBy
− sin−1

(
O4G5 sin γ3

O4GB

)
φ3 ≤ 180− γ1

180 + tan−1
O4GBx

O4GBy
− sin−1

(
O4G5 sin γ3

O4GB

)
φ3 > 180− γ1

(IIβ)

where

O4GBx = O3GB sin(180− γ1 − φ3)

O4GBy
= O3GB cos(180− γ1 − φ3) + l0

Finally:

ω43 = cos−1
rs

O5G5
+ tan−1

xG5

yG5

− ψ2 (II)
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Routings of the Thumb and Index Finger Cables
Similar to the method presented in Section 5.3.2, the paths and angle categories regarding

the cables of the other DOFs of the thumb and the index/middle fingers can be derived. For the

thumb, Tables 7.1, 7.2 and 7.3 regard cable ‘tJ4’, Table 7.4 regards ‘tJ3’, Tables 7.5, 7.6 regard ‘tJ2’

and Table 7.7 regards ‘tJ1’. For the index or middle finger, Tables 7.8, 7.9 and 7.10 regard cable

‘miJ4’, Tables 7.11, 7.12 and 7.13 regard ‘miJ3’, Table 7.14 regards ‘miJ2’ and equation (7.1)

regards ‘miJ1’.

Routing of cable ‘tJ4’ of the thumb

For reference of symbols, see Figure 5.20c, on page 116.

Table 7.1: Paths of cable ‘tJ4’ of the thumb

Path Cat.

P4 → S(O4)→ G31 → G32 → GB 11
P4 → G31 → G32 → GB 12
P4 → S(O4)→ G31 → GB 21, 31
P4 → G31 → GB 22, 32
P4 → GB 33
P4 → S(O4)→ GB 41, 51
P4 → GB 42, 52
P4 → G33 → GB 53
P4 → S(O4)→ G33 → GB 61
P4 → G33 → GB 62

*Cat: angle category (See Table 7.3)

Table 7.2: Limits for φ3, φ4 regarding ‘tJ4’ of the thumb

Symbol Description Value or Range (deg)

ω31 G31G32//G32GB 45.58
ω37 P4G31//G31GB 104.01
ω33 IAG31//G31GB 104.91
ω38 E5IA//IAGB 118.76
ω39 G5G33//G33GB 119.71
ω46 E5IA//IAG31 51.78
ω47 E5G5//G5G31 f(φ3) ∈ [51.78, 90]
ω48 E5G5//G5GB f(φ3) ∈ [49.39, 51.78]
ω49 E5IA//IAGB f(φ3) ∈ [49.39, 90]
ω410 E5G5//G5G33 49.39
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Table 7.3: Categories that φ3, φ4 and φ5 are classified to regarding ‘tJ4’ cable

Angle ranges

φ3φ3φ3 [0, ω31] [ω31, ω37] [ω37, ω33]

φ4φ4φ4 [0, ω46] [ω46, 90] [0, ω46] [ω46, 90] [0, ω46] [ω46, ω47] [ω47, 90]

Cat. 11 12 21 22 31 32 33

φ3φ3φ3 [ω33, ω38] [ω38, ω39] [ω39, 180]

φ4φ4φ4 [0, ω48] [ω48, 90] [0, ω48] [ω48, ω49] [ω49, 90] [0, ω410] [ω410, 90]

Cat. 41 42 51 52 53 61 62

See Table 7.2 for the values of each ωi limit angle

Routing of cable ‘tJ3’ of the thumb

Figures 7.5 (a) and (b) show the top and bottom sides of link ‘a’ (Figure 5.19) with the points

where cable ‘tJ3’ passes from. The cable is starts from ‘S’, which is the centre of the through hole

at its bottom side and travels through to ‘A’, the corresponding point at its top side. The cable

crosses the top surface until the opposite edge, symbolised with ‘C’ until it vertically continues

and exits at ‘D’, a hole at the shaft of the instrument where it enters a sheath of constant length

until it connects to the motor. ‘O3’ is the centre of rotation, origin of DOF {3}. Figure 7.6 shows

the cable routing when φ3=0.

(a) (b)

Figure 7.5: a) Top and b) bottom sides of link ‘a’ which controls DOF {3}

Figure 7.6: Profile of link ‘a’ and routing of ‘tJ3’ when φ3=0 (not actual dimensions)
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Table 7.4: Paths of cable ‘tJ3’ of the thumb

Path Cat. Angle Range

S → A→ C → D 1 [0, ω310∗]
S → A→ D 2 [ω310, 180]

*when φ3 = ω310(=87.88◦): AC//CD

Routing of cable ‘tJ2’ of the thumb

Figures 7.7 (a) and (b) show three parts of the thumb assembly with the contact points of

cable ‘tJ2’. The cable is starts from ‘P2’, which is the centre of a locking pin on link ‘1’, while it

travels inside link ‘b’ via ‘G21 and ‘G22’. ‘G21’ is the edge of a narrowing of link ‘b’ and ‘G22’ is

the edge on the exit of the same link. ‘G23’ is the edge of link ‘a’ that the cable passes from before

it exits at ‘GB ’ inside the shaft of the instrument (same exit point with ‘tJ4’ and ‘tJ5’). ‘O2’ is

the centre of rotation of DOF {2}. Figure 7.8 shows the cable routing when φ2=0.

(a) (b)

Figure 7.7: a) Cable contact points of ‘tJ2’ and b) assembly for control of DOF {2}

Figure 7.8: Routing of ‘tJ2’ when φ2=0
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Table 7.5: Paths of cable ‘tJ2’ of the thumb

Path Cat. Angle Range

P2 → G21 → G22 → GB 3 [0, ω311]
P2 → G21 → G22 → GB 4 [ω311, ω312]
P2 → G21 → GB 5 [ω312, ω313]
P2 → G21 → G24 → GB 6 [ω313, 180]

See Table 7.6 for each ωi limit angle

Table 7.6: Limits for φ3, φ4 regarding ‘tJ2’ of the thumb

Symbol Description Value or Range (deg)

ω311 G22G23//G23GB 53.43
ω312 G21G22//G22GB 116.57
ω313 G21G24//G24GB 136.8

Routing of cable ‘tJ1’ of the thumb

Figures 7.9 (a) and (b) show link ‘a’ and ‘b’: their relative movement is responsible for DOF

{1}. Cable ‘tJ1’ starts at point ‘H’ of link ‘b’ and goes through it to reach point ‘K’. Then, it

wraps around the part’s external circumference counter-clockwise until it reaches the opening ‘L′’.

At this point the cable enters link ‘a’ via point ‘L’. Inside link ‘a’ and through a vertical path, it

reaches point ‘M’, before it crosses to the opposite edge ‘N’ of the same part. Finally, it exits at

point ‘N′’, which is located at the shaft of the instrument, and into a constant length sheath.

(a) (b)

Figure 7.9: Contact points of ‘tJ1’ on a) link ‘a’ and b) link ‘b’ for control of DOF {1}

Table 7.7: Paths of cable ‘tJ1’ of the thumb

Path Cat. Angle Range

H → K → L′ → L→M → N → N ′ 7 [0, ω314∗]
H → K → L′ → L→M → N ′ 8 [ω314, 180]

*when φ3 = ω314(=89◦): MN//NB1
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Routing of cable ‘miJ4’ of the index/middle finger

Similar to cable ‘tJ5’ of the thumb, ‘miJ4’ starts at ‘P4’ and exits at ‘GB4’ (shaft) via various

points shown in Figure 7.10. Table 7.8 summarises the possible paths.

Figure 7.10: Links of the index/middle finger and contact points of ‘miJ4’ and ‘miJ3’

Table 7.8: Paths of cable ‘miJ4’ of the index/middle finger

Path Cat.

P4 → S(O4)→ G32 → GB4 111
P4 → G32 → GB4 112
P4 → G31 → G32 → GB4 113, 122
P4 → G4 → G31 → G32 → GB4 114, 123, 132
P4 → S(O4)→ G31 → G32 → GB4 121
P4 → S(O4)→ G4 → G31 → G32 → GB4 131
P4 → S(O4)→ G32 → G2 → GB4 211
P4 → G32 → G2 → GB4 212
P4 → G31 → G32 → G2 → GB4 213, 222
P4 → G4 → G31 → G32 → G2 → GB4 214, 223, 232
P4 → S(O4)→ G31 → G32 → G2 → GB4 221
P4 → S(O4)→ G4 → G31 → G32 → G2 → GB4 231

*Cat: angle category (See Table 7.10)
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Table 7.9: Limits for φ3, φ4 regarding ‘miJ4’ of the index/middle finger

Symbol Description Value or Range (deg)

β21 G32G2//G2GB4 25.18

β31 IG31//G31G32 2.06

β32 IG4//G4G31 2.89

β41 P4I//IG32 f(φ3) ∈ [47.74, 48.85]

β42 G4G31//G31G32 f(φ3) ∈ [47.74, 75.42]

β43 P4G4//G4G31 f(φ3) ∈ [47.33, 75.42]

β44 P4I//IG31 f(φ3) ∈ [47.33, 47.74]

β45 P4I//IG4 47.33

Table 7.10: Categories that φ3, φ4 and φ5 are classified to regarding ‘miJ4’ cable

Angle ranges

φ2φ2φ2 [0, β21]
φ3φ3φ3 [0, β31] [β31, β32] [β32, 90]
φ4φ4φ4 [0, β41] [β41, β42] [β42, β43] [β43, 90] [0, β44] [β44, β43] [β43, 90] [0, β45] [β45, 90]

Cat. 111 112 113 114 121 122 123 131 132
φ2φ2φ2 [β21, 90]
φ3φ3φ3 [0, β31] [β31, β32] [β32, 90]
φ4φ4φ4 [0, β41] [β41, β42] [β42, β43] [β43, 90] [0, β44] [β44, β43] [β43, 90] [0, β45] [β45, 90]

Cat. 211 212 213 214 221 222 223 231 232

See Table 7.9 for the values of each βi limit angle

Routing of cable ‘miJ3’ of the index/middle finger

Cable ‘miJ3’ has similar contact points with ‘miJ4’ (Figure 7.10). The main difference is that

it starts from locking pin ‘P3’, attached to link ‘2’. Potential paths are summarised in Table 7.11.

Table 7.11: Paths of cable ‘miJ3’ of the thumb

Path Cat.

P3 → S(O3)→ G32 → GB3 11

P3 → G32 → GB3 12

P3 → G31 → G32 → GB3 13

P3 → S(O3)→ G32 → G2 → GB3 21

P3 → G32 → G2 → GB3 22

P3 → G31 → G32 → G2 → GB3 23

*Cat: angle category (See Table 7.12)

Table 7.12: Categories that φ3, φ4 and φ5 are classified to regarding ‘miJ3’ cable

Angle ranges

φ2φ2φ2 [0, β21] [β21, 90]

φ3φ3φ3 [0, β33] [β33, β34] [β34, 90] [0, β33] [β33, β34] [β34, 90]

Cat. 11 12 13 21 22 23

See Table 7.13 for the values of each βi limit angle
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Table 7.13: Limits for φ3, φ4 regarding ‘miJ3’ of the thumb

Symbol Description Value or Range (deg)

β21 G32G2//G2GB3 25.18

β33 P3J//JG32 48.05

β34 P3G31//G31G32 75.42

Routing of cable ‘miJ2’ of the index/middle finger

Figure 7.11 shows the contact points of cable ‘miJ2’, as well as the path when φ2=0. There

only two possible paths, described in Table 7.14.

Figure 7.11: Contact points of ‘miJ2’
and cable path when φ2=0 Figure 7.12: Contact points of cable ‘miJ1’

Table 7.14: Paths of cable ‘miJ2’ of the thumb

Path Cat. Angle Range

P2 → S(O2)→ GB2 1 [0, β22∗]
P2 → GB2 2 [β22, 90]

*when φ2 = β22(= 87.88◦): P2K//KGB2

Routing of cable ‘miJ1’ of the index/middle finger

Figure 7.12 shows the part that connects link ‘1’ of the index (or middle finger) to the base

assembly of the instrument (Figure 5.13). Cable ‘miJ1’ starts at ‘P1’, wraps around the surface of

the cylindrical part until point ‘Q’ and exits at ‘GB1’ into its sheath. Change of angle φ1 of DOF

{1} causes change of the length of the P2E
_

arc. The difference in cable length can be approximated

by the following formula:

(7.1)∆L =
φ1R1π

180

where R1 is the radius of the cylindrical part.

215


