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ABSTRACT
Surrogate-assisted optimisation has proven success in the
continuous domain, but only recently begun to be explored
for other representations, in particular permutations. The
use of Gaussian kernel-based models has been proposed, but
only tested on small problems.

This case study considers much larger instances, in the
experimental setting of a real-world ordering problem. We
also investigate whether creating models using different dis-
tance metrics generates a diverse ensemble. Results demon-
strate the following effects of use to other researchers: (i)
Numerical instability in matrix inversion is a factor across
all metrics, regardless of algorithm used. The likelihoood
increases significantly once the models are parameterised
using evolved solutions as well as the initial random pop-
ulation; (ii) This phase transition is also observed in dif-
ferent indicators of model quality. For example, predictive
accuracy typically decreases once models start to include
data from evolved samples. We explain this transition in
terms of the distribution of samples and Gaussian kernel ba-
sis of the models; (iii) Measures of how well models predict
rank-orderings are less affected; (iv) Benchmark compar-
isons show that using surrogate models decreases the num-
ber of evaluations required to find good solutions, without
affecting quality.

Keywords
surrogate models; permutation representations; statistical
disclosure control

1. INTRODUCTION
The landscape metaphor provides a natural way of visu-

alising and analysing search problems. It occurs naturally
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when we impose a neighbourhood structure onto a set of can-
didate solutions. Thus, for a given instance of a problem, by
imposing different neighbourhood structures we can create
different landscapes, which may have different characteris-
tics, . For many real-world problems fitness computation
may be expensive (in terms of time, materials, or user at-
tention). For such problems surrogate-assisted optimisation
is commonly applied [1]. Figure 1 illustrates one common
approach known as pre-selection.

BEGIN
INITIALISE population with random solutions;
EVALUATE each candidate;
BUILD MODEL of fitness function;
WHILE (TERMINATION criteria unsatisfied) DO
1 SELECT parents;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 PREDICT offspring fitness using model;
5 EVALUATE best predicted offspring;
6 UPDATE MODEL using new sample;
7 SELECT individuals for next generation;

OD
END

Figure 1: Surrogate-assisted optimisation using the
pre-selection approach.

This paper considers surrogate-assisted optimisation of
permutation problems from two perspectives:

• What is the effect of different distance metrics on the
fidelity of the surrogate models learned from different
problem instances?

• Are there practical details that need to be considered
when applying these approaches to large permutation-
based problems in an online optimisation context?

We conduct a case-study using a real-world optimisation
problem from the field of Statistical Disclosure Control. Sec-
tion 2 introduces relevant literature and concepts from surro-
gate optimisation and describes the Cell Suppression Prob-
lem. Section 3 describes our experimental methodology and



Section 4 details the results obtained and their analysis. Fi-
nally, we draw conclusions from this study in Section 5.

2. BACKGROUND

2.1 Surrogate-Assisted Optimisation
Surrogate models are widely used to assist in the opti-

misation of problems where the calculation of the fitness
of candidate solutions is expensive - in time, materials, or
other resources. Methods such as Kriging models and Effi-
cient Global Optimisation [2] date back to the 1970s, and
have been used on numerous occasions. In essence, a param-
eterised model of the underlying search landscape is fitted
to a set of sampled solutions for which the “real” evaluation
is available. Metaheuristic search is then carried out on this
model landscape. Periodically, solutions are chosen for full
evaluation, and the model is updated. Jin [3] has recently
surveyed current issues in this area.

However, most work has been done in the continuous do-
main. It is only more recently that attention has been drawn
to the combinatorial domain, first by Moraglio, Kim and co-
authors [4, 5], and then by Zaefferer et al. [6, 7]. Moraglio
and Kim [5] propose that the most appropriate approach for
permutation landscapes is to build models using Radial Ba-
sis Function Networks (RBFNs). Given a set of N sampled
points, with fitnesses f(i), (1 ≤ i ≤ N) a function (typically
a Gaussian) is placed on each point. The estimated fitness
of a permutation x is given by the weighted sum:

f̃(x) =

N∑
i=1

wiφ(i, x)

where wi is the weight attached to the function centred on
reference point i, and φ(i, x) is the radial basis function de-
scribing how the contribution to fitness changes with dis-
tance between the new solution x and i. Typically in contin-
uous domains the distance metric would be the Euclidean.
Kim et al. have shown that this can be replaced by any
choice of edit distance, and the RBFN gives a well-defined
function. Thus in the case of Gaussian functions we get:

f̃(x) =
N∑
i=1

wie
−d·dist(i,x)2/D2

max (1)

where Dmax is the maximum distance between any two per-
mutations for a given distance metric. d is a tunable “decay
factor” (scaling element), whose value has been noted by
Kim et al. to significantly affect results.

The model parameters wi are fitted to the data by min-
imising the difference between the values predicted by (1)
and the observed values at the N sample points. Let A de-
note a matrix with elementsAij = φ(i, j) ∀i, j ∈ {1, . . . , N},
w the vector of weights wi, and f the vector of initial sample
fitnesses f(i). If it is possible to find an induced model that
perfectly matches the set of sample points, then in that case
Aw = f and we can solve this set of simultaneous linear
equations to find the components of w.

If A is positive definite, then its inverse will exist, and so
the weights in the “ideal” model can be computed directly
as w = A−1f . Matrix inversion is a complex, and often
time-consuming task with many competing algorithms. Za-
efferer et al. report some issues with numerical stability us-
ing Gauss-Jordan elimination [7], and suggest that Cholesky

factorisation represents a more stable approach. Later, we
will present some results examining this issue further and
proposing a cause of the instability.

Assuming that the weight vector, (or a good approxima-
tion) can be found, the principal factor affecting the accu-
racy, or usefulness, of the model is the choice of the dis-
tance metric d(i, x). Moraglio and Kim report on the use
of Hamming and Swap distances [5], and Zaefferer et al. [7]
investigate the use of 14 different metrics using a Kriging
model, reporting significant differences in optimisation per-
formance. The Kriging process creates a Maximum Like-
lihood Estimate (MLE) for each model during the model-
building process. Exploiting this, they propose a method
that, given a set of samples, constructs the model for each
distance metric and then selects for future use the one with
the highest MLE. This could be seen as a crude form of an
ensemble approach.

Here, we hypothesize that because each different distance
metric will induce a different landscape, the relative dis-
tances between samples, or new data points whose fitness is
to be estimated, will not be completely correlated. Therefore
the errors in the estimation process may be uncorrelated, in
which case combing their predictions to create an ensemble
will provide a more accurate predictor [8].

2.2 The Cell Suppression Problem

2.2.1 Description and Rationale for Case Study
National Statistics Agencies (NSAs) publish useful statis-

tical reports relating to their nation. However, they must
ensure that the confidentiality of those who contributed the
data to these reports is not compromised. When those ta-
bles contain magnitude data, the most common approach is
Cell Suppression, where table cells that break confidentiality
are suppressed (not published). These are referred to as pri-
mary suppressed cells P . Since these tables usually contain
marginal totals, a subset of other “secondary”cells must also
be chosen to be suppressed. The problem of selecting the
secondary subset that protects the primary cells and min-
imises the information loss is known as the Cell Suppression
Problem, and has been shown to be NP-Hard [9]. There-
fore, in practice, published statistical tables are protected
using a constructive approach. This creates a suppression
pattern by considering the primary cells in sequence using
an incremental linear programming (LP) heuristic model de-
veloped by Kelly et al. [9]. We have previously shown that
the extent of over suppression is linked to the order in which
the primary cells are considered [10], and so finding an ap-
proximate solution to the Cell Suppression Problem equates
to finding the best permutation in which to protect the set
P of primary cells. We have also conducted benchmark ex-
periments using local search and an Evolutionary Algorithm
(EA) based on different mutation operators, and hence land-
scapes. These showed that the ranking of the quality of
solution found on different landscapes, which reflects their
“searchability”, are highly instance-dependant, and that us-
ing a fixed ordering strategy is highly suboptimal [11].

The scale of the data published by NSAs is such that ta-
bles may typically contain millions of cells, tens, hundreds,
or thousands of which may be sensitive, leading to very large
sequences to be optimised. The presence of multiple dimen-
sions and levels of hierarchy adds complexity to the LP. Al-
though evolutionary approaches give state-of-the-art results



in terms of solution quality and scalability [12], these come
at the expense of time. To give an example, calculating the
fitness of a single candidate solution (permutation of pri-
mary cells) on a representative four-dimensional table with
around one million cells and only moderate levels of hierar-
chy can take more than 24 hours on a modern PC. Therefore
we consider the Cell Suppression Problem represents an ideal
case study for the use of surrogate-assisted optimisation.

2.2.2 Problem Formulation
Let T denote a statistical table containing n cells. The

cell value Ti, i ∈ {1, . . . , n} is known to lie within the range
[lbi, ubi] and lower and upper protection limits (lpli and upli)
are provided by the National Statistics Agency. zi is the
information loss associated with suppressing a cell i, and
the cost to be minimised is

∑n
i=1 ci, where ci = zi if the cell

is suppressed, and 0 if it is published.
The table’s structure is captured via m constraints, spec-

ified in a n × m matrix M , with Mij = −1 if cell i is the
marginal total in constraint j, +1 if it is a component of the
jth marginal sum and 0 otherwise. The variables y−

i and y+
i

are the lower and upper uncertainties provided by cell i.
For each primary cell p in sequence two LPs are solved to

protect the upper and lower protection levels. The first is:

min
n∑

i=1

ci(y
+
i + y−

i )

subject to M(y+ − y−) = 0, 0 ≤ y+
i ≤ UBi and 0 ≤ y−

i ≤
LBi. The extra conditions for the upper protection levels
are y−

p = 0 and y+
p = uplp − Tp.

After solving this LP, any non-zero non-primary cell for
which the LP has set y−

i +y+
i > 0 is added to the suppression

pattern and has its weighting ci set to 0. An equivalent
procedure is then carried out for the lower protection levels
with the constraints y−

p = Tp − lplp and y+
p = 0.

3. METHODOLOGY

3.1 Test Problems
To aid comparison we used the test suite for which we have

previously benchmarked our evolutionary approach against
all the principal methods and reported improved perfor-
mance [12]. Thus, if we can achieve benefits from using
surrogate models within a similar algorithmic framework
to that paper, we are improving on the state of the art.
The test set contains 32 representative tables created by
the UK Office for National Statistics and is publicly avail-
able1. These vary in size from 1000 to 20,000 cells and have
different dimensionality, levels of hierarchy, proportions of
initially sensitive cells, and proportions of zero cells (which
also influence instance hardness since they provide no ben-
efit from suppression). The permutation problems range in
size from length 50 to 1928.

3.2 Data Generation Methodology
This paper concerns the practical implications of using

surrogate models within a search context. Therefore, rather
than consider large sets of randomly sampled points, we used
a genetic algorithm (GA) to generate points in the search
space, as these will have a different distribution - hope-
fully biased towards fitter solutions. Following as closely

1http://www.cems.uwe.ac.uk/˜jsmith/SDC Webpage/

as possible [12], the GA , with a population size of 50, is ini-
tialised with two heuristically created orderings (decreasing–
cost and increasing–cost) plus 48 randomly generated per-
mutations. Parent selection is by binary tournament, and
a single offspring was created using order-based crossover
(with probability 0.7), followed by mutation via the inversion
of a randomly selected subsequence. The offspring replaces
the worst in the population if fitter. For each test problem
we ran 950 generations of a steady-state EA creating and
evaluating one member per generation, thus creating 32 sets
of 1000 samples.

From the resulting datasets we created RBF approxima-
tions and analysed their fidelity as a function of (i) the choice
of distance metric, and (ii) the number of points (N) used to
create the models. In each case we kept the samples in the
order they were created, using the first N samples to create
surrogate models, and the remaining 1000-N as the“test set”
to measure fidelity and optimisation performance. To em-
phasize the point, the test set is never randomly distributed.
If N ≤ 50, (the initial population size) the training set will
be randomly distributed, but thereafter some of the training
set will come from a probability distribution created by the
GA. The decision not to use cross validation was deliberate,
since the premise of random sampling does not match actual
run-time conditions if the optimisation process is successful.

For each combination of N ∈ {5, 10, 15, . . . , 100}, “decay
factor” d ∈ {1.0, 2.5, 5.0, 10.0}, and problem instance, we
ran the following process of creating models and making
predictions for each of the (1000-N) test points:

• We created one RBF Network for each distance metric,
and an ensemble predictor that averaged their outputs.

• We constructed a “dumb” classifier that made a con-
stant prediction - the mean cost of the N samples.

• In each case we also determined whether the matrix
could be inverted by the Gauss-Jordan algorithm, or
via Cholesky factorisation. We measured “success” as
the case where AA−1 = A−1A = I to within a toler-
ance of 1e−6, in which case we used this for creating
the RBF Network.

• Otherwise we used Gaussian elimination to directly es-
timate a solution to the set of linear equations, and
hence the weight vector.

3.3 Comparison Metrics
We considered fidelity in two ways. The first was ab-

solute predictive accuracy, using the Mean Squared Error
(MSE) over the test set. The second was whether a search
algorithm that performed survivor selection using surrogate
fitness would make similar decisions to one which had ac-
cess to the full fitness information. This is a test of ranking
accuracy rather than absolute value. For this we used two
measures (ρsel and ρ∼sel) recommended by Jin [3], .

To calculate these we picked λ = 100 solutions from the
test set and then ranked them according to the real and pre-
dicted fitness, before taking the top µ = 20 for each. ρsel

is calculated by counting how many individuals are selected
by both methods and then normalising by the expectation
for random selection. This gives a correlated value between
-1 (using a surrogate model is worse than random) and +1
(selections from surrogate model match those from real fit-
ness). ρ∼sel extends this analysis to consider the ranking



within the selected individuals, which will be important if
subsequent parent selection is fitness-based. In the calcu-
lation the true rank of each member selecting according to
the predicted fitness is summed, then normalised as before.
Full details of both measures may be found in [3]. This pro-
cess was repeated 25 times for each problem instance and
we report mean values below.

Finally, we ran comparison tests to examine the effective-
ness and efficiency of the surrogate-assisted optimisation.
Using the same initial populations as before, we re-ran the
evolutionary algorithm with an added pre-selection phase in
each iteration. 100 offspring were created and then evalu-
ated by the surrogate model, then the one with the highest
estimated fitness was re-evaluated using the full LP and con-
sidered for survivor selection as in the original algorithm.
At each iteration the surrogate model was extended and
re-parameterised to include the new information from the
sample point.

3.4 Surrogate Models
In every case we used the set of N training samples to

create a radial basis function using a Gaussian kernel with
width d/D2 as per Eq. 1. To define the metrics, and the
names used hereafter, consider two sequences x and y with
L elements that may have arbitrary labels:

• The Hamming distance, calculated as the number of
positions in the sequence in which the elements occur-
ring in the two solutions differed:

Hamm(x, y) =
∑L

i=1 δ(x[i]− y[i]),

where δ(k) = 1 if k = 0, otherwise 0.

• The Euclidean distance calculated as:

Euc(x, y) =
√∑L

i=1(x[i]− y[i])2.

This metric considers cell id’s, which could in theory
be arbitrarily assigned, and so was initially expected to
be meaningless. However, there is some natural struc-
ture to the ordering - tables are typically provided with
“grand totals” as cell 0, followed by a row or column
totals, with the cells corresponding to individual cate-
gories typically last.

• The Position distance (Spearmann’s footrule), is the
summed differences in position for each element:

Pos(x, y) =
∑L

i=1 |i− j| where y[j] = x[i].

• The Squared Position Distance (Spearmann’s rank cor-
relation co-efficient):

Pos2(x, y) =
∑L

i=1 |i− j|2 where y[j] = x[i].

• The R metric [13], measures how many times an el-
ement immediately follows another in x but not in y
(and vice-versa):

R(x, y) =
∑L−1

i=1 δ(x[i+1]− y[j +1]) where y[j] = x[i]

• The Swap distance measures the distance on the swap
landscape between two permutations, approximated
by the number of pairs of elements for which the rela-
tive rankings differ in x and y:

Swap(x, y) =
∑L−1

i=1

∑L
j=i+1 h(a− b)

where y[a] = x[i], y[b] = x[j] and h(a) = 1 if a > 0
otherwise 0.

Since the theoretical maximum distancesDmax are known,
all distances are normalised to the range [0,1] before use.

4. RESULTS

4.1 Numerical Stability
Figure 2 shows for each distance metric and decay factor,

the proportion of matrices successfully inverted using the
Gauss-Jordan algorithm (top) and via Cholesky factorisa-
tion (bottom) as N increases. N is the number of samples
in the training set, or equivalently, the size of the RBF net-
work (the surrogate model). On each plot a vertical line
shows the point at which training set moves from the initial
random population, to also containing evolved solutions.

In each case there is a clear transition for most metrics
around N ≈ 50 - most notably for Pos, SqPos, and Swap.

For the Gauss-Jordan approach, increasing the“decay fac-
tor”, so that the contribution of each RBF diminishes more
rapidly with difference, has little effect. In contrast, using
Cholesky factorisation it has a more dramatic effect, mak-
ing the process more stable, although still not sufficiently so
that one could consider it a practical approach.

We hypothesize that the cause of the instability is that
distances between evolved solutions and their parents tend
to be closer than distances between the randomly created
initial population. This would lead to small values in the
matrix A to be inverted. Given the length of the sequences
considered, this could lead to numerical instability from di-
vision by very small numbers, which would be partially ame-
liorated by increasing the decay factor. Figure 3 shows this
change in the minimum distance between samples in the
training set as a function of its size N , and offers evidence
to support this hypothesis.

We experimented with using a range of multipliers and
logarithms in order to try and reduce the numerical insta-
bility, but these were only partially successful. To reduce
the likelihood of coding errors or the impact of different im-
plementations, we also tried three different implementations
for each method taken from ‘a mixture of academic sites and
highly voted answers on stackexchange.com. This had lit-
tle or no effect. By contrast, directly solving the system of
simultaneous equations via Gaussian elimination, although
marginally less accurate, proved notably more stable.

4.2 Accuracy of Absolute Predicted Value
The errors in the absolute predicted values were often con-

siderable. Figure 4 illustrates this by plotting the number
of test set samples predicted to have (impossible) negative
cost as the training set size (N) and the decay factor for
the RBFs was varied. Although harder to measure, it seems
like that a similar number may have had dramatically over-
predicted costs. Figure 4 shows that:

• The number of samples incorrectly predicted to have
negative costs rises with N when the RBF network is
trying to model the cost surface (landscape) for most
distance metrics, especially for Pos and SqPos.

• Increasing the decay factor d, and hence the rate at
which the contribution of each RBF falls off with dis-
tance, reduces the number of negative predictions in
most cases.

• For N < 50, d = 10 there are no negative predictions
on any problem instances with any distance metrics.
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Figure 2: Proportion of matrices successfully in-
verted as a function of size (N) and distance met-
ric using Gauss-Jordan (top) and Cholesky (bottom)
methods. Vertical reference line shows the point at
which the training set contains evolved solutions as
well as the initial randomised population.

A simple thought experiment illustrates a likely cause for the
negative predictions. Imagine a single dimension with two
closely spaced RBFs based on observed samples. If the sam-
ples have similar costs, then the surface can be modelled by
assigning a nearly equal (roughly half-height) positive weight
to each so that their summed contributions reach the desired
costs at the known samples. Since both weights are positive,
all points will have positive predicted costs. However, if the
costs are very different, then the slope of the summed con-
tributions needs to be sharply negative between them. The
only way this can be achieved when both RBFs have large
widths is if the weight of the RBF based on the higher-cost
sample is large and positive, and the other is negative. Since
the contributions of the RBFs to the summed cost prediction
fall off with the square of the distance, this means that at
some stage the prediction surface becomes negative. More-
over, the extent to which this happens will reflect the extent
to which nearby pairs of samples have different costs - in
other words the ruggedness of the landscape.

In practice, we curtailed the predictions to a lower bound
of zero (since costs cannot be negative). Figure 5 shows the
variation of mean MSE with the size of the RBF network

N
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metric with error bars for 95% confidence intervals.
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the ensemble, of the mean number of test samples
predicted to have negative cost, as a function of N
and d. Maximum possible values are 1000 -N .

for different distance metrics, illustrated by the smallest,
median, and largest, instances, which have lengths of 50,
517 and 1928 respectively. The same phase transition can
be seen in the prediction accuracy as was noted in the nu-
merical stability of the modelling process. To re-emphasise
the implications of this point:

• At the start of a run of surrogate-assisted optimisation,
when the models are built from a few random samples,
the prediction error over the test set is relatively small.

• However, if the process involves rebuilding the model
(which is standard practice), once the training set starts



to include evolved solutions the observed prediction er-
ror actually increases.

Notably, the values of MSE are consistently higher for
the problem instances with lower sequence lengths, hence
smaller search spaces to be modelled. This may be because
in the larger spaces more points are far from each other, and
so the results are effectively regressing to the mean.
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Figure 5: Three typical examples of how the abso-
lute prediction error (MSE) changes with network
size and decay factor for different distance metrics.

Further analysis shows that prior to the phase transition
at N = 50 there is little difference between the metrics.
Space precludes full reporting of all the possible tests. Tak-
ing typical values of d = 1 and N = 25, Friedman’s non-
parametric test rejects the null hypothesis that the mean
MSE for each metric is identical with more than 95% con-
fidence. However, paired sample t-tests between the results
for each metric and the“dumb”predictor show that the only
significantly different group is the Swap metric - which has
worse MSE results (t=1.922, df=29, significance = 0.064).

For a typical value after the phase transition (N=75), we
see a similar pattern except that now it is the Pos metric
which has significantly higher MSE values (t=1.896, df=29,
significance = 0.064).

Taken at face value, these results suggest a risk that sur-
rogate models are no more accurate at predicting absolute
fitness values than a constant mean prediction, and often

worse once evolved points are used for training. The next
experiments investigate whether the surrogate models accu-
rately predict solution ranking.

4.3 Accuracy of Ranked Predicted Value
Figures 6 and 7 illustrate the behaviour of ρsel and ρ∼sel

as d and N are varied for three typical examples of different
sizes. The phase transition effect is still present with these
rank metrics, but much less marked than it was for MSE of
absolute fitness.

Statistical analysis shows that the effect of d is not signif-
icant for ρsel or ρ∼sel. Although there is considerable vari-
ation with N , it is somewhat random in nature so a linear
model has no predictive power. Averaged over all runs, both
measures are positive for each distance metric. If an RBF
Network had no predictive value, the value for each measure
would be 0.0, so we used a 1-sample Wilcoxon signed rank
test to compare the median values against this constant.
With 95% confidence the null hypothesis (no difference) can
be rejected for the Euc, Pos and R distance metrics with
ρsel and for all metrics with ρ∼sel.

Overall these results suggest that although the estimated
cost surfaces may be distorted relative to the true cost sur-
faces, they are preserving at least a partial rank-ordering of
solutions, which is the critical measure for rank-based selec-
tion methods such as tournament or truncation selection in
evolutionary algorithms.

4.4 Optimisation Performance
In the light of previous results, we compared the original

GA results to those from an algorithm using a single surro-
gate model based on the Hamming distance (SMOHamm),
and one using all six distance metrics and then taking an
average to get an ensemble prediction (SMOEns).

In terms of effectiveness, the cost of the best solution
found was lower for SMOHamm than for GA on 11 of the
32 instances, the same on 4 and higher on 17. The mean
difference was 0.034% and a paired samples t-test showed
the effect was not statistically significant. In terms of ef-
ficiency, the time taken to find the best solution for that
run was lower for SMOHamm than GA on 22 instances, the
same on 2 and greater on 8. Using a paired samples one-
tailed t-test showed that with more than 98% confidence we
could reject the null hypotheses. Therefore we can conclude
that using the Surrogate Model pre-selection phase statis-
tically significantly decreased the number of solutions fully
evaluated before the best solution was found.

A similar comparison of effectiveness and efficiency for
SMOEns vs. GA yielded similar results. The the cost of
the best solution found was the same on 4 instances and
SMOEns and GA each found cheaper solutions on 14 in-
stances. SMOEns found its best solution faster on 20 of the
instances, slower on 8 of the instances and in the same time
on 4. The one-tailed paired samples t-test on speed between
SMOEns and GA allowed us to reject the null hypothesis
(no difference) with 96% confidence.

Analysis showed neither efficiency nor effectiveness dif-
fered significantly between the two surrogate-assisted algo-
rithms.

5. CONCLUSIONS
This paper set out to show that surrogate-assisted optimi-

sation using Radial Basis Function Networks was a valuable
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Figure 6: Examples of small, medium and large in-
stances showing how the ρsel measure of ranking pre-
dictions changes with network size and decay factor
for different distance metrics.

approach for large combinatorial ordering problems with
costly evaluation functions. We also hypothesized that pro-
ducing several models using different distance metrics in the
RBF kernels would naturally induce a diverse set of models,
and so produce an ensemble with a low prediction error.

What we discovered in fact was rather different - although
perhaps more useful as a source of guidance for practitioners:

• Numerical instability was a serious issue for the two
most common methods of tuning the RBF weights,
even when the matrices describing the linear system
were positive definite. The observed occurrence of
instability increased significantly once the algorithms
started to included sample points create by evolution
as well as the initial random population. Zaefferer et
al. noted problems with the Gauss-Jordan approach
[7]. Here, we observed even more significant problems
with Cholesky decomposition. We have offered an ex-
planation in terms of the increasing presence of sam-
ples very close to each other, which is supported by
experimental evidence. Clearly, the message here is
that when deploying RBF networks as surrogate mod-
els of permutation landscapes, it is necessary to check
that the validity of the partial results involved in the
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Figure 7: Examples of small, medium and large in-
stances showing how the ρ∼sel measure of ranking
predictions changes with network size and decay fac-
tor for different distance metrics.

process rather than assuming correctness, even with
established code libraries. Our recommendation in the
case of costly, or difficult to reproduce, fitness evalu-
ations would be to employ several approaches in par-
allel, as is common practice in other mission-critical
software design.

• Even when numerical stability was not an issue, we
still observed an effect of increasingly poor prediction
accuracy (for example, negative costs) in some cases.
Again we offer an explanation in terms of the distribu-
tion of samples and the ruggedness of the landscape.
We note that Kim et al. reported that the accuracy
of their RBF models was significantly affected by the
RBF widths [5], and we observed some similar affects.
This suggests that possibly an automatic tuning pro-
cedure for d could be devised by minimising the occur-
rence of negative predictions, and we will explore this
in future work.

• Both of the effects above showed a distinct“phase tran-
sition” once the training set contained significant num-
bers of evolved solutions. This casts some doubt on
the common, and intuitively sensible, practice of us-
ing all of the “true” fitness evaluations when model



building. Although it might not seem wise to discard
hard-earned information, our results suggest that it
might be preferable to take into account proximity to
other samples: either in selecting bases; or in locally
tuning their widths rather than using a global value as
previous authors have done.

• Given the above observations about occasional high er-
ror values, it is unsurprising that an ensemble of RBF
networks using all of the distance metrics does not pre-
dict absolute cost values well. It remains for future
work to see if a more selective approach to ensemble
creation might pay dividends.

• The results for the measures comparing the rankings
of solutions according to predicted or actual costs were
more positive. This suggests that even given the effects
and phase transitions noted above, the prediction land-
scapes do preserve at least partial rank ordering.

• In the context of evolutionary optimisation, results
showed that although the surrogate-assisted optimisa-
tion did not statistically improve the best discovered
solutions, it did allow those solutions to be found using
significantly fewer calls to the true cost function. In
other words, although the RBF Network model might
not have sufficient fidelity to fine-tune search, they still
contain enough information to allow the search process
to more rapidly home-in on areas likely to contain good
quality solutions.

In order to place these results in context, we return to the
starting point of this paper: the successes of meta-heuristic
search algorithms have lead to them being increasingly ap-
plied to more and more complex real-world problems with
costly fitness evaluations. Surrogate-assisted optimisation
has had many notable successes in the continuous domain,
and current practice has been much influenced by experi-
ence gained from applications. A few recent papers on small
scale “academic” problems have suggested that these ben-
efits might be carried over to permutation representations,
and this paper makes a contribution to the understanding
needed to achieve those gains.

6. ACKNOWLEDGMENTS
The authors would like to thank officers of the UK Office

for National Statistics for their insights and experience of
Cell Suppression Problem.

7. REFERENCES
[1] Y. Jin. A comprehensive survey of fitness

approximation in evolutionary computation. Soft
Computing, 9(1): 3–12, 2005

[2] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient
global optimization of expensive black-box functions.
Journal of Global Optimization, 13(4):455–492, 1998.

[3] Y. Jin. Surrogate-assisted evolutionary computation:
Recent advances and future challenges. Swarm and
Evolutionary Computation, 1(2):61–70, June 2011.

[4] A. Moraglio, Y. H. Kim, and Y. Yoon. Geometric
surrogate-based optimisation for permutation-based
problems. In Companion volume to the proceedings of
GECCO 2011: the ACM-SIGEVO conference on
Genetic and Evolutionary Computation, 2011.

[5] Y.-H. Kim, A. Moraglio, A. Kattan, and Y. Yoon.
Geometric Generalisation of Surrogate Model-Based
Optimisation to Combinatorial and Program Spaces.
Mathematical Problems in Engineering, 2014(1):1–10,
2014.

[6] M. Zaefferer, J. Stork, M. Friese, and A. Fischbach.
Efficient global optimization for combinatorial
problems. In Proceedings of GECCO 2014, the 2014
Annual Conference on Genetic and Evolutionary
Computation, pages 871–878. ACM Press, July 2014.

[7] M. Zaefferer, J. Stork, and T. Bartz-Beielstein.
Distance measures for permutations in combinatorial
efficient global optimization. In Proceedings of the 13th
International Conference on Parallel Problem Solving
from Nature. Springer, 2014.

[8] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity
creation methods: a survey and categorisation.
Information Fusion, 2005.

[9] J. Kelly, B. Golden, and A. Assad. Cell suppression:
Disclosure protection for sensitive tabular data.
Networks, 22(4):397–417, 1992.

[10] A. Staggemeier, A. Clark, J. Smith, and J. Thompson.
Improving our knowledge of metaheuristic approaches
for the cell suppression problem. In Proceedings of
Joint UNECE/Eurostat work session on statistical
data confidentiality, December 2007.

[11] J. Smith, A. Clark, and A. Staggemeier. A genetic
approach to statistical disclosure control. In
Proceedings of GECCO 2009, the ACM-SIGEVO
conference on Evolutionary Computation, pages
1625–1632. Springer, July 2009.

[12] J. Smith, A. Clark, A. Staggemeier, and M. Serpell. A
genetic approach to statistical disclosure control.
IEEE Transactions on Evolutionary Computation,
16(3):431–441, June 2012.

[13] V. Campos, M. Laguna, and R. Martõ.
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