19 — 23 April,
Bristol, UK

Refactoring: 25 Years On

Chris Simons

@chrislsimons
chris.simons@uwe.ac.uk
www.cems.uwe.ac.uk/~clsimons/

Interactive workshop

Part 1
What is contemporary refactoring?

Part 2
What tool support exists, and what is needed?

A sense of journey, so first, the fossil record and a little archaeology...

FOCUS: REFACTORING

The Birth of
Retfactoring

A Retrospective on the
Nature of High-Impact
Software Engineering

Research

William G. Griswold, University of California, San Diego

William F. Opdyke, IPMorgan Chase

This article reflects on how the idea of refactoring
arose and was developed in two PhD dissertations. The
analysis provides useful insights for both researchers
and practitioners seeking high impact in their work.

Griswold, W.G. and Opdyke, W.F., 2015. The
Birth of Refactoring: A Retrospective on the
Nature of High-Impact Software Engineering
Research. IEEE Software, 32(6), pp. 30-38.

WILLIAM G. GRISWOLD is a professor of computer science
and engineering at the University of California, San Diego. His
research interests include software engineering, ubiquitous
computing, and educational technology. Griswold was a pioneer
of software refactoring. Later, he built ActiveCampus, an early
mobile location-aware system. His CitiSense project is investi-
gating technologies for low-cost ubiquitous real-time air quality
sensing. Griswold received a PhD in computer science from the
University of Washington. He’s a member of the IEEE Computer
Society and ACM and a former chair of ACM SIGSOFT. Contact
him at wgg@cs.ucsd.edu.

WILLIAM F. OPDYKE works at JPMorgan Chase, where he
focuses on agile and related technology training. His research
interests include refactoring applied to agile development

and legacy system evolution, and organizational and process
improvements to support software innovation. Opdyke received a
PhD in computer science from the University of lllinois at Urbana-
Champaign; his doctoral research led to the foundational thesis
in object-oriented refactoring. Contact him at opdyke@acm.org.

Software refactoring is the sys-
tematic practice of improving ap-
plication code’s structure without
altering its behavior. An attendee of

the 199
ented

Practica
where C
per to |
perhaps
ing was
perience
his code
ing abot
process
ing rese
followed
software
plicitly 4

years latl—

where Opdyke presented the first pa-
per to use the term “refactoring,”!
perhaps summed it up best: Refactor-
ing was something that he as an ex-
perienced developer naturally did to
his code, without consciously think-
ing about it; this research made that
process explicit. Our early refactor-

central part of software development
practice. It’s a core element of agile
methodologies,
sional IDEs include refactoring tools.

[=J

and most profes-

ReractorNG

IMPROVING THE DESIGN
oF ExisTiNG CODE

MARTIN FOWLER

With c putions by KKent Beck, John Brant,
Opdyke, ana Don Roberts

Foreword by Erich Gamma
Object Technology International, Inc.

num
e JAcoBson
| RUKBAUGH

< =—— senies eorTORS

(1999)

“Refactoring is the process of changing a software
system in such a way that it does not alter the external
behaviour of the code yet improves its internal structure.
It is a disciplined way to clean up code that minimizes
the chances of introducing bugs.”

(page xvi)

“Improving the design after it has been written.”

List of Refactorings

Add PATAMELET ot v v e ee e e ee e et et 275
Change Bidirectional Association to Unidirectional 200
Change Reference to Valueo 183
Change Unidirectional Association to Bidirectionaloo. .. 197
Change Value to Reference 179
Collapse Hierarchyvouvoioii e 344
Consolidate Conditional Expression 240
Consolidate Duplicate Conditional Fragments 243
Convert Procedural Design to Objects 368
Decompose Conditional ... 238
Duplicate Observed Datao 189
Encapsulate Collection ..o 208
Encapsulate DOWNCast. ..o vvvvvveieeieeeaeeanennnan.., 308
Encapsulate Field i 206
Extract Class . oo v vttt e e 149
Extract Hierarchy 0375
Extract Interfaceot e 34
Extract Method ... 110
Extract Subclass vt e 330
ExXtract SUperclass . oo ieiie 22336
Form Template Method 2345
Hide Delegateo 157
Hide Method00 303
Inline Class ..ot 154
Inline Method ..ot 117
Inline TEMP . o oot e e s 119
Introduce ASSEITION . . .o vttt e e 267
Introduce Explaining Variable oo oo 124
Introduce Foreign Method 162
Introduce Local EXtensioniiuiiiiniinnrenneenaennn. 164
Introduce Null Object ...\ v v e 260
Introduce Parameter Object ... oo 295
Move Field ... e 146
Move Method . ..o e 142
Parameterize Method o 283
Preserve Whole Object . ..ot e 288

Pull Up Constructor Body o o oL .0328
PullUpField .o 320
Pull Up Method 322
Push Down Fieldo e e e 329
PushDown Methodo i e, 2 328
Remove Assignments to Parameterst 131
Remove Control Flag 245
Remove Middle Man 160
Remove Parameter 277
Remove Setting Method o oo oo L0300
Rename Method 273
Replace Array with Object e 186
Replace Conditional with Polymorphism255
Replace Constructor with Factory Method304
Replace Data Value with Object o . 175
Replace Delegation with Inheritanceo o ... 355
Replace Error Code with Exception ... i, 310
Replace Exception with Test e 315
Replace Inheritance with Delegation352
Replace Magic Number with Symbolic Constant 204
Replace Method with Method Object 135
Replace Nested Conditional with Guard Clauses250
Replace Parameter with Explicit Methods 285
Replace Parameter with Method oo oo oo 292
Replace Record with Data Classo oo, 217
Replace Subclass with Fields 232
Replace Temp with Queryo i 120
Replace Type Code with Class oo oo 218
Replace Type Code with State/Strategycovvvnvnn. .. 227
Replace Type Code with Subclasses 223
Self Encapsulate Field oo 171
Separate Domain from Presentationl 370
Separate Query from Modifier o o o o 279
Split Temporary Variable 128
Substitute Algorithm o 139
Tease Apart Inheritance L il ... 0362

Smell Common Refactorings

Alternative Classes
with Different
Interfaces, p. 85

Rename Method (273), Move Method (142)

Comments, p. 87

Extract Method (110), Introduce Assertion (267)

Data Class, p. 86

Move Method (142), Encapsulate Field (206),
Encapsulate Collection (208)

Data Clumps, p. 81

Extract Class (149), Introduce Parameter Object
(295), Preserve Whole Object (288)

Divergé;C;ange.
p.79

Extract Class (149)

Duplicated Code,
p. 76

Extract Method (110), Extract Class (149), Pull Up
Method (322), Form Template Method (345)

Featur;: Envy, p. 80

Move Method (142), Move Field (146), Extract
Method (110)

Inappropriate
Intimacy, p. 85

Move Method (142), Move Field (146), Change

Bidirectional Association to Unidirectional (200),

Replace Inheritance with Delegation (352), Hide
Delegate (157)

Incomplete Library
Class, p. 86

Introduce Foreign Method (162), Introduce Local
Extension (164)

Large_CIass, p.78

Extract Class (149), Extract Subclass (330), Extract
Interface (341), Replace Data Value with Object
(175)

Lazy Class, p. 83

Inline Class (154), Collapse Hierarchy (344)

Long Method, p. 76

Extract Method (110), Replace Temp with Query
(120), Replace Method with Method Object (135),
Decompose Conditional (238)

p.78

Smell Common Refactorings
Long Parameter List, | Replace Parameter with Method (292), Introduce

Parameter Object (295), Preserve Whole Object
(288)

Message Chains,
p. 84

Hide Delegate (157)

Middle Man, p. 85

Remove Middle Man (160), Inline Method (117),
Replace Delegation with Inheritance (355)

Parallel Inheritance
Hierarchies, p. 83

Move Method (142), Move Field (146)

Primitive Obsession,
p. 81

Replace Data Value with Object (175), Extract
Class (149), Infroduce Parameter Object (295),
Replace Array with Object (186), Replace Type
Code with Class (218), Replace Type Code with
Subclasses (223), Replace Type Code with State/
Strategy (227)

Refused Bequest,
p.87

Replace Inheritance with Delegation (352)

Shotgun Surgery,
p. 80

Move Method (142), Move Field (146), Inline Class
(154)

Speculative
Generality, p. 83

Collapse Hierarchy (344), Inline Class (154),
Remove Parameter (277), Rename Method (273)

Switch Statements,
p. 82

Replace Conditional with Polymorphism (255),
Replace Type Code with Subclasses (223),
Replace Type Code with State/Strategy (227),
Replace Parameter with Explicit Methods (285),
Introduce Null Object (260)

Temporary Field,
p. 84

Extract Class (149), Introduce Null Object (260)

Refactoring is basically a straightforward technigue. How-

ever, researchers have introduced additional concepts that
paint a more complex picture of refactoring in development
workflows.

Martin Fowler defined refactoring as making behavior-
preserving design improvements right after adding and
testing new functionality.! But developers can also refactor
code opportunistically—recurrent “upkeep refactoring” has
been called “floss refactoring,” “litter-pickup refactoring,”
or “comprehension refactoring.”?-* Adding new functional-
ity might trigger “preparatory refactoring” that makes the
changes easier.*

Leppanen, M., Makinen, S., Lahtinen, S., Sievi-Korte, O., Tuovinen, A.P. and Mannisto, T.,
2015. Refactoring - A Shot in the Dark? IEEE Software, 32(6), pp. 62-70.

Without floss refactoring, developers might need to apply
“root canal refactoring” or “planned refactoring”—that is,
change large parts of the code, which requires specific back-
log items.3# Fowler considered a recurring need for planned
refactoring as a bad smell.* He suggested that architectural
changes could be done as “long-term refactoring,” in which
developers gradually and knowingly migrate the system to a
new architecture by applying opportunistic changes. Michael
Stal recommended recurrent refactoring of the architectural
design directly.®> Although everyday work can easily include
upkeep refactoring, large-scale or architectural refactoring is
difficult to justify to stakeholders, especially customers, who
might not understand the nature of software.?4°

Leppanen, M., Makinen, S., Lahtinen, S., Sievi-Korte, O., Tuovinen, A.P. and Mannisto, T.,
2015. Refactoring - A Shot in the Dark? IEEE Software, 32(6), pp. 62-70.

The views on refactoring have been mixed. Some people
see refactoring as beneficial, even a success factor, whereas
others still strongly advocate the “if it ain’t broke, don't fix it”
mentality.® Developers feel that refactorings’ benefits are dif-
ficult to measure and sell to management.” Developers don’t
care to make quality measurements; they want to tackle the
concrete problems in code, rather than trying to improve in-
ternal code quality metrics.® There are conflicting results if
refactoring actually improves code metrics.?

Leppanen, M., Makinen, S., Lahtinen, S., Sievi-Korte, O., Tuovinen, A.P. and Mannisto, T.,
2015. Refactoring - A Shot in the Dark? IEEE Software, 32(6), pp. 62-70.

10

Leppanen, M., Makinen, S., Lahtinen, S., Sievi-Korte, O., Tuovinen, A.P. and Mannisto, T.,
2015. Refactoring - A Shot in the Dark? IEEE Software, 32(6), pp. 62-70.

Benefits Risks

e Easier future development * Breaking something
 Understandability » Causing externally visible changes
e Reuse * Worsening the code quality

e |mproving quality attributes such as * Wasting time and effort

performance

¢ Boosting morale and motivation

FIGURE 1. Refactoring’s benefits and risks, according to the interviewees.

BREAK OUT DISCUSSIONS, 15-20 MINUTES
25 years on... part 1

Question 1
What is the intent of contemporary refactoring?

For example, if the original intent of refactoring was focussed on architectural
and design-level restructuring, is it now the case that refactoring relates to more
fine-grained (code) changes? Have ‘extract xxx’, ‘push up xxx’ and ‘pull down xxx’
patterns been superseded with a more fine-grained duplication avoidance?

Question 2
What is the philosophy of contemporary refactoring?

For example, if the original philosophy of refactoring was that cleaning code must
preserve behaviour, is this strictly necessary at a fine-grained code level? Might
minor changes in program behaviour be tolerated for the sake of clean code,
improved elegance and comprehension in design, code and test?

12

Part 2

Tool support for refactoring

Manual

(Reactive Tool)

?Semi-automated?

Automated

(Proactive tool)

13

File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help

Qr search (Ctrl+])

Recycle Bin

PSS DO [t] F R DB -B-

»

NetBeans IDE
80.2

&
UWEITS
Diagnostics

td
FET
SharePoint

td
Expenses &
Travel

L=

@Babd‘lMain.java Hl@ BatchResults.java ss||§] Parameters.java H|@ AlgorithmParameters. java Bi|@ PheromaneOperators.java H‘

e W&

H

gnuPlot 4.0

Cygwintd
Terminal

PDF l

GP
Framework

Projects & |Files | Services | =
- Research_3015_ Q4 IACO_AntPheromone Source | History | R e N
[[Source Packages
ﬁ@ A “ 43 AlgorithmParameters. NUMBER OF ANTS
B-E8 con —
<)) 44 AlgorithmParameters. NUMBER OF
@ AlgorithmParameters.java ~ —
45 AlgorithmParameters. NUMEE]
@ Parameters.java ~ b
daemonActions .
m) 47 AlgorithmParamet
[engine 18 Navigate
-EH heuristi
& Eu”_s = 439 for(int i = Para Show Javad
- learning
5-EE) myGui 50 { Find Usages
51 int problem = =
@ ACOFrame.java = = Call HierarcH
@ BatchMain.java - for(int
or(in =
@ EditAlgorithmParametersDialog java - { J Insert Code.|
- |& FreezeDialog java = Sr— Fix Imports
@ MySelectionListener java - = Refactor
@ ViewUnfreezeFrozenDialog. java - for(int Bl
or imnf
@ VisualiseEvaluateDialog.java - [
E mylUtils 59 bl Run File
£8 parewo 50 Syste DebugfFile
- pheromone 61 " TestFile
@ AlphaTable java - i
@ PheromeneOperators. java - i Debug Test i
[PheromoneTable java - doant Run Focuse
0.
[problem 65 Debug Focu:
= i
EA reporting 66 1 en Run Into Mej
@ BatchResults.java -
@ InteractiveResults. java - for(int New Watch.
or(im .
@ MultiobjectiveResults. java - : Toggle Line
[softwareDesign 0 i, Profiling
-l Libraries
@ myGui. BatchMain > (p main > Cut
main - Navigator & | = Output = ‘ Copy
Members. - || <empty= iy Paste
2 ” | y W Debugger Console % | Research_2015_Q4
Q]) doBatchHeuristicAntSearch() » run number 26 done in 7.037 se p—
- ode Folds
Q]) experiment_2013_06_26(String[] args) g run number 27 done in 7.545 se
QD experiment_2013 07 020 run number 28 done in 7.548 se Select in Pro)
&) experment_2013_07 070 2%| run nusber 25 done in 7.533 seconds
&) . t_20].3_07_09 run number 30 done in 8.128 seconds
" R Spenment_2013 071 0 run number 31 done in 7.668 seconds
&) experiment_2013_07_220) E run number 3z done in 7.471 seconds
-8 experiment_2013_07_230 run number 33 done in 6.459 seconds
&) experiment_2013_07_24) run number 34 done in 8_547 seconds
&) experiment_2013 07_250 run number 25 done in £.914 seconds
- () main(String[] args) L run number 36 done in 6.058 seconds
< W B run number 37 done in 7.5%4 seconds
. run number 38 done in 7.671 seconds
& MMEE & |TE) run number 35 done in 5.648 seconds
I I
W = "5 E O E R
F || =10 — =] |

Fename...
Mowve..,

Copy...
Safely Delete...

Inline...

Change Method Parameters...

Pull Up...

Push Down...

Extract Interface...

Extract Superclass...

Use Supertype Where Possible...

Introduce

Move Inner to Outer Level...
Convert Anonymous to Member...
Encapsulate Fields...

Replace Constructor with Factory...
Replace Constructor with Builder...

Invert Boaolean...

Inspect and Transform...

eSS i | -

Ctrl+F
Ctrl+ M

Alt+Delete

14

Server & Tools Blogs > Developer Tools Blogs > Visual C++ Team Blog

Visual Studio Application Platform

Lifecycle Development

Executive Languages

Bloggers

sign in

Management - -

Visual C++ Team Blog

C++ Core Guidelines Checkers available for VS 2015
Update 1

Andrew Pardoe [M5FT]

RATE THIS
3 Dec 2015 11:57 AM 30

[This post was written by Andrew Pardoe and Neil Macintosh)

Back in September at CppCon 2015 Neil announced that we would be shipping new code analysis tools for C4+4 that
would enforce some of the rules in the G++ Gare Guidelines. (A video of the talk is available
here: https./fwww.youtube.com/watch?v=riklHvAw 1250 and slides are available on the ISOCpp GitHub repo.)

Earlier this week we made the first set of those code analysis tools freely available as a NuGet package that can be
installed by users of Visual Studio 2015 Update 1. The package currently contains checkers for

the Bounds and Type profiles. Tooling for the Lifetime profie demonstrated in Herb Sutter's plenary talk (video

at hitps:/feww youtube.comiwatch ?w=hBExaDMNUWGEgA) will be made available in a future release of the code analysis
tools.

The package is named "Microsoft. CppCoreCheck”, and a direct link to the package is
here: http.//www.nuget.org/packages/Microsoft. CppCoreCheck.

pq Visual Studio

Common Tasks

Blog Home

& Email Blog Author
N RSS for comments
R RSS for posts

Search

Jo

.°.5earch this blog “Search all blogs

Tags

Announcement
Announcements
C++ C++ language
c++0x Channel 9

http://blogs.msdn.com/b/vcblog/archive/2015/12/03/c-core-guidelines-checkers-available-for-vs-2015-update-1.aspx

15

http://blogs.msdn.com/b/vcblog/archive/2015/12/03/c-core-guidelines-checkers-available-for-vs-2015-update-1.aspx

. . . Refactoring tools aren’t error-free. They
This myth is that refactoring tools .
are robust. work just well enough to be useful, and they
Robustness is a desirable prop- break in relatively unimportant ways.

erty of software development tools—
refactoring tools included. Devel-
opers won’t use tools that seem

unreliable. So, the widespread use mon features. On average, approxi- find bugs in refactored code. This
of refactorine rools sneaks ro their marelv 2 percent of rthe refactorine simnle implementation is neces-

Hafiz, M. and Overbey, J., 2015.
Refactoring Myths.
IEEE Software, 32(6), pp.39-43.

16

POINT

Refactoring Tools Are
Trustworthy Enough

John Brant

Refactoring tools don't have to guarantee correctness to be
useful. Sometimes imperfect tools can be particularly helpful.

COUNTERPOINT

Trust Must Be Earned

Friedrich Steimann

Creating bug-free refactoring tools is a real challenge.
However, tool developers will have to meet this
challenge for their tools to be truly accepted.

IEEE Software, 32(6), pp. 80-83.
17

BREAK OUT DISCUSSIONS, ANOTHER 15-20 MINUTES

25 years on... part 2

Question 1
What is the state of current tool support for refactoring?

For example, how useable is contemporary tool support? How robust? Are
refactoring tools error free? Might they even introduce errors in design and
code? After refactoring, is a simple syntax check sufficient?

Question 2
What tool support is needed?

For example, could automation speed up refactoring? How proactive could
refactoring tools be? Would proactive tools be trusted? Might they be
dynamic and adaptive? Should they be prominent in development IDEs,

possibly as recommendation engines, or might they work offline from a
command line?

18

Tom Mens and Tom Tourwe reviewed refactoring research

in terms of the refactoring activities supported, the tech-
niques and formalisms for supporting these activities, and
refactoring’s effect on the software process.! The literature
also includes surveys and evaluations of refactoring tools (for
example, the technical report by Jocelyn Simmonds and Tom
Mens?), but they don’t focus on challenges to adopting refac-
toring in an industrial context.

At Microsoft, Miryung Kim and her colleagues surveyed
and interviewed 328 developers and analyzed version history
data to identify refactoring benefits and challenges.? Respon-
dents cited six key risk factors: regression bugs, code churns,
merge conflicts, time taken from other tasks, difficulty per-
forming code reviews after refactoring, and overengineering.

Emerson Murphy-Hill and Andrew Black surveyed 112 Agile
Open Northwest conference attendees.* They found that pro-
fessional programmers underused refactoring tools and that
better, more usable, refactoring tools were needed. Our survey
(see the main article) echoes these findings; we're trying to

discover the specific problems architects and their teams face
while using refactoring tools.

Finally, Aiko Yamashita and Leon Moonen surveyed 85
software professionals on code smells and related tooling.®
They reported a finding similar to ours: refactoring tools should
provide better support for refactoring suggestions.

References

1. T. Mens and T. Tourwe, “A Survey of Software Refactoring,” [EEE
Trans. Software Eng., vol. 30, no. 2, 2004, pp. 126-139.

2. J. Simmonds and T. Mens, A Comparison of Software Refactoring
Tools, tech. report vub-prog-ir-02-15, Programming Technology Lab,
Vrije Univ. Brussel, 2002.

3. M. Kim, T. Zimmermann, and N. Nagappan, “An Empirical Study
of Refactoring Challenges and Benefits at Microsoft,” IEEE Trans.
Software Eng., vol. 40, no. 7, 2014, pp. 633-649.

4. E. Murphy-Hill and A.P. Black, “Refactoring Tools: Fitness for Pur-
pose,” IEEE Software, vol. 25, no. 5, 2008, pp. 36—44.

5. A. Yamashita and L. Moonen, “Do Developers Care about Code
Smells? An Exploratory Survey,” Proc. 20th Working Conf. Reverse
Eng. (WCRE 13), 2013, pp. 242-251.

Sharma, T., Suryanarayana, G. and Samarthyam, G., 2015.
Challenges to and Solutions for Refactoring Adoption: An Industrial Perspective.

IEEE Software, 32(6), pp.44-51.

19

Chapter
Search-Based Software Engineering
Volume 9275 of the series Lecture Notes in Computer Science pp 47-61

Date: 28 July 2015

Search-Based Refactoring: Metrics Are Not
Enough

Chris Simons == , Jeremy Singer, David R. White

Abstract

Search-based Software Engineering (SBSE) techniques have been applied extensively to refactor

software, often based on metrics that describe the object-oriented structure of an application.
BRecent work shows that in some cas

improved version of the software as assessed by some subjective crlterla Through a
survey of professionals, we investigate the relationship between popular SBSE
refactoring metrics and the subjective opinions of software engineers. We find little or
no correlation between the two. Through qualitative analysis, we find that a simple

factors that are not amenable to measurement via metrics. We recommend that future SBSE
refactoring research should incorporate information about the dynamic behaviour of software,

and conclude that a human-in-the-loop approach may be the only way to refactor software in a
manner helpful to an engineer.

20

By the way, I’'m very interested in how Al can
learn and search for refactoring suggestions...

The Journal of Systems and Software 113 (2016) 101-113

Contents lists available at ScienceDirect

il
The Journal of Systems and Software H”'HH ||HH|H|‘

ELSEVIER journal homepage: www.elsevier.com/locate/jss il ‘E|IHI\||§||||M

What recommendation systems for software engineering recommend: A (!)CWMM
systematic literature review

Marko Gasparic®, Andrea Janes

Free University of Bolzano, lraly

ARTICLE INFO ABSTRACT
Article history: A recommendation system for software engineering (RSSE) is a software application that provides informa-
Received 159 November 2014 tion items estimated to be valuable for a software engineering task in a given context. Present the results

Revised 14 November 2015
Accepted 17 November 2015
Available online 26 Movember 2015

of a systematic literature review to reveal the typical functionality offered by existing RSSEs, research gaps,
and possible research directions. We evaluated 46 papers studying the benefits, the data requirements, the
information and recommendation types, and the effort requirements of RSSE systems. We include papers de-
Kgmrds scribing tools that support source code related development published between 2003 and 2013. The results
4 s £ == clionas pleapr DECE S dgpgmd o llyr asimagaliopa momd i el Wn«lh grn g len tles A

show that RSSES typlcally visualize source code artifacts. They aim to improve system quality, make the de-
velopment process more efficient and less expensive, lower developer’s cognitive load, and help developers
to make better decisions. They mainly support reuse actions and debugging, implementation, and mainte-
nance phases. The majority of the systems are reactive. Unexploited opportunities lie in the development of
recommender systems outside the source code domain. Furthermore, current RSSE systems use very limited
context information and rely on simple models. Context-adapted and proactive behavior could improve the
acceptance of RSSE systems in practice.

22

IEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS. VOL. 42, NO. 6, NOVEMBER 2012 1797

Elegant Object-Oriented Software Design via
Interactive, Evolutionary Computation

Christopher L. Simons and Tan C. Parmee

Abstract—Design is fundamental to software development but
can be demanding to perform. Thus, to assist the software de-
signer, evolutionary computing is being increasingly applied using
machine-based, quantitative fitness functions to evolve software
designs. However, in nature, elegance and symmetry play a crucial
role in the reproductive fitness of various organisms. In addition,
subjective evaluation has also been exploited in interactive evolu-
tionary computation (IEC). Therefore, to investigate the role of
elegance and symmetry in software design, four novel elegance
measures are proposed which are based on the evenness of distri-
bution of design elements. In controlled experiments in a dynamic
IEC environment, designers are presented with visualizations of
object-oriented software designs, which they rank according to a
subjective assessment of elegance. For three out of the four elegance
measures proposed, it is found that a significant correlation exists
between elegance values and reward elicited. These three elegance
measures assess the evenness of distribution of 1) attributes and
methods among classes; 2) external couples between classes; and
3) the ratio of attributes to methods. It is concluded that symmetri-
cal elegance is in some way significant in software design, and that
this can be exploited in dynamic, multiobjective IEC to produce
elegant software designs.

the results of evolutionary search supported by interactive soft-
ware agents in which a population of object-oriented software
design individuals is evolved with preference-based designer
interaction.

The search techniques that are reported previously rely solely
on quantitative computational measures of fitness to direct
search and exploration. However, just as evolutionary comput-
ing draws inspiration from evolutionary processes in nature, is
it also possible to draw from nature to specifically address the
“quality” or “appearance” of an individual? Certainly, the influ-
ence of symmelry of appearance in the reproductive fitness of an
organism has been noted by evolutionary biologists. For exam-
ple, Schilthuizen [6] explains that “the significance of symmetry
was only made clear with the discovery that stress and disease
make it harder for an individual to develop a perfectly sym-
metric body. Small differences on either side of an imaginary
mid-plane therefore betray genetic quality, and potential mates
use this to gauge each other’s desirability. Put simply, symme-
try is sexy.” Drawing from evolutionary biology. it seems likely

23

19 — 23 April,
Bristol, UK

Thank you!

Chris Simons

@chrislsimons
chris.simons@uwe.ac.uk
www.cems.uwe.ac.uk/~clsimons/

24

