
Exploiting Antipheromone in Ant Colony Optimisation for
Interactive Search-Based Software Design and Refactoring

Chris Simons

University of the West of England

Frenchay Campus

Bristol BS16 1QY United Kingdom

chris.simons@uwe.ac.uk

Jim Smith

University of the West of England

Frenchay Campus

Bristol BS16 1QY United Kingdom

james.smith@uwe.ac.uk

ABSTRACT
Preventing user-fatigue in interactive meta-heuristic search
places as great an emphasis on e�ciency as it does on ef-
fectiveness. Engagement may also be boosted if the system
provides a sense of “responsiveness” - for example, avoiding
unpopular solutions as well as exploiting preferred ones. In
this paper we explore one possible way of achieving these
goals using the concept of “anti-pheromones” in di↵erent
forms of Ant Colony Optimisation. Taking search-based
software design and refactoring as a case study, we use exten-
sive o✏ine experiments to investigate di↵erences of timescale
and method for applying anti-pheromones. Results confirm
our predictions that most combinations are in fact counter-
productive. However, applying high levels of anti-pheromone,
only in the initial stages of a run, can rapidly steer the search
away from unproductive regions, reducing the number of
evaluations required by up to 20% without compromising
solution fitness.

Keywords
Search-Based Software Engineering; Ant Colony Optimisa-
tion; Antipheromone

1. INTRODUCTION
Assisting the software engineer with the cognitively de-

manding task of design and refactoring has attracted much
research attention within the field of Search-Based Software
Engineering (SBSE) e.g. [3], [5]. In interactive metaheuris-
tic search e↵ective and e�cient search performance is cru-
cial to prevent user fatigue [8]. In SBSE, as elsewhere, the
notion of fitness is fundamental to selection in metaheuris-
tic search. However, it has been proposed that misfit of a
candidate solution within its context is significant. For ex-
ample, Alexander [1] suggests that designers are more adept
at recognising solution/context ensemble misfit than good
fit, and use their perceptions of misfit to derive improved
candidate solutions. In agile software development method-
ologies, the notion of design as misfit rectification can be

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c� 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2909018

seen in design refactoring. Reflecting the observed practice
of design misfit rectification, might the use of antipheromone
be exploited in ACO search-based software design and refac-
toring to produce a more e�cient search? To answer this
question, we pose the following hypotheses:

1. Early stage application of antipheromone may help
steer search away from poor solutions;

2. If search is in a good region then penalising “worst” so-
lutions with antipheromone may be counter-productive.

2. BACKGROUND
In 2002, Montgomery and Randall [4] noted that in na-

ture, various ant species exploit many hormones in foraging
behaviours. They suggested the use of antipheromone as a
“repellent substance”to artificial ants, acting in combination
with, but in contrast to, pheromone as an attractant. Build-
ing on Ant Colony System (ACS) [2], the authors suggested
three extensions incorporating antipheromone by (i) sub-
tracting pheromone for the worst solution path, (ii) making
pheromone ’repellent’ for poorer solutions, and (iii) making
explorer ants that are arracted to areas of little pheromone.

3. PROPOSED APPROACH
Building on previous research [6], we extend Ant Colony

Optimization by means of two mechanisms:

• Phased Antipheromone, where an initial phase of search
(during which both antipheromone and pheromone are
deposited) precedes a pheromone phase (in which only
pheromone is deposited);

• Subtractive Antipheromone, in which a single ant, be-
ing the worst solution in the colony, removes or reduces
pheromone from the worst solution path.

3.1 Solution Encoding
ACO generally uses a representation where candidate so-

lutions (i.e. paths) are encoded by a permutation of a fixed
set of values. However, each candidate solution is repre-
sented as a permutation of a set comprising design elements
(i.e. attributes and methods) and “end-of-class” markers.
Further details of the solution encoding are described at [6].

3.2 Cost Measure
The cost measure employed in the proposed approach

draws on two metrics of design quality, which are to be min-
imised and lie in the interval (0,1]. The first relates to de-
pendency coupling between design classes (fCBO), while the



second reflects design symmetry (fNAC). The cost measure
combines the two elements with equal weight:

Cost(x) = 0.5 ⇤ (fCBO(x) + fNAC(x)) (1)

Further details of the dependency coupling measure, fCBO

and the design symmetry cost measure, fNAC are available
at [6].

3.3 Search Algorithm
The ACO algorithm variants used in this paper are in-

spired by Simple-ACO [2] and MAX-MIN Ant System [7].
In the Simple-ACO algorithm all ants of the colony update
the pheromone table in turn according to the cost value of
their path. An initial phase of antipheromone deposit is
implemented as a percentage of the total number of evalu-
ations. Where the algorithm is in its antipheromone phase,
we introduce an additional mechanism for the single worst
ant in the colony, wherein pheromone values are reduced to
50%, 10% and 0% of their original values. Similarly, if the
MMAS variant algorithm is in its antipheromone phase, we
introduce two mechanisms. Either pheromone is reduced to
the MAX-MIN minimum threshold parameter Mmin, or a
50% reduction of the original pheromone value is applied,
subject to the MAX-MIN minimum threshold.

4. METHODOLOGY
We conducted experiments with the two antipheromone

ACO algorithm variants (Simple-ACO and MMAS) for each
of four problem instances i.e. Cinema Booking System,
Graduate Development Program, Select Cruises and a ran-
domised instance [6]. The resulting data for Cost and num-
ber of Evaluations were analysed using a two-way Analysis
of Variance.

5. RESULTS
For Simple-ACO variant algorithm, initial antipheromone

phases were trialled by reducing pheromone values by 50%,
10% and 0%. Findings indicated that for all design problem
instances, compared with no antipheromone deposit, values
of Cost and Evaluations are inferior. Analysis of Variance
indicated that the di↵erences are significant.

For the MMAS algorithm variant, initial antipheromone
phases were trailed with pheromone reductions to a 50% or
original, and Mmin. For 50% reduction, values of Cost and
Evaluations are inferior, and the di↵erences are statistically
significant. However, for reductions to Mmin, Cost values
obtained are not significantly di↵erent from those obtained
without antipheromone. Furthermore, the number of Eval-
uations is lower for antipheromone phases of up to 10%, and
the reductions of up to 20% achieved are statistically signifi-
cant. Reductions of 20%, 13% and 11% are achieved for the
CBS, GDP and Randomised problem instances respectively.
Results for the CBS problem instance are shown in figure 1;
the picture is very similar for GDP and Random.

6. CONCLUSIONS
For search-based software design and refactoring, we in-

vestigated a number an antipheromone approaches to Ant
Colony Optimisation, wherein pheromomone values are re-
duced for the single worst ant in the colony. Using an
MMAS-based antipheromone variant, the number of evalua-
tions required to achieve best cost measures is reduced up to

Figure 1: Mean Number of Evaluations required for

best Cost in various antipheromone phase durations

for CBS Problem Instance

20%, without compromising solution quality. We conclude
early phase application (i.e. up to 10% of evaluations) helps
steer search away from poor solutions, whereas extended
application (i.e. above 20%) can be counter-productive, es-
pecially if search has arrived at promising regions.

7. REFERENCES
[1] C. Alexander. Notes on the Synthesis of Form,

volume 5. Harvard University Press, 1964.
[2] M. Dorigo and T. Stutzle. Ant Colony Optimization.

MIT Press, 2004.
[3] I. Moghadam and M. Ó Cinnéide. Code-Imp: A Tool

for Automated Search-Based Refactoring. In
Proceedings of the 4th Workshop on Refactoring Tools
(WRT ’11). ACM Press, 2011.

[4] J. Montgomery and M. Randall. Anti-pheromone as a
tool for better exploration of search space. In Ant
Algorithms, Lecture Notes in Computer Science
(LNCS) 2463, pages 100–110. Springer, 2002.

[5] C. Simons and I. Parmee. Elegant Object-Oriented
Software Design via Interactive, Evolutionary
Computation. IEEE Trans. on Systems, Man, and
Cybernetics, Part C: Applications and Reviews,
42(6):1797–1805, 2012.

[6] C. L. Simons, J. Smith, and P. White. Interactive ant
colony optimization (iaco) for early lifecycle software
design. Swarm Intelligence, 8(2):139–157, 2014.

[7] T. Stützle and H. H. Hoos. Max–min ant system. Future
generation computer systems, 16(8):889–914, 2000.

[8] H. Takagi. Interactive evolutionary computation:
Fusion of the capabilities of ec optimization and human
evaluation. Proceedings of the IEEE, 89(9):1275–1296,
2001.


