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a b s t r a c t

We introduce a software generator for a class of colored (self-correlated) and non-Gaussian noise,
whose statistics and spectrum depend on two parameters, q and τ . Inspired by Tsallis’ nonextensive
formulation of statistical physics, the so-called q-distribution is a handy source of self-correlated noise
for a large range of applications. The q-noise—which tends smoothly for q = 1 to Ornstein–Uhlenbeck
noise with autocorrelation τ—is generated via a stochastic differential equation, using the Heun method
(a second order Runge–Kutta type integration scheme). The algorithm is implemented as a stand-alone
library in C++, and is made available as open source in the Github repository. Noise’ statistics can be
specified handily; by only varying parameter q: it has compact support for q < 1 (sub-Gaussian regime)
and finite variance up to q = 5/3 (supra-Gaussian regime). Once q is fixed, noise’ autocorrelation can be
tuned independently by means of parameter τ . The presented qNoise generator provides a readily tool
to modeling wide range of real-world noise types, and is suitable to study the effects of correlation
and deviations from the normal distribution in systems of stochastic differential equations, key to
understand system dynamics in numerous applications. The effect of noises’ statistics on the response
of a range of nonlinear systems is briefly discussed. In many of these examples, the systems’ response
turns optimal for some q ̸= 1. Hence, this paper aims to introduce qNoise generator for C++ at the
class level and evaluate the kind of noise it generates, alongside their use in a range of applications.
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. Motivation

Most studies on noise-induced phenomena [1,2] have assumed
he noise source to have Gaussian distribution, either ‘‘white"
memoryless) or ‘‘colored" (red, pink, etc . . . ) [3]. Although cus-
omarily accepted without criticism on the basis of the central
imit theorem, the true rationale behind this assumption lies in
he possibility of obtaining some analytical results, and avoid-
ng many difficulties arising in generating and handling non-
aussian noise. There is however experimental evidence that
t least in some cases (particularly in sensory and biological
ystems) non-Gaussian noise sources may add desirable features
o noise-induced phenomena (e.g. robustness, fault tolerance [4]).
hese findings add practical interest to the task of finding viable
ays to deal with non-Gaussian noise. Several attempts have
een made to model and generate non-Gaussian noises. Some
xamples being parametric Poisson white noise [5], multiplicative
evy noise [6], among others. Reader is advised to refer to [7] for
detailed review.
Here we introduce a lightweight (generic C++ class) genera-

or for non-Gaussian, colored stochastic processes. The expected
pplications of this algorithm are as diverse as the modeling of
ome types of vibration or fluctuation which are typically non-
aussian, the generation of noise which is naturally confined to a
omain, or the investigation of the response of many dynamical
ystems embedded in noise, as the latter deviates from being
aussian.
The main features of noise obeying Tsallis’ statistics are sum-

arized in Section 2; Section 3 is devoted to the description of the
oftware architecture and properties; Section 4, provides statis-
ical analysis of the generated noise in the qualitatively different
ases, alongside a discussion on the q-dependence of the variance
and effective self-correlation time. The measured self-correlation
times of the obtained series are compared with a fitting ex-
pression [8]. In Section 5, a brief review is provided on related
work, namely where non-Gaussian noise-induced phenomena
have been studied.

2. q-Noise with Tsallis’ statistics

The exponentially self-correlated Gaussian noise η(t) named
after Ornstein and Uhlenbeck (OU noise, or ‘‘colored’’ Gaussian
noise) can be dynamically generated through the differential
equation

τ η̇ = −η(t) + ξ (t), (1)

where ξ (t) is centered Gaussian white noise with variance D,
namely

⟨ξ (t)⟩ = 0, ⟨ξ (t) ξ (t ′)⟩ = 2D δ(t − t ′).

This way, η’s self-correlation time is τ .
A straightforward generalization of Eq. (1) was proposed by

orland some time ago [9] as a model for correlated diffusion:

η̇ = −
d
dη

Vq(η) + ξ (t) (2)

here the potential Vq is given by:

q(η) =
D

τ (q − 1)
ln

[
1 +

τ (q − 1)
D

η2

2

]
, (3)

As much as the OU noise allows to explore spectral effects within
the class of exponentially correlated noise, this generalization
provides moreover a device to explore statistics effects by varying
just one parameter (namely q, at constant τ and D).

The stationary properties of η (including its autocorrelation
unction) are thoroughly described elsewhere [8,10–13], we here

summarize the main results. Using the Fokker–Planck formalism,
one obtains the stationary probability distribution

Pst
q (η) =

1
Zq

[
1 +

τ (q − 1)
D

η2

2

] 1
1−q

, (4)

which can be normalized only for q < 3 (Zq is a normalization
factor). The first moment ⟨η⟩ always vanishes [8,10–13] and the
second moment,

⟨η2
⟩ =

2D
τ (5 − 3q)

, (5)

is finite only for q < 5/3.
Some properties of the noise are summarized in Fig. 1. The

bold line depicts the Gaussian limit (q = 1). Curves of weaker
full lines show that for q > 1, the second moment is larger than
the Gaussian limit D/τ . For q < 1 (dotted lines) the distribution
has a cut-off and is only defined for

|η| < ηc ≡

√
2D

τ (1 − q)
. (6)

Some distributions are shown in linear and semilogarithmic scales
(Fig. 1, left and right panels respectively).

The autocorrelation time τq of the process η(t) in its stationary
regime, also diverges for q → 5/3 ≈ 1.66. Far from its divergence
point, it can be approximated as in [8]:

τq ≈
2τ

5 − 3q
. (7)

When q → 1, η becomes a Gaussian colored noise, namely the
Ornstein–Uhlenbeck process ηOU (t), with correlations

⟨ηOU (t) ηOU (t ′)⟩ =
D
τ
exp

(
−

|t − t ′|
τ

)
, (8)

and probability distribution

Pst(ηOU ) = Z−1 exp
(

−
τ

D
η2
OU

2

)
. (9)

2.1. τ and ⟨η2
⟩ Dependence on q

Eqs. (5) and (7) tell us that for q ̸= 1, ⟨η2
⟩ and τq do not

attain their values (D and τ respectively) in a normal distribution.
Rather, they both diverge at q = 5/3 (white squares in both
panels of Fig. 2). It is however desirable to have a generator
able to approximately keep constant the characteristics of these
properties with respect of q, at least sufficiently far away from the
divergence point. This can be very useful to study the effects of
the statistics due to changes in q keeping τ and variance constant.

This way an effective τq and ⟨η2
⟩ can be defined by dividing τ

by Eq. (7) before integration and ⟨η2
⟩ by Eq. (5) after integration.

The filled circles in both panels of Fig. 2 show this dependence
for both τ and ⟨η2

⟩, and how the system becomes independent
of q for the range 0 < q < 1.5 approximately. For q > 1.5, the
proximity to the divergence point q = 5/3 (shown with a dotted
line) makes this approximation fail.

3. Generator <class> description

The noise generator [14] is implemented in C++ as class, with
dependencies on standard libraries only. It generates random
numbers using functions in the built-in <random> class. The
generator provides functions for Gaussian white noise, Gaussian
colored noise (Ornstein–Uhlenbeck), and two versions of non-
Gaussian non-white noise. One where τ and ⟨η2

⟩ depend on q (as
in Eqs. (5) and (7)) and a normalized version where this effect
2
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Fig. 1. Stationary q-noise pdf for 0 < q < 1 (dotted line), q = 1 (bold line) and 1 < q < 1.6 (single line). The right panel show the same plot in semilogarithmic
cale. Notice the pdf is compact-supported for q < 1, Gaussian for q = 1 and fat-tailed for q > 1.

Fig. 2. (Left) Dependence of τ on q. The white squares show the measured dependence, fitted by Eq. (7) (full line). The black dots show the behavior of an effective
in order to make it independent of q. (Right) Equivalently for the variance of the noise, using Eq. (5).

as been counterbalanced to the first order, sufficiently far away
rom q = 5/3 (as shown as black dots in Fig. 2). This batch of
unctions would facilitate modeling a wide variety of scenarios
nd is suitable for many applications, some of which are detailed
n the last section of this paper.

The integration is done numerically using the Heun method.
his is a second order integration method for Stochastic differen-
ial equations. For an in-depth discussion about this method and
ts convergence see Chapter 7.8 in [15].

By default, the tool uses the Mersenne-Twister generator [16]
hich provides a very long (219937

− 1) pseudo-random number
cycle. Hence it is advised to seed the generator only once to avoid
spurious correlations.

3.1. Functions

The class implements four public member functions as shown
in Fig. 3.

The first function is a wrapper for the normal distribution,
implemented in the <random> standard library. It is presented
as a function of this class for convenience.

The second function is an implementation of the Ornstein–
Uhlenbeck noise. It accepts three parameters. The previous value
of the noise (since it is a Markov process), the autocorrelation
time τ of the noise and the integration time H (necessary for
setting the adequate timescale of the noise).

The third function implements the q-noise distribution. It ac-

Fig. 3. Class diagram of qNoise illustrating the four implemented functions.

to q (the noise statistics), and sqrt_H as an optional variable.
If H is constant, explicitly setting sqrt_H = H1/2 will avoid its
calculation every time the function is called. A snippet of the
function is shown in Listing 1 below.

Finally, the fourth function is a wrapper for the third function.
Here τ is given by Eq. (7) and the resulting noise is divided using
Eq. (5) in order to counterbalance the dependence of both τ and
the variance of the noise on q. See Section 2.1 for an analysis of
this effect and a discussion about its range of validity.

A generic unit test results are shown in Fig. 4. The test com-
pares the generated average noise, of an ensemble of 10 qNoise
runs for each set of q, τ and N (the amount of random numbers
generated), with the expected distribution of noise. As expected,
only when N is relatively small does the generated noise deviate
from its theoretical distribution, particularly for high τ . That is, it
cepts the same variables as the orsUhl function in addition

3
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Fig. 4. Accuracy of the histogram of the noise (calculated as the square root of square’s sum of the difference of the generated noise’ histogram and the theoretical
distribution

√∑
x(h(x) − pdf(x))2). This shows the accuracy of the generated noise — note its dependency of N and its relative independence of q.

takes longer (higher N) for a highly correlated noise (high τ ) to
explore the support and approximate the PDF.

3.2. Seeding

The presented class enables seeding the random number gen-
erator in two functions:

Timer seeding is provided as the default setting for random
number generator, and it is done automatically. For lightweight
single-threaded runs, manual seeding is not required. However, in
multi-threading settings manual seeding (call seedManual) for
each thread is recommended.
4



Juan Ignacio Deza and Hisham Ihshaish SoftwareX 18 (2022) 101034

τ

h
o
d

4

B

t
G
d
(
s
w
b

d
e
a

G

n
(
t
T
d
d

f
d

Fig. 5. q-noise for (q = 0.7) (bounded domain), and integration step h = 0.01. The top panels show a sample of the generated noise, for (left) τ = 1 s and (right)
= 100 s. Notice that in the right figure the noise is not centered around zero as it is performing a very long excursion (larger than the sample) given its very
igh autocorrelation. Both histograms in the bottom panels show the same data, concurring with the sample on top-left. (τ = 1 s). Although in the linear histogram
n the left it cannot be clearly seen, the semi-logarithmic plot on the right clearly show the bounded domain. The curve of dotted points shows the theoretical
istribution as in Fig. 1 for the same parameters, which perfectly concurs with the histogram of the data.

. Properties of the generated noise

ounded domain (q < 1)

Bounded-domain noise is widespread in nature, and has mul-
iple applications for modeling and control [13].1 The infra-
aussian noise considered here can be addressed as a small
eviation from Gaussianity, allowing a perturbative approach
Fig. 5). In Section 5.1, an example of a infra-Gaussian noise is
hown, in a resonant trap. Another use is as a source of noise
hose distribution is quasi-normal but identically zero outside a
oundary.
The noise generator algorithm does also ensure that noise

omain is bounded, checking for out-of-bound values. This nec-
ssary test (especially for highly correlated noise) is implemented
nd documented accordingly in the provided source code.

aussian case (q = 1)

The Gaussian case behaves exactly as an Ornstein–Uhlenbeck
oise, concurring perfectly with it for the whole range of τ
Fig. 6). As shown in the introduction, the limit q → 1 recovers
he Gaussian noise, and all limits converge to it, see Eqs. (5)–(9).
his limit allows to explore regions arbitrarily near the normal
istribution. It can be used to model small deviations from it
ue to some underlying physical phenomenon. As the value of q

1 In practice, physical noise has bounded domain because arbitrarily large
luctuations are strongly suppressed. Nonetheless, Gaussian noise has many
esirable theoretic properties which allow for analytical results.

can be changed continuously and dynamically, this scheme also
allows to model departures from the normal distribution due to
long time-scale fluctuations, by slowly varying 1− ϵ < q < 1+ ϵ
as a more realistic model for a small noisy system.

It is not generally recommended to compute the purely Gaus-
sian case from the general case and set q = 1, particularly due to
potential computational complexity. An extensive batch of tests
has been run in order to compare it to the Ornstein–Uhlenbeck
noise. All of the results were successfully recovered. As presented
above, orsUhl, a function for generating Ornstein–Uhlenbeck
noise for a variable τ is included in this package and its results
are equivalent to using the non-normalized qNoise function for
q = 1 at a fraction of the computation time.

Supra-Gaussian noise (1 < q < 5/3)

The supra-Gaussian (also called fat-tail) noise presented here
is of the class of finite variance. This is usually an overlooked,
modestly studied, class of noise. The Supra-Gaussian noise, gen-
erally considered in literature, tends to be Lévy-like, where the
variance is infinite2.

The noise presented here (Fig. 7) is of a finite variance. The
long excursions are however much longer and much more fre-
quent than in the Gaussian case. This case is the most commonly
used in the applications of non-Gaussian noise presented be-
low, as it allows to model many realistic systems outside of
equilibrium .

2 The q-noise presents infinite variance for q > 5/3 but the description of
this behavior is outside the scope of this article.
5
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Fig. 6. q-noise for (q = 1) (Gaussian Behavior), and integration step h = 0.01. The top panels show a sample of the generated noise, for (left) τ = 1 s and (right)
= 100 s. Notice that in the right figure the noise is not centered around zero as it is performing a very long excursion (larger than the sample) given its very
igh autocorrelation (τ ). Both histograms in the bottom panels show the same data, concurring with the sample on top-left. (τ = 1s). Although the linear histogram
n the left shows a bell-shaped distribution, this is not enough to demonstrate Gaussianity. However that is possible to observe on the semi-logarithmic, parabolic,
lot on the right. The dotted points show the theoretical distribution as in Fig. 1 for the same parameters, which perfectly concurs with the histogram of the data.

. Applications and impact

The applications of non-linear and non-white noise are many
nd very varied. From educational – generating noise that looks
ike e.g. financial data (as in Fig. 7 top-right) for the testing
f predictive AI algorithms – or as a source of high quality
oise for simulations or experiments (e.g. in electronics, optics,
hotosensitive chemical reactions, machine learning, etc. . . )
Another use – the one that inspired the writing of this

oftware – is to model many physical systems which exhibit
on-linear dynamics. The following examples show a variety of
ystems that exemplify the many uses of this source of noise in
hysics, climate science, biology, energy and other fields and how
t can be applied.

tochastic resonance

This is a phenomenon occurring in some nonlinear systems,
hereby enhancing the response to a weak external signal may
equire increasing the noise intensity. An often resorted-to mea-
ure is the signal-to-noise ratio at the input frequency ω (denoted
y R).
The main numerical and theoretical results are [17,18]: (1) for

ixed τ , the maximum R increases with decreasing q; (2) for given
, the optimal noise intensity (the one maximizing R) decreases
ith q and its value is approximately independent of τ ; (3) for

ixed noise intensity, the optimal value of q is independent of τ
nd in general turns out to be qop ̸= 1. A simple stochastic reso-
ance experiment with a non-Gaussian white noise [4] confirmed
ost of these predictions.

Brownian motors

A class of non-equilibrium systems with both potential tech-
nological applications and biological interest are the so called
‘‘ratchets", in which the breakdown of spatial and/or temporal
symmetry induces directional transport from which useful work
can be extracted. Their transport properties can be studied by
means of the Langevin equation

m
d2x
dt2

= −γ
dx
dt

− V ′(x) − F + ξ (t) + η(t), (10)

with m the particle’s mass, γ the friction constant, V (x) the
(sawtooth-like) ratchet potential, F a constant ‘‘load’’ force, and
ξ (t) the thermal noise, satisfying ⟨ξ (t)ξ (t ′)⟩ = 2γ Tδ(t − t ′).

The system is kept out of thermal equilibrium by the time-
correlated forcing η(t) (with zero mean), allowing to rectify the
motion. The q-dependence of the usual measures of performance
has been studied: the mean current J ≡ ⟨dx/dt⟩ and the efficiency
ε (the ratio of the work per unit time done against F , to the mean
power injected by η).

In the overdamped regime (m = 0, γ = 1), J is found to
grow monotonically with q whereas ε is maximized for some
1 < q < 5/3. For m ̸= 0, ratchets exhibit mass-separation
capabilities which are enhanced by non-Gaussian noise [19,20].
In [21], effects of biological and technological relevance have been
found in a model for the transport properties of motor proteins
when departing from Gaussian behavior: J is maximized not only
by an optimal noise intensity but also by an optimal q ̸= 1.
6
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Fig. 7. q-noise for (q = 1.3) (supra-Gaussian Behavior), and integration step h = 0.01. The top panels show a sample of the generated noise, for (left) τ = 1 s and
right) τ = 100 s. Notice that in the right figure the noise is not centered around zero as it is performing a very long excursion (larger than the sample) given
ts very high autocorrelation. Both histograms in the bottom panels show the same data, concurring with the sample on top-left. (τ = 1 s). Although the linear
istogram on the left, showing a bell-shaped distribution, could lead to suggest Gaussianity, the semi-logarithmic plot on the right, however, show a supra-Gaussian
ehavior. The dotted points curve shows the theoretical distribution as in Fig. 1 for the same parameters concurring perfectly with the histogram of the data.

.1. Resonant gated trapping

Stochastic resonance, which is essentially a threshold phe-
omenon, plays also a relevant role in ionic transport through cell
embranes. In [22], a ‘‘toy model’’ considering the simultaneous
ction of a deterministic and a stochastic external field on the
rapping rate of a gated imperfect trap, was studied by assuming
sallis’ noise with q < 1: the bounded character of the PDF
ontributed positively to the rate of overcoming the threshold,
nd such rate remained at about the same order within a larger
ange of values than if η had been a white noise.

oise-induced transition

A genetic model exhibiting a re-entrance from a disordered
tate to an ordered one, and again to a disordered state as τ varies
rom 0 to ∞ showed moreover a strong shift in the transition
ine, as q departed from q = 1. The transition was anticipated for
> 1, while it was retarded for q < 1 [23].

oise-induced phase transition

In fact fat-tail noise distributions (q > 1) counteract the effect
f self-correlation (namely, they advance the ordering boundary
s D is increased at constant coupling), and compact-support ones
q < 1) enhance it (they retard the ordering boundary). Particular
nterest rises the effect of (q < 1) multiplicative noise on the

susceptibility: it shifts from being larger on the ordering boundary
to being larger on the disordering boundary [24,25].

An example of this phenomenon can be found in climate
change. Many climatic ‘‘Tipping points’’ are, in fact, noise-induced
phase transitions whose forcing them (including astronomic, nat-
ural and antropogenic noise) are not necessarily Gaussian. An
‘‘Early Warning’’[26] system of tipping points should include sim-
ulation considering the non-gaussianity of the stochastic forcing.

Broad-spectrum energy harvesting

In piezoelectric energy harvesting from noise, a system obey-
ing a square-well potential can strongly profit from the large
correlated excursion occurring for q > 1 [27].

6. Conclusions

A lightweight software is presented that generates a class of
non-Gaussian, colored noise. This noise can be handily generated
during numerical experiments, or fed to experiments via an in-
terface. The software, alongside documentation, is provided on
the online repository Github including examples and unit test
results, with an open s ource license. Instances of noise-induced
phenomena arising when the system is submitted to (colored and
non-Gaussian) noise sources with Tsallis’ q-statistics, as applica-
tions, have been briefly explored. The above discussed results
7
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how that non-Gaussian noise can significantly change the sys-
em’s response in many noise-induced phenomena, as compared
ith the Gaussian case. Moreover, in all the cases presented
ere, the system’s response was either enhanced or altered in a
elevant way for values of q departing from Gaussian behavior.
n other words, the optimum response occurred for q ̸= 1.
learly, the study of the change in the response of other re-
ated noise-induced phenomena when subjected to such kind of
on-Gaussian noise will be of great interest.
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