
The Trinity Test: Workshop on Unified Notations for 
Practices and Pedagogies in Music and Programming 

 

Chris Nash 
Department of Computer Science and Creative Technology, University of the West of England, 

Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK 
chris.nash@uwe.ac.uk 

ABSTRACT 
This paper outlines a workshop to explore intersections of 
programming and music in digital notation. With the aid 
of the Manhattan music programming and sequencing 
environment (Nash, 2014), methods for representing both 
high-level processes and low-level data constructs in both 
domains will be explored and debated. The goal of this 
research is to establish ways of using music concepts to 
teach programming (and vice versa), working towards 
digital pedagogies and platforms supporting intrinsic 
motivation, virtuosity, and auto-didactic learning.  
   The proposed schedule begins with a presentation of 
findings from studies of both programming and music 
students, followed by an introduction to the Manhattan 
software, a sequencer supporting end-user programming 
(combining declarative and imperative programming 
idioms) for real-time manipulation of live music notation. 
The second half of the workshop invites participants to 
explore concepts in, and overlaps between, programming 
and music using the software (provided). Beginning with 
simple structured exercises and examples, the activities 
will proceed to freer exploratory design and experimenta-
tion, drawing on the participants’ backgrounds in music 
and programming. The workshop concludes with a dis-
cussion of conclusions and future directions for research. 

1. INTRODUCTION 
Programming and music are rewarding creative domains 
mediated by notation [1], yet each presents steep learning 
curves and high entry thresholds. In formal practice, 
initial progress often depends on a source of extrinsic 
motivation (e.g. a parent, teacher, or other external re-
ward), before the individual acquires the knowledge, 
confidence, and self-sufficiency to enable deeper learning 
and enjoyment; the pre-requisites of creativity. [2] 
   This workshop is designed to explore and develop con-
cepts and notations for teaching both music and pro-
gramming, considering aspects of programming language 
design and established practices in digital and traditional 
music. This proposal first sets out the background to the 
challenges faced by learners, educators and technologists, 
highlighting existing tools and pedagogies for end-user 
programming in music, before outlining a schedule based 
on discussion and hands-on experimentation with tools, 
such as the Manhattan environment. 

2. BACKGROUND 
Digital technologies to facilitate exploration and educa-
tion have become a popular topic of research in both 
music [3,4] and programming [5,6], where learning envi-
ronments seek to provide accessible, informative and 
enjoyable ways to explore and interact with concepts in a 
given domain. Notably, interest has recently been spurred 
by the recognition that existing school curricula do not 
provide a grounding in computer science principles. [7] 
   Programming languages provide a powerful tool for 
modeling and manipulating processes and ontologies in 
applied domains, but which students often find abstract 
and esoteric when taught without a practical context. [8] 
   Music, by contrast, is a notation-oriented domain that is 
appreciated by lay individuals, yet is becoming increas-
ingly accessible to amateurs through the advent of digital 
tools (notably, sequencers and DAWs of varying com-
plexity, from GarageBand to Ableton Live). This is not 
only attributable to improvements in usability and afford-
ability, but the provision of a rapid edit-audition cycle in 
these programs, which allows a user to easily experiment 
with manipulating the notation then quickly audition the 
result. This increases the liveness (see [9], c.f. [10]) of the 
user experience, while reducing the onus on literacy and 
complex thinking. [3] 
   Music can thus be seen as an accessible and enjoyable 
context for teaching programming, as successfully ex-
plored by Sam Aaron’s Sonic Pi project [6], which offers 
a cross-platform environment (supporting desktops and 
the Raspberry Pi) for live coding musical performance 
using a simple imperative-style interpreted language, 
connected to the SuperCollider engine. The tool exposes 
users – notably including secondary schools and other 
early- or non-programmers – to key coding concepts 
(such as expressions, variables, conditional statements, 
iteration, and functions), while also scaling to more elab-
orate generative applications of music. 
   Oriented around text-based generative algorithms, the 
challenge facing Sonic Pi lies in the integration with 
other established digital music workflows and main-
stream musical practice, as encapsulated in the notations 
and interfaces of music software such as sequencers and 
typesetters. In contrast to the imperative style of most 
programming languages, such editors are based around 
the arranging of notes across timelines and tracks (or 
parts), suggestive of a more declarative style of pro-
gramming, such as that seen in spreadsheets. [12] 
  Copyright © 2016 Chris Nash. This is an open-access article distributed 

under the terms of the Creative Commons Attribution License 3.0 
Unported, which permits unrestricted use, distribution and reproduction 
in any medium, provided the original author and source are credited. 



3. THE MANHATTAN PROJECT 
Manhattan [11] (see Figure 1) is an end-user program-
ming environment based around the soundtracker style of  
sequencer software, characterized by grids of music 
called patterns containing text cells specifying notes or 
other musical events. Playback steps row-by-row down 
the grid, analogous to a digital player piano or linear 
sequencer timeline viewed vertically. In Manhattan, the 
standard MIDI sequencing functionality is extended with 
the option to define cell contents using formulas, in a 
mode similar to popular spreadsheet programs, but which 
are then evaluated at playback moves through a song.  
   This imposes a sequential order of execution, where 
each formula affects the ‘state’ of the music (the contents 
or interpretation of the pattern), engendering an impera-
tive style of programming, but one where interaction is 
focused on editable musical data supporting aspects of 
declarative programming, and inheriting many of benefits 
that have made spreadsheets one of the more successful 
models of end-user programming. [12]  
   In the UI, the visibility of the data (music), rather than 
code (formulas), is prioritized, such that original se-
quencer-oriented user experience is unchanged, support-
ing traditional workflows, and the effect of code on data 
is apparent. [15] Like spreadsheets, users also have a 
scalable exposure to programming abstractions, where 
they can: avoid formulas entirely, in favor of more tradi-
tional sequencing interaction; insert occasional or simple 
expressions to script isolated dynamic behavior at points 
in a piece (e.g. conditional repeats, random elements); or 
use patterns of formulas to generate entire pieces (e.g. 
algorithmic music, minimalism, aleatoric music, etc.). 
The environment can run standalone or inside a VST/AU 
plugin (in a sequencer/DAW) to further facilitate integra-
tion with a user’s existing digital music practices. 
   Manhattan is being developed as part of a research 
project involving artists, universities, and schools that is 
looking at tools to support creative and pedagogical prac-
tices in both music and programming. At UWE Bristol, 
music students are taught to code in C/C++, but take time 
to appreciate the power and utility of programming, even 
in the context of music (e.g. handling MIDI) and audio 
(e.g. effects, synthesis, and DSP). Among other initia-
tives, Manhattan is being used in lessons to introduce 
students to abstract thinking and modeling processes, key 
concepts in both software development and composition.  

   Manhattan is also the basis for a project looking at 
virtuosity, peer competition, and serious games [13] in 
digital music, and their use to foster engagement with 
music and programming concepts. This aspect of the 
research builds on the established culture of notation-
focused virtuosity in tracker use (e.g. the defiant embrace 
of now obsolete technological limitations on expression, 
such as 4 note polyphony; see [14]), restricting users to a 
single looped pattern (e.g. 4 bars) of music and challeng-
ing them to craft Manhattan formulae to generate and 
manipulate the music to create longer, more dynamic, 
evolving and musically interesting performances. 

4. WORKSHOP OBJECTIVES 
The workshop is designed with the following objectives: 

• Discuss and debate practical applications of the in-
tersection between music and programming practice 
and related concepts in their notations. 

• Explore analogous concepts and processes in the 
syntaxes and semantics of music and programming. 

• Experiment with specific musical examples of pro-
gramming concepts using the Manhattan software. 

• Establish future directions and collaborations for 
continued research in end-user programming and 
digital pedagogies for music. 

5. SCHEDULE 
A draft progression for the workshop is as follows: 
12:30 – Welcome and Introductions (10m) 
Host and delegates introduce themselves, briefly describing 
their background and respective areas of interest or expertise. 
12:40 – Opening Remarks (20m, Chris Nash & Sam Aaron) 
Audio/visual presentation with live software examples (e.g. 
Manhattan and Sonic Pi), highlighting concepts, notations 
parallels, and usability issues in digital music practices or pro-
gramming languages, with reference to end-user computing. 
13:00 – Initial Questions / Discussion (15m) 
Open discussion amongst delegates of the issues raised in the 
opening presentation, specifically in the context of the dele-
gates’ own experiences and research interests. Used to help 
frame and guide subsequent interactive sessions. 
13:15 – Interactive Session 1 (Example Exercises, 45m) 
Structured exercises from provided materials, designed to intro-
duce delegates to the fundamentals of the Manhattan tool, while 
also providing specific examples of programming concepts  
(e.g. variables, arrays, iteration, functions, conditional state-
ments) presented in a practical musical context. 
14:00 – Interactive Session 2 (Experimentation, 45m) 
Drawing on and combining their own musical and programming 
experiences, delegates are invited to join one of two activity 
groups, both using Manhattan (or other tools, such as Sonic Pi) 
to experiment with new ideas: Group CM (Code to Music) 
discusses, explores, and develops musical expressions of ideas 
from programming or algorithmic / generative music; Group 
MC (Music to Code) explores the use of formulae to encapsu-
late traditional music practices, forms, or works (common prac-
tice music, MIDI arranging, electronic, folk and popular styles). 
14:45  - Closing Discussion (15mins) 
Brief review of issues and findings (or research questions) that 
emerged, and call for interest in further research / collaboration. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 – Manhattan: Trinity software 



6. INTENDED AUDIENCE 
As an exploration of end-user programming, no specific 
expertise is required. However, the workshop would 
particularly suit those with backgrounds, research inter-
ests or experience in: notation, composition (modern or 
common-practice), sequencing, programming (usage and 
semantics), pedagogy, virtuosity, live coding or usability.  

7. REQUIRED RESOURCES 
The workshop has no special requirements. Depending on 
attendance, it will require a single room with a capacity 
of 20-30, with tables arranged in a square. There should 
be a projector/screen with VGA or HDMI connection and 
a high-quality stereo system for computer audio (no PA is 
required). The ability to record the session is desirable, 
though this shall be managed by the workshop organiz-
ers, if facilities are not available in the room itself. 
   Participants are likely (and encouraged) to bring and 
use their own laptops, for which software will be supplied 
through USB sticks. Participants can retain the software. 
Workshop registration should indicate their preferred OS 
(OS X or Windows), or whether they need a computer to 
be provided. In the latter case, hosting in a computer lab 
may be helpful, though sharing machines is also possible. 
Access to WiFi (e.g. eduroam) is desirable. 
   If available, tea and coffee would be desirable in the 
corner of the room, for access throughout the workshop. 
No fee is required for participation in the workshop, un-
less deemed appropriate by the conference organizers. 

 
About the Organizers / Speakers 

Dr Chris Nash (principal organizer) is a professional 
programmer and composer – currently Senior Lecturer in 
Music Technology at UWE Bristol, teaching software 
development for audio, sound, and music (DSP, C/C++, 
Max/MSP). His research focuses on digital notations, 
HCI in music, virtuosity, end-user computing, systematic 
musicology, and pedagogies for music and programming.  

Dr Sam Aaron (guest speaker) is a musician, researcher, 
and developer at both Cambridge University and the 
Raspberry Pi Foundation. He is an expert in program-
ming language design and semantics, and creator of the 
Sonic Pi project, which uses music to engage children 
and other non-coders in programming. He is an active 
performing live coder, recently at Moogfest 2016. 

Sam Hunt (technical support, recorder) is a post-graduate 
researcher at UWE Bristol, currently completing a PhD in 
music content analysis and generative applications in 
digital music composition, supervised by Chris Nash. 

Dom Brown (technical support) is a post-graduate re-
searcher at UWE Bristol, currently completing a PhD in 
gestural interaction for music, supervised by Chris Nash. 
 
 

8. REFERENCES 
[1] L. Church, C. Nash, and A. F. Blackwell, “Liveness 

in notation use: From music to programming,” 22, 
2010, Proceedings of PPIG 2010, 2010, pp. 2-11. 

[2] M.A. Collins and T.M. Amabile. “Motivation and 
creativity,” in Handbook of Creativity (ed. R.J. 
Sternberg). Cambridge, UK: Cambridge University 
Press, 1999, pp. 297–312. 

[3] L. Scripp, J. Meyaard, and L. Davidson. “Discerning 
Musical Development: Using Computers to Disc-
over What We Know,” in J. of Aesthetic Education, 
vol. 22, no. 1, Uni. of Illinois Press, 1988, pp. 75-88. 

[4] H. Taube and A. Burnson, “Software to Teach 
Music Theory”, in Proceedings of the ICMC 2009, 
Montreal, Canada Aug. 16-21, 2009. 

[5] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and 
E. Eastmond. “The Scratch Programming Language 
and Environment,” in ACM Trans. Comput. Educ., 
vol. 10, no. 4, November 2010, pp. 16:1-16:15. 

[6] S. Aaron, A.F. Blackwell, and P. Burnard. “The 
development of Sonic Pi and its use in educational 
partnerships: co-creating pedagogies for learning 
computer programming”, in Live Coding in Music 
Education: Special Issue of The Journal of Music 
Technology and Education, 2016 (in press). 

[7] N. Brown, S. Sentance, T. Crick, and S. Humphreys. 
“Restart: The Resurgence of Computer Science in 
UK Schools,” in ACM Trans. Comput. Educ., vol. 1, 
no. 1 (January 2013), 2013, pp. 1:1-1:22. 

[8] A. Forte  "Programming for communication: 
Overcoming motivational barriers to computation 
for all",  in Human Centric Computing Languages 
and Environments, 2003,  pp. 285-286. 

[9] C. Nash, and A. Blackwell, “Liveness and flow in 
notation use,” Proc. of NIME 2012, 2012, pp. 28-33. 

[10] S.L. Tanimoto, “VIVA: A visual language for image 
processing,” in Journal of Visual Languages & 
Computing, vol.1, no.2, Elsevier, 1990, pp. 127-139. 

[11] C. Nash, “Manhattan: End-User Programming for 
Music,” Proc. of NIME 2014, 2014, pp. 28-33. 

[12] J.F. Pane and B.A. Myers. Usability Issues in the 
Design of Novice Programming Systems. Carnegie 
Mellon University, Technical Report CMU-CS-96-
132, 1995. 

[13] M. Zyda. "From visual simulation to virtual reality 
to games," Computer, vol.38, no.9, 2005, pp. 25-32.  

[14] C. Nash, and A. Blackwell, “Tracking virtuosity and 
flow in computer music,” Proc. of ICMC 2011, 
2011, pp. 572-582. 

[15] C. Nash, “The Cognitive Dimensions of Muisc 
Notations,” in Proc. of TENOR 2015, Paris, 2015. 


