
Manhattan:	Serious	Games	for	Serious	Music	
MET2016	Submission	for	Paper	
	
Dr	Chris	Nash	
Department	of	Computer	Science	and	Creative	Technologies,	
Faculty	of	Environment	and	Technology,	
University	of	the	West	of	England,	
Coldharbour	Lane,	Bristol,	UK	
BS16	1QY	
	

Email:	chris.nash@uwe.ac.uk	
Phone:	+44	(0)7962	180080	
	
Keywords	
music	education,	serious	games,	end-user	programming,	motivation,	notation,	
composition	
	
Abstract	
This	 paper	 details	 a	 digital	 platform	 designed	 for	 digital	 creativity,	 learning,	 and	 engagement	
with	 new	 concepts	 and	 aesthetics	 in	 both	 music	 and	 coding.	 An	 open	 online	 ecosystem	 is	
outlined,	 connecting	users	 for	 the	purposes	of	 collating,	 sharing,	 supporting,	 collaborating,	 and	
competing	with	works	combining	music	and	code	–	collectively	designed	to	tackle	both	intrinsic	
and	extrinsic	motivational	issues	in	both	the	learning	of	music	and	programming.		
			Developing	on	observed	practices	and	aesthetics	 in	digital	music	 subcultures,	 composing	and	
coding	 through	 a	 unified	 digital	 notation	 is	 fashioned	 as	 a	 ‘serious	 game’;	 composers	 compete	
against	themselves	or	others,	in	works	that	combine	creativity	and	virtuosity	in	music	and	code.	
Mechanisms	 for	 scoring	 pieces	 with	 respect	 to	 both	musical	 aesthetic	 (e.g.	 user	 reviews)	 and	
technique	(e.g.	code	complexity)	are	considered,	proposing	a	metric	that	rewards	conciseness,	in	
order	to	encourage	abstraction	and	pattern	recognition	in	both	music	and	code.	
			The	platform	develops	on	Manhattan	(Nash,	2014),	an	end-user	programming	environment	for	
music	composition,	based	on	a	text-based	pattern	sequencer,	using	a	grid/cell	formula	metaphor	
to	 integrate	 programming	 functionality.	 A	 rapid	 edit-audition	 cycle	 improves	 the	 liveness	 of	
notation	interaction,	facilitating	learning	and	experimentation.	Unlike	other	music	programming	
tools,	it	prioritises	the	visibility	and	editing	of	musical	data,	rather	than	code;	as	in	spreadsheets,	
users	 are	 able	 to	 engage	with	 code	 expressions	 as	much	 (or	 as	 little)	 as	 they	wish,	 offering	 a	
lower	 entry	 threshold	 and	 shallower	 learning	 curve	 for	 programming	 –	 plus	 a	 continuum	 of	
musical	applications	from	the	fixed,	structured	notation	of	music	(e.g.	MIDI	sequencing)	to	more	
dynamic	 and	 experimental	 elements,	 such	 as	 minimal	 (process-based)	 and	 algorithmic	
composition	techniques.	The	paper	provides	musical	examples	and	discusses	existing	use	of	the	
technologies	in	teaching,	with	reference	to	lessons	and	workshops	based	on	the	software,	as	well	
as	current	and	future	directions	for	the	research.	
	
	
	 	



The	 Manhattan	 project	 explores	 the	 use	 of	 technology	 in	 developing	 digital	
pedagogies	 that	 bridge	 learning	 in	 both	music	 and	 programming,	 through	 the	
development	 of	 a	 connected	 end-user	 programming	 environment	 for	 music	
composition.	The	approach	draws	upon	analogous	concepts,	issues	and	practices	
in	each	creative	domain,	including:	the	mediation	of	interaction	through	notation	
(the	 scripting	of	 future	behaviour);	high	 learning	 thresholds	 for	entry	 (notably	
literacy);	 extended	 learning	 trajectories	 that	 start	 with	 low-level	 knowledge	
(notes,	 syntax)	 and	 progress	 to	 more	 abstract	 concepts	 (harmony,	 processes,	
structure);	and	concomitant	challenges	in	maintaining	learner	motivation.	
			The	 aim	 of	 the	 research	 is	 to	 develop	 an	 integrated	 platform	 for	 musical	
creativity	 and	 learning,	 through	 engagement	 with	 programming	 concepts:	 to	
teach	programming	concepts	in	a	conventional	music	context;	to	explore	musical	
concepts	and	aesthetics	through	programming;	to	develop	critical,	abstract,	and	
analytic	thinking	skills	in	music	and	code;	and,	to	explore	models	of	virtuosity	as	
a	mechanism	for	intrinsic	and	extrinsic	motivation.		

	
Figure	1	–	Code	Formulae	for	Music,	in	Manhattan	

	
			The	research	is	based	on	the	development	of	Manhattan	(Figure	1;	Nash,	2014),	
a	software	ecosystem	that	 integrates	a	music	editor	 (sequencer)	with	end-user	
programming	 functionality	 (code	 formulas),	 enabling	 a	 scalable	 level	 of	
engagement	 with	 programming	 and	 a	 continuum	 from	 traditional	 composing	
styles	 (e.g.	 MIDI	 arrangement),	 to	 the	 incorporation	 of	 simple	 generative,	
dynamic,	 or	 reactive	 elements,	 through	 to	 process-based	 (e.g.	 minimal)	 and	
algorithmic	composition.	In	contrast	to	other	music	programming	tools,	the	user	
interface	 prioritises	 the	 visibility	 of	 the	 music	 (data)	 over	 code,	 which	 is	
integrated	using	a	spreadsheet	formula	metaphor.	In	this	model,	expressions	are	
situated	(hidden)	in	the	cells	of	the	sequencer	pattern	(a	musical	grid	with	time	
progressing	downwards)	 that	 define	how	events	 are	 created	 and	manipulated,	
using	 a	 mixture	 of	 simple	 maths,	 functions,	 and	 references	 to	 other	 cells	
(including	 past,	 present,	 or	 future	 notated	 events).	 In	 computing	 terms,	 this	
model	of	 interaction	combines	elements	of	declarative	programming	(coding	 in	
terms	 of	 what	 is	 output)	 and	 more	 traditional	 imperative	 styles	 (ordered	
sequences	 of	 instructions	 that	 define	 how	 it	 is	 output),	 which	 respectively	
improve	 the	 accessibility	 of	 the	 programming	 environment	 (cf.	 spreadsheets),	
while	 also	 enabling	 key	 concepts	 from	 common	 programming	 practice	 to	 be	
explored	 and	 applied	 (e.g.	 iteration,	 conditional	 statements,	 control	 flow,	
functions,	concurrency,	variables,	arrays,	pointers).	



	
Figure	2	–	Score	vs.	Tracker	Notation	(inset	with	effect	reference)	

			The	UI	 encapsulates	music	 in	 a	 text-based	 notation	 (Figure	 2),	 supported	 by	
rapid	 edit-audition	 cycles,	 designed	 to	 improve	 the	 conditions	 for	 intrinsic	
motivation	 (“flow”)	 by	 accelerating	 musical	 feedback:	 lowering	 the	 learning	
threshold,	 physically	 immersing	 the	 user	 in	music	 (sound),	 and	 increasing	 the	
“liveness”	of	 interaction	with	the	notation	through	the	computer	keyboard	(see	
Nash	and	Blackwell,	2014).	To	focus	users	on	composing	and	coding,	this	study	
uses	 a	 simplified	 version	 of	 the	 original	 software	 (dubbed	 “Trinity”,	 Figure	 3),	
removing	all	features	save	the	pattern	editor	(to	maintain	focus	on	the	notation),	
restricting	songs	to	a	single	looped	pattern	(encourage	code-driven	evolution	of	
pieces),	 and	 bundling	 a	 library	 of	 100	 high-quality	multi-sampled	 instruments	
(to	avoid	users	needing	to	source	or	configure	sound	sources).	
			Initial	 testing	 has	 been	 conducted	with	 individual	 composers	 and	 educators,	
using	early	feedback	to	refine	aspects	of	the	programming	language	(syntax	and	
semantics)	and	user	experience.	To	evaluate	the	flexibility	of	the	tool,	established	
musical	works	are	being	 implemented	 in	Manhattan	–	each	as	short,	minimally	
notated	 pieces	 of	 music	 that	 use	 code	 (formulas)	 to	 generate	 and	 evolve	 the	
notated	 musical	 data	 to	 engender	 significantly	 longer,	 more	 detailed,	 semi-
generative	performances	of	 familiar	pieces	 in	various	styles	(see	Table	1).	This	
growing	list	of	examples	highlights	concepts	of	abstraction,	process,	and	patterns	
in	music	(e.g.	musical	form,	theme	and	variation,	chaconne,	passacaglia,	etc.)	that	
can	 be	 explored	 through	 fundamental	 programming	 concepts	 of	 iteration	 and	
control	 flow	 (conditional	 branching).	 Emerging	 from	 these	 tests,	 a	 particular	
strength	of	 the	environment	 is	 the	 flexibility	 it	offers	 for	 integrating	generative	
elements	within	more	traditional	musical	forms,	structures,	and	arrangements.	

style	 piece	 music	concepts		 code	technique	
Minimalism	
	

Piano	Phase	(1967)		
by	Steve	Reich	

counterpoint,	phasing,		
process	music	

arrays	and	pointers,	
iteration	

	 Fratres	(1977-92)	
by	Arvo	Pärt	

harmony	(tintinnabuli),			
melodic	progression	

arrays,	iteration,	
conditions	

Popular	 Blue	Monday	(1983)		
by	New	Order	

progressive	house,		
repetition		

arrays,	iteration,		
conditions	

Baroque	 Canon	in	D		
by	Johann	Pachelbel	

canon,	chaconne,		
ground	bass	

arrays,	iteration	

Traditional	 12	Days	of	Christmas	 musical	form	
(cumulative	song)	

control	flow,	
conditions	

Table	1	–	Selected	musical	examples,	with	related	music	and	coding	concepts	



Figure	3	–	Trinity	UI,	featuring	
a	single	musical	grid	(pattern),	
pop-out	formula	editor	and	
integrated	learning	materials	
(tutorials,	examples,	help)	
	

	
	
	
	
	
	

			Combined	with	 simple	generative	exercises	 (such	as	 random	note	generation	
using	 pentatonic	 scales),	 such	 pieces	 form	 the	 basis	 of	 lessons	 and	 exercises	
designed	 for	 undergraduates	 on	UWE’s	music	 technology	 degree	 programmes,	
delivered	 in	 parallel	 with	 studies	 in	 music	 theory,	 composition,	 and	 software	
programming	 (Max,	C/C++).	 Initial	 demos	 and	previews	have	 received	positive	
feedback	from	students,	who	often	struggle	(or	lack	motivation)	in	programming	
classes;	exploring	coding	concepts	around	a	more	familiar	‘sequencing’	paradigm	
appears	 to	 make	 programming	 more	 accessible	 and	 less	 abstract.	 A	 broader,	
controlled	user	study	is	scheduled	for	February	2016,	based	on	classes	activities	
split	between	structured	exercises	and	exploratory	creativity	–	with	findings	to	
be	presented	at	MET	2016.	A	subsequent	conference	workshop	for	TENOR	2016	
(in	 Cambridge)	 will	 further	 explore	 the	 potential	 for	 the	 environment	 and	
project	from	the	perspective	of	researchers	and	educators,	ahead	of	classroom-
based	studies	in	local	Bristol	secondary	schools	in	2016/17.	
			The	 next	 phase	 of	 the	 project	 looks	 at	 extrinsic	 sources	 of	motivation,	 using	
online	connectivity	 for	sharing,	collaboration,	and	competition.	Collaboration	 is	
both	 synchronous	 (in	 realtime,	 through	 shared	 multi-user	 workspaces)	 and	
asynchronous	 (e.g.	 shared	 offline	 projects,	 including	 reprises,	 reversions,	 or	
remixes).	 Other	 users	 contribute	 support,	 advice,	 and	 feedback	 on	 both	music	
and	code	–	which	are	shared	in	open-source	works,	to	help	develop	a	repertoire	
of	pieces	that	act	as	 learning	resources.	Competitive	elements	such	as	rankings	
and	 tournaments	 are	 supported	 by	 simple	 metrics,	 based	 on	 user	 reviews	 of	
works	(a	consensual	subjective	aesthetic)	and	automated	analysis	of	music	and	
code	 complexity.	 To	 encourage	 individuals	 to	 consider	 abstractions	 of	 music	
processes	 and	 patterns,	 the	 length	 of	manually	 notated	music	 is	 limited	 (such	
that	musical	length	and	variation	arise	from	code-based	manipulation	of	music)	
and	 rankings	 use	 a	 reward	mechanism	 that	 balances	musical	 quality	 and	 code	
conciseness	 –	 a	 simple,	 practical	metric	 for	modelling	 ‘virtuosity’	 (~	perceived	
musical	quality	÷	music	and	code	complexity).		
			The	 mechanisms	 described	 here	 are	 designed	 to	 exploit	 aesthetics	 and	
practices	observed	in	amateur	digital	music	and	coding	cultures	(e.g.	the	“demo-
scene”),	 where	 artists	 and	 coders	 share	 and	 compete	 with	 digital	 art,	 whilst	
imposing	 artificial	 restrictions	on	 the	notation	 or	 techniques	 available	 to	 them	
(Nash	 and	Blackwell,	 2011).	As	 in	 the	 related	 community	 of	 video	 gamers,	 the	
challenges	and	 (possibly	 self-)competition	presented	by	 the	 technology	help	 to	
engender	 flow,	 keeping	 individuals	 engaged	 and	 motivated	 –	 and	 continually	
learning	 and	 developing	 their	 abilities.	 The	 Manhattan	 project	 is	 an	 effort	 to	
carry	such	motivational	mechanisms	to	other	areas	of	music	and	programming.	



References	
	

Nash,	C.	(2014).	Manhattan:	End-User	Programming	for	Music.	Proceedings	of	New	Interfaces	for	
Musical	Expression	(NIME)	2014.	June	30-July	4,	2014.	Goldsmiths,	London,	UK.	pp.	28-33.	
	

Nash,	C.	and	Blackwell,	A.F.	(2011).	Tracking	Virtuosity	and	Flow	in	Computer	Music.	Proceedings	
of	the	International	Computer	Music	Conference	(ICMC	2011).	July	31-August	5.	University	of	
Huddersfield,	West	Yorkshire,	UK.	International	Computer	Music	Association.	pp.	575-582.	
	

Nash,	C.	and	Blackwell,	A.	(2014).	Flow	of	creative	interaction	with	digital	music	notations.	In:	
Collins,	K.,	Kapralos,	B.,	and	Tessler,	H.	(Eds.),	The	Oxford	Handbook	of	Interactive	Audio	(pp.	387-
404).	New	York:	Oxford	University	Press.	
	


