
1558  |   	﻿�  J Appl Microbiol. 2022;132:1558–1572.wileyonlinelibrary.com/journal/jam

INTRODUCTION

Biofilms are complex communities of micro-organisms 
attached to biotic or abiotic surfaces, and are encased in a 
primarily self-produced extracellular matrix (Hall & Mah, 

2017; Roy et al., 2018), comprised of polysaccharides, pro-
teins, lipids and extracellular DNA (Vyas & Wong, 2016). 
Biofilm tolerance to antimicrobials has been widely re-
ported, whereby contributing mechanisms include anti-
microbial agent interaction with the extracellular matrix 

Received: 22 March 2021  |  Revised: 19 July 2021  |  Accepted: 13 September 2021

DOI: 10.1111/jam.15313  

O R I G I N A L  A R T I C L E

Real-time detection of volatile metabolites enabling 
species-level discrimination of bacterial biofilms associated 
with wound infection

Elisabeth A. Slade1   |   Robin M. S. Thorn1   |   Amber E. Young2   |    
Darren M. Reynolds1

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2021 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

1Centre for Research in Biosciences, 
University of the West of England, 
Bristol, UK
2Bristol Centre for Surgical Research, 
Population Health Sciences, Bristol 
Medical School, University of Bristol, 
Bristol, UK

Correspondence
Darren M. Reynolds, Centre for 
Research in Biosciences, Frenchay 
Campus, University of the West of 
England, Bristol BS16 1QY, UK.
Email: Darren.Reynolds@uwe.ac.uk

Abstract
Aims: The main aim of this study was to investigate the real-time detection of vol-
atile metabolites for the species-level discrimination of pathogens associated with 
clinically relevant wound infection, when grown in a collagen wound biofilm model.
Methods and Results: This work shows that Staphylococcus aureus, Pseudomonas 
aeruginosa and Streptococcus pyogenes produce a multitude of volatile compounds 
when grown as biofilms in a collagen-based biofilm model. The real-time detection 
of these complex volatile profiles using selected ion flow tube mass spectrometry and 
the use of multivariate statistical analysis on the resulting data can be used to suc-
cessfully differentiate between the pathogens studied.
Conclusions: The range of bacterial volatile compounds detected between the spe-
cies studied vary and are distinct. Discrimination between bacterial species using 
real-time detection of volatile metabolites and multivariate statistical analysis was 
successfully demonstrated.
Significance and Impact of the Study: Development of rapid point-of-care diag-
nostics for wound infection would improve diagnosis and patient care. Such tech-
nological approaches would also facilitate the appropriate use of antimicrobials, 
minimizing the emergence of antimicrobial resistance. This study further develops 
the use of volatile metabolite detection as a new diagnostic approach for wound 
infection.
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inhibiting penetration; slow growth rate resulting in re-
duced susceptibility; heterogeneous metabolism and the 
presence of persisters (Olsen, 2015). The concentration of 
antibiotics required to treat biofilm infections has been 
shown to be 100- to 1000-fold higher than the planktonic 
minimum inhibitory concentration; consequently, biofilm 
infections are likely to persist long term despite antibiotic 
treatment, potentially resulting in relapse after treatment 
is completed (Del Pozo, 2018; Hall & Mah, 2017).

The presence of bacterial biofilms within the wound 
bed has been observed in 78.2% of chronic wounds, and 
are thought to play a crucial role in delayed wound heal-
ing, the key characteristic of the chronic wound state 
(Malone et al., 2017). Biofilm infection stimulates a pro-
longed inflammatory response, resulting in an increase 
in wound exudate production, which, in turn, provides 
a source of nutrients to support the increasing bacterial 
population (Hughes, 2016).

Diagnosis of wound infection relies on the ability of 
clinicians to identify the clinical signs of infection, sup-
ported by the use of non-specific blood tests for markers of 
inflammation (Blokhuis-Arkes et al., 2015). The signs of 
infection include increased pain, an excessive or increased 
volume of exudate, localized heat and swelling, malodour 
and erythema (Hughes, 2016; Macgregor et al., 2008). 
There is no definitive test available to identify wound in-
fection, and microbiological wound cultures are employed 
to supplement clinical diagnosis and inform treatment at 
a later date (Blokhuis-Arkes et al., 2015; Greenhalgh et al., 
2007). However, the bacterial load or type detected cannot 
provide a diagnosis in itself and microbiological analysis 
should only be used to confirm the presence of pathogenic 
strains within the wound bed and establish antibiotic sen-
sitivities (Edwards & Harding, 2004; International Wound 
Infection Institute, 2016; Landis, 2008; Macgregor et al., 
2008; Sibbald et al., 2003). Diagnosis of wound infection is 
therefore still subjective, relying on the experience of the 
clinician and their interpretation of clinical symptoms, 
signs and laboratory test results. If the microbial burden 
of wounds is not adequately managed, then there is a risk 
of the development of sepsis. This is a serious complica-
tion and is the leading cause of mortality in patients with 
severe burn wounds (Ma et al., 2016; Patil et al., 2017; 
White et al., 2015). Sepsis-related deaths account for 50%–
84% of deaths in adult patients with severe burns and 55% 
of deaths in paediatric burns patients (Lopez et al., 2017).

Early management of clinically relevant wound infec-
tion is essential to minimize the risk of sepsis (Ma et al., 
2016; Patil et al., 2017; White et al., 2015). However, iso-
lation and susceptibility testing of infecting organisms 
can take several days, often resulting in the empirical pre-
scribing of antibiotics (Retamar et al., 2012). The UK gov-
ernment commissioned ‘O’Neill review’ on antimicrobial 

resistance (O’Neill, 2016) highlighted the common prac-
tice of empirical prescribing of antimicrobials as a major 
concern, leading to huge over-use of antibiotics, and con-
sequently contributing to rising antimicrobial resistance. 
The report recommends promoting development of new, 
rapid diagnostic techniques as a key strategy to overcome 
the unnecessary use of antimicrobials. Point-of-care di-
agnostics have the potential to revolutionize the manage-
ment and treatment of wound infections. For example, the 
ability to rule out infection would prevent over-use of an-
timicrobials when there is no clinical need, thereby help-
ing to reduce the emergence of antimicrobial resistance. 
In addition, early identification of the causative organism 
where an infection is identified, combined with knowl-
edge of local epidemiology, would expedite selection of 
the most appropriate drug, improving patient outcomes.

A novel approach to rapid wound diagnostics could be 
the use of microbial volatiles as a means of identification. 
Bacteria produce volatile compounds, that is, metabolites 
with a low molecular weight and high vapour pressure 
that are released into the surrounding environment. Over 
1000 bacterially derived volatile compounds have been 
described, with a single species capable of producing up 
to 80 different compounds (Audrain et al., 2015; Schulz 
& Dickschat, 2007). It is well known that metabolism of 
growth substrates (e.g. C, N, S) differs between bacterial 
species, due to the inherent variability in genomic ex-
pression of different metabolic pathways. However, this 
also results in the production of different volatile com-
pounds, the profiling of which has been shown to be 
species-specific in vitro (Chippendale et al., 2014; Thorn 
& Greenman, 2012; Thorn et al., 2011).

The use of bacterial volatile metabolites as a diagnostic 
tool has been previously demonstrated for lung infections 
(Dryahina et al., 2016; Fowler et al., 2015; Kramer et al., 
2015; Nizio et al., 2016; Purcaro et al., 2018), whereby re-
spiratory pathogens in vitro (Dryahina et al., 2016; Nizio 
et al., 2016; Purcaro et al., 2018) and in vivo (Fowler et al., 
2015; Lewis et al., 2017) were discriminated based upon 
the profile of volatile metabolites detected. Biofilm vola-
tiles have also been previously investigated, but primar-
ily in the field of oral microbiology, whereby malodour 
studies have focussed on volatile sulphur-compound-
producing species (Greenman et al., 2013; Krespi et al., 
2006; Washio et al., 2005) and the effects of oral malodour 
treatments (Greenman et al., 2013; Saad et al., 2012, 2013). 
Few studies exist in the current literature that are con-
cerned with the detection and analysis of wound volatiles. 
Thomas et al. (2010) used skin patches to collect volatile 
samples from chronic skin lesions and healthy skin, prior 
to GC-MS analysis. The authors found statistically signif-
icant differences between the volatile profiles of healthy 
skin compared to those of chronic wounds, but these 
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differences were not directly attributed to wound micro-
biology (Thomas et al., 2010). Recent research has demon-
strated the detection of volatile profiles for discrimination 
between pathogens associated with wound infection, in 
planktonic culture in vitro, using both complex culture 
media and a simulated wound fluid (Slade et al., 2017). 
Other recent research has demonstrated the detection of 
species-specific volatile profiles using GC-MS analysis of 
an ex vivo biofilm model (Ashrafi et al., 2018). However, 
this study used a static model system, utilizing complex 
growth media, and applied only limited statistical analysis 
on the resultant volatile data produced.

Gas chromatography mass spectrometry (GC-MS) is 
used extensively for the analysis of volatile compounds 
and combines chromatographic separation of analyte 
compounds with mass spectral analysis for identifica-
tion (Langford et al., 2014). Selected ion flow tube-mass 
spectrometry (SIFT-MS) facilitates real-time detection 
and quantification of volatile compounds in humid air 
samples, whereby reagent ions (H3O+, NO+ and O2

+) 
generated in a gas ion discharge source and selected by 
a quadrupole mass filter are injected into a fast flowing 
helium carrier gas in the reaction flow tube. The sample 
gas is introduced into a flow tube via a heated sample 
inlet, where chemical ionization occurs resulting in the 
production of characteristic product ions. Downstream, 
reagent and product ions are separated and counted by a 
further quadrupole mass spectrometer and electron mul-
tiplier detector system. Finally, absolute concentrations of 
trace gases can be quantified based on the ratios of ion 
count rates and the previously determined reaction rate 
constants contained within the integrated kinetics library 
(Smith & Španěl, 2011, 2015; Španěl et al., 2006).

GC-MS is considered the best analytical technique 
for the identification of volatile compounds, particularly 
in complex mixtures. However, GC-MS analysis can be 
time-consuming and requires pre-concentration of sam-
ples such as on solid phase micro extraction (SPME) fi-
bres or thermal desorption tubes (Shestivska et al., 2012; 
Zscheppank et al., 2014). In contrast, SIFT-MS analysis is 
a direct mass spectrometry technique, so does not require 
any sample preparation. However, SIFT-MS does have 
limitations for volatile analysis, for instance, in a mixture 
containing a range of analytes it is likely that a number of 
product ions may have identical masses, and so the reac-
tion with that particular reagent ion must be omitted from 
any calculation to derive analyte concentration (Langford 
et al., 2014). A combined approach, using GC-MS for reli-
able compound identification and SIFT-MS for real-time 
quantification, exploits the advantages of both techniques.

The main aim of this study was to determine whether 
three commonly isolated bacterial pathogens associated 
with clinically relevant wound infection (Staphylococcus 

aureus, Pseudomonas aeruginosa and Streptococcus pyo-
genes) could be successfully discriminated based on their 
production of volatile metabolites when grown in a colla-
gen wound biofilm model. The model described enables 
continuous supply of substrates for metabolism and re-
moval of waste products, resulting in steady-state micro-
bial biofilms which are more representative of the in vivo 
environment (Slade et al., 2019). Volatile analysis was un-
dertaken using SIFT-MS coupled with multivariate data 
analysis for the detection and discrimination of bacterial 
biofilms. The work presented here lays the foundations 
for the potential development of rapid point-of-care mi-
crobial diagnostics based on volatile detection, where bio-
films are known to be a significant cause of morbidity and 
mortality.

MATERIALS AND METHODS

Preparation and maintenance of bacterial 
cultures

Bacterial cultures were maintained on beads (Microbank; 
Pro Lab Diagnostics) at −80°C, resuscitated as required on 
Tryptone Soya Agar (Oxoid) or blood agar (Oxoid) and in-
cubated aerobically at 37°C. Working cultures were stored 
on sealed plates at 4°C. The following bacterial strains 
were used during this study: P. aeruginosa NCIMB 10548, 
NCIMB 8295 and ATCC 15442; Staph. aureus NCIMB 
6571, ATCC 6538 and a clinical strain of methicillin-
resistant Staph. aureus (obtained from Southmead 
Hospital); Strep. pyogenes NCTC 10881, NCTC 10874 and 
NCTC 10871.

Growth of bacterial biofilms in a collagen 
wound biofilm model

Biofilms were cultured for 48 h in a collagen wound bi-
ofilm model developed previously (Slade et al., 2019). 
A high concentration Type I collagen gel from rat tail 
(Corning Incorporated) was neutralized to pH 7 and di-
luted to 2.0  mg  ml−1 with simulated wound fluid (1:1; 
FBS: 0.1% peptone and 0.85% NaCl). Sterile microscope 
slides were coated with 1.5  ml of the resulting solution 
and allowed to polymerize at 37°C for 1 h.

Overnight plate cultures (18–24  h) were used to pre-
pare suspensions of the test organisms in 10 ml simulated 
wound fluid adjusted to an OD620nm of 0.20. One millili-
tre of each bacterial suspension was used to inoculate a 
collagen-coated microscope slide housed within a sterile 
Petri dish. The inoculated slides were incubated at 33°C 
for 2 h to allow adherence of organisms.
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Inoculated collagen-coated slides were aseptically 
transferred to the channels of the drip flow biofilm reactor, 
whereupon tubing from the media reservoir and to waste 
collection were connected and the reactor incubated at 
33°C for 48 h with a SWF flow rate of 2 ml h−1.

SIFT-MS analysis of bacterial biofilms

Volatile compounds were sampled from the headspace 
of drip flow biofilm reactor channels by connecting the 
heated direct sample inlet of the SIFT-MS instrument 
(Voice200Ultra; Syft Technologies) to the reactor chan-
nel via a 45 cm length of PEEK tubing (Supelco) of OD 
1/16 in. × I.D. 0.030 in. First, the SIFT-MS instrument 
was operated in Full Scan Mode (FS) using the H3O+ 
reagent ion and volatile compound product ion peaks 
detected over a spectrum range of 10–200  m/z. Three 
replicate scans were obtained from each biofilm sam-
ple and three independent biofilms of each strain ana-
lysed. Second, following GC-MS to identify compounds 
of interest, the SIFT-MS instrument was operated in 
selected ion mode (SIM). The H3O+, NO+ and O2+ rea-
gent ions were used to quantify the concentration of 
selected compounds in the bacterial biofilm headspace. 
Each biofilm sample was scanned for 60 s, resulting in 
a total of 12 replicate measurements per compound, 
and three independent biofilms of each bacterial strain 
were analysed.

HS-SPME-GCMS analysis of 
bacterial biofilms

Volatile compounds were sampled from the headspace 
of drip flow biofilm reactor channels by SPME using a 
75  µm Carboxen/Polydimethylsiloxane (CAR/PDMS) 
fibre assembly for 30  min at 33°C. After sampling, the 
fibre was retracted and transported in a sealed container 
to the GC-MS instrument and immediately inserted into 
the heated inlet. The GC (6890N; Agilent Technologies) 
was programmed with the following method: splitless in-
jection, inlet temperature held at 305°C, helium carrier 
gas flow rate 1 ml min−1, oven temperature programme 
set to 35°C for 3  min, then 4°C per minute ramp up to 
100°C followed by 8°C per minute ramp up to 300°C 
with a 5-min hold at the final temperature. A 25 m, 5% 
phenyl-methylpolysiloxane column (HP-5ms; Agilent 
Technologies) was used. The mass selective detector 
(5973 MSD; Agilent Technologies) was used in ‘Full Scan 
Mode’ to detect ions over a spectrum range of 15–400 m/z. 
Analysis software (Agilent MassHunter Workstation 
software) was used for compound identification using 

chromatogram deconvolution algorithms and comparison 
with the NIST2.0 library.

Data analysis

The FS datasets were generated by performing three repli-
cate scans of each biofilm sample and the SIM scans gen-
erated 12 replicate measurements per compound for each 
biofilm sample. The mean product ion intensities or com-
pound concentrations of these replicate scans were cal-
culated for each independent biofilm. Subsequently, the 
FS data were square root transformed and the SIM data 
subject to log base 10 (log10) transformation prior to the 
analysis described below. Log10 transformation is used to 
normalize skewed datasets. However, log10 transforma-
tion is not suitable for datasets that contain zero values, as 
was the case for the FS dataset here, so square root trans-
formation was used as an alternative.

To identify the SIFT-MS product ion peaks from the 
full scan data that are associated with species discrimina-
tion, a multivariate analysis of variance (MANOVA) was 
performed to identify product ion peaks with significantly 
different (p  <  0.01) peak intensities between species. 
Similarly, MANOVA was used to identify which com-
pounds from the SIM scan data were measured at signifi-
cantly different (p < 0.01) concentrations between species. 
The MANOVA was used to identify if differences in each 
product ion peak intensity or compound concentration 
were present between species, with the aim of identify-
ing product ion peaks or compounds suitable for target-
ing species discrimination. However, this approach did 
not identify between which species these differences were 
observed. Further analysis using hierarchical cluster anal-
ysis and principal component analysis (PCA) was then 
undertaken, using only the data for product ion peaks (FS) 
or compounds (SIM) identified as significantly different 
between species by MANOVA.

Hierarchical cluster analysis was used to identify 
groupings within each dataset, visualized by the produc-
tion of a dendrogram, which indicates the relationship 
between the clusters of samples. PCA was also used to 
facilitate simple visualization, transforming the variables 
to principal components, which retain the majority of the 
variability from the original dataset within the first few 
principal components. Plotting the scores for the sam-
ples against the first two principal components provides 
a two-dimensional summary of the data, which high-
lights grouping of samples. In addition, scatter plots of the 
loading of the original variables, on the first two princi-
pal components, indicate the influence of these variables 
within the model. Comparison of the two plots indicates 
the m/z peaks (FS) or compounds (SIM) that are most 
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important for separating the groups of samples (i.e. bac-
terial species).

Initial data processing was carried out using Microsoft 
Excel 2016 (Microsoft Corporation) and MANOVA, hi-
erarchical cluster analysis and PCA utilized IBM SPSS 
Statistics versions 25 (IBM Corporation).

See supporting information (Figure S1) for a flow dia-
gram of the methodology and statistical analysis.

RESULTS

Full scan SIFT-MS analysis of biofilm 
samples

Figure 1 shows the dendrogram generated to visualize hi-
erarchical cluster analysis of the FS SIFT-MS analysis of 
bacterial biofilms. The dendrogram shows clear discrimi-
nation between Staph. aureus, Strep. pyogenes and P. aer-
uginosa biofilms at a species level, based on the profile of 
the 59 product ion peaks selected using MANOVA.

Figure 2a shows a scatter plot of the scores for each 
independent biofilm against the first two principal com-
ponents generated from PCA of the 59 product ion peaks 
selected using MANOVA. The first two principal compo-
nents account for a total of 80.3% of the variability within 
the original dataset. The scatter plot (Figure 2a) shows 
clear discrimination between Staph. aureus, Strep. pyo-
genes and P. aeruginosa biofilms. However, inclusion of 
the controls (uninoculated) shows substantial overlap be-
tween Strep. pyogenes biofilms and the control samples. 
Figure 2b shows the loading of each of the original vari-
ables (SIFT-MS product ion peaks) on the first two prin-
cipal components and indicates the influence of each of 
these variables on the positioning of the samples in Figure 
2a. Only three product ions are located within the region 
of the plot associated with the position of Strep. pyogenes 
and the uninoculated controls (60, 67 and 196 m/z). Eight 
product ions (28, 29, 50, 95, 96, 97, 98 and 115 m/z) influ-
ence the position of P. aeruginosa on the PCA plot, while 
up to 41 product ions are involved in determining the po-
sition of the Staph. aureus biofilms.

Although the first two principal components account 
for the majority (80.3%) of the total variation within the 
dataset of 59 selected product ions, the inclusion of the 
third principal component increases this further (by 
3.67%) and allows for a 3D plot of the first three compo-
nents to be constructed. Figure 3 shows a plot of only the 
second and third principal components, showing that the 
Strep. pyogenes and control samples can clearly be differ-
entiated. Figure 3b suggests that the product ions most 
significantly influencing the positioning of Strep. pyogenes 
on the PCA plot are 26, 30, 60, 144, 161, 175 and 196 m/z 

and that 43, 65, 66, 67 and 93 m/z have the strongest influ-
ence on the positioning of the control samples.

HS-SPME-GCMS analysis of 
biofilm samples

Table 1 lists the compounds identified in the headspace 
of bacterial biofilm samples by GC-MS using the chroma-
togram deconvolution function within the Agilent mass 
hunter software followed by comparison with the NIST 
2.0 library. Alongside the general compound information, 
the SIFT-MS product ions used for subsequent quantifi-
cation of each of the compounds by SIFT-MS are listed. 
Following identification of compounds of interest using 
HS-SPME-GCMS, SIFT-MS analysis using SIM was per-
formed on three independent biofilm samples of each 
strain of bacteria used in the study, to enable quantifica-
tion of the compounds listed in Table 1. In addition to the 
17 compounds identified using GC-MS, hydrogen cyanide 
and ammonia were also included in the SIFT-MS SIM 
scan analysis, due to consistent reporting in the literature 
of the importance of these compounds as potential bio-
markers of P. aeruginosa (Gilchrist et al., 2013; Neerincx 
et al., 2016; Smith et al., 2013). In addition, we have previ-
ously detected both hydrogen cyanide and ammonia from 
P. aeruginosa biofilms cultured in the collagen wound bio-
film model throughout biofilm growth and development 
(Slade et al., 2019). Hence, 19 compounds in total were 
included for quantification using SIFT-MS SIM scans.

Selected ion mode SIFT-MS analysis of 
biofilm samples

Of the 19 compounds quantified from bacterial bio-
films using SIFT-MS SIM analysis, eight were found 
to differ significantly (p  <  0.01) between bacterial spe-
cies using MANOVA. These were hydrogen cyanide, 
dimethyl sulphide, acetaldehyde, 3-methyl-1-butanol, 
2,3-buanedione, 2-methyl-2-propanol, 2-methylbutanal 
and 3-methylbutanal. Hierarchical cluster analysis was 
applied to the data from these eight volatiles alone, result-
ing in the dendrogram shown in Figure 4. The dendrogram 
shows clear discrimination between Staph. aureus, Strep. 
pyogenes and P. aeruginosa biofilms based on SIFT-MS 
quantification, using these eight identified volatile com-
pounds, detected in the sample headspace after 48  h of 
continuous culture in the collagen wound biofilm model.

Principal component analysis was used to transform 
the dataset (eight selected volatile compound concen-
trations) to principal components, with the inclusion of 
data from SIFT-MS SIM analysis of uninoculated controls. 
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Figure 5a shows the scatter plot of the scores of each bacte-
rial biofilm and the uninoculated controls against the first 
two principal components. Principal components 1 and 2 
account for a total of 89.7% of the variability within the 
dataset of the eight selected volatile compounds. Figure 
5a shows that all P. aeruginosa biofilms occupy a discrete 
region of the two-dimensional plot, and one outlier of the 
Strep. pyogenes biofilm samples appears within the area of 
the plot otherwise occupied by Staph. aureus. As with the 
analysis of the FS data above, there is also overlap between 
Strep. pyogenes biofilms and the ‘background’ volatile 

compounds detected from uninoculated controls. Figure 
5b shows the loading of the eight quantified volatile com-
pounds on the first two principal components and indi-
cates the influence of the production of these compounds 
on the position of the biofilm samples on the scatter plot 
shown in Figure 5a. The presence of dimethyl sulphide 
and hydrogen cyanide seems to most significantly in-
fluence the position of the P. aeruginosa samples on the 
PCA plot, while the presence of 3-methyl-1-butanol, 
2,3-butanedione, 2-methyl-2-propanol, 2-methylbutanal, 
3-methylbutanal and acetaldehyde appears to influence 

F I G U R E  1   Dendrogram generated by hierarchical cluster analysis using 59 selected headspace volatile product ion peaks (√cps), 
detected by SIFT-MS following 48 h of continuous culture in the collagen wound biofilm model (n = 3 biofilms per strain, with three 
replicate scans per biofilm). Coloured boxes indicate species-specific clustering. Pseudomonas aeruginosa (green), Staphylococcus aureus 
(pink), Streptococcus pyogenes (orange)
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the positioning of Staph. aureus biofilm samples. The 
absence of these compounds from the headspace of the 
Strep. pyogenes samples and controls is the most probable 
cause of the positioning of these samples on the PCA plot 
in Figure 5a.

Figure 6 shows an additional scatter plot which vi-
sualizes the scores of the Strep. pyogenes and Staph. 
aureus biofilms and controls, against the second and 
third principal components, with principal compo-
nent 3 accounting for 5.45% of the variation within the 
dataset. Figure 6 shows that Strep. pyogenes and Staph. 
aureus separate on the third principal component, but 
that there is still overlap between Strep. pyogenes and 
the controls when the third principal component is 
employed.

DISCUSSION

The aim of this work was to determine whether three im-
portant bacterial pathogens associated with clinically rel-
evant wound infection, Staph. aureus, P. aeruginosa and 
Strep. pyogenes, could be successfully discriminated based 
on their production of volatile metabolites when grown 
in a collagen wound biofilm model. We have successfully 
demonstrated that all three species could be differentiated 
using their characteristic volatile profiles when detected 
by SIFT-MS FS and SIM scans (following compound iden-
tification using GC-MS) when combined with the use of 
multivariate statistical analysis.

For data analysis, MANOVA was applied to select prod-
uct ions from the mass spectral range (10–200 m/z) scanned 

F I G U R E  2   (a) Plot of the scores 
of the first two principal components 
generated by principle component 
analysis of SIFT-MS full scan data of 
selected headspace volatiles product 
ion peaks of bacterial biofilms and 
uninoculated controls (n = 3 scans 
per sample). Principal component 1 
(horizontal axis) accounts for 57.7% of 
the total variation in the original dataset 
and principal component 2 (vertical 
axis) accounts for 22.6% of the total 
variation. Pseudomonas aeruginosa 
(green), Staphylococcus aureus (pink), 
Streptococcus pyogenes (orange), control 
(blue). (b) Principal component analysis 
(PCA) loading plot of selected m/z peaks. 
Data points indicate the loading of each 
m/z peak (variable) on the first two 
principal components generated from 
the PCA
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using SIFT-MS in full scan mode. This resulted in the se-
lection of 59 product ions peaks (p < 0.01). Hierarchical 
cluster analysis of this data shows clear species-specific 
clustering of Staph. aureus, P. aeruginosa and Strep. pyo-
genes biofilms. The dendrogram shown in Figure 1 does 
not indicate any differences between the different strains 
of each species analysed. However, MANOVA was used 
to specifically target product ion peaks likely to drive dis-
crimination between species, and direct observation of 
the scores within the dissimilarity matrix (not shown) 
suggests that there are small differences between samples 
that are not resolved. Incorporating controls into the PCA 
demonstrates that all three pathogens could be discrimi-
nated from background ‘control’ volatiles produced by the 
collagen model system.

HS-SPME-GC-MS was used to identify compounds in the 
bacterial biofilm headspace that may be responsible for the 
product ion peaks detected using SIFT-MS in full scan mode. 
In all, 17 compounds were identified from the headspace of 
the three species included in this work. Other studies (see 
Table 1) have previously reported the detection of these 
compounds in the headspace of bacterial cultures (Filipiak 
et al., 2012; Shestivska et al., 2012; Thorn et al., 2011). The 17 
compounds identified by GC-MS included five alcohols (eth-
anol, 1-butanol, isobutyl alcohol, 2-methyl-2-propanol and 
3-methyl-1-butanol). Ethanol and 1-butanol are produced 
by fermentation of carbohydrates (Thorn & Greenman, 
2012) and the branched alcohols are thought to arise from 
the catabolism of branched amino acids (Audrain et al., 
2015). Four aldehydes (acetaldehyde, 2-methylpropanal, 

F I G U R E  3   (a) Plot of the scores 
of the second and third principal 
components generated by principle 
component analysis of SIFT-MS full scan 
data. Streptococcus pyogenes (orange) and 
control (blue) only are shown. The second 
principal component accounts for 22.6% 
and the third components accounts for 
3.67% of the total variation of the original 
dataset. (b) Principal component analysis 
(PCA) loading plot of selected m/z peaks. 
Data points indicate the loading of each 
m/z peak (variable) on the second and 
third principal components generated 
by PCA
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2-methylbutanal and 3-methylbutanal) and four ke-
tones (acetone, acetoin, butanone and 2,3-butanedione) 
were also identified by GC-MS. Catabolism of the amino 
acid leucine gives rise to 3-methylbutanal and the alco-
hol 3-methyl-1-butanol (Filipiak et al., 2012). Catabolism 
of pyruvate produces acetaldehyde, acetone and acetoin 
(Filipiak et al., 2012), and oxidation of acetoin results in 
2,3-butanedione production (Audrain et al., 2015). The 
carboxylic acid, 3-methylbutanoic acid, identified by GC-
MS, is also produced during catabolism of pyruvate, either 

from oxidation of 3-methylbutanal or using an alternative 
pathway via the intermediate isovaleryl-CoA (Filipiak et al., 
2012). It is suggested that bacterial production of butane 
may involve cysteine, but the role of this and other amino 
acids in volatile hydrocarbon synthesis remains unknown 
(Ladygina et al., 2006). The sulphur compounds detected, 
dimethyl sulphide and dimethyl disulphide, result from oxi-
dation of methanethiol, which is itself produced from bacte-
rial catabolism of methionine (Audrain et al., 2015; Filipiak 
et al., 2012).

F I G U R E  4   Dendrogram generated by hierarchical cluster using eight selected headspace volatile compound concentrations (ppb), 
detected by SIFT-MS following 48 h of continuous culture in the collagen wound biofilm model. (n = 3 biofilms per strain, with 12 replicate 
scans per biofilm). Coloured boxes indicate species-specific clustering. Pseudomonas aeruginosa (green), Staphylococcus aureus (pink), 
Streptococcus pyogenes (orange)

squared euclidean distance
2520151050

SA NCIMB 6571

SA NCIMB 6571

SA NCIMB 6571

SA ATCC 6538

SA ATCC 6538

SA ATCC 6538

SP NCTC 10874

SP NCTC 10874

SP NCTC 10871

SP NCTC 10881

SP NCTC 10881

SP NCTC 10874

SP NCTC 10871

SP NCTC 10881

SP NCTC 10871

PA NCIMB 10548

PA NCIMB 10548

PA NCIMB 10548

PA ATCC 15442

PA ATCC 15442

PA ATCC 15442

PA NCIMB 8295

PA NCIMB 8295

PA NCIMB 8295

SA MRSA

SA MRSA

SA MRSA



1568  |      METABOLITE DETECTION FOR DIFFERENTIATING BIOFILMS

In addition to the compounds identified by GC-MS, 
ammonia and hydrogen cyanide were included for further 
analysis of bacterial biofilm headspace using SIFT-MS 
SIM scans. These compounds have both previously been 
detected from the headspace of P. aeruginosa, both in liq-
uid cultures and in vivo (Gilchrist et al., 2013; Neerincx 
et al., 2015; Smith et al., 2013), with the suggestion that 
they may be important markers of P. aeruginosa infection. 
Hydrogen cyanide is generated through decarboxylation 
of glycine by the membrane bound HCN synthase enzyme 
in P. aeruginosa (Blumer & Haas, 2000), and ammonia is 
produced by the metabolism of nitrogen containing com-
pounds, including hydrogen cyanide and amino acids 
(Neerincx et al., 2015).

Previously, studies using SPME have suggested that 
interaction and competition between compounds in com-
plex mixtures can result in displacement of low molecular 
weight compounds, by those of higher molecular weights, 
which can result in under detection of low molecular 

weight compounds (Murray, 2001). This may explain why 
ammonia (17 Da) and hydrogen cyanide (28 Da) were not 
detected during GC-MS analysis of P. aeruginosa biofilms, 
but quantification of these compounds was possible using 
SIFT-MS SIM scans. Of the 17 compounds detected by 
GC-MS, acetaldehyde has the lowest molecular weight at 
44  Da, giving rise to a SIFT-MS product ion peak of 45 
m/z when using the H3O+ reagent ion. However, the 59 FS 
SIFT-MS product ions selected using MANOVA included 
seven product ion peaks between 26 and 44 m/z suggest-
ing additional discriminant compounds of lower molecu-
lar weight may be present within the biofilm headspace. 
One of these product ions, 28 m/z may result from the 
production of hydrogen cyanide and is seen at high inten-
sities (cps) in the headspace analysis of all three strains of 
P. aeruginosa when observing the raw data (not shown).

Figure 5 shows that of the eight compounds selected 
using MANOVA, hydrogen cyanide and dimethyl sulphide 
are driving the position of P. aeruginosa on the associated 

F I G U R E  5   (a) Plot of the scores 
of the first two principal components 
generated by principle component 
analysis of SIFT-MS SIM scan data of 
selected headspace volatile compound 
concentrations (ppb) of bacterial biofilms 
and uninoculated controls (n = 3 scans 
per sample). Principal component 1 
(horizontal axis) accounts for 63.6% of 
the total variation in the original dataset 
and principal component 2 (vertical 
axis) accounts for 26.1% of the total 
variation. Pseudomonas aeruginosa 
(green), Staphylococcus aureus (pink), 
Streptococcus pyogenes (orange), control 
(blue). (b) Principal component analysis 
(PCA) loading plot of selected m/z peaks. 
Data points indicate the loading of each 
m/z peak (variable) on the first two 
principal components generated from 
the PCA
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PCA plot. Both of these compounds have been identified 
and quantified in the headspace of P. aeruginosa culture 
in a previous study (Shestivska et al., 2012) which used 
a similar approach, combining GC-MS and SIFT-MS for 
the analysis of P. aeruginosa cultured using liquid and 
solid media. In addition, hydrogen cyanide production by 
P. aeruginosa has been widely reported in the literature 
(Askeland & Morrison, 1983; Castric et al., 1979; Gilchrist 
et al., 2011, 2013; Neerincx et al., 2015; Smith et al., 2013).

The six compounds driving the position of Staph. 
aureus on the PCA plot (Figure 5) are as follows: 
2-methyl-2-propanol, 3-methyl-1-butanol, acetaldehyde, 
2-methylbutanal, 3-methylbutanal and 2,3-butanedione. 
This suggests high levels of production of these com-
pounds from this particular species. Acetaldehyde and 
2-methylbutanal have been detected in the headspace of 
Staph. aureus liquid cultures in previous studies using 
SIFT-MS (Chippendale et al., 2011; Thorn et al., 2011), 
and 2-methyl-1-propanol, 3-methyl-1-butanol, acetalde-
hyde, 3-methylbutanal and 2,3-butanedione have been 
detected from Staph. aureus cultures by GC-MS (Filipiak 
et al., 2012). Catabolism of pyruvate and leucine gives 
rise to several of the compounds responsible for the dis-
crimination of Staph. aureus from the other two species: 
3-methylbutanal and 3-methyl-1-butanol from leucine, 
and acetaldehyde and 2,3-butanedione from pyruvate.

Within the Staph. aureus clusters in both Figures 4 and 
5, there appears to be a sub-group containing the Staph. 
aureus NCIMB 6571 biofilms. Scrutiny of the raw data 
(not shown) indicates that this strain of Staph. aureus 

produced several compounds at greater concentrations (by 
an order of magnitude) than the other strains. For exam-
ple, 2-methylbutanal, which has been previously reported 
in the headspace of Staph. aureus cultures (Filipiak et al., 
2012; Thorn et al., 2011) was measured at >1000 ppb for this 
strain, compared to between 40 and 110 ppb for the other 
two strains of Staph. aureus. Although the compounds 
produced by the three stains of Staph. aureus are similar, 
there appears to be differences in the level of production 
between strains, which is likely to drive the presence of this 
sub-group within the analysis. This suggests strain to strain 
variation in the activity or production of the metabolic en-
zymes responsible for generating these metabolites.

There is considerable overlap between Strep. pyogenes 
and uninoculated controls in Figure 5, but unlike the 
FS dataset, plotting the second and third principal com-
ponents does not aid discrimination of S. pyogenes. This 
suggests that use of the specific volatile compounds iden-
tified within this work may not enable the discrimination 
of Strep. pyogenes from uninoculated controls. However, 
successful discrimination between Strep. pyogenes and 
controls within the FS dataset suggests that this may be 
possible if additional discriminatory compounds can be 
identified. Optimization of the GC-MS methodology, in-
cluding the use of a variety of SPME fibre materials, may 
facilitate identification of additional compounds.

A previous study investigated volatile metabolites pro-
duced by Staph. aureus and P. aeruginosa cultured in TSB 
using SPME GC-MS (Filipiak et al., 2012). The authors iden-
tified a number of compounds from Staph. aureus that were 
detected in the current study, including 3-methylbutanal, 
2-methylpropanal, 3-methyl-1-butanol, 2,3-butanedione, 
3-methylbutanoic acid and acetaldehyde (Filipiak et al., 
2012). However, they also report many other compounds 
detected from both Staph. aureus and P. aeruginosa that 
were not detected in the current study. Previously, GC-MS 
has been used to investigate the effect of culture media 
and SPME fibre material on the compounds detected from 
Staph. aureus cultures (Tait et al., 2014). Of the compounds 
detected in the current study, only 3-methyl-1-butanol was 
detected from cultures of Staph. aureus in all three culture 
media used, and 3-methylbutanal detected using just one 
type of culture media. Overall, both culture media and 
SPME fibre material had a significant effect on the com-
pounds detected (Tait et al., 2014).

A recent biofilm study (Ashrafi et al., 2018) used GC-MS 
to identify volatile metabolites from Staph. aureus, P aeru-
ginosa and Strep. pyogenes cultured using a human skin 
biofilm model. Some of the same compounds found in the 
current study were identified, including 3-methylbutanal 
from Staph. aureus and hydrogen cyanide from P. aeru-
ginosa. Identification of ethanol exclusively from Strep. 
pyogenes biofilms was also reported, whereas ethanol was 

F I G U R E  6   Plot of the scores of the second and third principal 
components generated by principle component analysis of 
SIFT-MS full scan data of selected headspace volatile compound 
concentrations (ppb). Showing Staphylococcus aureus (pink) 
Streptococcus pyogenes (orange) and control (blue) only. Principal 
component 2 accounts for 26.1% of the variation within the original 
dataset, while the third components account for 5.45% of the 
variation
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detected from all three species within the current study. 
The investigators also reported a number of compounds 
that were not detected in the current study. These in-
cluded 2-nonanone and 5-methyl-2-hexanone from P. 
aeruginosa, 1-undecene from both P. aeruginosa and S. 
pyogenes, and pentanal from Staph. aureus (Ashrafi et al., 
2018). A plausible reason for these differences is the vary-
ing culture conditions and analysis methods employed. 
Although this previous study and the current study anal-
ysed the volatile metabolites released from biofilms of the 
same three species of wound-associated bacteria, there 
are distinct differences between the biofilm models used. 
The collagen wound biofilm model used in the current 
study utilizes continuous perfusion of simulated wound 
fluid to facilitate culture of reproducible steady-state bio-
films (Slade et al., 2019). Whereas in the previous study, 
human skin was used to provide a representative matrix 
for biofilm growth within a static model. This would re-
sult in accumulation of waste products within the model 
which were not accounted for. In addition, the use of com-
plex culture media provides a less representative nutrient 
source (Ashrafi et al., 2018) which, in turn, impacts on the 
quantity and/or type of metabolites produced.

This study has demonstrated that biofilms of three 
clinically significant pathogens associated with causing 
wound infection (Staph. aureus, P. aeruginosa and S. pyo-
genes) can be differentiated based on real-time volatile 
analysis when cultured in a collagen wound biofilm model. 
Importantly, a comparison of this study with the literature 
clearly demonstrates that there is a large variation in the 
range of bacterial volatile compounds detected, depen-
dent on both culture conditions and the analysis method 
used. However, by using volatile profiling of a select suite 
of volatiles, differentiation is clearly achievable, as evi-
denced here. Further studies are required to investigate 
the production of volatiles under a range of physiological 
conditions (e.g. varying substrate utilization and growth 
rate), which is achievable using the collagen wound bio-
film model. This would enable a true understanding of the 
conceivable microbial repertoire of volatile metabolites 
produced by a given species, including strain to strain vari-
ations. In addition, further work should be undertaken on 
a greater diversity of microorganisms (in mono and mixed 
culture), including a range of clinical isolates showing 
antimicrobial resistance or sensitivity. With additional 
sampling and targeted analysis, it may also be possible to 
identify differences in the volatile profiles of sensitive and 
resistant strains to facilitate real-time identification of an-
timicrobial susceptibility (Hewett et al. 2020). Ultimately, 
translation of these findings into clinical practice will 
require an understanding of both the microbial volatiles 
produced within the real wound environment and the 
background volatiles produced by the host (under both 

healthy and disease conditions). This would help facilitate 
the future translation of these study findings into clinical 
practice, either through gas-sampling of wounds coupled 
with a centralized analysis facility, or more likely, the de-
velopment of a suitable low-cost technology platform to 
allow detection and interpretation of volatile signatures 
at the bedside. The potential application of this approach 
within real-world scenarios has recently been demon-
strated using low-cost commercially available gas sensors, 
which were shown to differentially respond to volatiles 
produced by seven different bacterial species, including P. 
aeruginosa (Salinas Alvarez et al. 2019). Therefore, devel-
opment of this approach in combination with additional 
volatile compound profiling could produce a diagnostic 
tool comprised of a gas sensor array targeted to respond to 
volatile compounds identified specifically for discrimina-
tion between species. The resulting diagnostic tool would 
require in vitro validation against a wide range of clinical 
microorganisms and strains associated with wound infec-
tion, followed by real-world trials in the clinic.
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