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Flexibility in MOFs: do scalar and group-theoretical 

counting rules work? 

A. Marmiera‡ and K.E. Evansa 

We investigate the ability of counting rules drafted from engineering to predict the flexibility or rigidity 

of bar-and-joint or body-and-joint assemblies representing metal organic frameworks. We show that 

while scalar counting rules are not reliable, group-theoretical approaches are able to disentangle 

mechanisms from states of self-stress and to predict the existence of flexible mechanisms. We give 

several detailed examples of such calculations, highlighting the fact that behind an abstract exterior 

they are in fact easy to apply and similar to the method used to obtain molecular vibrations. We also 

correct a slight misinterpretation of the rigidity of IRMOF-1.   

1 Introduction 

The concept of flexibility, when associated with hybrid 

frameworks, remains ill-defined and often means different 

things to different researchers. In this study we focus on the 

flexibility of underlying frameworks composed of mechanical 

objects such as bodies, bars and joints, representing the linkers 

and Secondary Building Units (SBUs) of a hybrid crystal. Our 

main aim consists in applying several flavours of counting 

rules, from simple (but subtle) scalar versions to powerful 

group-theoretical formulations in order to determine whether 

they can reliably be applied to determine flexibility. Using 

counter-examples, we prove that the simpler scalar counting 

rules do not work for 3 dimensional (3D) metal organic 

frameworks (MOFs) because the underlying frameworks are 

highly over-constrained and the number of states of self-stress 

conceals the number of mechanism. On the other hand, we 

apply symmetry extended versions of the counting rules to two 

MOFs (IRMOF-1 –MOF5– known to be rigid, the other a body 

centred cubic net known to be flexible) and show that this 

method can correctly predict flexibility and rigidity for MOFs. 

Whether a MOF is rigid or flexible is important for several 

applications. In some cases, for instance in order to control the 

release of bio-active drugs1, flexibility is essential to tailor 

diffusion. In other cases, for instance gas storage2 or capture3, 

flexible materials with associated low stiffness will undergo 

cyclical load/unload strains and are likely to fail by fatigue 

mechanisms. 

The next section discusses several concepts of flexibility, and 

some elements of reticular chemistry. Section 3 introduces the 

formalism for flexibility of frameworks, starting with the 

simpler scalar counting rules, and incorporating several subtle 

aspects that we have not seen in prior works. In this section, we 

also consider periodic extensions to the scalar counting rules, 

introduce two test cases and conclude that scalar counting rules 

are not applicable. In section 4, we describe the basics of the 

symmetry extended extensions of the counting rules, and show 

that they correctly predict the flexibility or rigidity of the two 

test cases. We conclude that the method is simple to apply and 

adapted to the variety of MOFs, and propose developments. 

2 Background 

2.1 Flexibility of crystals and organic frameworks 

The study of the rigidity/flexibility (often mobility in the 

mechanical/machine literature) of structures is of interest in 

several disciplines: mathematics4-6, engineering7, 8, chemistry9-

11. In this context, some of the literature can be somewhat 

difficult to approach for practitioners of a different discipline 

and the language used to describe similar concept can be 

inconsistent. Table 1 provides a non-exhaustive list of relevant 

keywords. Several engineering terms need clarifying. In this 

study, a MOF is modelled as a structure composed of rigid 

bodies (ligands and possibly SBUs) connected by mechanical 

joints. These joints can be of several types but only three seem 

relevant to MOFs. A fixed joint does not allow any degree of 

freedom. A so-called spherical joint (also ball, or spheroidal) 

would allow three degrees of freedom, three rotations. An 

especially important joint for carboxylate ligand MOFs is the 

hinge joint (also knee-cap or pin-joint or revolute) that only 

allows one degree of freedom, a rotation. Depending on the 

way the bodies are assembled, the structure can be rigid or 

flexible. If it is flexible, it can deform and the modes of 
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deformation are called mechanisms. A mechanism also 

corresponds to a degree of freedom of the structure. In 

flexibility theory, mechanisms are the analogues of normal 

modes in vibration theory. If the structure is rigid, it can either 

be just rigid, which corresponds to having exactly 0 degrees of 

freedom, or it can be over-constrained. In a just rigid structure, 

slightly inexact dimensions (for instance poor tolerances or 

thermal expansion) can be readily accommodated. In an over-

constrained structure, additional bodies are in a so-called state 

of self-stress because any small deviation from the exact 

geometry would result in distortions in several bodies. In fact, 

over-constrained structures cannot be solved by considering the 

equations of static equilibrium only, and so-called constitutive 

equations taking into account the elasticity of bodies must be 

included: these problems are often called “statically 

indeterminate”. The first three structures in table 2 illustrate the 

concepts of flexibility, rigidity and over-constraining. Note also 

that a structure can contain both mechanisms and states of self-

stress, as shown by the fifth structure in table 2. 

Early engineers and architects must have had an intuitive 

understanding of the rigidity of structures for a long time, and a 

formal rigidity theory only starts in the second half of the 

nineteen century. Gogu’s review8 provides an interesting 

historical section that shows the contribution of the pioneers 

and references to early works. In engineering, the determination 

of the degrees of freedoms (DOFs) of a machine is important 

and still very relevant today, from the simple linkages 

undergraduate start with, to complex kinematic chains relevant 

to robotic motion12. 

Table 1. Terminologies relevant to MOF flexibility 

Organic Framework Secondary Building Block, 

Clusters 
Ligand, Linker 

Net Vertices Links 

Graph Node Edge 

Framework, Truss, 
Structure, Skeletal 

Structure 

Joint 
Bar, Two-force 

member 

Mechanism, Machine, 
Kinematic Chain, 

Assembly 

Joint Body, Linkage 

In a chemical context, an interest in the flexibility of crystals 

perhaps starts with Pauling’s study of sodalite13. In fact, much 

of the chemical thinking on rigidity derives from the study of 

zeolites. A first class of approaches consists in exploring the 

phonon spectrum of zeolites and identifying vibration modes 

that conserve the shape and size of tetrahedra and have low 

frequency; these modes are variously referred to as  rigid unit 

modes14 (RUM) or floppy modes15 depending on the 

implementation. More recently9, the concept of a flexibility 

window has emerged, where many zeolites remain flexible in a 

range of density; it is postulated that zeolites with a large 

flexibility window are more realisable16, 17. 

In a few rare studies, rigid-units18, 19 and flexibility windows20 

type approaches have been applied to MOF-like structures. 

Other ideas have also been tried. In a review on “breathing” 

MOFs21, Ferey and Serre propose a list of empirical rules based 

on symmetry of the SBU. In a series of ab initio simulation 

studies, Coudert22-24 and co-workers have shown that there is a 

strong correlation between flexibility and large elastic 

anisotropy: this is explained by the fact that if a mechanism 

exists, then distortions in the direction that activate it will 

necessarily be very soft with a correspondingly very low 

modulus (Young’s or shear), and therefore the ratio of 

maximum modulus by minimum modulus must be high (they 

propose 20 as an arbitrary cut-off). 

Another numerical approach10 for MOFs has recently been 

proposed by Sarkisov and co-workers. It is based on mapping 

MOFs to equivalent molecular truss systems and perturbing the 

unit cells for different distortions. The analysis is then 

comparable to atomistic force field simulations as the molecular 

trusses are modelled as stiff harmonic springs, and the total 

energy is minimised for each deformation. A rigid framework is 

one which experiences high energy penalty for all 

deformations, while a flexible framework has a very low 

penalty for at least one deformation mode. This technique is 

somewhat related to the RUM approach through the use of 

artificial springs. It also highlights the same tendency in 

chemistry to formulate problems that can be solved by tools 

such as energy optimisation and lattice dynamics for which 

algorithms are widely known and often already implemented in 

libraries and packages. 

On the mechanical side, approaches to solving the mobility 

problem have chiefly been based on setting up a kinematic 

(compatibility) matrice and solving the corresponding 

eigenvalue problem to obtain the null-space (see for instance 25, 

26, and 16, 27 for an application to zeolites). These approaches are 

perhaps more rigorous than those based on energy optimisation 

of systems of “springs”, but algorithms and implementations 

have been less accessible, probably for historical reasons. 

Finally, Guest and Fowler have been developing procedures 

based on group theory that have been applied with success to 

mechanical28, 29 and chemical30, 31 problems. The main 

advantages of these schemes are that they simple enough to be 

performed “by hand”, and general enough to include all sort of 

joints and be extended to periodic31 systems. 

2.2 MOFs as frameworks 

Any molecule or more generally any chemical object can be 

mapped onto several graphs, where at the simplest level the 

atoms could be the nodes and the bonds could be the edges 

(other, coarser grained mapping are possible, and in the case of 

MOFs desirable). This is the main principle behind the concept 

of reticular chemistry of Yagi and O’Keefe32, which was 

developed to provide a nomenclature for the ever expanding 

MOFs and more generally hybrids systems. The Reticular 

Chemistry Structure Resource provides a database to identify 

and possibly design new materials. At its core is the concept of 

periodic nets, which can be represented by a code based on a 

three letter symbol. 

3 Scalar counting rules 

3.1 Basic Maxwell-Caladine criteria 
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The basic counting rules were established by Maxwell33 and 

clarified by Calladine7. They can be applied to a framework 

containing b bars linked by j joints (always revolute (“pin”) in 

2D, always spherical in 3D). The difference between the 

number of mechanism m and the number of self-stresses s is 

given by equation (1) in 2D and equation (2) in 3D, 

(2D)    𝑚 − 𝑠 = 2𝑗 − 𝑏 − 3,  (1) 

(3D)    𝑚 − 𝑠 = 3𝑗 − 𝑏 − 6.  (2) 

These formulations emphasise the joints and can be derived by 

considering a system of j points in a space of dimension d. Each 

point brings d DOFs (translations), each bar/bond introduces 

one constraint and removes one DOF (in any dimension), and 

some DOFs are trivial translations or rotations and must be 

removed (3 in 2D, 6 in 3D). This procedure is familiar as it is 

very similar to the one used to calculate the number of vibration 

modes in a molecule. 

The central limitation of all counting rules is already in 

evidence here: they do not provide directly the mobility or 

number of DOF of a mechanism, but subtract the number of 

states of self-stress. As a consequence, in an over-constrained 

system, mechanisms can be hidden by states of self-stress. 

Looking forward towards our main aim of predicting flexibility 

in MOFs, another obvious shortcoming of the Maxwell rule in 

3D is that it can only handle spherical joints. That is likely to be 

too limiting where the SBU-ligand connection is more 

restrictive, and behave more like a hinge, as is common for 

carboxylate linkers for instance. 

3.2 Basic Chebychev–Grübler–Kutzbach criteria 

Fortunately, other formulations exist, which this time focus on 

bodies (sometimes called linkages), more complex than bars, 

that are linked by joints of different types. These formulations 

were derived independently by Chebychev34, Grübler35 and 

Kutzbach36, and will therefore be referred to as CGK criteria or 

counting rules (many more formulae exists, as listed in 8, but 

they derive from these early works). They are used extensively 

in machine design and kinematic theory in order to determine 

the DOFs of a machine/mechanism. Considering an assembly 

of n bodies linked by g joints, each of which possesses fi DOFs, 

the difference between the number of mechanism m and the 

number of self-stresses s is given by 

(2D)   𝑚 − 𝑠 = 3(𝑛 − 1) − 3𝑔 + ∑ 𝑓𝑖
𝑔
𝑖=1 , (3) 

(3D)   𝑚 − 𝑠 = 6(𝑛 − 1) − 6𝑔 + ∑ 𝑓𝑖
𝑔
𝑖=1 . (4) 

The same remarks as for the Maxwell criteria concerning the 

relation between mechanism and states of self-stress apply, and 

in an over-constrained system, the later can hide the former. 

Equations (3) and (4) give access to systems with richer joints 

than their Maxwell counterparts. In 2D, 3 types of joints exist: 

pin-joint (1 DOF, rotation), slider-joint (1 DOF, translation) 

and the pin slider joint (2 DOFs). In 3D, several complex joints 

can be created, with up to 3 DOFs in practice. Those relevant to 

SBU-linker connections are spherical joints (3 DOFs, all 

rotations) and revolute joints, “hinges”, with 1 DOF, a rotation. 

Table 2. Examples of counting rules for simple 2D frameworks 

Framework 

Maxwell Naïve CGK Correct CGK 

𝑚 − 𝑠
= 2𝑗 − 𝑏 − 3 𝑚 − 𝑠 = 3(𝑛 − 1) − 3𝑔 + ∑ 𝑓𝑖

𝑔

𝑖=1

 

 

(4, 4) 

⇒ 𝑚 − 𝑠 = 1 

(4, 4, 4 × 1)

⇒ 𝑚 − 𝑠 = 1 

(4, 4, 4 × 1)

⇒ 𝑚 − 𝑠 = 1 

 

(4, 5) 

⇒ 𝑚 − 𝑠 = 0 

(5, 4, 4 × 1)

⇒ 𝑚 − 𝑠 = 4  

(5, 𝟔, 𝟔 × 𝟏)

⇒ 𝑚 − 𝑠 = 0 

 

(4, 6) 

⇒ 𝑚 − 𝑠 = −1 

(6, 4, 4 × 1)

⇒ 𝑚 − 𝑠 = 7  

(6, 𝟖, 𝟖 × 𝟏)

⇒ 𝑚 − 𝑠 = −1 

 

(6, 9) 

⇒ 𝑚 − 𝑠 = 0 

(9, 6, 6 × 1)

⇒ 𝑚 − 𝑠 = 12 

(9, 𝟏𝟐, 𝟏𝟐 × 𝟏)

⇒ 𝑚 − 𝑠 = 0 

 

(6, 9) 

⇒ 𝑚 − 𝑠 = 0 

(9, 6, 6 × 1)

⇒ 𝑚 − 𝑠 = 12 

(9, 𝟏𝟐, 𝟏𝟐 × 𝟏)

⇒ 𝑚 − 𝑠 = 0 

 

N/A (8, 8, 8 × 1) ⇒ 𝑚 − 𝑠 = 5 

 

N/A (9, 10, 10 × 1) ⇒ 𝑚 − 𝑠 = 4 

 

N/A (10, 12, 12 × 1) ⇒ 𝑚 − 𝑠 = 3 

Table 2 displays eight 2D frameworks and shows the 

corresponding results from different counting schemes. 

The first three frameworks illustrate well the concept of self- 

stress: in the third framework, the last bar over-constrains the 

system, which is then statically indeterminate (from a 

mechanical perspective, this means that the equilibrium 

equations are not enough to determine the states of stress in 

each member). 

These frameworks also demonstrate that the CGK rule must be 

applied with great care. The number of joints g in particular is 

not always obvious to determine. It is no accident that the 

number of “joints” in equations (1,2) and (3,4) are represented 

by different symbols (j and g respectively): they are different 

quantities. A naïve reading of equation (2) would conflate j and 

g, and leads to 𝑓𝑀 ≠ 𝑓𝐶𝐺𝐾 . This is because the traditional 

representation superposes the joints, and conceals some of 

them, as shown in Fig. 1. 

 
Fig. 1. (a) Simplified representation where four body-bars are connected by pin-

joints, the correct number of joints is not immediately apparent, (b) Possible 

physical realisation, showing three pin-joints, (c) Topologically correct 

representation, with three pin-joints. 
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The fourth and fifth frameworks in table 2 show that with the 

exact same numbers of joints and bars, both structures are 

predicted to have the same number of mechanisms and states of 

self-stress. But it is only by inspection that we can see that the 

fourth structure has no mechanisms and no states of self-stress 

while the fifth structure has one of each. The usefulness of the 

counting rule is certainly reduced in that last case, as the state 

of self-stress conceals the mechanism. 

In addition, the counting rules ignore the geometry of the 

system and only consider its broad topology. In machine design 

this leads to the well-known existence of extra “geometric” 

DOFs which are not predicted by the counting criteria, but 

which occur because some bodies are aligned in very specific 

ways (for instance parallel bars, see Fig. 2).  

 
Fig. 2. 5-bars linkages (the triangular symbols are standard and indicate that the 

linked bars form single rigid bodies, without them the figures would represent 7-

bars linkages), the CGK criterion predicts 0 DOFs. (a) Topologically general 

representation, where it is obvious the mechanism is locked. (b) Geometrically 

specific configuration, where one DOF emerges from parallel bars. 

While chiefly intended to illustrate the existence of geometric 

DOFs, Fig. 2 also shows one of the limitations of the Maxwell 

counting rules: they are only applicable to systems where a 

joint is located at the end of bars, and cannot handle joints on 

the body of a bar. In the language of mechanics, only trusses 

composed of two-force members (bars) can be analysed by the 

Maxwell rules. 

The CGK counting rules operate on more complex bodies and 

can be applied to systems such as in Fig. 2. We have already 

seen that part of the price to pay for this richness is that extra 

care must be taken to count the joints. An additional subtlety 

not apparent in 2D reveals itself in 3D: even if one wants to just 

use simple “bars”, in the CGK formalism these are actually 

complex objects with 6 DOFs (a bar has an axis of symmetry 

and only 5 DOFs). In that case, one could modify equation (4) 

to include bodies and true bars, but it is conceptually simpler to 

appreciate that some of the DOFs predicted by the CGK rule in 

3D are simply bars rotating on their axes. Table 3 shows this 

effect. The simple cubic framework has 6 actual DOFS as 

predicted by the Maxwell rule; the CGK obtains 18 DOFs, 12 

corresponding to the edges rotating on themselves, in addition 

to the 6 structural ones. The same arithmetic applies to the 

second framework: it is locked with no DOF, but the CGK rule 

proposes 18 DOFs, one for each bars (12 edges, 6 cross-

linkers). 

Table 3. Examples of counting rules for simple 3D frameworks 

Framework 

Maxwell CGK 

𝑚 − 𝑠 = 3𝑗 − 𝑏 − 6 𝑚 − 𝑠 = 6(𝑛 − 1) − 6𝑔 + ∑ 𝑓𝑖

𝑔

𝑖=1

 

 

(8, 12) 

⇒ 𝑚 − 𝑠 = 6 

(12, 16, 16 × 3) 

⇒ 𝑚 − 𝑠 = 18 

 

(8, 18) 

⇒ 𝑚 − 𝑠 = 0 

(18, 28, 28 × 3) 

⇒ 𝑚 − 𝑠 = 18 

To conclude this comparison of the various counting schemes, 

we consider replacing the nodes of a graph by bodies in the 

CGK scheme. This is certainly relevant to MOFs as SBUs can 

be large. This procedure also greatly simplifies the counting of 

the number of joints g. But as can be seen in Table 2, this 

procedure adds DOFs, those related to the motion of the body-

nodes. Some amount of un-resisted deformation (also 

compatible with a periodic network) follows from the rotation 

of the body-nodes as can be seen in fig. 3. On the other hand, 

due to steric effects, the amplitude of such modes is likely to be 

limited in real chemical frameworks. 

 
Fig. 3. Mode of deformation for a framework with body-nodes. From a) to c), the 

body-nodes are rotating counter-clockwise. 

3.3 Scalar counting rules for periodic systems 

The counting rules presented in sections 3.1 and 3.2 have been 

extended to the case of periodic frameworks31. The Maxwell 

rules transform into 

(2D)    𝑚 − 𝑠 = 𝑓 + 4 = 2𝑗 − 𝑏 + 1, (5) 

(3D)    𝑚 − 𝑠 = 𝑓 + 9 = 3𝑗 − 𝑏 + 3. (6) 

The CGK rules become  

(2D)    𝑚 − 𝑠 = 𝑓 + 4 = 3𝑛 + 1 − 3𝑔 + ∑ 𝑓𝑖
𝑔
𝑖=1 , (7) 

(3D)   𝑚 − 𝑠 = 𝑓 + 9 = 6𝑛 + 3 − 6𝑔 + ∑ 𝑓𝑖
𝑔
𝑖=1 . (8) 

On one hand, with reference to the non-periodic system, the 

corresponding periodic system gains additional DOFs; these 

derive simply from the unit cell (or unit vectors), with four 

extra DOFS in 2D and nine in 3D. On the other hand, the 

periodic systems lose DOFs from the fact that the freedom 

giving elements (joints j or bodies n) that are now periodic 

images are not counted; in a similar manner, extra DOFs are 

gained from constraints elements (bars b or joints g) being less 
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numerous in the unit cells. The net effects are illustrated in 

table 4 and 5. The bar-and-joint frameworks have the same 

number of DOFs than their non-periodic counterparts, but the 

body-and-joint frameworks have less. In general, periodic 

systems have less DOFs than corresponding non-periodic. 

Table 4. Examples of counting rules for periodic 2D frameworks 

Framework 

Periodic Maxwell Periodic CGK 

𝑚 − 𝑠 = 2𝑗 − 𝑏 + 1 𝑚 − 𝑠 = 3𝑛 + 1 − 3𝑔 + ∑ 𝑓𝑖

𝑔

𝑖=1

 

 

(1, 2) ⇒ 𝑚 − 𝑠 = 1 (2, 3, 3 × 1) ⇒ 𝑚 − 𝑠 = 1 

 

(1, 3) ⇒ 𝑚 − 𝑠 = 0 (5, 5, 5 × 1) ⇒ 𝑚 − 𝑠 = 0 

 

(1, 4) ⇒ 𝑚 − 𝑠 = −1 (6, 7, 7 × 1) ⇒ 𝑚 − 𝑠 = −1 

 

N/A (3, 4, 4 × 1) ⇒ 𝑚 − 𝑠 = 2 

 

N/A (4, 6, 6 × 1) ⇒ 𝑚 − 𝑠 = 1 

 

N/A (5, 8, 8 × 1) ⇒ 𝑚 − 𝑠 = 0 

 

Table 5. Examples of counting rules for periodic 3D frameworks 

Framework 

Periodic Maxwell Periodic CGK 

𝑚 − 𝑠 = 3𝑗 − 𝑏 + 3 𝑚 − 𝑠 = 6𝑛 + 3 − 6𝑔 + ∑ 𝑓𝑖

𝑔

𝑖=1

 

 

(1, 3) ⇒ 𝑚 − 𝑠 = 3 (3, 5, 5 × 3) ⇒ 𝑚 − 𝑠 = 6 

 

(1, 6) ⇒ 𝑚 − 𝑠 = 0 (6, 11, 11 × 3) ⇒ 𝑚 − 𝑠 = 6 

3.4 Application of scalar rules to 3D MOFs 

In order to test the counting rules it is enough to limit the study 

to two frameworks, one flexible and one rigid. 

The flexible system we have chosen is based on an augmented 

body centred cubic pcb net (equivalent to bcu-a). Fig. 4 

displays the motif for a unit cell. Note that the choice of the 

hinges direction breaks the cubic symmetry. The elastic tensor 

for instance would have a tetragonal symmetry. This non-

periodic assembly is a simplification of the periodic framework 

and comprises 2 SBUs, 8 bar bodies for the ligands, and 12 

hinges. It is immediately apparent by visual inspection that a 

mechanism exists. The periodic version would be composed of 

2 SBU bodies, 8 bar bodies and 16 hinges, again with at least 

one obvious mechanism. However, the non-periodic counting 

rules predicts 𝑚 − 𝑠 = 6 × 9 − 6 × 12 + 12 × 1 = −6 and the 

periodic one 𝑚 − 𝑠 = 6 × 10 + 3 − 6 × 16 + 16 × 1 = −17. 

This is very disappointing, and shows not only that this 

assembly is heavily over-constrained, but that the number of 

states of self-stress conceals the mechanism we know to exist. 

 
Fig. 4. Non-periodic model for a pcb framework. 

The rigid system is based on the archetypical IRMOF-1 family, 

and models are depicted in Fig.5. It belongs to the pcu-a net, 

but with the added complexity that the hinges are oriented 

perpendicularly across the SBUs, leading to two possible cages, 

referred to as large pore or small pore, and to a sizeable unit 

cell consisting of eight cages. Following the example of 10, we 

start by considering a cage in isolation: both types are 

composed of 8 body-nodes, 12 body-bars and 24 hinges. 

IRMOF-1 is known to be rigid from several sources10, 37, and 

the scalar counting rule for a non-periodic unit predicts 

𝑚 − 𝑠 = 6 × 19 − 6 × 24 + 24 × 1 = −6. 

 
Fig. 5. Partial models for IRMOF-1 (pcu-a net): a) large pore, b) small pore. The 

light grey squares represent the SBUs and the dark grey plates represent the 

ligands. The ligands are linked to the SBUs by hinges (not drawn). The actual unit 

cell of IRMOF-1 contains alternating small and large pores cages, eight in total. 

IRMOF-1 is correctly predicted to be rigid, but pcb is 

incorrectly predicted to be rigid. A counter-example is enough 

to conclusively prove that the scalar counting rules do not work 

for 3D MOFs. This was perhaps predictable, and a review of 

counting rules for robotic systems (non-periodic) reaches the 

same conclusion8. However, these simple scalar rules have 

allowed us to expose the basic concepts with basic arithmetic. 

Fortunately, it is possible to make use of symmetry to improve 

them significantly. 
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4 Group theoretical counting rules 

4.1 Method 

Several symmetry extended versions of the counting rules have 

been developed by Fowler and Guest, for bar-and-joint 

frameworks38, for body-and-joint systems28, with and without 

taking periodicity into account31. From the previous section on 

scalar rules, we have seen that in order to treat the joints 

between carboxylate linkers and SBUs correctly as chiefly 

hinge-like, a body-and-joint description is necessary. For 

periodic MOFs, it would be more generic to account for 

periodicity, but as we are introducing the method, we start with 

the non-periodic body-and-joint extension. This takes the form 

of equation (9) 

Γ(𝑚) − Γ(𝑠) = (Γ(𝑣, 𝐶) − Γ∥(𝑒, 𝐶) − Γ0) × (Γ𝑇 + Γ𝑅) + Γ𝑓.(9) 

The different terms are discussed in detail in the following 

paragraphs, but this equation is similar to equation (4), the 

difference being that instead of just the number of mechanisms 

minus states of self-stress, it produces a group theoretical 

representation of the same. Therefore, if some states of self-

stress belong to different irreducible representations (irrep) than 

the mechanisms, they will not cancel out. For instance, the 

resulting representation for our pcb test case is given by  

Γ(𝑚) − Γ(𝑠) = 𝐴1𝑔 − 𝐴2𝑔 − 𝐵2𝑔 − 𝐸𝑔 − 𝐴1𝑢 − 2𝐵1𝑢. (10) 

The positive irreps, here 𝐴1𝑔  alone, indicate the existence of 

mechanisms, while the negative irreps indicate self-stresses. It 

is important to note that some mechanisms and self-stresses 

might have the same symmetry and still cancel out, but with 

several irreps this is less likely. 

But in order to obtain such a useful representation, it is 

necessary to resolve equation (9) first.  

The first step consists in generating what Fowler and Guest call 

the contact polyhedron (C). This 3D graph has vertices (v) that 

correspond to the bodies of the system, and edges (e) that 

correspond to the joints (hinges for carboxylate MOFs). C is 

not always an actual polyhedron and is certainly not unique (for 

a detailed discussion, see 39), but it is generally straightforward 

to produce one. Figures 6 and 7 display the contact polyhedra 

for pcb and simplified IRMOF-1 cages. 

At the second step, the point group G(C) of the contact 

polyhedron that also respects the axes of the hinges is 

determined. This is why it is actually useful to decorate C with 

segment representing such axes at the first stage. 

The third step is very simple: the representation Γ𝑇 + Γ𝑅 is read 

from the character table40 of G(C). For several symmetries (at 

least all improper ones), its character is zero, which is important 

to note in order to avoid unnecessary labour for some other 

representations. 

For the fourth step, the characters for the remaining 

representations in the first term of (9) are determined by inspection 

on C. For a given symmetry operation, the character of Γ(𝑣, 𝐶) is 

the number of nodes (points) of C that are unshifted and the 

character of Γ∥(𝑒, 𝐶) is the number of vectors along the edges of C 

that are unshifted minus the number of vectors that are inverted on 

their edge. Γ0 is the trivial representation with a character of 1 for all 

symmetries. Only the characters for columns where the character 

from Γ𝑇 + Γ𝑅  differs from zero have to be calculated, as the 

resulting product will be null anyway. 

The fifth step is the most difficult, conceptually, and because it 

does not benefit from the zeroes of Γ𝑇 + Γ𝑅 . For MOFs with 

hinges perpendicular to the ligand, the characters of the 

representation of the freedoms Γ𝑓 can be obtained from the fact 

that for each symmetry operation, the character of the hinge 

𝜒ℎ𝑖𝑛𝑔𝑒  is the product of the character 𝜒𝑅  of a rotation (axial 

vector, pseudovector) on the hinge axis by the character 𝜒∥𝑒  of 

a (radial) vector on the edge e. Alternately the table in Figure 4 

from 28 can be used. 

Finally, the various additions, subtractions and multiplications 

can be applied to the representations to obtain Γ(𝑚) − Γ(𝑠), 

which can then be projected onto the irreps. We used 

spreadsheets developed by Niece41 to speed up these routine 

tasks. The electronic supplementary information contains a 

step-by-step derivation for the pcb assembly. 

4.2 Face centred cubic MOF with pcb net 

 
Fig. 6. Contact polyhedron for the pcb assembly. The vertices represent the two 

types of bodies, discs for SBU, rectangle for ligands (still simply treated as points 

for symmetry operations). The solid lines are the edges of the polyhedron and 

represent the hinges. They are decorated by segment in dashed line indicating 

the axis of the hinges. This polyhedron belongs to the D4h point group 

The calculations for the pcb assembly are shown in tabular 

form in table 6. 
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Table 6. Calculations for the pcb assembly 

𝐷4ℎ 𝐸 2𝐶4 𝐶2 2𝐶2
′ 2𝐶2

′′ 𝑖 2𝑆4 𝜎ℎ 2𝜎𝑣 2𝜎𝑑 

Γ(𝑣, 𝐶) 10 2 2 0 0 - - - - - 

−           
Γ∥(𝑒, 𝐶) 12 0 0 -2 0 - - - - - 

−           

Γ0 1 1 1 1 1 - - - - - 

= -3 1 1 1 -1 - - - - - 

×           

Γ𝑇 + Γ𝑅 6 2 -2 -2 -2 0 0 0 0 0 

= -18 2 -2 -2 2 0 0 0 0 0 

+           

Γ𝑓 12 0 0 2 0 0 0 4 6 0 

= Γ(𝑚)
− Γ(𝑠) -6 2 -2 0 2 0 0 4 6 0 

Γ(𝑚) − Γ(𝑠) = [𝐴1𝑔] − 𝐴2𝑔 − 𝐵2𝑔 − 𝐸𝑔 − 𝐴1𝑢 − 2𝐵1𝑢 

The character of the identity 𝐸 is equal to −6, which is the 

same result as the scalar counting rules. Γ(𝑚) − Γ(𝑠) contains 

one non degenerate positive irrep. The negative terms 

contribute −7. The mechanism with irrep 𝐴1𝑔 is revealed by 

this analysis, as the states of self-stress do not conceal it in the 

higher dimension symmetry space. This is only one example, 

but it already shows a great improvement over the scalar rule. 

4.2 IRMOF-1 

In order to have confidence in the predictive power of the group 

theoretical counting rules, they should also be able to correctly 

characterise a rigid system. 

 
Fig. 7. Contact polyhedra for IRMOF-1 cages, a) large pore, b) small pore. The 

vertices represent the two types of bodies, circles for SBU, rectangle for ligands 

(still simply treated as points for symmetry operations). The solid lines are the 

edges of the polyhedron and represent the hinges. They are decorated by 

segment in dashed line indicating the axis of the hinges. Both polyhedra belong 

to the Oh point group 

The calculations for both large and small pore models are given 

in table 7 and 8. 

Table 7. Calculations for IRMOF-1, large pores 

𝑂ℎ 𝐸 8𝐶3 6𝐶2 6𝐶4 3𝐶2 𝑖 6𝑆4 8𝑆6 3𝜎ℎ 6𝜎𝑑 

Γ(𝑣, 𝐶) 20 - 2 0 0 - - - - - 

−           
Γ∥(𝑒, 𝐶) 24 - 0 0 0 - - - - - 

−           

Γ0 1 - 1 1 1 - - - - - 

= -5 - 1 -1 -1 - - - - - 

×           

Γ𝑇 + Γ𝑅 6 0 -2 2 -2 0 0 0 0 0 

= -30 0 -2 -2 2 0 0 0 0 0 

+           

Γ𝑓 24 0 0 2 0 0 0 0 0 4 

= Γ(𝑚)
− Γ(𝑠) -6 0 -2 -2 2 0 0 0 0 4 

Γ(𝑚) − Γ(𝑠) = −𝑇1𝑔 − 𝐴1𝑢 + [𝐴2𝑢] − 𝑇2𝑢 

Surprisingly, the analysis for the large pore cage seems to 

reveal a mechanism. At first, this appears contrary to the results 

from the mechanical model of an IRMOF-1 cage10. Careful 

reading shows that this mechanical model was in fact of a small 

pore cage. Is it really possible that the large pore cage is 

flexible while the small pore care is rigid? 

Table 8. Calculations for IRMOF-1, small pores 

𝑂ℎ 𝐸 8𝐶3 6𝐶2 6𝐶4 3𝐶2 𝑖 6𝑆4 8𝑆6 3𝜎ℎ 6𝜎𝑑 

Γ(𝑣, 𝐶) 20 - 2 0 0 - - - - - 

−           
Γ∥(𝑒, 𝐶) 24 - 0 0 0 - - - - - 

−           

Γ0 1 - 1 1 1 - - - - - 

= -5 - 1 -1 -1 - - - - - 

×           

Γ𝑇 + Γ𝑅 6 0 -2 2 -2 0 0 0 0 0 

= -30 0 -2 -2 2 0 0 0 0 0 

+           

Γ𝑓 24 0 0 2 0 0 0 0 0 -4 

= Γ(𝑚)
− Γ(𝑠) -6 0 -2 -2 2 0 0 0 0 -4 

Γ(𝑚) − Γ(𝑠) = −𝐴1𝑔 + [𝐴2𝑔] − 𝑇2𝑔 − 𝑇1𝑢 

No, not really: the analysis for the small pore cage also reveals 

a mechanism, albeit one with a different irrep.  

Figure 8 shows the two deformation modes. They have 

different characters, a rhombohedral distortion for the large 

pore cage, and a twisting mechanism for the small pore cage. 

The authors of 10 were somewhat unfortunate to choose the 

small pore cage, as the corresponding twisting mechanism is 

much less apparent that the rhombohedral distortion of the large 

pore cage. 
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Fig. 8. Deformation of the two IRMOF-1 cages, a) large pore, b) small pore. 

When arrayed in the periodic network of IRMOF-1, the two 

deformations are not compatible, and the larger cell is not 

flexible. This is confirmed by carrying the group theoretical 

analysis for the full unit cell of IRMOF-1, as shown in table 9. 

The contact polyhedron C is large, and is not pictured, but it 

belongs to the tetrahedral group 𝑇𝑑 .  

Table 9. Calculations for IRMOF-1, full unit cell 

𝑇𝑑 𝐸 8𝐶3 3𝐶2 𝑖 6𝑆4 6𝜎𝑑 

Γ(𝑣, 𝐶) 81 - 5 - - - 

−       
Γ∥(𝑒, 𝐶) 108 - 4 - - - 

−       

Γ0 1 - 1 - - - 

= -28 - 0 - - - 

×       

Γ𝑇 + Γ𝑅 6 0 -2 0 0 0 

= -168 0 0 0 0 0 

+       

Γ𝑓 108 0 -4 0 0 0 

= Γ(𝑚)
− Γ(𝑠) -60 0 -4 0 0 0 

Γ(𝑚) − Γ(𝑠) = −3𝐴1 − 3𝐴2 − 6𝐸 − 7𝑇1 − 7𝑇2 

For the full unit cell, there are no mechanisms, all the 

contributions to Γ(𝑚) − Γ(𝑠) are states of self-stress. 

These are just examples, and do not prove that the group 

theoretical counting rules can be applied successfully to all 

MOFs. They show great promise however and have already 

helped correct a minor misunderstanding on the causes of the 

rigidity of IRMOF-1. 

5 Conclusion 

This preliminary study has obtained two main results. 

Firstly, scalar counting rules definitely cannot establish the 

flexibility/rigidity of periodic MOF networks nor even of 

simplified MOF-like non-periodic assemblies. 

Secondly, symmetry extended group theoretical counting rules 

seem to be able to correct these shortcomings and predict 

flexibility/rigidity, and this without a huge cost in complexity, 

nor computational power required. 

While this method is very promising, additional work is needed 

to cement its use. For a start, the periodic extension31 of 

equation (9) should be used to calculate the representation of 

mechanisms and /or states of self-stress of MOFs. Fortunately, 

the procedure is very similar to the one highlighted in this work 

for isolated structures. 

This fully periodic analysis should then be applied to many 

more nets to confirm predictive power. Such a high-throughput 

approach would certainly benefit from automation (if only to 

reduce the risk of errors), but this highlights a difficulty with 

the method: it is still essentially a pen and paper affair, but 

implementing it in software form would require a significant 

effort. 

In our examples, we are limiting the analysis to the presence or 

not of mechanisms. More information can be obtained from 

symmetry, for instance it should be possible to determine 

whether a mechanism is finite (as opposed to infinitesimal)42.  

Conversely, symmetry alone is generally not enough to 

determine the deformation mode, in the same way that it is not 

enough to obtain the vibration modes of molecules and phonons 

of crystals40.  

Another limitation of the method is that it treats ligands and 

SBUs as mechanical objects that only interact through joints. 

Other interactions, such as π-π orbitals overlaps or hydrogen-

bonds are not considered and it is unlikely that the formalism 

can even handle them. 

Finally, the building blocks, SBU and ligands, are not rigid 

mechanical bodies, but deformable chemical entities. The 

method can only be meaningful if the joints between SBUs and 

ligands are significantly more compliant than the SBUs and 

ligands themselves. If the symmetry of the system prohibits 

flexibility of the framework, the deformations of ligands and/or 

of the SBUs are likely to become more relevant for the 

compliance or low-energy vibrations of the rigid MOFs as was 

shown by Rimmer and co-workers for IRMOF-143. It might be 

possible in principle to break down the mechanical ligands and 

SBUS into sub-units and carry out a group-theoretical analysis, 

but we reckon it would be mostly meaningless in the absence of 

information on the relative stiffness of the joints. 

But all considered, group theoretical counting rules provide an 

elegant, relatively simple and cheap method of establishing 

whether the underlying framework of a MOF can sustain 

mechanisms of flexibility. 
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