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Jian Fangl, Guang Yang2’3 , Yufeng Yao?, Chaoqun Liu3, Lipeng Lu?
'Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
“National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing, 100191, China

3Department of Mathematics, University of Texas at Arlington, TX 76019-0408, USA
4Facu1ty of Environment and Technology, Department of Engineering Design and Mathematics, University of the West of England, Bristol BS16 1QY, United Kingdom

Objective & Conclusion w] At —reenies - Maximum jet velocity matches
g =i [\ . - uucexaond  wel] with the experiment.
We present Large-Eddy Simulation of two control devices: g w0,
active control by SparklJet and passive control by MVG. It 1s > The flow separation (black zone)
found that both methods can greatly alleviate the separation. ® ] e ;S aisnuslzpafssebisell)i}rlle t?aese S\E] ?fllfg ﬁ:
Flowfield analysis shows that the streamwise counter-rotating I e 5 e S
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vortex generated by the two devices might be the common
control mechanism.

Numerical Methods
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Schlieren on the symmetry plane (left) current numerical result
(right) experiment by Giepman et al (2014)
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SparkJet Actuator Computational Model

ﬁigh voltage between electrode|/Actuator model represented b}
produce spark discharge, the|a cubical cavity and neck,
heated gas would ejected from electric spark heating energy
the above orifice 1nto main modeled by adding a source
tlow. Jterm 1n energy equation. -

Downstream MVG, the vortex trail 1s generated due the K-H
instability of the free-shear layer. The streamline downstream
MVG shows that the vortex trail actually consists of two
counter-rotating vortices
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Numerical schlieren in the symmetry plane shows the blast
wave 1n the cavity and jet near the orifice. Density contour and 80 —"" 200

; . . The staggered double-
streamlines on a streamwise slice downstream the actuator 0] | row MVG generates a
present a pair of counter-rotating vortex. « ol | stronger vortex tail and

causes a greater

o o, a - Interaction with the
shock-wave. Therefore

it has a larger effect in
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N @ suppressing flow
Near the exit of the jet, a rectangular l \  iouimbme. | SCparation downstream
vortex ring resulting from the jet/cross- 200 250  y 800 0 (black zone of the left
- flow interaction can be seen figure).
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