
IEEE CSCloud 2016 24-27 June 2016 – Beijing Page 1

Mobile App collusions and its cyber security

implications

Abdullahi Arabo

Abdullahi.arabo@uwe.ac.uk

Centre for Complex Cooperative Systems (CCCS).

Department of Computer Science and Creative Technologies

Faculty of Environment and Technology

UWE, Frenchay, Bristol, BS16 1QY, UK

Abstract—the key focus in securing mobile software

systems is substantiality intended in detecting and mitigating

vulnerabilities in a single app or apps developed by the same

individual. It fails to identify vulnerabilities that arise as a

result of interaction or the colluding of multiple apps either

from the same or different vendors. The current state-of-the-

art also fails to contextualize this in reference to its impact on

security and cyber security issues. This paper proposes a

solution that makes use of both static and dynamic analysis, to

detect and notify device users of such a vulnerability and

equips the user with knowledge on inter-app interaction, the

misuse of Personal Identifiable Information (PII) and the

sharing of other sensitive information without their consent.

Keywords—App security; mobile device; app collusion;

cybersecurity; Personal Identifiable Information (PII)

I. INTRODUCTION (HEADING 1)

The focus of Cyber security is currently on computers and
not smart devices. However, there is now a growing
development of cyber-criminals who are using malicious
apps, with collusion capabilities, to infect smartphones with
the intent of accessing PII and collecting private data. The
play store is full of malicious apps, which can gain access to
information such as address books, GPS coordinates,
passwords and pin numbers. This information can then be
redirected across the net for malicious use. The apps can
also forcefully navigate users’ to phishing sites and have
the ability to bypass the two-step authentication process
used to access an ever-increasing number of online services
such as banking or email.

Hence, criminals can monetise this information in a
number of ways – by getting your phone to send messages
to premium numbers, by remotely controlling an infected
phone, by tricking you into revealing passwords and by
using your stolen data. Although this can be achieved by
apps working on their own, the latest cyber-threat to
smartphones comes from apps working together or
colluding. Colluding apps can be described as follows (i.e.
Android):

• Two or more apps that share Personal Identifiable
Information (PII) and or financial data without the
user knowledge

• Two genuine apps from same developer would
collude with each other to collect PII

• Malicious app could also collude with insecure app
to collect PII and send to command and control
(C&C)

• Collecting PII from one or more colluding app
allows creation of user profiles

• User profile PII would be used by cybercriminals
to target users to commit fraud

• Colluding apps are not detected by current mobile
security technology

• Spear phishing SMS or email attack vector might
also be more successful

An example of collusion consists of one app with
permission to access personal data, passing this data to a
second app that is allowed to transmit data over the network
(see Figure 1). Hence, two or more apps can collectively
collect and build a profile of private information that can be
used by criminals, with malicious intent without the consent
of the user. It is obvious that the user would not normally
disclose such information or install apps requiring access to
such information on their device. With these collective
capabilities, a single app may have the ability to carry out an
attack that it would not normally be able to execute alone.
The aim of this paper is to investigate new techniques to
detect colluding apps and to raise user awareness in an
attempt to contain the threat before it becomes widespread.

Figure 1 Third Party App Collusion

mailto:Abdullahi.arabo@uwe.ac.uk

IEEE CSCloud 2016 24-27 June 2016 – Beijing Page 2

 The problem of app collision can be exploited in
two main ways: horizontally or vertically. In the first case,
the same malware/app author allowing each application(s)
to be responsible for the collection and delivery of the user’s
personal and sensitive information to a server, before finally
exploiting this information for malicious use. In the second
instance, one application tailors the use of another insecure
application and makes use of exported intents or content
providers, to collect information off the user, which would
be later used to attack the victim. This in effect will enable
an attacker to use another applications’ sandbox with the
intent of collecting information for another application.
These threats are quite new and so far, nothing has been
done within the research community, to understand and
provide proof of concepts to these attacks or to understand
how they work. In this paper we will try to examine these
threats from both the application layer/stack and the
SELinux kernel level to understand and produce an
application/solution that will be able to inject malicious
code and collude with other vulnerable apps in the play
store. It is evident from our research that the play store
adapts the usage of manual/static analysis of apps in their
market.

 The rest of this paper is structured as follows: in
section 2, we cover related work, section 3 describes our
proposed app collusion tool, and section 4 provides some
discussion on the proposed architecture and research
problem. The paper is concluded in section 5, with
concluding remakes and future research direction.

II. RELATED WORK

In the realm of smartphone application security, there exists

some work on the issues of application security and

detecting malicious apps such as TaindDroid [1],

RiskRanker [2], AppContext [3], XManDroid [4] and

android malware collusions [5]. Based on our knowledge

and research, there has been no work done in reference to

exploiting and exploring the issues of mobile device app

collusion as it is defined in section I. However, there are

other related works in reference to the security and privacy

of the usage of mobile apps, apps accessing personal

information without users consent and malware collusions

[5]. The use of mobile devices in healthcare is also more

common these days such as in mobile-health. A typical

example is having a health device connected to the home

network, which is capable of transmitting data wirelessly to

hospitals and other relevant parties. Most of the

manufacturers of these devices do not work to ensure that

these devices are secure, creating an opportunity for app

developers to exploit any vulnerabilities present. If these

devices are compromised not only will the information and

privacy of the user of the device be compromised, but also

the attacker will even possess the ability to change the

settings of the devices, which could lead to lethal

consequences. It has been shown that it is possible to hack

into a pacemaker and read the details of the data stored in

the device, such as names and medical information without

having direct access to the devices (by just being in close

proximity) [6].

Therefore, it is also possible to reconfigure the

parameters of the device – which has the potential to incur a

heart attack. This does not only apply to medical devices,

but also any device that are used within a home network.

Assuming your child is using their unsecure iPhone, which

is connected to the network, a cybercriminal can take that

opportunity to groom your child on social media.
According to Juniper Networks report [7], 76 percent of

mobile users are relying on their mobile devices to access
their most sensitive personal information, such as online
banking or personal medical information. This trend is even
more noticeable with those who also use their personal
mobile devices for business purposes. Nearly nine in ten (89
percent) business users, report they use their mobile device
to access sensitive work-related information.

Another more worrying scenario is when cybercriminals
use the vast resources of the network to turn it to a botnet
and launch a cyber-attack on national critical infrastructures.
There are some Android based applications that, when
downloaded from a third party (not Android market) are
capable of accessing the root functionality of devices
(“rooted”) and turning them into botnet soldiers without the
users’ knowledge or explicit consent . People could easily
and unwittingly download malware to their smart devices or
fall prey to “man-in-the-middle” attacks whereby cyber-
criminals pose as a legitimate body, intercept and harvest
sensitive information, and then forward to the legitimate
recipient so that no one is the wiser [8]. In 2011, there was a
bunch of Android apps removed from the Android Market
because they contained malware [8]. There were over 50
infected applications - these apps were copies of
“legitimate” apps from legitimate publishers that were
modified to include two root exploits and a rogue
application downloader.

Juniper Networks Mobile Threat Centre (MTC) reported
that in 2011 there was an unparalleled increase of mobile
malware attacks, specifically a 155 percent increase from
the previous year across all platforms [9]. It is also reported
that Android Malware experienced dramatic increase of
3,325 percent in 2011. Notable in these findings is a
significant number of malware samples obtained from third-
party application stores or open market places, which do not
enjoy the benefit, or protection from Google’s newly
announced Android Market scanning techniques.
Previously, an Android developer could post an application
to the official Android Market and have it available
immediately, without inspection or vetting to block pirated
or malicious applications. This dramatic malware increase is
mainly due to the combination of Google Android’s
dominant market share (46.9 percent) and the lack of
security control over the applications appearing in the
various Android application markets. It is reported recently
that play store which has more than 500,000 apps just
passed 15 billion downloads [8].

Mobile devices including netbooks, iPad’s, mobile
phones and PDAs are the main devices used in ad hoc

IEEE CSCloud 2016 24-27 June 2016 – Beijing Page 3

networks. It is worth pointing out that the manufacturers of
such devices have done little in terms of informing users if
and when their information is used by third parties, or when
other third party applications are downloaded and how they
use users’ personal information. This same issue has been
pointed out in the work of Enck et al [10]. Their research
was focused on the vulnerability of third party applications
deployed on Android devices.

The research findings include half of the 30 applications
studied shared location information and unique identifiers
with advertisers. They also reveal that 15 of these
applications sent out location information without informing
users that the data was shared. Some of the applications
gathered and dispatched location information even when
they were not running normal operations for the users, and
some of them also sent out information updates every 30
seconds. Seven of the studied applications shared unique
identifiers known as IMEI (International Mobile Equipment
Identity) numbers, and others shared users’ personal phone
numbers or serial card numbers.

Although an IMEI number is only used to identify a
device and does not relate to a specific individual, it is still
very useful information that, when compromised might raise
some security concerns. However, other numbers such as
the ESN (Electronic Serial Numbers) and MEID (Mobile
Equipment Identifiers) can link an individual to a phone.
Usually, an International Mobile Subscriber Identity (IMSI)
number stored on a SIM card can identify the subscriber on
a network [11].

While some of the applications ask permission to gather
information from users before installation, none of them
informs the users how the data will be used or who will
share it. Hence, users have no control of such information
after installing the applications–this implies that users
blindly trust the applications. In some cases, applications
have a legitimate reason for accessing users’ sensitive and
private data. However, it is of paramount importance that
users have full control of such data and its usage. Thus,
there is a need to ensure that the users’ data will be used
properly and they will be able to revoke the data usage.

Each time you install an app, you are asked to allow the
app to access certain information from your device. Most of
the time the permission listed is different from the once
actually specified in the apps manifest files. This is a
standard cost if you are not paying for free apps, but
actually you are paying with your own data unknowingly. It
is worth pointing out that although sometimes we know that
an app can access a particular feature, we probably mentally
write it off that is only done occasionally and the
information is not misused.

It is not just Android devices that pass on user
information to third parties, but also a far more controlled
environment like Apple’s IOS is also guilty , as reported by
the study performed by Eric Smith [12]. There is a historical
background for the study. In 1999, Intel announced a
Pentium III processor that contained a unique serial number
per processor. The main problem with this is that it could be
used to track users' online behaviour, and some

governments even went as far as asking for a ban on
Pentium III processors. Intel removed this serial number
shortly afterwards.

The study discussed above was carried out to “determine
if the privacy fears surrounding the Pentium 3 have
manifested themselves on the iPhone platform” [12]. Hence,
the author studied 57 random popular applications from the
App Store, and came out with two interesting conclusions:

 “We found that 68% of these applications were
transmitting UDIDs to servers under the application
vendor's control each time the application is launched.
Furthermore, 18% of the applications tested encrypted
their communications such that it was not clear what
type of data was being shared”. The study notes, “A
scant 14% of the tested applications appear to be
clean. We also confirmed that some applications are
able to link the UDID to a real-world identity.”

 “For example,” the study continues, “Amazon's
application communicates the logged-in user's real
name in plain text, along with the UDID, permitting
both Amazon.com and network eavesdroppers to
easily match a phone's UDID with the name of the
phone's owner. The CBS News application transmits
both the UDID and the iPhone device's user-assigned
name, which frequently contains the owner's real
name.”

The study [12] states that all these pose a real threat to iOS

users. “Privacy and security advocates, personal iPhone

owners, and corporate iPhone administrators should be

concerned that it would be feasible–and technically, quite

simple–for their browsing patterns, app usage, and physical

locations collected and sold to unintended customers such as

advertisers, spouses, divorce lawyers, debt collectors, or

industrial spies”. The study argues, “Since Apple has not

provided a tool for end-users to delete application cookies or

to block the visibility of the UDID to applications, iPhone

owners are helpless in preventing their phones from leaking

this information.”

The above two examples have painted a gloomy picture of

security worries in mobile applications and devices. Surely,

as a matter of principle, devices should not discharge

personal information or any information that can be linked

to a user for everyone to see without a users' consent. On the

other hand, allowing very fine-grained control over these

matters will only serve to confuse most users. This

confusion could have two outcomes. On the one hand, users

could be prompted with a complicated privacy dialog and

automatically cancel out of fear.

Or alternatively, by considering just how many

applications use personal data, it could also lead to users

becoming insensitive to such dialogs [13]. The insufficiency

of transparency while exchanging people’s identity and

other information makes it hard or even impossible for users

to participate in the protection process of their identities and

personal information. In some applications or services that

IEEE CSCloud 2016 24-27 June 2016 – Beijing Page 4

provide such facilities, the service providers carry out most

of the protection, rather than the users themselves.

This issue is not limited to applications developed

for mobile devices. As reported recently, Facebook had to

take the action of banning developers that they caught

selling user names and contact lists. In the report, it is stated

that developers trade user details to data brokers who use

the information to target advertising more precisely.

However, Facebook did confirm that the sale of user

identities did not give access to other personal information.

Hence, no private data has been sold or compromised [14].

III. APP COLLUSION TOOL

To be able to dynamically detect app collusion scenarios,
our tool is designed to inspect the manifest file of each
APK, identify the permission request vs the actual
permission displayed to the user during installation. We also
dynamically check what API’s are used within the apps and
what other third party apps the original APK is
communicating with, or sending PII information to. To
contextualise this, the motivation of the research is
illustrated in Figure 2.

This is where multiple apps that either belongs to

the same developer or multiple developers, request different

permissions, but share the different information obtained by

each app, with others without the knowledge of consent of

the end user. On the other hand another case is where a

malicious app is able to dynamically acquire permissions

granted by other apps and utilising these permissions

without user’s consent.
The proposed overall architecture is presented in

Figure 3. This is divided into two main components: the
front and back end.

Figure 2 App collusion Scenario

The front end architecture comprises of two main
components, a mobile App client and a desktop software

client. Where both components of the front-end are resolute
on providing dynamic analysis of APK’s to identify possible
app collusion vulnerabilities and warn the user against
possible vulnerabilities.

The desktop version is aimed to provide more
granular details and where possible, help to provide a
structural view of all possibilities of PII misuse and
channels of communication between apps, API’s and third
parties.

Figure 3 App Collision Architecture

 The back end on the other hand also consists of
two components: a static analysis model extractor and a
dynamic analysis extractor. Both of these take in input in the
form of an APK file(s) and outputs a set of identified
vulnerabilities.

IV. DISCUSSION

STATIC ANALYSIS MODEL EXTRACTOR: we have manually

decompiled and analysed various apps from the play store,

this is done by performing manual analysis of the manifest

files and source code. All of the APK’s analysed reveal the

fact that it uses more permissions then it requests at

installation. Also, it appears that some of the APK‘s

contains 2 additional DEX files that are encrypted which

require further investigation to establish the role and

security implications of these files.

Further investigation was conducted to establish

the links between the companies; it has been found that

Company A and app developer B have made a joint

operation framework agreement for games in Oct 2014.

Some of the websites linked to these apps are selling all

sorts of security/clean-up software. Our investigation also

found that there is a common issue of Company A’s internet

security installing itself without permission. Another app

developed by app developer B uses multiple permissions

that are not stated when downloading it, including full

control over system settings, access to PII and access to

internet. Some of the identified manifest issues are

presented in Listing 1. What we think this does is allow

broadcasts of type install referrer to be sent to third party

website. It also uses third party advertising websites but this

could just be related with the in-app adds.

IEEE CSCloud 2016 24-27 June 2016 – Beijing Page 5

After installing an app called network connections, it tracks

all the processes that are connecting to the internet and

shows the connection details. When the app’s analysed in

this research are launched, most of them made multiple

connections to amazon cloud services in the US, and

Facebook in Ireland and the Netherlands. Possible reason:

storing or retrieving something from the cloud, PII,

Facebook profile data? The app uses the same ijinshan

library as the other app’s from the same developer, which

we believe is the parent company/site of both. After a bit of

reading, it seems that the reason the apps that use the third

party site are connecting to amazon cloud and Facebook is

to collect PII, and give the app developer anonymous usage

statistics. They claim that they don’t pass on PII, just

process it and pass on anonymous data. They store the PII

on the cloud, and send the stats to developers Facebook

account. We have no means to test those claims. The more

permissions the app acquired, the more accurate stats they

can give, so that might explain the reason some apps ask for

so many permissions as possible, because we think that up

until this year some apps from some countries weren’t

allowed to charge money for apps in the play store, so they

would rely heavily on stats for marketing purposes.

While looking through some of the app source

files, we were alarmed to find that significant effort had

been placed into programming for Google wallet and

Facebook integration. This is of importance since this app

does not let you leave from the home screen.

So for that much effort to be placed into

programming style sheets, for this level of integration, backs

up our assumption that this app is designed to leak user

information for explicit purposes.

During an examination of the android manifest file

(for one of the apps), a backdoor for the app developers was

discovered (Figure 4).

Figure 4 Manifest file backdoor

It is not clear how disastrous this backdoor could be.

However, given that the app already has access to several

high value permissions; it could be a possible security risk.

Dynamic Analysis: the second aspect of back-end system in

to design and implement simple software (app) that will be

able to dynamically analyse app APK’s and display result to

users of the app. The outputs will be a list/set of identified

vulnerabilities. To achieve this we proposed an application

which uses content provider of other applications to access

data. However, since the content providers are pre-defined,

we can only manage to access data of the listed applications.

Moreover, an interesting aspect of this is the fact that we are

able to identify that some of the data listed within the

application, is not displayed to the user for permission

before or during app installation. Another aspect that we

have explored is to monitor broadcast intents however, it

has been discovered that only simple data can be

transferred.

 A sample of the implementation code, which is

able to read all installed apps within a device and display the

requested permissions in the actual manifest files for the

apps, is shown in Figure 5.

Figure 5 Code Sample

Some examples of the output from three sample installed

files are also shown in Figure 6.

Figure 6 Sample Results

Manifest issues:

 <receiver

 android:name="com.appsflyer.MultipleInstallBroadcastReceiver"

 android:exported="true">

 <intent-filter>

 <action

 android:name="com.android.vending.INSTALL_REFERRER"/>

 </intent-filter>

 </receiver>

Listing 1

IEEE CSCloud 2016 24-27 June 2016 – Beijing Page 6

With the recent update/introduction of android M to provide

more granular app permission, which most people believe to

minimise applications right, and help individuals to revoke

and manage when android apps access user data. However,

it is worth pointing out that most people are not on android

M yet and also if some of these permissions are disabled or

revoked it restricts app functionality and sometimes even

just crash the app and render it useless. Hence, this is not a

solution to app collusion or its vulnerabilities but only a

quick fix that will lead to more vulnerabilities and misuse.

V. CONCLUSION

The paper presents the problem of app collusion and its

cyber security implications. We have been able to identify

that the presented permissions during app installations are

not always the same as those listed in the actual app

manifest files. We have presented our proposed architecture

and early result of the prototype of one of the front end

development of the tool. From the result provided is it clear

that some inter-application is a serious vulnerability and

even though we acknowledge the fact that we allow apps to

access certain features within out device. We mentally write

it off as this might only occurs as and when it is needed, the

app is only accessing the information that we agree during

installation and that this information is not been misused.

However, this is not always the case. Future work includes

an extension of this architecture to apps within iOS and

Windows devices forms part of future work for this research

project.

Acknowledgement

This forms part of the research funded by VC Early Career

award. The authors want to thank Sam Oliver for his initial

review of manuscript, Milos Matovic and Vaibhav Mathur

for contribution toward proof of concept.

VI. REFERENCE

1. Enck, W., et al., TaintDroid: An Information-Flow

Tracking System for Realtime Privacy Monitoring on

Smartphones. ACM Transactions on Computer Systems

(TOCS) 2010. 32(2): p. Article 5.

2. Grace, M., et al., RiskRanker: scalable and accurate

zero-day Android malware detection. in Proc. of the

10th International Conference on Mobile Systems,

Applications, and Services (MobiSys). ACM, 2012: p.

281-294.

3. Yang, W., et al., Appcontext: Differentiating malicious

and benign mobile app behaviors using context. in Proc.

of the International Conference on Software Engineering

(ICSE), 2015.

4. Bugiel, S., et al., Towards Taming Privilege-Escalation

Attacks on Android. In Proc. of the 19th Annual

Network and Distributed System Security Symposium,

2012.

5. Elish, K.O., D.D. Yao, and B.G. Ryder, On the Need of

Precise Inter-App ICC Classification for Detecting

Android Malware Collusions. Proceedings of IEEE

Mobile Security Technologies (MoST), in conjunction

with the IEEE Symposium on Security and Privacy. ,

2015.

6. Blumberg, J., Cybersecurity, Health Care, and Mobile

Devices, in Dartmouth Now. 2011.

7. Juniper (2012) Trusted Mobility Index. Volume,

8. Arabo, A. and B. Pranggono, Mobile Malware and

Smart Device Security: Trends, Challenges and

Solutions. 19th International Conference on Control

Systems and Computer Science (CSCS), 2013 2013: p.

526 - 531.

9. Juniper (2012) Juniper Networks 2011 Mobile Threats

Report. Volume,

10. Enck, W., et al. TaintDroid: An Information-Flow

Tracking System for Realtime Privacy Monitoring on

Smartphones. in 9th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’10). 2010.

Vancouver, BC, Canada.

11. Arabo, A., Q. Shi, and M. Merabti, Data Mishandling

and Profile Building in Ubiquitous Environments, in

IEEE International Conference on Privacy, Security,

Risk and Trust. 2010, IEEE Cpmputer Society:

Minneapolis, Minnesota, USA. p. 1056-1063.

12. Smith, E., iPhone Applications & Privacy Issues: An

Analysis of Application Transmission of iPhone Unique

Device Identifiers (UDIDs), in

http://www.pskl.us/wp/wp-

content/uploads/2010/09/iPhone-Applications-Privacy-

Issues.pdf (online). 2010.

13. Holwerda, T., Studies Show Android, iOS Transmit

Private Data to 3rd Parties, in

http://www.osnews.com/story/23865/Studies_Show_And

roid_iOS_Transmit_Private_Data_to_3rd_Parties

(online). 07/10/2010.

14. BBCNews, Facebook uncovers user data sales, in BBC

News Technology

http://www.bbc.co.uk/news/technology-11665120

[accessed 06/11/2010]. 2010.

http://www.pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-Privacy-Issues.pdf
http://www.pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-Privacy-Issues.pdf
http://www.pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-Privacy-Issues.pdf
http://www.osnews.com/story/23865/Studies_Show_Android_iOS_Transmit_Private_Data_to_3rd_Parties
http://www.osnews.com/story/23865/Studies_Show_Android_iOS_Transmit_Private_Data_to_3rd_Parties
http://www.bbc.co.uk/news/technology-11665120

