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Abstract. We construct a new structure-preserving signature scheme
in the efficient Type-III asymmetric bilinear group setting with signa-
tures shorter than all existing schemes. Our signatures consist of 3 group
elements from the first source group and therefore have shorter size than
all existing schemes as existing ones have at least one component of the
signature in the second source group whose elements bit size is at least
double their first group counterparts.

Besides enjoying short signatures, our scheme is fully re-randomizable
which is a useful property for many applications. Our result also con-
stitutes a proof that the impossibility of unilateral structure-preserving
signatures in the Type-III setting result of Abe et al. (Crypto 2011) does
not apply to constructions in which the message space is dual in both
source groups. Besides checking the well-formedness of the message, ver-
ifying a signature in our scheme requires checking 2 Pairing Product
Equations (PPE) and require the evaluation of only 5 pairings in total
which matches the best existing scheme and outperforms many other
existing ones. Reducing the number of pairings in the verification equa-
tions is very important when combining structure-preserving signature
schemes with Groth-Sahai proofs as the number of pairings required for
verifying Groth-Sahai proofs for PPE equations grows linearly with the
number of pairing monomials in the source equations. We give some ex-
amples of how using our new scheme instead of existing ones improves
the efficiency of some existing cryptographic protocols such as direct
anonymous attestation and group signature related constructions.

Keywords. Structure-Preserving, Digital Signatures, Bilinear Groups.

1 Introduction

Structure-Preserving Signatures (SPS) [3] are digital signature schemes
defined over bilinear groups (e : G × G̃ → T). Their messages, verifica-
tion key and signatures are all group elements and signature verification
involves evaluating Pairing Product Equations (PPE). They are a useful
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tool for the design of modular cryptographic protocols since they compose
nicely with existing popular tools such as Groth-Sahai proofs [30] and El-
Gamal encryption scheme [20]. They are prominently used in combination
with Groth-Sahai proofs and other tools to design cryptographic proto-
cols that do not rely on heuristic assumptions such as random oracles [21].
They have numerous applications which include group signatures, e.g. [3,
33, 34], blind signatures, e.g. [3, 23], tightly secure encryption schemes,
e.g. [31, 2], malleable signatures, e.g. [9], anonymous credentials, e.g. [23],
network coding, e.g. [9], oblivious transfer, e.g. [27].

Related Work. The notion was formally defined by Abe et al. [3] but
earlier schemes conforming to the definition were given by Groth [28]
and Green and Hohenberger [27]. Because of its importance, the notion
has received a significant amount of attention from the cryptographic
community and many results relating to proving lower bounds for the de-
sign of such schemes as well as new schemes meeting those lower bounds
have been published in the literature. Abe et al. [3] gave two construc-
tions of structure-preserving signatures both relying on non-interactive
intractability assumptions. Abe et al. [4] proved that any structure-p-
reserving signature scheme in the most efficient Type-III bilinear group
setting (cf. Section 2.1) must have at least 3 group elements and 2 pairing
product verification equations. They also ruled out the existence of uni-
lateral signatures and argued that the signature must contain elements
from both source groups. They also gave constructions meeting the lower
bound and proved them secure in the generic group model [39]. Abe et
al. [5] proved the impossibility of the existence of a 3 group element
structure-preserving signature in the Type-III setting that is based on
non-interactive intractability assumptions. In essence, their result implies
that in the Type-III setting, the only way to meet the 3 group element
lower bound is to either employ interactive intractability assumptions
or resort to direct proofs in the generic group model. Ghadafi [25] gave
a structure-preserving variant of the Camenisch-Lysyanskaya signature
scheme [15] that is secure under an interactive assumption in the Type-III
setting. Abe et al. [7] constructed a scheme in the Type-II setting (where
there is an efficiently computable isomorphism from the second source
group to the first) which contains only 2 group elements. Chatterjee and
Menezes [17] revisited the work of [7] and showed that Type-III construc-
tions outperform their Type-II counterparts. [17] also gave constructions
in Type-III setting meeting the 3 group element lower bound. Barthe
et al. [10] also gave optimal constructions of structure-preserving signa-
tures in Type-II setting. Constructions relying on standard assumptions
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(such as DLIN and DDH) were given by [16, 1, 14, 2, 32, 34]. We remark
here that constructions relying on standard assumptions are much less
efficient than their counterparts relying on non-standard assumptions or
those proven directly in the generic group model. More recently, Abe et
al. [8] and Groth [29] gave fully structure-preserving constructions where
even the secret key consists of only group elements.

While by now there exist a number of schemes, e.g. [4, 17, 6, 10, 29],
with signatures meeting the 3 group element lower bound in the Type-
III setting proved by Abe et al. [4], all those schemes have at least one
component of the signature in group G̃ whose elements bit size is at least
double that of those in G. To the best of our knowledge, the only existing
structure-preserving signature scheme in the Type-III setting whose all
signature components are in G is that of Ghadafi [25]. However, signa-
tures of latter consist of 4 group elements and require 3 pairing-product
verification equations.

Our Contribution. We construct a (unilateral) structure-preserving sig-
nature scheme with signatures shorter than all existing structure-preserving
signatures. Our scheme yields fully re-randomizable signatures consisting
of 3 group elements from the first short source group.

Our results also serve as a proof that the impossibility of unilateral
structure-preserving signature schemes in the Type-III setting result of
Abe et al. [4] does not apply when the message space is dual in both
source groups. As is the tradition with most existing structure-preserving
schemes, we prove the security of our scheme directly in the generic group
model. Our scheme can be viewed as an extension of the recent non-
structure-preserving signature scheme of Pointcheval and Sanders [37].

Finally, we show that replacing some existing schemes used as building
blocks in some protocols with ours improves the efficiency of those pro-
tocols which include direct anonymous attestation and group signature
related constructions.

Paper Organization. In Section 2, we give some preliminary definitions.
In Section 3, we present our signature scheme and prove its security. We
give some applications of our signature scheme in Section 4.

Notation. We write y = A(x; r) when the algorithm A on input x and
randomness r outputs y. We write y ← A(x) for the process of setting
y = A(x; r) where r is sampled at random. We also write y ← S for
sampling y uniformly at random from a set S. A function ν(.) : N→ R+

is negligible (in n) if for every polynomial p(.) and all sufficiently large
values of n, it holds that ν(n) < 1

p(n) . By PPT we mean running in

3



probabilistic polynomial time in the relevant security parameter. By [k],
we denote the set {1, . . . , k}.

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G, G̃,T, p,G, G̃, e) where G, G̃ and T are
groups of a prime order p, and G and G̃ generate G and G̃, respectively.
The function e is a non-degenerate bilinear map e : G× G̃ −→ T.

For clarity, elements of G̃ will be accented with .̃ We use multiplicative
notation for all the groups. We let G× := G \ {1G} and G̃× := G̃ \ {1G̃}.
In this paper, we work in the efficient Type-III setting [24], where G 6= G̃
and there is no efficiently computable isomorphism between the source
groups in either direction. We assume there is an algorithm BGSetup that
on input a security parameter λ, outputs a description of bilinear groups.

The message space of our signature scheme are elements of the sub-
group Ĝ of G× G̃ defined as the image of the map

ψ :
{

Zp −→ G× G̃
x 7−→ (Gx, G̃x)

Given an element (M, Ñ) ∈ G × G̃, one can efficiently test whether
(M, Ñ) ∈ Ĝ by checking e(M, G̃) = e(G, Ñ). 1

2.2 Complexity Assumptions

Definition 1 (Decisional Diffie-Hellman (DDH) Assumption). The
DDH assumption holds relative to a group setup G if for all PPT adver-
saries A

Pr
[

(G, G, p)← G(1λ); r, s, t← Zp; b← {0, 1};
R := Gr; S := Gs; T := Gbrs+(1−b)t : A(G,R, S, T ) = b

]
≤ 1

2
+ν(λ) ·

Definition 2 (Symmetric External Diffie-Hellman (SXDH) As-
sumption). Given a bilinear group P := (G, G̃,T, p,G, G̃, e), the SXDH
assumption requires that the DDH assumption holds in both groups G and
G̃.

1The elements of this group are called Diffie-Hellman pairs in [22, 3].
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2.3 Digital Signatures

A digital signature scheme over a bilinear group P generated by BGSetup
is a tuple DS := (KeyGen,Sign,Verify) whose definitions are:

• KeyGen(P) this probabilistic algorithm takes as input a bilinear group
P and outputs a pair of secret/verification keys (sk, vk).

• Sign(sk,m) this probabilistic algorithm takes as input a secret key sk
and a message m ∈M, and outputs a signature σ.

• Verify(vk,m, σ) this deterministic algorithm outputs 1 if σ is a vlaid
signature on m w.r.t. the verification key vk.

Definition 3 (Correctness). A signature scheme DS over a bilinear
group generator BGSetup is (perfectly) correct if for all λ ∈ N

Pr
[
P ← BGSetup(1λ); (sk, vk)← KeyGen(P);

m←M;σ ← Sign(sk,m) : Verify(vk,m, σ) = 1

]
= 1.

Definition 4 (Existential Unforgeability). A signature scheme DS
over a bilinear group generator BGSetup is existentially unforgeable against
adaptive chosen-message attack if for all λ ∈ N for all PPT adversaries
A

Pr

P ← BGSetup(1λ); (sk, vk)← KeyGen(P);
(σ∗,m∗)← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

 ≤ ν(λ),

where QSign is the set of messages queried to Sign.
We consider schemes which are re-randomizable (i.e. weakly unforge-

able) in the sense that given a signature on a message m, anyone without
knowledge of the signing key, can compute a fresh signature on the same
message. A desirable property for such class of schemes is that randomized
signatures are indistinguishable from fresh signatures on the same mes-
sage. Thus, we define an algorithm Randomize which on input (vk,m, σ),
where σ being a valid signature on m, outputs a new signature σ′ on m.

Definition 5 (Randomizability). A signature scheme DS over a bi-
linear group generator BGSetup is randomizable if for all λ ∈ N for all
stateful adversaries A

Pr


P ← BGSetup(1λ); (sk, vk)← KeyGen(P);
(σ∗,m∗)← A(P, sk, vk); b← {0, 1};
σ0 ← Sign(sk,m∗);σ1 ← Randomize(vk,m∗, σ∗);

: Verify(vk,m∗, σ∗) = 1 ∧ A(σb) = b

 ≤ 1
2

+ ν(λ).
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We say the scheme has Perfect Randomizability when ν(λ) = 0. Note that
the above definition of randomizability is stronger than the variant where
the signature σ∗ is generated by the challenger rather than the adversary
herself.
Structure-Preserving Signatures. Structure-preserving signatures [3]
are signature schemes defined over bilinear groups where the messages,
the verification key and signatures are all group elements and verifying
signatures only involves deciding group membership of the signature com-
ponents and evaluating Pairing Product Equations (PPE) of the form of
equation 1. ∏

i

∏
j

e(Ai, B̃j)ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ G̃ are group elements appearing in P,m, vk, σ,
whereas ci,j ∈ Zp are constants.

2.4 Randomizable Weakly Blind Signatures

A randomizable weakly blind signature scheme, as defined by Bernhard
et al. [12], is similar to a standard blind signature scheme [18] but unlike
the latter, in the former, the signer never gets to see the signed message.
More precisely, in the blindness game of the former (referred to as weak
blindness), the challenge messages are chosen by the challenger rather
than the adversary and are never revealed to the adversary.

Formally, a randomizable weakly blind signature scheme BS (with a
two-move signature request phase) consists of the following polynomial-
time algorithms BS := (SetupBS,KeyGenBS,RequestBS, IssueBS,VerifyBS,
RandomizeBS). All algorithms (bar SetupBS) are assumed to take as (im-
plicit) input a parameter set paramBS output by SetupBS.

• SetupBS(1λ) outputs public parameters paramBS.
• KeyGenBS(paramBS) outputs a public/secret key pair (vkBS, skBS) for

the signer.
• (Request0BS, Issue1

BS,Request1BS) is an interactive protocol run between
a user and a signer. The protocol is initiated by the user by calling
Request0BS(vkBS,m) to obtain a value ρ0 and some state information
st0R (which is assumed to contain the message m). Then the signer
and user execute, respectively,

(β1, st
1
I)← Issue1

BS(skBS, ρ0) and σ ← Request1BS(β1, st
0
R),

6



where σ is a signature on the message m (or the reject symbol ⊥).
We write σ ← 〈RequestBS(vkBS,m), IssueBS(skBS)〉 for the output of
correct running of this protocol on the given inputs.

• VerifyBS(vkBS,m, σ) outputs 1 if σ is a valid signature on m and 0
otherwise.

• RandomizeBS(vkBS, σ) given a signature σ on an unknown message m,
produces another valid signature σ′ on the same message.

Definition 6 (Correctness). A randomizable weakly blind signature scheme
is (perfectly) correct if for all λ ∈ N

Pr


paramBS ← SetupBS(1λ); (vkBS, skBS)← KeyGenBS(paramBS);
m←MBS;σ ← 〈RequestBS(vkBS,m), IssueBS(skBS)〉;
σ′ ← RandomizeBS(vkBS, σ)

: VerifyBS(vkBS,m, σ) = 1 ∧ VerifyBS(vkBS,m, σ
′) = 1

 = 1.

Definition 7 (Unforgeability). A randomizable weakly blind signature
scheme is unforgeable if for all λ ∈ N, all PPT adversaries A have a
negligible advantage in the game in Fig. 1.

Experiment: ExpUnforge
BS,A (λ):

− paramBS ← SetupBS(1λ).
− (vkBS, skBS)← KeyGenBS(paramBS).
−
(

(m1, σ1), . . . , (mn+1, σn+1)
)
← AIssueBS(·,·)(vkBS, paramBS).

− Return 0 if any of the following holds. Otherwise, Return 1:
◦ A called its oracle more than n times.
◦ ∃i, j ∈ {1, . . . , n+ 1} s.t. i 6= j, but mi = mj .
◦ ∃i ∈ {1, . . . , n+ 1} s.t. VerifyBS(vkBS,mi, σi) = 0.

Fig. 1. The Unforgeability game for randomizable weakly blind signatures

Definition 8 (Weak Blindness). A randomizable weakly blind signa-
ture scheme is weakly blind if for all λ ∈ N, all PPT adversaries A have
a negligible advantage in the game in Fig. 2.

2.5 Groth-Sahai Proofs

Groth-Sahai (GS) proofs [30] are non-interactive proofs in the CRS model.
We will use GS proofs that are secure under the SXDH assumption, which
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Experiment: ExpwBlind
BS,A (λ):

− paramBS ← SetupBS(1λ).
− (vkBS, skBS)← KeyGenBS(paramBS).
− m0,m1 ←MBS.
− (ρ0, st

0
R)← Request0BS(vkBS,m0).

− (β1, stA)← A(paramBS, vkBS, skBS, ρ0).
− σ0 ← Request1BS(β1, st

0
R).

− If σ0 =⊥ or VerifyBS(vkBS,m0, σ0) = 0 Then Return 0.
− b← {0, 1}.
− If b = 0 Then σ1 ← RandomizeBS(vkBS, σ0).
− Else σ1 ← 〈RequestBS(vkBS,m1), IssueBS(skBS)〉.
− b∗ ← A(stA, σ0, σ1).
− Return 1 If b = b∗ Else Return 0.

Fig. 2. The Weak Blindness game for randomizable weakly blind signatures

is the most efficient instantiation of the proof system [26], and that prove
knowledge of witnesses to pairing-product equations of the form

n∏
j=1

e(Aj , Ỹj)
m∏
i=1

e(Xi, B̃i)
m∏
i=1

n∏
j=1

e(Xi, Ỹj)γi,j =
k∏
`=1

e(G`, H̃`), (2)

where all underlined variables are part of the witness whereas the rest of
the values are public constants. The language for these proofs is of the
form

L := {statement | ∃witness : E(statement,witness) holds},

where E(statement, ·) is a set of pairing-product equations.
The system is defined by a tuple of algorithms

(
GSSetup,GSProve,

GSVerify,GSExtract,GSSimSetup,GSSimProve
)
. GSSetup takes as input the

description of a bilinear group P and outputs a binding reference string
crs and an extraction key xk. GSProve takes as input the string crs, a
set of equations statement and a witness, and outputs a proof Ω for the
satisfiability of the equations. GSVerify takes as input a set of equations,
a string crs and a proof Ω and outputs 1 if the proof is valid, and 0 oth-
erwise. GSExtract takes as input a binding crs, the extraction key xk and
a valid proof Ω, and outputs the witness used for the proof. GSSimSetup,
on input a bilinear group P, outputs a hiding string crsSim and a trapdoor
key tr that allows to simulate proofs. GSSimProve takes as input crsSim,
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a statement and the trapdoor tr and produces a simulated proof ΩSim

without a witness. The distributions of strings crs and crsSim are com-
putationally indistinguishable and simulated proofs are indistinguishable
from proofs generated by an honest prover.

The proof system has perfect completeness, perfect soundness, com-
posable witness-indistinguishability/composable zero-knowledge. We re-
fer to [30] for the formal definitions and the details of the instantiation.

3 Our Structure-Preserving Signature Scheme

Given the description of Type-III bilinear groups P output by BGSetup(1λ),
our scheme is given by the following four algorithms.
• KeyGen(P): Select x, y ← Z×p . Set sk := (x, y) and vk := (X̃, Ỹ ) :=

(G̃x, G̃y).
• Sign(sk, (M, Ñ)): To sign a message (M, Ñ) ∈ Ĝ, (i.e. (M, Ñ) ∈ G×G̃

and e(M, G̃) = e(G, Ñ)), select a ← Z×p , and set A := Ga, B := Ma,
C := Ax ·By. Return σ := (A,B,C) ∈ G3.

• Verify(vk, (M, Ñ), σ = (A,B,C)): Return 1 iff A ∈ G× (i.e. A 6=
1G), B,C ∈ G, (M, Ñ) ∈ Ĝ (i.e. e(G, Ñ) = e(M, G̃)), and all of
the following hold:

e(A, Ñ) = e(B, G̃)

e(C, G̃) = e(A, X̃)e(B, Ỹ )

• Randomize(vk, (M, Ñ), σ = (A,B,C)): Select r ← Z×p , and set A′ :=
Ar, B′ := Br, C ′ := Cr. Return σ′ := (A′, B′, C ′).

Remark 1. Note that verifying the well-formedness of the message pair,
i.e. that (M, Ñ) ∈ Ĝ, need only be done once when verifying multiple
signatures on the same message. A similar argument applies to signature
schemes with the same message space, e.g. [22, 3, 25].

Also, since the componentA of the signature is information-theoretically
independent of the message, even when proving knowledge of a signature,
one can reveal A after re-randomizing it which allows for verifying that
A 6= 1G for free. We end by noting that Ghadafi [25] gave efficient Groth-
Sahai proofs that a committed Groth-Sahai value is not the identity ele-
ment.

Correctness of the scheme follows by inspection and is straightforward
to verify. Also, that the signature is perfectly randomizable is straightfor-
ward. The distributions of valid signatures returned by the Randomize al-
gorithm are identical to those returned by the Sign algorithm on the same
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message. Also, note that assuming the signature to be re-randomized is
valid, one only needs the old signature to be able to produce a new one.

The following theorem proves that the scheme is unforgeable in the
generic group model [39, 36]. We note here that the unforgeability of the
scheme could also be based on an interactive assumption.

Theorem 1. The structure-preserving signature scheme is (weakly) exis-
tentially unforgeable against adaptive chosen-message attack in the generic
group model.

Proof. The proof follows from the proof of the following theorem:

Theorem 2. Let A be an adversary in the generic group model against
our scheme. Assume A makes qG group operation queries, qP pairing
queries, and qS sign queries. The probability ε of adversary A winning the
game is bounded by ε ≤ (qG+qP +3qS+4)2·3

p , where p is the (prime) order of
the generic groups.

Proof. We start by re-stating the following Schwartz Zippel lemma [38]:

Lemma 1. Let p be a prime and P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] be a
non-zero polynomial with a total degree ≤ d. Then the probability that
P (x1, . . . , xn) = 0 is ≤ d

p .

Adversary A interacts with those oracles via group handles. We define
three random encoding functions ξ1 : G −→ {0, 1}∗, ξ2 : G̃ −→ {0, 1}∗
and ξ3 : T −→ {0, 1}∗ where ξi maps elements from the corresponding
group into random strings. The challenger keeps three lists L1,L2,LT
which contain pairs of the form (τ, P ) where τ is a “random” encoding
of the group element (i.e. τ is an output of the map ξi) and P is some
polynomial in Fp[X,Y,A1, . . . , AqS ].

To each list we associate an Update algorithm, that takes as input the
specific list Li and a polynomial P . The algorithm Update(Li, P ) searches
the list in question for a pair whose second component is equal to P , if
such a pair is found , the algorithm returns its first component as a result.
Otherwise, a new random encoding τ , different from all other elements
used so far, is chosen and the pair (τ, P ) is added to the list Li. The value
τ is then returned. Note that at no point A gets access to the second
element in the pairs.

The challenger starts the game by calling: Update(L1, 1), Update(L2, 1),
Update(L2, X) and Update(L2, Y ). Those correspond to the group ele-
ments G ∈ G and G̃, X̃, Ỹ ∈ G̃ of the verification key and public elements
the adversary gets in the scheme.

The oracles used in the game are defined as follows:

10



• Group Oracles: OraclesO1,O2 andOT allowA access to the group op-
erations in groups G, G̃ and T, respectively, via subtraction/addition
operations. On a call to Oi(τ1, τ2) B searches list Li for pairs of the
form (τ1, P1) and (τ2, P2). If both pairs exist, B returns the output
of Update(Li, P1 ± P2). Otherwise, it returns ⊥. Note that exponen-
tiation operations can be performed by calls to the group operation
oracles.

• Pairing Oracle: Oracle OP allows A to perform pairing operations.
On a call to OP (τ1, τ2), B searches the list L1 for the pair (τ1, P1),
and the list L2 for the pair (τ2, P2). If both pairs exist, B returns the
output of Update(LT , P1 · P2). Otherwise, it returns ⊥.

• Sign Oracle: The adversary may make up to qS queries OS(τ1, τ2).
The challenger searches list L1 for a pair (τ1, P1) and list L2 for a pair
(τ2, P2). If they do not exist or P1 6= P2, B returns ⊥. Otherwise, it
executes the following operations, where Ai, X and Y are indetermi-
nants:

τAi ← Update(L1, Ai),
τBi ← Update(L1, Ai · P1),
τCi ← Update(L1, Ai · (X + P1 · Y )).

Returning the tuple (τAi , τBi , τCi) to A.

At the end of the game, the total number of non-constant polynomials
contained in the three lists L1,L2 and LT is bounded from above by
t = qG + qP + 3qS + 4.

By using the above oracles, we can simulate the entire run of the
adversary where the adversary may make no decision which depends on
the particular encoding of group elements used.
The Adversary Output. Eventually, A outputs a tuple

(
τA∗ , τB∗ , τC∗ ,

τM∗ , τÑ∗
)
, where τA∗ , τB∗ , τC∗ , and τM∗ are on list L1 while τÑ∗ is on

list L2. We let PA∗ , PB∗ , PC∗ , PM∗ , PÑ∗ denote the polynomials associated
with these encodings. For A’s output to be valid, those polynomials can
be assumed to satisfy, for some assignment (x, y, a1, . . . , aqS ) ∈ F2+qS

p to
the variables (X,Y,A1, . . . , AqS ), the equations:

PB∗ = PA∗ · PÑ∗ (3)
PC∗ = PA∗ ·X + PB∗ · Y (4)
PM∗ = PÑ∗ (5)

From this we derive a contradiction, i.e. conclude that the adversary can-
not win the game. To achieve this, we need to first ensure that these
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polynomial identities cannot hold identically, i.e. regardless of any par-
ticular assignment (x, y, a1, . . . , aqS ) ∈ F2+qS

p to the variables (X,Y,A1,
. . . , AqS ).

Let (Mi, Ñi) denote the i-th query to the sign oracle, where we dis-
count queries which return ⊥. Note that the only polynomials on the list
L2 are linear combinations of the terms 1, X and Y we see that we must
have PÑi

= ri+si ·X+ ti ·Y . Since we must have PMi = PÑi
, this implies

that the above polynomials must also appear on the list L1. However, it
is also clear that there is no operation in G which creates a polynomial
with a monomial term of X, nor one of Y . Thus, we conclude that all
queries to the sign oracle correspond to elements whose polynomials are
a constant term of the form PMi = PÑi

= ri.
By a similar argument, we can also deduce that the output of the

adversary corresponds to polynomials with PM∗ = PÑ∗ = r∗. This is
precisely where we use the property that the oracle will return ⊥ unless
the input query lies in Ĝ.

Since the queries are for constant polynomials only, we see that the
only polynomials which can appear on the list L1 are of the form

PA∗ = w1 +
q∑
i=1

u1,i ·Ai +
q∑
i=1

v1,i ·Ai · (X + ri · Y ) (6)

PB∗ = w2 +
q∑
i=1

u2,i ·Ai +
q∑
i=1

v2,i ·Ai · (X + ri · Y ) (7)

PC∗ = w3 +
q∑
i=1

u3,i ·Ai +
q∑
i=1

v3,i ·Ai · (X + ri · Y ) (8)

where wj , uj,i, vj,i ∈ Fp.
First note that PC∗ , i.e. equation 8, there is no monomial with a power

> 1 of Y . Also, there is no monomial in X ·Y . This implies we must have
v1,i = v2,i = 0 for all i, i.e. neither PA∗ nor PB∗ should contain any
monomials in X or Y . This means we have

PA∗ = w1 +
q∑
i=1

u1,i ·Ai

PB∗ = w2 +
q∑
i=1

u2,i ·Ai
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Now by Equation (3) we must have that

w2 +
q∑
i=1

u2,i ·Ai = r∗ · w1 +
q∑
i=1

r∗ · u1,i ·Ai

For the above to hold, we must have w2 = r∗ · w1 and r∗ · u1,i = u2,i for
all i.

By Equation (4) we must have

w3 +
q∑
i=1

u3,i ·Ai +
q∑
i=1

v3,i ·Ai · (X + ri · Y )

= w1 ·X +
q∑
i=1

u1,i ·Ai ·X + r∗ · w1 · Y +
q∑
i=1

r∗ · u1,i ·Ai · Y

There is no term in X on the left so we must have w1 = 0. Also, no
constant terms or terms in Ai on the right so we must have w3 = 0 and
u3,i = 0 for all i. Thus, we must have

q∑
i=1

v3,i ·Ai ·X +
q∑
i=1

v3,i · ri ·Ai · Y =
q∑
i=1

u1,i ·Ai ·X +
q∑
i=1

r∗ · u1,i ·Ai · Y

By the term Ai · X, we must have u1,i = v3,i for all i. Since we must
have A∗ 6= 1G, we must have at least one pair u1,i = v3,i 6= 0 for some
i. Also, by the term Ai · Y , we must have v3,i · ri = r∗ · u1,i. Since as we
have seen we must have u1,i = v3,i, we have ri = r∗ which contradicts the
unforgeability requirement as the forgery is on a message pair that was
queried to the sign oracle.

Thus, the adversary must win, or tell it is in a simulation, via a spe-
cific (random) assignment to the variables. We now turn to bounding the
probability that the adversary wins (or detects the simulation) in this
case.
The Simulation. Now B chooses random values x, y, ai ∈ Fp and evalu-
ates the polynomials. We need to show that the challenger’s simulation is
sound. If A learned it was interacting in a simulated game, there would
be two different polynomials Pi,j(x, y, ai) = Pi,j′(x, y, ai) in list Li where
Pi,j 6= Pi,j′ . The simulation will fail if any of the following is correct:

P1,j(x, y, ai) = P1,j′(x, y, ai) (9)
P2,j(x, y, ai) = P2,j′(x, y, ai) (10)
PT,j(x, y, ai) = PT,j′(x, y, ai) (11)
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Since the maximum degree of any polynomial in list L1 ≤ 2, by applying
[39][Lemma 1], we have that the probability of Equation (9) holding is
≤ 2

p . Similarly, since the maximum degree of any polynomial in list L2

≤ 1, we have that the probability of Equation (10) holding is ≤ 1
p . Finally,

the probability of Equation (11) holding is ≤ 3
p .

Summing over all possible values of j in each case, we have

ε ≤
(
|L1|

2

)
2
p

+
(
|L2|

2

)
1
p

+
(
|LT |

2

)
3
p
,

where |Li| denotes the size of list Li.
In conclusion, the probability that an adversary wins the unforgeabil-

ity game is bounded by ε ≤ (qG+qP +3qS+4)2·3
p .

3.1 Useful Properties of Our Scheme

As mentioned above, having all 3 components of the signature in group
G means our signatures are shorter than those of all existing schemes.
Also, our scheme is fully re-randomizable and re-randomized signatures
are indistinguishable from fresh signatures on the same message. Thus,
this might provide efficiency gains when, for example, combined with
Groth-Sahai proofs [30] as one does not need to hide all components of
the signature if one needs to prove knowledge of a signature. In addition,
even though one has to know both sides of the message when requesting
signatures on a message, only the G component of the message is actually
needed for signing, whereas verification only requires the G̃ component.
For instance, as we will show, our scheme is ideal for instantiating ran-
domizable weakly blind signatures [12, 11] used for constructing direct
anonymous attestation protocols.

3.2 Efficiency Comparison

We compare in Table 1 the efficiency of our scheme with that of existing
schemes for a single a message in the Type-III setting. For concrete com-
parison, for instance, at 128-bit security, elements of G and G̃ in Type-III
are 256 and 512 bits long, respectively. Therefore, our signatures at this
security level are at least 256 bits shorter than the best existing scheme.
The efficiency gain is even better as the security level increases. Also, as
can be seen from the table, our scheme compares favorably to existing
ones in terms of the efficiency of the verification equation. Since it is well-
known that Type-III constructions outperform their Type-I and Type-II
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counterparts, we limit our comparison to those efficient constructions in
the Type-III setting.

For the schemes in [22, 25] as well as ours (i.e. those whose message
space is Ĝ), the cost does not include checking membership of the message
in the relevant group. As discussed earlier, such a check only needs to be
performed once when verifying multiple signatures on the same message.

Note that even though some of the existing schemes have the property
that a small number of the pairings used in the verification equations can
be pre-computed, this provides no advantage in the context of structure-
preserving signatures as according to the definition, verification equations
should not contain any elements from the target group other than the
identity element 1T. Therefore, one still has to evaluate all pairings for
each signature. This is, for instance, required when producing Groth-
Sahai zero-knowledge proofs of knowledge of a signature.

It is obvious that structure-preserving signatures (on unilateral mes-
sages) in the Type-III setting have shorter messages than schemes, in-
cluding ours, whose message space is Ĝ. However, we stress that this is a
small price to pay to get shorter signatures and more efficient verification
while remaining in the most efficient Type-III bilinear group setting.

Scheme
Size

Randomize? Assumptions
Verification

σ vk Param m #PPE #Pairings

[27] a G4 × G̃ G̃2 - G Yes q-HLRSW 4 8

[22] G3 × G̃2 G× G̃ G3 Ĝ No q-ADHSDH + AWFCDH 3 7

[3] I G5 × G̃2 G10 × G̃4 - G Partially q-SFP 2 12

[3] II G2 × G̃5 G10 × G̃4 - G̃ Partially q-SFP 2 12

[4] I G2 × G̃ G× G̃3 - G× G̃ No GGM 2 7

[4] II G2 × G̃ G× G̃ - G̃ Yes GGM 2 5

[25] G4 G̃2 - Ĝ Yes DH-LRSW 3 6

[17] I G× G̃2 G2 - G̃ No GGM 2 5

[17] II G× G̃2 G2 - G̃ Yes GGM 2 6

[17] III G2 × G̃ G̃2 - G Yes GGM 2 6

[6] I G3 × G̃ G̃ G G Yes GGM 2 6

[6] II G2 × G̃ G̃ G G No GGM 2 6

[10] G× G̃2 G2 - G̃ Yes GGM 2 5

[29] I G× G̃2 G G̃ G̃ Yes GGM 2 6

[29] II G× G̃2 G G̃ G̃ No GGM 2 7

Ours G3 G̃2 - Ĝ Yes GGM 2 5

aThis scheme is only secure against a random message attack.
Table 1. Efficiency comparison between our scheme and other schemes
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4 Applications of Our Scheme

In this section we show how using our signature scheme instead of some
existing schemes improves the efficiency of some existing cryptographic
protocols. We list here two examples which include direct anonymous
attestation [13] and group signature related primitives.

4.1 Direct Anonymous Attestation

Bernhard et al. [11] gave the first instantiations of Direct Anonymous
Attestation (DAA) [13] which do not rely on random oracles. Their con-
structions are instantiations of Bernhard et al. [12] generic construction.
Among other things, the generic construction of the latter requires a ran-
domizable weakly blind signature. The weakly blind signature is used in
the join protocol to issue a credential to the user without learning her
secret key. Note that unlike in group signatures [19], in DAA users do not
have public keys matching their secret keys.

To get an efficient instantiation of the notion and hence an efficient
instantiation of DAA (without relying on random oracles), the efficient in-
stantiation of Bernhard et al. [11] combined Ghadafi’s structure-preserving
signature scheme [25] with Groth-Sahai proofs [30] to construct an effi-
cient weakly blind signature scheme. Their weakly blind signature in-
stantiation yields signatures of size G4 and require 3 PPE equations (7
pairings or 6 pairings and 1 elliptic curve point addition in total) to ver-
ify. Exploiting the fact that our signature scheme has a similar structure
to Ghadafi’s scheme but yet has shorter signatures and the verification
algorithm is more efficient, we get a more efficient instantiation of weakly
blind signatures and hence DAA by using our scheme instead. The weakly
blind signature (see Fig. 3) obtained by combining our signature scheme
with Groth-Sahai proofs yields signatures of size G3 and require only 2
PPE equations (5 pairings in total) to verify. Also, the communication
complexity of both the user and the signer in the signing protocol is the
same as that in the instantiation in [11]. Thus, using our scheme one gets
more efficient instantiations of DAA without relying on random oracles.

In the construction detailed in Fig. 3, we use the following languages
for the zero-knowledge proofs for the user and signer respectively 2:

L1 :
{(
M, (Ñ , G̃′)

)
: e(G, Ñ) = e(M, G̃′) ∧ G̃′ · G̃−1 = 1G̃

}
2The purpose of the two multi-scalar multiplication equations is to make the equa-

tions simulatable so that the proofs are zero-knowledge [30].
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SetupBS(1λ)

P ← BGSetup(1λ). (crs1, xk1)← GSSetup(P).
(crs2, xk2)← GSSetup(P).
Return paramBS := (P, crs1, crs2).

KeyGenBS(paramBS)

x, y ← Zp. X̃ := G̃x; Ỹ := G̃y.

Return
`
skBS := (x, y), vkBS := (X̃, Ỹ )

´
.

Request0BS(vkBS, (M, Ñ))

π ← GSProve
“
crs1, {Ñ , G̃′} : M ∈ L1

”
.

Return (ρ0 := (M,π), st0R := (M, Ñ)).

Issue1BS(skBS, ρ0)
Parse ρ0 as (M,π).
If GSVerify(crs1,M ∈ L1, π) = 0, Return ⊥ .
a← Z×p ; A := Ga; B := Ma; C := Ax ·By.
Ω ←GSProve(crs2, {Ã, G̃′} : (A,B,M) ∈ L2).
Return β1 :=

`
(A,B,C), Ω

´
.

Request1BS(vkBS, β1, st
0
R)

Parse β1 as ((A,B,C), Ω).

Parse st0R as (M, Ñ).
Return ⊥ if any of the following hold:
◦ A = 1G.
◦ e(C, G̃) 6= e(A, X̃)e(B, Ỹ ).
◦ GSVerify(crs2, (A,B,M) ∈ L2, Ω) = 0.

Return σ ← RandomizeBS

`
vkBS, (A,B,C)

´
.

VerifyBS(vkBS, (M, Ñ), (A,B,C))

If A = 1G or e(A, Ñ) 6= e(B, G̃)

or e(C, G̃) 6= e(A, X̃)e(B, Ỹ )
Then Return 0.

Else Return 1.

RandomizeBS(vkBS, σ)
Parse σ as (A,B,C).
r ← Z×p ;A′ := Ar;B′ := Br;C′ := Cr.
Return (A′, B′, C′).

Fig. 3. Our Weakly Blind Signature Scheme

L2 :
{(

(A,B,M), (Ã, G̃′)
)

: e(G, Ã) = e(A, G̃′) ∧ e(M, Ã) = e(B, G̃′)

∧ G̃′ · G̃−1 = 1G̃

}
We prove following theorem in Appendix A.

Theorem 3. If the SXDH assumption holds and the signature scheme is
existentially unforgeable, the weakly blind signature scheme in Fig. 3 is
secure.

4.2 Group Signatures and Similar Primitives

In all constructions of group signatures [19], the issuer (the group man-
ager) issues membership certificates by certifying users’ verification keys.
The message space of our scheme being the set of Diffie-Hellman pairs
makes our scheme ideal to be combined with the automorphic structure-
preserving signature scheme of Fuchsbauer [22, 3]. For instance, combining
our signature scheme with Fuchsbauer’s blind signature scheme [22, 3], we
get more efficient instantiations of group blind signatures [35, 25] (with-
out relying on random oracles) than those in [25]. An instantiation using
our signature scheme yields group blind signatures of size 36 · |G|+34 · |G̃|
compared to 38 · |G| + 36 · |G̃| and 42 · |G| + 38 · |G̃| for the original
constructions given in [25]. Also, since the final signature involves less
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Groth-Sahai proofs, the verification algorithm is much more efficient as
each Groth-Sahai proof requires a few pairings to verify.
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A Proof of Theorem 3

Correctness of the construction follows from that of the signature scheme
and the perfect completeness of Groth-Sahai proofs. Unforgeability and
weak blindness are proven by the following two lemmata, respectively.

Lemma 2. The weakly blind signature scheme in Fig. 3 is unforgeable if
the structure-preserving signature scheme in Section 3 is existentially un-
forgeable, NIZK1 (used by the user to produce π) is sound and NIZK2

(used by the signer to produce Ω) is zero-knolwedge.

Proof. We instantiate crs1 used for NIZK1 as a binding crs and hence
NIZK1 is perfectly sound, whereas crs2 is instantiated as a hiding string
and hence we can simulate proof Ω. By the security of NIZK2, we have
that an adversary has a negligible advantage in distinguishing a binding
string from a hiding one.

We now use an adversary A against the unforgeability of the blind
signature scheme to construct an adversary B against the unforgeability
of the structure-preserving signature scheme.
B gets the verification key vk = (X̃, Ỹ ) from its game which it forwards

toA. B has access to a sign oracle in its game. To answer a signature query
on a message, B uses the extraction key of NIZK1 to extract the witness
Ñ and forwards (M, Ñ) (which is by the soundness of NIZK1 is valid
Diffie-Hellman pair) to its sign oracle to get a signature σ = (A,B,C).
Now, B simulates the proof Ω (since it does know the exponent a used
in the signature and hence cannot produce the element Ã). B returns(
σ = (A,B,C), Ω

)
to A.

Eventually, when A outputs its n + 1 message-signature pairs, B re-
turns the extra pair that it did not query its oracle on as its forgery.

By the existential unforgeability of the signature scheme, we have that
this only happens with a negligible probability.

This concludes the proof. ut

Lemma 3. The weakly blind signature scheme in Fig.3 is weakly blind if
NIZK1 is zero-knowledge, NIZK2 is sound and the DDH assumption
holds in group G.

Proof. We instantiate crs1 (used for NIZK1) as a hiding crs and hence
we can simulate proof π. By the security of NIZK1, we have that an
adversary has a negligible advantage distinguishing a binding string from
a hiding one.
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The string crs2 (used for NIZK2) is instantiated as a binding string
and hence the proof system NIZK2 is perfectly sound. We now use an
adversary A against the weak blindness of the blind signature to construct
an adversary B that breaks the DDH assumption in group G. B gets
R = Gr, S = Gs and T = Gt, where r, s, t ∈ Zp are random exponents
unknown to B. B chooses x, y ← Zp and computes X̃ := G̃x and Ỹ := G̃y.
It forwards skBS := (x, y) and vkBS := (X̃, Ỹ ) to A.
B requests from A a blind signature on the message R. Note that since

B does not know r, it simulates proof π. A responds with a signatures
(σ = (A,B,C), Ω). Since NIZK2 is perfectly sound, (A,B,C) is a valid
signature on the message (Gr, G̃r), i.e. for some a ∈ Zp, we have σ =
(Ga, Gra, Gax ·Gray). To produce the challenge signature σ1, B computes
σ1 = (A∗, B∗, C∗) := (S, T, Sx · T y). B returns

(
σ0 =

(
A,B,C

)
, σ1 =(

A∗, B∗, C∗
))

to A. The advantage of B in breaking the DDH assumption
in G is the same as that of A winning the weak blindness game.

We argue now that the challenge signatures given to A are distributed
identically to those A would get in the blindness game. We have two cases:

• Case t = rs (i.e. a valid DDH tuple) : In this case, we have

σ1 = (A∗, B∗, C∗) := (Gs, Grs, Gsx ·Grsy)

Thus, σ1 is a valid randomized signature on the message (Gr, G̃r).
In particular, σ1 = (A∗, B∗, C∗) := (Gα, Gαr, Gαx · Gαry) is a valid
signature on (Gr, G̃r) for randomness α = s

a . Since s is random so is
α. This case corresponds to the case b = 0 in the blindness game.

• Case t is a random element in Zp: In this case, we have

σ1 = (A∗, B∗, C∗) := (Gs, Gt, Gsx ·Gty)

Thus, σ1 is a valid signature on the message (G
t
s , G̃

t
s ). Since t is

random so is t
s . This case corresponds to the case b = 1 in the blindness

game.

This concludes the proof. ut
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