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Abstract 

 

Generic methods were developed using different columns for analysis and 

purification of hydrophilic compounds by hydrophilic interaction 

chromatography (HILIC). Mobile phases were investigated in detail, and across 

each column chemistry tested (BEH Amide, Atlantis bare silica, ZIC-HILIC and 

Cogent Hydride), salt-buffered mobile phase offered good to excellent peak 

shape for acids, bases and neutral solutes with a range of hydrophilicities. 

Additionally, cation exchange occurred on the bare silica column even when 

rubidium nitrate was added to the mobile phase, which should block all cation 

exchange sites. Measurement of mobile phase pH in hydroorganic solvent 

(ACN-water mixture with buffer) better represented the environment solutes 

experience on column than fully-aqueous pH measurement. The performance 

of HILIC with Charged Aerosol Detection (CAD) was evaluated with a 

hydrophilic acid, a hydrophobic base and a hydrophilic neutral solute; limits of 

detection and quantitation were 1-3 ng and 5-9 ng on column, respectively. 

This compared favourably to literature values for other universal detectors. 

HILIC-CAD was further investigated by flow injection analysis (FIA) using 29 

solutes containing acids, bases and neutrals. HILIC and CAD had excellent 

compatibility: peak areas were double compared to reversed-phase conditions, 

response was reasonably uniform for 21 non-volatile solutes considering the 
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solutes’ diversity. HILIC-CAD was viable for retention and detection of highly 

hydrophilic species without chromophores: salts, sugars and amino acids. Salts 

travelled down the column as independent cations and anions. Resolution of 

sugars and amino acids was challenging and was incomplete due to project 

time constraints. Generic methods were developed on an analytical system in 

the labs of the industrial collaborator and applied to purifications on wide-bore 

columns at scaled-up flow rates (21mm id, 20mL/min prep vs. 4.6mm id 1 mL / 

min analytical analytical). A standard prep system was capable of usable 

productivity using HILIC with 1mL injections (22 mg of crude purified per hour) 

and use of At-Column Dilution enhanced this around 10-fold with scope for 

4mL injections (223 mg of crude purified per hour). 
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1. High-Performance Liquid Chromatography 

Chemical analysis and purification of complex mixtures is challenging, and chromatography 

has been developed to address that. The technique of chromatography was originally 

developed by Tswett in the early 1900’s to purify coloured plant extracts. Tswett’s 

technique is similar to modern use: a mobile phase transports the sample through a 

stationary phase to a detector. In Tswett’s analysis, the column was open and the human 

eye was the detector. A detector has only limited ability to perform chemical analysis of 

multiple analytes simultaneously, therefore a chemical separation pre-detector, due to the 

column, provides assurance that the correct substance is analysed or collected. The 

stationary phase is a column comprised of a packed bed of solid particles, which perform a 

chemical separation of components in sample mixture, whereby each solute retains then 

elutes from the column. Chromatography advanced when in 1941 the theory of modern 

liquid chromatography (LC) was first described by Martin and Synge, applying plate theory 

from the fractional distillation used to purify petroleum extracts to describe the bands 

which develop in a separation (Martin, Synge 1941). In the 1970’s, Huber, Kirkland and 

Horvath introduced the principle of using small particles as column packing, and the 

technique progressed to be called high pressure liquid chromatography or high-

performance liquid chromatography (HPLC). In HPLC, the column is filled with a sorbent, 

which is typically silica-based due to its high thermal mechanical stability, chemical 

resistance at moderate pH (3-7) (Berthod 1991) although alternative sorbents are also used 

(e.g. porous graphitic carbon). The sorbent is typically a packed bed of porous particles 

(diameter 1 – 50µm) where the stationary phase is the pore surface within the particles 

themselves. Since around the 1980’s, the stationary phase has been chemically bonded to 
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the pore surface, most commonly as a Reversed Phase Liquid Chromatography (RPLC) 

stationary phase, or unbonded as a bare silica. In RPLC the stationary phase is a 

hydrocarbon chain attached to a triethoxysilyl moiety, which bonds to the silica surface via a 

condensation reaction to give a surface with the ligand bonded to it (Fig. 1.1); the mobile 

phase is highly aqueous which favours retention of hydrophobic solutes into the stationary 

phase pores.  

 

Figure 1.1 : Octadecylsilyl ligand with isopropyl protection bonded to silica stationary 

phase 

In the earlier stages of HPLC, the stationary phase was prepared in-house, but this leads to 

inherent variability of performance, due to a variety of factors which require strict control 

e.g. ligand density on the surface, packing of the particles. Packing is itself a challenging 
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process to control, and a study by Kirkland summarises the journey from packing as a ‘dark 

art’ to a scientific process (Kirkland et al. 2006). Modern HPLC columns are purchased with 

the stationary phase prepared and pre-packed. 

The coupling of ultraviolet absorbance (UV) detectors in the 1960’s (Kirkland 1968) and 

mass spectrometers (MS) in the 1970’s (Niessen 2003) to HPLC systems made these 

techniques powerful with scope for automation. HPLC is near-ubiquitously the technique 

used to measure and attain acceptable purity of non-volatile substances (Espada et al. 2008, 

Korfmacher 2005). Generic methods allow the application of a relatively small set of 

analytical methods to a wide variety of compound structures. For example the 

pharmaceutical company GlaxoSmithKline quality–control tested a library of >700,000 

compounds using a single RPLC method (Lane et al. 2006). This is very attractive industrially, 

as the alternative is method development for each compound of interest which can be time-

consuming. The ubiquitous RPLC is used to a high degree of sophistication in generic 

methods as part of Open access (OA, ‘walk-up’) in drug development (Mallis et al. 2002). 

The user prepares a sample and follows on-screen instructions, the OA method analyses it 

and emails them the result. Major pharmaceutical companies have invested in this approach 

(Mallis et al. 2002, Korfmacher 2005, Espada et al. 2008, Dunn April 2013).  

2. HPLC separation 

In a HPLC separation, the sample is injected into the flow of mobile phase. The amount of 

mobile phase needed to do that depends on retentivity of the solute in the column and how 

much mobile phase is delivered by the pump during the separation. 

 𝑉𝑚 = 𝑡0𝐹 (1.1) 
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 𝑉𝑟 = 𝑉𝑚(1 + 𝑘) (1.2) 

The volume of mobile phase in one column volume (Vm) is a function of the time taken by 

an unretained species to pass through the column (t0) and the volumetric flow rate (F) 

(Equation 1.1). The volume of mobile phase required to elute a peak is the retention volume 

(Vr) (Equation 1.2); this is proportional to the flow rate, which can vary between 

separations. Guiochon commented that absolute retention times are poorly reproducible 

and retention factors are the favourable measure of solute retentivity (Guiochon et al. 

2013). 

 𝑘 =
𝑡𝑅−𝑡0

𝑡0
 (1.3) 

The retention factor (k) is a dimensionless measure of solute retention, describing the 

retention of a solute relative to the passage of an unretained volume of mobile phase 

through the column (Equation 1.3). Samples typically contain greater than one chemical 

component; therefore retention must be different for each component to achieve separate 

peaks and allow the detector to interpret a single signal at a time. 

 α =
k2

k1
 (1.4) 

The relative retention of two peaks is the selectivity factor (α), described by the relative 

retention of two closely-eluting peaks (Equation 1.4). This must be greater than one to 

achieve separation, and as an approximate rule of thumb, good separations are obtained for 

selectivity factors above 1.5. 

N0.5 = 5.54 (
tR

W0.5
)

2
 (1.5) 
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To separate complex mixtures, each peak must be sufficiently narrow. Ideally peak widths 

would be infinitesimally small, however band broadening occurs both outside the column 

due to dead volumes in the instrument, e.g. tubing, and inside the column due to mass 

transfer and diffusion. To understand band broadening, the concept of theoretical plates 

was derived by Martin and Synge (Martin et al. 1941), where each solute band is analogous 

to a plate used to capture distillate in fractional distillation of petroleum components. Peak 

efficiency (N0.5) is the peak width at half-height (W0.5) relative to the retention time 

(Equation 1.5), units are number of theoretical plates per column. 

N =
H

L
 (1.6) 

The height equivalent to one theoretical plate is the efficiency divided by the column length 

(L) (Equation 1.6). State of the art Ultra High Performance Liquid Chromatography (UHPLC) 

systems are specially designed to minimise the extra-column band broadening due to e.g. 

excess tubing length.  

𝑢 =
𝐿

𝑡0
 (1.7) 

H = A +
B

u
+ Cu (1.8) 

Intra-column band broadening, represented by H, can be described by three processes: axial 

diffusion (A), longitudinal diffusion (B) and mass transfer (C), which are a function of the 

mobile phase velocity (u, equation 1.7) as described by the theory of J J Van Deemter (van 

Deemter et al. 1956) (Equation 1.8). The A term is supposedly unaffected by average mobile 

phase velocity (1.7) and can be used as a measure of packing quality. The B term dominates 
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at low flow rates when (B/u) is large and the solute band is allowed excessive time to diffuse 

along the column bed. The C term is dominant at high flow rates when (B/u) is small. To 

achieve good efficiency in analysis, plate heights (H) around 2-20 µm are required, which is 

slightly larger than the diameter of common stationary phase particles in those columns (1-5 

µm). 

h =
H

dp
 (1.9) 

h = a +
b

u
+ cu (1.10) 

Particle diameters vary between columns, therefore in kinetic studies reduced plate height 

(h) is considered (1.9), which corrects for the particle size to give (1.10). An ongoing 

objective of column manufacturers is to produce reduced plate heights below around 1, 

corresponding to a solute band equilibrating within the diameter of a single particle (1.9).   

∆P =
2500LηF

𝑑p
2𝑑c

2  (1.11) 

Smaller H values can be achieved using smaller particles, as the shorter distance into and 

out of the particles allows for better mass transfer (1.8). However the system backpressure 

affected by particle size (1.11), column dimensions (length L and diameter dc), mobile phase 

viscosity (η) and flow rate (F). Modern UHPLC systems are designed to cope with high 

backpressures (around 1000 bar) when small particles (dp < 2 µm), narrow columns (2.1 mm 

i.d.) and high flow rates are used for fast analysis on short columns (L ≤5cm). 

In generic methods, bespoke method development is discouraged in favour of using optimal 

conditions for the majority of analyses. Therefore flow rate is kept constant and this project 
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hasn’t focused on kinetic investigations involving varied flow rate. It is attractive industrially 

to use an analytical method which scales up to purify compounds without the need for 

further method development. Therefore this project focuses on HPLC methods that can be 

scaled up to preparative systems for purification. Preparative separations require the use of 

much higher flow rates (see 9 below) and therefore to avoid excessive backpressures, very 

small particles and high analytical flow rates are avoided in this project since these both 

contribute to high system backpressures (1.11). For a detailed discussion of kinetics in 

hydrophilic interaction chromatography, studies by Heaton (Heaton et al. 2014a, 2014c), 

McCalley (McCalley 2007) and Gritti/Guiochon (Gritti et al. 2013c, 2015) give this topic 

thorough consideration. 

 Rs = (
1

4
) [

k

1+k
] (α − 1)√N   (1.12) 

If there is sufficient selectivity (α) between peaks, efficiency has limited effect on separation 

power. It can be shown using the equation for chromatographic resolution (Rs; Equation 

1.12) that Rs is optimal at moderate retention (1≤k≤5), good spacing (α≥1.5) and high 

efficiency (N≈10,000 or above). 

 log 𝑘 = log EB + 𝜂′𝐻 − 𝜎𝑆* + 𝛽′𝐴 + 𝛼′𝐵 + 𝜅′𝐶 (1.13) 

The basis of retention in RPLC is the interaction of the solute with the stationary phase. A 

central tenet of that is solute partition from a mostly aqueous mobile phase into a layer of 

octadecylsilyl (ODS, also known as C-18) ligands. This is ideal for non-polar solutes with low 

affinity for aqueous media and high affinity for the hydrophobic environment inside the 

column pores. Different interactions between solute and stationary phase are possible and 

Carr, Snyder et al. described those by the Hydrophobic-Subtraction model (Equation 1.13), 
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where the effect of each interaction on retention is considered (Carr et al. 2011, 2015, 

Marchand et al. 2011). Retention (log k) is a function of: partitioning from the mobile to 

stationary phase (represented by the log of retention of a neutral solute ethylbenzene (EB)), 

hydrophobic interactions (η’H), steric interactions (σS*), hydrogen bonding of a basic solute 

to an acidic stationary-phase group (β’A), hydrogen bonding of an acidic solute to a basic 

stationary-phase group (α’B) and ion-exchange between an ionic solute and a charge-

bearing column (κ’C).  

However highly polar solutes are either not retained by RPLC or resolved poorly (McCalley 

2010a) due to a low affinity for hydrophobic C18 stationary phase relative to a highly 

aqueous mobile phase. Therefore alternative separation modes have been considered. 

3. Polarity and Hydrophilicity 

To establish if a solute is hydrophilic and unlikely to retain by RPLC, it is possible to measure 

a solutes’ hydrophilicity using two immiscible solvent phases, normally water and an organic 

solvent such as n-octanol.  

𝑋(aq) ↔ 𝑋(org) (1.14) 

A hydrophilic species will partition into the aqueous phase (X(aq)) and a hydrophobic species 

will partition into the non-aqueous phase (X(org)) (Equation 1.14).  

𝑃 =
𝐶(𝑋aq)

𝐶(𝑋org)
 (1.15) 
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The partition coefficient of this process (P) is calculated by measuring the concentration of 

the solute in the aqueous [C(aq)] and organic phases [C(org)] (Equation 1.15), for a solute in 

its neutral form which can be achieved by adjusting the pH.  

 𝑙𝑜𝑔 𝑃 =  𝑙𝑜𝑔 (CXaq) − log (CXorg) (1.16) 

However P can vary over several orders of magnitude depending on the solute. Log P 

(Equation 1.16) is a simple value that is increasingly positive for hydrophobic solutes that 

partition into the organic solvent and increasingly negative for hydrophilic solutes that 

partition into the organic solvent. However for complex mixtures each solute may be 

neutral or charged and measuring P is difficult.  

HA = H3O+ + A- (1.17) 

𝐾𝑎 =
[𝐻3𝑂+][𝐴-]

[𝐻𝐴]
 (1.18) 

 𝑝𝐻 = 𝑝𝐾𝑎 + log
[𝐴−]

[𝐻𝐴]
 (1.19) 

To calculate the acidity or basicity of a solution and calculate the solute charge state 

requires pH and pKa calculations. For the dissociation of an acid (HA) to hydroxonium (H3O+) 

and its anion (A-)  in the presence of water (Equation 1.17), the dissociation constant (Ka) is 

described by equation 1.18, the concentration of each species shown in square brackets. 

The negative of the log hydroxonium concentration is equivalent to the pH, and –logKa is 

the pKa, which relate as shown in equation 1.19. 

 log 𝐷 = log 𝑃 + log [
1

1+10𝑝𝐾𝑎−𝑝𝐻] (1.20) 
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The distribution coefficient (D) calculates the partitioning of a solute in its native form 

whether ionised or neutral, and log D this takes into account the solute pKa, solution pH and 

log P (equation 1.20). The log D value positive for hydrophobic species that partition into the 

non-aqueous portion or negative for hydrophilic species that partition into the aqueous 

portion (equation 1.20). Log D correlates well with hydrophobic retention in RPLC, where a 

more-positive log D value corresponds to stronger retention on those columns (Poole 2009). 

4. HPLC of polar pharmaceuticals 

RPLC is highly productive using modern columns and modern systems that can cope with 

high backpressures from fast-flowing mobile phase through small particles on narrow 

columns, however its application is limited to hydrophobic solutes. Fragment-based drug 

discovery uses small molecules as potential new drugs, described in a seminal paper by 

Jencks in 1981 (Jencks 1981). This strategy focuses on optimising interactions between 

chemical species and proteins, and these small molecules (<300 Da) can then be chemically 

modified to improve physico-chemical properties such as bioavailability. This strategy has 

since been adopted across the pharmaceutical industry, and was described by Scott et al. as 

‘firmly established in drug discovery’ (Scott et al. 2012). A problem with this strategy is 

these small molecules can be hydrophilic, with weakly basic or zwitterionic chemical 

functional groups providing potential biological activity and capacity for formation of C-X 

bonds in further synthesis (Scott et al. 2012, Jencks 1981). This poses a problem for 

laboratories that synthesise drug-fragments: reliable purity measurements are essential for 

their quality control prior to high-throughput screening for biological activity (Espada et al. 

2008). The  hydrophilicity of Molecular ‘building blocks’ used in fragment-based drug design 
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is a serious problem since well-established RPLC requires a solute to be hydrophobic in 

order to retain on those columns. Polar compounds aren’t retained by RPLC and 

chromatographic separation can be impossible by this somewhat traditional method. Some 

alternative variations of RPLC have been developed to manipulate the hydrophobicity of the 

solute and gain retention on those columns. Low pH mobile phase can be prepared by 

adding a weak or strong acid such as formic (FA) or trifluoroacetic acid (TFA), respectively. 

When an acidic solute is deprotonated it is negatively–charged and more hydrophilic. 

Conversely, adding a strong acid to this will protonate, thus neutralise, the acid, and it is 

more hydrophobic. Therefore FA and TFA are used to retain some acids by RPLC. A similar 

strategy is used for basic solutes: the protonated form of a base is positively-charged and 

more-hydrophilic; the unprotonated form is neutral and more-hydrophobic. Thus adding a 

strong base to RPLC mobile phase raises the pH, neutralises basic species and enhances 

hydrophobic retention on those columns (McCalley 2004, Davies et al. 2008). A potential 

flaw in the high pH technique is the liability of silica to dissolve through hydrolysis by 

hydroxyl ions (OH-). This can be overcome using hybrid silica, which substitutes ethylene 

bridges for siloxane bonds between silanols in the underlying structure (see poi. This hybrid 

silica is somewhat resistant to high pH (see point 2 on p. 24). These strategies can be 

successful for analysis of simple acids and bases by RPLC, but hydrophilic neutral species and 

zwitterions are unsuitable for high and low pH RPLC, since their pKa’s don’t allow for 

enhanced hydrophobicity at extremes of pH. 
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5. Ion pair chromatography 

Addition of Ion-Pairing (IP) agents such as trifluoroacetic acid (TFA) also facilitate retention 

of charged polar species. A drawback of IP is a reduction of detector sensitivity, especially in 

Electrospray Mass Spectrometry (ESI-MS) where IP agents can suppress analyte ionisation 

(Heaton et al. 2011). Additionally, it is unclear what the precise retention mechanism is in 

IP, for example Dai et al. reported for basic solutes that approximately 3% of molecules 

associate with the ‘ion pair’ agent TFA in aqueous solution (Dai et al. 2005).  

6. Hydrophilic Interaction Chromatography 

Polar solutes are hydrophilic and require separation on stationary phases that can attract 

such species. Hydrophilic Interaction Chromatography (HILIC) is a variant of HPLC has been 

used to separate sugars since at least the 1970’s and in 1990 Alpert coined the name HILIC, 

which coincided with the release of columns specifically designed to use this separation 

mode to analyse e.g. phosphorylated amino acids and peptides (Alpert 1990). In HILIC the 

stationary phase is either bare silica or a bonded polar ligand. The mobile phase has high 

organic solvent content (>70% ACN) with small water content and buffer. Water forms a 

stagnant layer on the stationary phase; this allows solutes to partition between a 

hydrophobic mobile phase and a hydrophilic stationary phase (Figure 1.2).  
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Figure 1.2. Simple scheme of HILIC retention with neutral (X), basic (X+) and acidic (Y-) 

solutes 

The specific interactions between solute and stationary phase have been debated in the 

literature (Irgum et al. 2006, 2011, Kawachi et al. 2011, McCalley et al. 2010, 2013, 2014, 

Gritti 2013c, Guo et al. 2005, Laemmerhofer et al. 2008, Bicker et al. 2008). That discussion 

primarily discussed whether or not partitioning is the dominant retention mechanism in 

HILIC, as proposed by Alpert (Alpert 1990). A 2006 review by Irgum of HILIC literature was 

inconclusive, with some of the authors covered suggesting surface-solute interactions, 

e.g. on Amino columns (Irgum et al. 2006). It was suggested by LammerHofer Lindner and 

Bicker that the retention mechanism is complex, with contributions from partitioning, ion-

exchange and hydrogen-bonding (Laemmerhofer et al. 2008, Bicker et al. 2008). McCalley 

demonstrated that ion-exchange can be mediated by the buffer salt concentration, with 

high buffer concentration shielding the solute from stationary phase charges (McCalley 

2010b). In that study it was noted by the author that ion-exchange differs greatly between 

HILIC columns (McCalley 2010b).  

Studies by Irgum, Ikegami and McCalley attempted to categorise HILIC columns according to 

their retention behaviour (Dinh et al. 2011, Kawachi et al. 2011, Kumar et al. 2013). There 
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was good agreement that HILIC columns can be described as four broad categories (ligand 

chemistry described in brackets, approximate structures shown): 

1. Cation-exchangers (e.g. Bare Silica) 

 

(e.g. Silica Hydride) 

 

2. Neutral polar bonded ligand (e.g. Amide, BEH Amide) 

 

3. Zwitterionic polar bonded bonded ligand (e.g. ZIC-

HILIC) 

Spacer 
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4. Anion Exchangers (e.g. Amino) 

 

The Tanaka group were critical of ion-exchange in HILIC, commenting that reducing ion-

exchange interactions is important to obtain better column efficiency in HILIC, with 

apparent peak tailing when this interaction is employed (Kawachi et al. 2011). However 

Kumar et al. observed higher theoretical plate numbers on bare silica than bonded-phase 

columns (Kumar et al. 2013). Ikegami noted that retention differences could be observed 

between neutral nucleosides and their corresponding nucleobase (e.g. k (uridine)/ k (uracil) 

reported as 1.81 on an Amide ligand-bonded silica column). The authors commented that 

the number of hydroxyl groups on the ribose moiety has a great influence on the retention 

of nucleosides on HILIC columns, suggesting uridine series are suitable probes for HILIC 

studies (Kawachi et al. 2011). Exceptionally high retention of the nucleoside cytidine on 

Amide and ZIC-HILIC columns was reported by Kumar et al. and those authors suggested this 
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solute can hydrogen-bond with the stationary phase (Kumar et al. 2013). An alternative type 

of silica was developed around 1991 and has been developed by Pesek as ‘type C’ silica. On 

these columns, acidic silanols groups are replaced by ‘silica hydride’ groups and there ought 

to be virtually no exposed silanols (Yang et al. 2013). Applications using type C silica use 

formic acid as a mobile phase additive, which is reasonable given the manufacturer’s claim 

of an inert stationary phase.  However, a report from Watson concluded that ‘type C’ silica 

behaves remarkably similar to bare silica (Bawazeer et al. 2012) and this phase has shown 

poor peak shapes in some literature when using Formic Acid as buffer (Yang et al. 2013). It is 

unclear if type C silica offers alternate selectivity compared to bare silica and therefore that 

was considered in this study. Acetone has been used as a mobile phase organic modifier in 

place of acetonitrile by the Haddad group (Hutchinson et al. 2012) and by Heaton for its use 

in MS (Heaton et al. 2011), but it is unclear how retention compares in acetone to the more 

typical acetonitrile.  

Some more recent fundamental studies into HILIC focused on mass transfer (Gritti et al. 

2013b, 2013c, Heaton et al. 2014a). Solute mass transfer occurs in the mobile phase and the 

stationary phase (1.18). The contribution of each can be determined in kinetic studies, 

where theoretical plate heights (1.6) are plotted over a range of average mobile phase 

velocities and the results fitted to equations such as van Deemter equations (1.8) or (1.10). 

Mass transfer in the mobile phase is perhaps expected to be high in HILIC due to the low 

viscosity of organic solvent-rich mobile phase providing relatively free movement of solutes. 

A 2010 study reported somewhat high mobile phase mass transfer in HILIC using a bare 

silica column compared to RPLC on a C18 column (McCalley 2010b). Gritti and Guiochon also 

reported higher van deemter ‘B’ terms in HILIC compared to RPLC (Gritti et al. 2013c). 
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However when those authors used ‘peak parking’ to monitor solute movement in the 

stationary phase, where solute band diverted is diverted to a second column with no mobile 

phase flow and allowed to diffuse along the column bed, they found  diffusivity was low, in 

contrast to high diffusivity in the mobile phase. The authors attributed that to a relatively 

high microviscosity of the water layer held to the stationary phase (Gritti et al. 2013c). 

Heaton et al. measured diffusion of hydrophilic species on comparable columns with 

matched retention factors and observed a similar effect, suggesting that adsorption via 

possible hydrogen bonding between solute and stationary phase surface can contribute to 

retention (Heaton et al. 2014a). 

HILIC is compatible with polar compounds, although is yet to be incorporated into a generic 

method scheme for the analysis of polar pharmaceuticals. The retention mechanism in HILIC 

is complex and poorly understood, therefore research into the HILIC retention mechanism, 

with a focus on selectivity and peak efficiency, should lead to a polar ‘tool box’ of generic 

methods. The role of buffers in HILIC is unclear, and requires investigation on a range of 

modern HILIC columns. Detection by MS is less effective in the buffers typically used for 

HILIC methods, due to analyte signal suppression (Kostiainen et al. 2009, Mallet et al. 2004, 

Law et al. 2000). An objective of this project is therefore to investigate if formic acid can be 

used as a buffer in HILIC generic methods, as opposed to buffers. 

7. HPLC detection 

Batches of drug leads are often products of one-off syntheses, containing impurities which 

are unknown and standards are thus unavailable. Detection is typically by UV which is cheap 

and simple to operate or Mass Spectrometry which gives assurance of compound identity 
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via mass/charge data. Impurity compounds may not contain chromophores thus ultraviolet 

wavelength (UV) detectors are ‘blind’ to them. Using MS and UV, small peaks are not 

meaningful in the absence of reference standards and are not necessarily impurities. 

Therefore universal detectors, such as the charged aerosol detector (CAD) are a desirable 

component of a polar ‘tool box’. However CAD is a new technology and although operation 

is very straightforward (Vehovec et al. 2010), it is poorly understood.  

8. Charged Aerosol Detection 

A prototype detector was built by Dixon and Peterson in 2002 (Dixon, et al. 2002) and since 

then CAD has been developed for use in HPLC. Around 100 publications to date have 

focused on CAD (e.g. (Cohen et al. 2012, Gamache et al. 2005, Web of Science search topic 

‘Chromatograph*’ AND TITLE ‘Charged Aerosol*’), but only a handful explored the 

fundamental properties of this relatively novel detector (Dixon et al. 2002, Gamache et al. 

2005, Hutchinson et al. 2010, Hutchinson et al. 2012, Khandagale et al. 2013, Vervoort et al. 

2008). Figure 1.3 shows a simplified schematic of the CAD. The CAD produces aerosol 

particles (Steps 1-2 in Figure 1.3) and positively-charged nitrogen gas. These mix such that 

the aerosol particles acquire positive surface charges (Step 3 in Figure 1.3), and are then 

transported to an electrometer which converts their charge to an electrical signal (Step 4 in 

Figure 1.3) via in-built hardware. In contrast to UV detectors, the CAD does not require a 

solute to contain a chromophore due to it forming physical particles of whatever solute is 

present. In MS, molecular ions are formed which is in contrast to CAD which forms charged 

particles. Although some aspects of CAD operation are already understood, it is not clear 

how it responds to semi-volatile and volatile solutes, which ought to be incapable of forming 
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aerosol particles. Other detectors which depend on the formation of aerosol particles, such 

as evaporative light scattering detection (ELSD) as developed by Charlesworth in 1970 

(Charlesworth 1978), suffer from complex relationships between solute concentration and 

detector response (Guiochon et al. 1988). ELSD, which measures the light scattering of a 

laser when the aerosol particles cross the beam, is thought to change in detection 

mechanism with increasing size of particle. CAD is somewhat more straightforward but 

nonetheless also depends on aerosol particle formation. It is possible there is some 

commonality between the ELSD and CAD theory insofar as particle formation is concerned. 

Thus an empirical relationship between solute concentration and detector response might 

be achievable. A combination of universal detection and a universal response to solute 

concentration suggest CAD has potential as a HPLC detector in generic methods. Therefore 

an objective of this project was to evaluate the performance of CAD, in particular with the 

use of HILIC separations. 

 

Figure 1.3. The Charged Aerosol Detector 
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9. Purification of polar pharmaceuticals 

Purification by preparative HPLC uses wider-bore columns compared to analytical 

separations (≥10 mm i.d. preparative, ≤4.6 mm i.d. analytical) to hold sufficient stationary 

phase so that larger samples can loaded onto the column.  

 Scale up factor =
𝑑𝑐Prep

2

𝑑𝑐Analytical
2 (1.21) 

When scaling up a separation, to maintain the same average mobile phase velocity the flow 

rate is scaled up in proportion to the ratio of the squared column diameter (1.21). The 

injection volume is scaled up by the same factor (1.21) to maximise the loading of sample. 

Preparative HPLC commonly employs sample loads far above the column capacity, and 

separation performance is degraded as a result of shifts in retention and broad peaks with 

low efficiency.  

Purification studies using HILIC are scarce in the scientific literature, although this is a 

necessary application of the technique. McCalley reported in 2007 that bare silica HILIC 

column(s) have capacity around ten times higher than RPLC for strong bases (McCalley 

2007), which are particularly problematic in RPLC (McCalley 2010a). Gritti and Guiochon 

studied the overloading of strong bases propranolol and amitriptyline hydrochloride using a 

bridged ethylene hybrid (BEH) silica in HILIC (Gritti et al. 2015), reporting similar 

improvements over RPLC. This study used a charged surface hybrid (CSH)-C18 RPLC column, 

which contained positive charges to control solute repulsion, which is thought to be 

responsible for the tailing overload of charged bases even at low solute concentration (Gritti 

et al. 2015). Bonded phase columns are available with diverse chemistries in HILIC, which 

can provide substantial changes in selectivity (Kumar et al. 2013, Kawachi et al. 2011, Dinh 
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et al. 2011). However none of these columns have featured in HILIC purification or 

loadability studies.  

10. Focused Gradient Liquid Chromatography and At-

Column Dilution 

The majority of fundamental studies into HILIC have used isocratic conditions, whereby the 

mobile phase composition is held constant throughout the separation. This simplifies the 

methodology, however there are practical benefits from changing the mobile phase during 

the separation (Snyder et al. 2010). In RPLC, applying a gradient of mobile phase organic 

solvent content is common practise, starting from mostly-aqueous mobile phase to a more 

organic-rich mobile phase. The benefits from this are reduced run time, as the increased 

organic solvent content elutes strongly-retained solutes from the column. Additionally, peak 

shape is improved using a solvent gradient: once eluted the solute travels solely into the 

mobile phase and interactions with the stationary phase are minimal, therefore band 

broadening is less pronounced. Solvent gradients have been applied to HILIC separations 

(Karatapanis et al. 2009, Periat et al. 2013a, Tyteca et al. 2014), however in contrast to RPLC 

the starting conditions are an organic-rich mobile phase changing to a more-aqueous mobile 

phase. Focused gradients can be used to expand areas of the chromatogram and are used in 

day-to-day preparative work in industry, although publications on this technique are limited 

to application notes, e.g. (Tei et al. 2013). A recent study of optimisation of relevant 

parameters in preparative separations by Forssén and Fornstedt found that selectivity (α) 

was the most important factor to maximise productivity (Forssén et al. 2014). Focused 

methods are designed to improve the spacing between the peak of interest and the nearest-

eluting species, although focused gradients have not been reported to been applied using 
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HILIC. Therefore that strategy was employed in this project to HILIC-prep separations. At-

column dilution was described by Neue to aid loading of poorly-soluble compounds (Neue et 

al. 2003). In this technique, the sample is introduced onto the column slowly via a second 

pump, which is diluted at the column head by a second flow of weakly-eluting mobile phase 

mixed in to the sample flow using a T-piece (Fig. 1.4). This was employed in this project to 

further enhance preparative performance. 

 

Figure 1.4. At Column Dilution  
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11.  Objectives 

The principle interest of this project is the analysis and purification of hydrophilic drug-like 

solutes and polar “building block” molecules. The present study evaluates HILIC in a generic 

method setup. Choice of some basic parameters is necessary before HILIC methods can be 

implemented in a generic setup, namely the following. 

1. Suitable mobile phase buffer 

A detailed study of mobile phase buffers including salt and simple acid buffers was 

necessary. Previous studies by Watson et al. have suggested simple acid buffers may not be 

suitable on type C silica phases (Bawazeer et al. 2012), thought to contain Si-H bonds as 

ligands (Yang et al. 2013). A study using a bare silica HILIC column suggested formic acid 

may not be suitable for basic solutes (McCalley 2007), but this has not been evaluated for 

alternative bonded-phase columns. 

2. Suitable stationary phase 

Studies by Irgum, Ikegami and Kumar have shown differences in the retentivity of HILIC 

stationary phases (Dinh et al. 2011, Kawachi et al. 2011, Kumar et al. 2013). Based on this, 

and the categories described in (6), a bare silica and BEH Amide column were chosen for 

generic HILIC use, as these give appreciably alternate selectivity (Kumar et al. 2013) and the 

BEH Amide has extra stability resulting from the bridged ethylene hybrid silica with potential 

for future alternative pH use (McCalley 2015). 
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3. Universal detection 

Charged aerosol detection is supposedly a universal detector, responding to any non-

volatile solute, with uniform response, independent of solute chemistry. The calibration 

curves of solute concentration vs. detector response ought to be simpler than established 

universal detectors such as ELSD. However these factors have not been evaluated with a 

sufficiently broad range of solute chemistries. Additionally, the organic-rich solvent used as 

HILIC mobile phase ought to give excellent detector response due to facile desolvation, as 

reported for MS elsewhere (Periat et al. 2013b). This has not been evaluated by HPLC for 

the CAD. It was therefore an objective of this project to elucidate the effect of various 

parameters and conditions on CAD response with a view to describe optimal use of this 

relatively novel detector. 

4. Viability of HILIC purification. 

It is industrially attractive to scale-up analytical methods directly to larger-bore preparative 

columns for purifications, and although this has been attempted for mixed-mode and 

aqueous normal phase methods, HILIC can be operated at lower mobile phase salt 

concentration than these modes (e.g. 5mM cf. 20mM) which simplifies work-up as the salt is 

removed to produce a pure product (Underwood May 2014). It was therefore an objective 

of this project to develop some generic HILIC analytical methods suitable for polar 

pharmaceuticals and apply those to purification in a proof-of-concept study. 

5. Suitable sample diluent 

A basic understanding of hydrophilic compound solubility in HILIC mobile phases has not 

been established in the literature. One study by Guillarme et al. reported the water content 
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of diluents used in sample preparation must be kept to a minimum for HILIC separations 

(Ruta et al. 2010) and alternative solvents may be possible diluents for HILIC (Ruta et al. 

2010). Further work in this area is crucial if HILIC can be employed to purify polar solutes on 

the scale required by the pharmaceutical industry. 
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Chapter 2 
 

General Experimental 
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1. Instrumentation 

a. HILIC buffer experiments 

These were performed with a 1290 binary high pressure mixing UHPLC instrument (Agilent, 

Waldbronn, Germany) with Chemstation, photodiode array UV detector (0.6 µL flow cell) 

and 5 µL injections. 

b. Charged Aerosol Detector experiments 

These were performed with a Thermo UltiMate 3000 Rapid Separation Liquid 

Chromatography system. This was comprised of a quaternary pump, diode array detector 

(DAD) and either a Corona Ultra or Corona Veo CAD, with Chromeleon 7.2 software 

(Thermo, Germering, Germany). The CAD is a destructive detector, therefore the DAD and 

CAD detectors were connected in series in some experiments, with flow first through the 

DAD. Thermo Viper tubing (0.13 mm ID) was used as connection tubing. Data collection 

rates were 100 Hz for both DAD and CAD, due to narrow peak widths (typically 1 s at half 

height in flow injection analysis (FIA)). The Corona Ultra nebuliser (cross flow design similar 

to that used in atomic absorption spectrometry) was controlled at 22°C with the evaporator 

tube at ambient temperature, while the Veo (concentric flow design similar to those used in 

mass spectrometry) nebuliser was at ambient temperature and the evaporator tube set to 

30°C. The Veo had a power function (PF) designed to ‘linearise’ data, which was set to either 

0.67 (this simulates ‘off’), 1.00 (the default) or 1.2 (optimised setting using experimental 

data, see below). Experiments on acetone as a HILIC mobile phase and dimethylsulfoxide 

(DMSO) as a diluent on analytical columns were also performed on this Thermo system. 
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c. HILIC Generic and focused method development 

These were performed at GlaxoSmithKline laboratories, using an Agilent 1100 system 

(Agilent, Waldbronn, Germany) with Chemstation, binary pump, UV Diode Array Detector 

(DAD) and 1 µL injections. 

d. HILIC prep experiments 

These were performed at GlaxoSmithKline laboratories, using a Waters prep system with 

Masslynx, quaternary pump, and automated fraction collection, QDa mass spectrometer 

with an electrospray interface, UV diode array detector and UV post-fraction detector. 

Fractionation was directed by the MS, which was set to sufficiently high sensitivity such that 

fractions were discarded to waste in this proof-of-concept study. 

2. Conditions 

a. Injection 

Chromatographic peak shape can be sensitive to the injection volume used to introduce the 

sample. Dolan advised this be limited to around 15% of the peak volume (Dolan 2014) with 

a rough ‘rule of thumb’ to keep injection volumes below 16uL for the analytical column and 

particle dimensions used in these studies (Dolan 2014). Above this, volume overload can 

occur, which reduces peak efficiency thus reduces resolution (Rs). Injection volumes were 

kept well below this, as the UV detectors offered sufficient sensitivity at 5 µL injections. The 

CAD experiments used low injection volumes of typically 1 µL, as an objective of those 

studies was to establish the detection limits of this relatively novel detector. This injection 
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volume (1 µL) was also found suitable for flow injection analysis (Chapter 4, 5). Preparative 

experiments used custom injection volumes as described in Chapter 6. 

 

3. Chemicals and reagents 

All test solutes, and rubidium nitrate were obtained from Sigma-Aldrich (Poole, U.K.). 

Acetonitrile (ACN, far UV grade), ammonium formate (AF) and orthophosphoric acid (PA) 

were obtained from Fisher (Loughborough U.K.). AF buffers were prepared by adjusting 

aqueous solutions to pH 3.0 with formic acid such that the over-all concentration of AF in 

the mobile phase after organic solvent addition was 5 mM. The pH values of the mobile 

phase quoted are those either in the aqueous portion of the buffer (w
w pH) or alternatively 

as measured in the organic-aqueous combination with the electrode calibrated in aqueous 

buffers (w
s pH).  

Standards for HILIC buffer experiments were prepared at a concentration of 50 mg/L and 

made up in the exact mobile phase. For CAD experiments these were prepared at a 

concentration of typically 10,000 mg / L in 50-50 ACN-water with 0.1% FA (v/v), then diluted 

with exact mobile phase to the required concentration. For HILIC generic method 

development, a combined standard of eight probe solutes was prepared at a concentration 

of 0.5 mg / mL in 50-50 ACN-water with 0.1% FA (v/v). For HILIC prep experiments, custom 

diluents and concentrations were used as described in Chapter 6. 
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4. Probe solutes 

To represent a variety of polarities, hydrophilicities and charge states, a selection of neutral, acid, 

basic and zwitterionic compounds were used as test probes. Each results chapter describes the 

solutes chosen for that particular study. 



 

 

Chapter 3 

 

Comparison of peak shape in 

hydrophilic interaction 

chromatography using acidic buffers 

and simple acid solutions 
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Abstract 

The retention and peak shape of neutral, basic and acidic solutes was studied on hydrophilic 

interaction chromatography (HILIC) stationary phases that showed both strong and weak 

ionic retention characteristics, using aqueous–acetonitrile mobile phases containing either 

formic acid (FA), ammonium formate (AF) or phosphoric acid (PA). The effect of organic 

solvent concentration on the results was also studied. Peak shape was good for neutrals 

under most mobile phase conditions. However, peak shapes for ionised solutes, particularly 

for basic compounds, were considerably worse in FA than AF. Even neutral compounds 

showed deterioration in performance with FA when the mobile phase water concentration 

was reduced. The poor performance in FA cannot be entirely attributed to the negative 

impact of ionic retention on ionised silanols on the underlying silica base materials, as 

results using PA at lower pH (where their ionisation is suppressed) were inferior to those in 

AF. Besides the moderating influence of the salt cation on ionic retention, it is likely that 

buffers improve peak shape due to the increased ionic strength of the mobile phase and its 

impact on the formation of the water layer on the column surface. 
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1. Introduction 

Hydrophilic interaction chromatography (HILIC) is rapidly establishing itself as a 

complementary technique to reversed-phase separations (RP), particularly for polar and/or 

ionised compounds that are poorly retained using the latter method. It is a technique well-

suited to the analysis of pharmaceuticals and compounds of biomedical significance (Olsen 

2001, Periat et al. 2013b, Zhou et al. 2008). The stationary phase in HILIC is typically bare 

silica, or polar groups bonded to a silica or an organic polymer matrix (McCalley 2010b, 

Kawachi et al. 2011, Hemstrom et al. 2006). The hydro-organic mobile phase is similar to 

that used in RP, except typically employs much higher concentrations of acetonitrile (>70%). 

There is appreciable overlap in the applicability of these two techniques to compounds of 

moderate hydrophilicity, particularly for basic compounds. These can be retained by ionic 

interactions which occur on all silica-based phases as well as by hydrophilic interactions 

(McCalley 2010b, 2013, Kawachi et al. 2011, Hemstrom et al. 2006). Hydrophilic interactions 

are likely to result from a combination of solute partition between a water layer held on the 

surface of the column and the bulk mobile phase, and by adsorption onto polar groups that 

may be partially deactivated by the presence of the water layer (Hemstrom et al. 2006). 

HILIC separations are usually performed in ACN-water mobile phases containing additives or 

buffer components, particularly when the analysed solutes are ionogenic. The buffer serves 

to control the ionisation of the stationary phase surface groups and silanols in silica-based 

phases, as well as the ionisation of the solute. The choice of buffers for HILIC is limited to 

those that have sufficient solubility in high concentrations of ACN. Typically, ammonium 

acetate or ammonium formate (AF) is used; these salts have the additional advantage that 

they are volatile and thus compatible with nebuliser-based detectors e.g. electrospray 
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ionisation mass spectrometry. However, use of buffers can cause depression of the 

electrospray signal that increases with concentration over the typical range (5–50 mM) 

employed (Kostiainen et al. 2009, Mallet et al. 2004, Law et al. 2000). Even at the 5 mM 

level, it was shown that AF can cause greater signal suppression for acidic and basic 

pharmaceuticals compared with the use of simple acidic solutions of 0.1% formic acid (FA), 

which are commonly used. An added advantage of these acid solutions is that they are 

easier to prepare than mobile phases containing buffers. Nevertheless, it has been shown 

that ACN-water mixtures containing formic acid alone can give rise to poor peak shape in 

HILIC for acidic and basic solutes, whereas good peak shapes were obtained with AF buffers 

(McCalley 2007). However, these studies were performed solely on a bare silica column. It is 

possible that the strong ionic interactions with ionised silanols on this type of phase are 

contributory to this poor peak shape with FA, and that buffers are unnecessary with other 

types of HILIC columns (Kumar et al. 2013). For example, bonded phase (e.g. with amide 

ligands) materials prepared on inorganic–organic hybrid silicas show much reduced ionic 

interactions. Furthermore, silica hydride materials (Type C silica) are available for HILIC-type 

separations. It is claimed that this new type of stationary phase has significant differences in 

terms of chemical structure to traditional silicas, which are mainly populated with polar 

silanol groups. In contrast, Type C silica apparently has surface silicon-hydride groups (Pesek 

et al. 2008, Boysen et al. 2011). The term “aqueous normal phase” (ANP) has been 

suggested to describe separations on this type of silica phase to distinguish them from 

“classical” HILIC separations. Nevertheless, ANP is also a term more generally used as an 

alternative to HILIC for classical separations, reflecting the possibility that adsorption is at 

least a contributory mechanism along with partition to the overall retention mechanism. It 

could be supposed that these Type C stationary phases would contribute considerably less 
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ionic inter-actions, so the use of buffers might be unnecessary with such phases, if ionised 

silanol groups were the cause of peak shape problems. Indeed, separations on these phases 

are often reported with ACN-water mixtures containing only 0.1% formic or acetic acids 

(Boysen et al. 2011, Pesek et al. 2008, Bawazeer et al. 2012) although no comment has been 

made in these reports concerning the lack of use of buffers, or whether their absence gave 

rise to any detrimental (or even beneficial) effects. The aims of this paper were to compare 

the use of buffers with acid solutions for acidic, basic and neutral solutes separated on a 

variety of stationary phases, including bare silica, amide bonded onto hybrid silica, 

zwitterionic and silica hydride phases. These materials are considerably different in their 

retention characteristics towards ionised solutes, and therefore might produce different 

results in the various mobile phases. In this way we hoped to gain information to assist 

appropriate mobile phase selection for use in HILIC and HILIC with mass spectrometric 

detection. This study is divided between initial work to establish a pragmatic buffer choice 

for ongoing work in the project (Chapters 4-6), and detailed studies to further elucidate the 

phenomena responsible for those results. 

 

2. Experimental 

Initial experiments were peformed with an Agilent 1100 binary HPLC instrument (Agilent, 

Waldbronn, Germany) with Chemstation, UV variable wavelength detector and 5µL 

injections.  

All experiments were performed with a 1290 binary high pressure mixing UHPLC instrument 

(Agilent, Waldbronn, Germany) with Chemstation, photodiode array UV detector (0.6 µL 



 

Page 46 of 246 

flow cell) and 5 µL injections. The columns used (all 25 × 0.46 cm ID, except where stated) 

were Cogent Silica C (4 µm particle size, pore size 100˚A, surface area 350 m2/g) from 

Microsolv (Eatontown, USA), Atlantis silica (5 µm particle size, pore Size 100 Å, surface area 

360 m2/g) from Waters (Milford, USA), ZIC-HILIC (5 µm particle size, pore size 200 Å, surface 

area 140 m2/g) from Merck-Sequant (Umeå, Sweden) and XBridge BEH Amide (15 cm × 

0.46 cm, 3.5 µm particle size, pore size 140 Å, surface area 190 m2/g) from Waters. By 

replacing the column with a zero dead volume fitting, the extra-column bandspreading of 

the instrument was estimated to reduce column efficiency by less than 5% even for a non-

retained peak on the most efficient column. Temperature was maintained at 30°C using the 

Agilent column compartment. Acetonitrile (far UV grade), ammonium formate and 

orthophosphoric acid were obtained from Fisher (Loughborough U.K.). AF buffers were 

prepared by adjusting aqueous solutions to pH 3.0 with formic acid such that the over-all 

concentration of AF in the mobile phase after organic solvent addition was 5 mM. Standards 

were prepared at a concentration of 50 mg/L and made up in the exact mobile phase. The 

pH values of the mobile phase quoted are those either in the aqueous portion of the buffer 

(w
w pH) or alternatively as measured in the organic-aqueous combination with the electrode 

calibrated in aqueous buffers (w
s pH). All test solutes, and rubidium nitrate were obtained 

from Sigma-Aldrich (Poole, U.K.). Log D and log P values were calculated as the average from 

three different programs: ACD version 12.0 (ACD labs, Toronto, Canada), Marvin 

(ChemAxon, Budapest, Hungary) and MedChem Designer (Simulations Plus, Lancaster, USA). 

pKa and solute charge was calculated from the average estimate given by the first two 

calculators. For the initial studies column efficiency was measured at half-height. For the 

detailed studies to elucidate explanation for those data, column efficiency (N) was 

measured from the first and second statistical moments according to the relationship in 3.1. 
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Asymmetry factor was measured at 10% of peak height by dividing the width of the trailing 

edge of the peak by that of the leading edge. The columns were operated in the region of 

their optimum flow (1.0 mL/min for silica and hydride silica, 0.5 mL/min for zwitterionic and 

amide).  

 𝑁 =
𝑀1

2

𝑀2
 (3.1)



 

Page 48 of 246 

 

Fig. 3.1. Structures, pKa, log P/D and charge at ww pH 3 and ww pH 5 for the probe solutes 
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3. Results and discussion 

3.1. Buffer and solute properties.  

Table 3.1 indicates the pH, ionic strength and buffer capacity of the three mobile phases 

used, 5 mM ammonium formate (AF) adjusted to pH 3.0 with formic acid, 0.1% (v/v) formic 

acid (FA), and 0.1%(v/v) orthophosphoric acid (PA), if prepared in aqueous solution. 

Ammonium formate and formic acid are soluble in high concentrations of ACN; they are also 

volatile additives and thus extremely suitable for use in HILIC with mass spectrometry 

detection (Periat et al. 2013b). PA is an alternative acid additive used by several column 

manufacturers e.g. (Halo Penta-HILIC brochure 2014). It was used successfully by Mant and 

Hodges for the HILIC separation of peptides using a 0.2% concentration in 85% ACN, using 

UV detection (Mant et al. 2008). These authors sought a more hydrophilic acid additive than 

trifluoroacetic acid (TFA). We showed by experiment in the present study that 0.1% PA was 

completely soluble even in 100% ACN, with no evidence of precipitation. PA is not volatile 

and is thus unsuitable for use with mass spectrometry detection. However, PA was studied 

due to the lower w
w pH and w

s pH given by this relatively strong acid, and thus its better 

ability to suppress the ionisation of residual silanol groups. PA is also not expected to give 

substantial ion pair effects (see the discussion of these effects in Section 3.2). Ion pairing 

could lead to lower retention of ionised bases due to reduction in ionic interactions with the 

stationary phase and the reduced hydrophilicity of the paired species. In contrast, 

trifluoroacetic acid, which is a stronger acid and is more hydrophobic than PA can give quite 

pronounced ion pair effects (McCalley 2007), which we believed might have confounded the 

interpretation of the results by affecting retention times. 
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A relatively low concentration of AF was employed, as such concentrations are generally 

preferred when mass spectrometry is used for detection. While the buffer capacity of formic 

acid in water is the least of the three solutions, it is still appreciable. w
s pH values(in the 

organic–aqueous mixture) are shown for 85% ACN solutions. The choice of this 

measurement as opposed to w
w pH in the aqueous fraction alone is not straightforward. 

Detailed computer modelling by Tallarek and co-workers (Melnikov et al. 2011, 2012), 

suggests that there is a layer exclusively of water molecules tightly bonded to the surface of 

bare silica; in this case the use of w
wpH may be more appropriate. However, other 

experimental work suggests there may be significant numbers of acetonitrile molecules in 

the interfacial region (Rivera et al. 2013). Fig. 3.1 shows the structure, pKa, charge and log 

D/log P values at w
w pH 3.0 and 5.0 for the 12 probe solutes used, which were a mixture of 

neutrals, strong and weak acids and bases, and a quaternary ammonium salt. Average 

values of these parameters from several different calculation programs were used in order 

to improve the accuracy of the estimations. Although the agreement of estimates from the 

programs was reasonable, there was some lack of consistency between the programs due to 

the use of different software algorithms (Kumar et al. 2013). 
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Table 3.1 pH, molarity and buffer capacity of aqueous buffer solutions and 

dilute acids; w
s pH measured in 85% ACN. *This was used as 0.1% of an 85% 

solution (14.6 mM/L). 

Buffer w
w pH w

s pH Molarity 

 

(mmol/L) 

Buffer capacity 

(mmol/L pH) 

0.1% Formic Acid 2.7 2.9 2.2 9.7 

5mM Ammonium Formate pH 3.0 3.0 5.2 6.1 14.7 

0.1% Phosphoric Acid* 2.1 2.0 7.9 26.1 

 

3.2 Initial studies to establish a generic HILIC mobile phase 

buffer: performance of four different phases with three 

mobile phase buffers  

Initially this study was performed on an Agilent 1100 system with a view to establish a 

generic mobile phase buffer system for the remainder of the project. Eleven solutes were 

used as probe compounds, shown in Fig. 3.1 with the exception of Uracil, which was added 

to later parts of this work (3.3) to characterise a somewhat broader selection of hydrophilic 

neutral solutes. Each solute was injected individually onto the respective column in mobile 

phase buffered either by ammonium formate (5mM w
w pH 3 with formic acid), formic acid 

(0.1% v/v) or phosphoric acid (0.1% v/v). Plots of column efficiency, measured at peak half-

height, are shown in Fig. 3.2a-d for each column for the three buffer systems. Peak 
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asymmetry was measured at 10% peak height (As0.1). Peak shape in terms of efficiency and 

symmetry was superior in ammonium formate buffer on all columns for the majority of 

solutes compared to formic acid (0.1% v/v). Ionogenic solutes were strongly affected by the 

choice of buffer, whereas neutral solutes were relatively unaffected (Fig. 3.2). The overall 

peak shape recovered when phosphoric acid (0.1% v/v) was used as mobile phase buffer 

(Fig.3.2a-c). There were also shifts in retention between the buffers, for example on the 

Cogent column bases were more strongly retained in formic acid than in ammonium 

formate buffer (data not shown). These phenomena were elucidated in detail in a 

collaborative study, discussed in 3.3. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2a Initial results for eleven probe compounds, Atlantis column. Vertical scale is peak efficiency at half-height in plates per column; peak 
asymmetry at 10% height shown in purple boxes above efficiency bar plots. Stationary phase Atlantis (4.6 x 250mm, 5µm) mobile phase 
89.425% ACN with respective buffer. Blue = Ammonium Formate 5mM; Red = Formic Acid 0.1% v/v; Green = Phosphoric Acid 0.1% v/v 
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N
 (
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0.98 0.92 0.80 1.02 0.32 1.37 1.05 1.09 1.52 1.43 0.23 1.24 1.13 3.18 2.36 

1.05 0.97 0.52 

Acids (-ve charge) 

N
 (

0
.5

) 

1.14 0.77 1.09 

N
 (

0
.5
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1.54 1.32 1.13 

N
 (

0
.5

) 

1.05 0.97 0.52 
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Fig. 3.2b Initial results for eleven probe compounds, BEH Amide column. Vertical scale is peak efficiency at half-height in plates per column; 
peak asymmetry at 10% height shown in purple boxes above efficiency bar plots. Stationary phase BEH Amide (4.6 x 150mm, 3.5µm) mobile 
phase 89.425% ACN with respective buffer. Blue = Ammonium Formate 5mM; Red = Formic Acid 0.1% v/v; Green = Phosphoric Acid 0.1% v/v 
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2.75 1.12 0.93 
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0.85 0.36 0.41 
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Fig. 3.2c Initial results for eleven probe compounds, Cogent Type C silica column. Vertical scale is peak efficiency at half-height in plates per 
column; peak asymmetry at 10% height shown in purple boxes above efficiency bar plots. Stationary phase BEH Amide (4.6 x 150mm, 3.5µm) 
mobile phase 89.425% ACN with respective buffer. Blue = Ammonium Formate 5mM; Red = Formic Acid 0.1% v/v; Green = Phosphoric Acid 
0.1% v/v 
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N
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1.44 0.26 0.98 
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Fig. 3.2d Initial results for eleven probe compounds, ZIC-HILIC column. Vertical scale is peak efficiency at half-height in plates per column; 
peak asymmetry at 10% height shown in purple boxes above efficiency bar plots. Stationary phase BEH Amide (4.6 x 150mm, 3.5µm) mobile 
phase 89.425% ACN with respective buffer. Blue = Ammonium Formate 5mM; Red = Formic Acid 0.1% v/v. 
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3.3. Detailed studies to elucidate phenomena responsible for 

results in 3.2 

3.3.1 Comparison of performance of four different stationary 

phases with three different buffers 

The silica and bridged ethyl hybrid (BEH) amide phases were chosen for their, respectively, 

high and low cationic selectivity (preferential retention of cationic compounds) indicated in 

previous work (Kawachi et al. 2011, Kumar et al. 2013). The silica hydride stationary phase 

was studied as it supposedly contains very few silanol groups. Thus, ionic retention should 

be considerably reduced and its influence on retention and peak shape using FA would be 

considerably lower. A popular zwitterionic phase which has been used to separate 

hydrophilic species such as metabolites (Zhang et al. 2015) was also included as it can give 

alternative selectivity compared with the other phases in this work. The columns were 

evaluated using 90% ACN containing each of the three buffers AF, FA and PA, giving the 

results shown in Fig. 3.3. 10% water (90% ACN) was chosen for the study as it gave 

reasonable retention for most compounds (see also Section 3.3.2). The bare silica phase was 

characterised by low retention of the neutral solutes (uridine–uracil) in both AF and FA 

(Fig. 3.3a). Retention of neutrals on this column was somewhat lower still in FA than AF, 

which might be attributed to a reduced water layer in the absence of the salt (Dinh et al. 

2013). Greater retention of neutrals was obtained on both the zwitterionic and amide 

phases. This increased retention is likely to be related to the greater occupancy of the 

column pores with water on the ZIC phase (25%) and a TSK amide phase (21%) compared 

with Atlantis silica (9%) that have been measured using Karl-Fischer titration (data obtained 

in 80% ACN with 5 mM acetate, (Dinh et al. 2013)). This greater uptake of water is due to 
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the formation of swollen hydrogels on polymerically-functionalised phases like ZIC-HILIC 

(Dinh et al. 2011, 2013), and seems likely to emphasise the contribution of the partition 

mechanism to retention. With each mobile phase and each column, the retention of cationic 

solutes (nortriptyline to pyridine) was considerably higher than for neutrals. Preferential 

retention of cations compared with neutrals in AF or FA was shown for all columns, but was 

less pronounced on the amide phase. While the hydrophilicity of cations contributes to this 

increased retention, ionic interactions are likely to give a strong influence on retention. Thus 

nortriptyline (log D w
w pH 3.0 = 1.1) is only moderately hydrophilic, but its high pKa (10.2) 

results in protonation in all mobile phases leading to additional ionic retention. TMPAC (log 

D w
w pH 3.0 = −2.2) is considerably more hydrophilic, which combined with similar ionic 

interactions (both nortriptyline and TMPAC are unipositively charged under the analysis 

conditions) leads to stronger retention than for nortriptyline. The retention of the weak 

base pyridine (pKa 5.1, log D w
w pH 3.0 = −1.0) was much greater in PA compared with AF. 

The lower pH of the PA mobile phase could result in greater protonation of this weak base 

in PA increasing its hydrophilicity and also increasing ionic retention caused by residual 

silanol ionisation (Fig. 3.3a). The persistence of ionic interactions on all columns at the low 

pH of PA is indicated by the observation that neutral uridine has a more negative log D 

w
w pH 3.0 value (−2.1) but considerably smaller retention in the PA mobile phase than 

pyridine (−1.0). Besides the effect of the different pH values of these mobile phases on 

retention, the competing effect of the ammonium ionic retention should also be considered. 

This factor most likely contributes to the smaller retention of cationic solutes using AF 

compared with FA, which is particularly evident for the hydride, silica and zwitterionic 

columns (Fig. 3.3a). While the silica column is known to give high ionic retention (Dinh et al. 

2011), the same result is surprising for the hydride column, which supposedly has hydride 
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groups in place of silanols. The same observation of high retention of bases on hydride 

phases, and the possibility of ionic retention of these solutes, has also been noted by other 

authors (Bawazeer et al. 2012). Similarly, the low retention of the anionic solutes such as 

3,4,5-trihydroxybenzoicacid (pKa 4.1, log D w
w pH 3.0 = 0.60) and particularly of benzene-

sulfonic acid, BSA (pKa −0.8, log D w
w pH 3.0 = −2.0) on the silica and hydride columns (e.g. 

with AF) can be explained by repulsion of these species from ionised silanols. It seems that 

the positively charged ammonium ions cannot mask sufficiently the effects of the silanols, at 

least not with the low concentrations of AF used in this study. This repulsion must 

effectively counteract retention resulting from the partition mechanism, as BSA is 

appreciably hydrophilic. These anionic solutes only showed appreciable retention on the 

zwitterionic and amide phases, which have been shown to exhibit reduced ionic effects 

(Kumar et al. 2013). It is also possible that retention of acidic solutes is promoted by the 

presence of the quaternary ammonium functionality that is present on the zwitterionic 

phase. The continued low retention of BSA in PA on all columns is also suggestive of 

persistent silanol ionisation, even at lower pH. Fig. 3.3b indicates that the choice of buffer 

had relatively little effect on the efficiency of neutral compounds when 90% ACN was used 

(although lower efficiency was noted for some neutrals in FA using a lower water 

concentration −95% ACN—see following section). The silica column gave excellent efficiency 

for almost all solutes (neutral, cationic and anionic) in AF buffer, generating >25,000 plates 

for some compounds (reduced plate height h < 2.0).High efficiency was also obtained for the 

amide column for all these solutes in AF, with h as low as 2.1 for the neutrals (note the 

dimensions and particle size of this column differed from the others). The lower plate count 

given by the zwitterionic column for neutrals was due to some peak tailing (see Fig. 3c), 

which influences the efficiency calculation, particularly when using the moments method. 
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While there was some decline in efficiency for the ionogenic solutes on all columns 

compared with the neutrals (especially for some of the cationic solutes with the hydride 

column, and for 3,4,5-THBA), efficiency was still broadly maintained at high levels for all 

columns when using AF. Clearly however, the most remarkable observation from Fig. 3.3b is 

the catastrophic loss in efficiency for the cationic solutes on all columns using FA, with plate 

counts in some cases only a tenth or less of their values in AF. Substantial deterioration in 

the efficiency of the acid BSA was also noted in FA; the high efficiency of benzoic acid in FA 

is attributable merely to the very low retention of this solute under the analysis conditions 

(see Fig. 3.3a). Clearly the problem with use of FA, noted previously only for a bare silica 

phase, is not connected merely with the strong ionic interactions of this material, as the 

amide phase (based instead on a hybrid organic–inorganic silica) has considerably reduced 

interactions of this type (Kumar et al. 2013). Fig. 3.3c indicates that the loss in efficiency is in 

most cases due to serious fronting of peaks. However in ammonium formate buffers, the 

ammonium cation is presumably able to act as a counter-ion in cation exchange with basic 

compounds and additionally shield surface negative charges from acidic solutes. This 

perhaps explains the improved overall peak shape in AF as opposed to FA mobile phase (Fig. 

3.3a). 
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Fig. 3.3a. Retention factor (k), for neutrals (uridine–uracil), cationic(nortriptyline–

pyridine) and anionic solutes (benzoic acid-BSA) on four different columns using 

mobile phases with 90% ACN and various buffers. Solutes TMPAC = 

trimethylphenylammonium chloride; THBA = trihydroxybenzoic acid; BSA = 

benzenesulfonic acid. Column temperature 30°C. Solute concentration 50 mg/L, 

injection volume 5 µL. For other details, see Section 2. 
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Fig. 3.3b. Column efficiency (N, statistical moments method) for neutrals 

(uridine–uracil), cationic(nortriptyline–pyridine) and anionic solutes (benzoic 

acid-BSA) on four different columns using mobile phases with 90% ACN and 

various buffers. Solutes and conditions as per Fig 3.2a. 
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Fig. 3.3c asymmetry factor (As0.1) for neutrals (uridine–uracil), cationic(nortriptyline–

pyridine) and anionic solutes (benzoic acid-BSA) on four different columns using 

mobile phases with 90% ACN and various buffers. Solutes and conditions as per 

Fig. 3.2a. 

Fig. 3.3 (a) Retention factor (k), (b) column efficiency (N, statistical moments method) and 

(c) asymmetry factor (As0.1) for neutrals (uridine–uracil), cationic(nortriptyline–pyridine) 

and anionic solutes (benzoic acid-BSA) on four different columns using mobile phases with 

90% ACN and various buffers. Solutes TMPAC = trimethylphenylammonium chloride; 

THBA = trihydroxybenzoic acid; BSA = benzenesulfonic acid. Column temperature 30°C. 

Solute concentration 50 mg/L, injection volume 5 µL. For other details, see Section 2. 
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Fig. 3.4. ZIC-HILIC column (a) nortriptyline with mobile phase 90% ACN, 5 mM overall AF 

pH 3; (b) nortriptyline with 90% ACN containing 0.1% FA; (c) BSA with AF; (d) BSA with FA; 

(e) pyridine with AF; (f) pyridine with FA. Flow rate 0.5 cm3/min. 

Fig. 3.4 compares examples of the chromatograms for nortriptyline, BSA and pyridine in AF 

or FA mobile phase, showing peak fronting in the latter. Efficiency for cationic and anionic 

solutes was improved in PA compared with FA, but still inferior to that in AF for all columns. 

For this acid, either tailing or fronting caused loss inefficiency. Apparently, (partial) 

suppression of ionic interactions at low pH is not necessarily beneficial to obtaining good 

peak shapes for ionogenic solutes. Indeed it may be that the balance of ionic and 
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hydrophilic retention is the critical factor in determining peak shape. This balance may even 

be more favourable at higher pH (Periat et al. 2013c). While superior performance with AF 

may in part be related to the deactivating effect of the ammonium ion, it may be that the 

salt encourages the formation of the water layer on the column surface, giving improved 

results. The ionic strength of 0.1% FA in water is the least of the three in Table 3.1, but is 

likely to be considerably reduced in an 85% acetonitrile solution, as indicated by the rise in 

w
s pH. The true thermodynamic s

s pH (which pertains to the pH in the aqueous–organic 

phase using calibration buffers prepared in the same solution) is related to the w
s pH by the 

relationship (3.2):  

 s
s pH = swpH – δ (3.2) 

Where δ is a term that incorporates both the Gibbs free energy for transference of 1 mol of 

protons from the standard state in water to the standard state in the hydroorganic solvent 

at a given temperature, and the residual liquid junction potential (the difference between 

the liquid junction potential established during calibration in aqueous solutions, and that in 

the hydroorganic mixture). The value of δ is about −1.1 in 85% ACN (Gagliardi et al. 2007), 

implying s
s pH = 4.0 and a concentration of formate anions in the mobile phase of only 

around 0.1 mM/L. While the w
s pH of PA is lower than that of FA, the concentration of 

phosphate anions in the same mobile phase is still only around 0.8 mM/L. Still lower ionic 

strength would be present in solutions containing higher concentrations of ACN; the δ value 

in 90% ACN is about −1.6 (Gagliardi et al. 2007). Due (at least) to their low ionic strength, we 

believe that the degree of ion pairing in these simple acid solutions is likely to be small. In 

contrast, the ionic strength of the ammonium formate solution is maintained by the 

presence of the salt. In this case, some degree of ion pairing is possible, no studies are 
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known that have investigated this possibility in the high concentrations of ACN relevant to 

HILIC studies. It is possible that some ion-pairing in AF moderates ionic interactions with the 

stationary phase. Ion pairing would also reduce solute hydrophilicity: both effects may 

contribute to the reduced retention of bases shown in Fig. 3.3a. As mentioned previously 

however, all these arguments are complicated by the problem of whether physical 

parameters in water or in the aqueous–organic mixture should be considered. The ionic 

strength of the mobile phase may well have influence on the thickness of the water layer 

which may be beneficial for ionic species. The presence of negatively-charged silanol groups 

on the stationary phase surface attracts cations, such the buffer cation [NH4]+. The cation 

itself is anticipated to be hydrated by some water molecules. Therefore when retaining on 

the stationary phase in HILIC, it is also possible that AF has specifically favourable properties 

in the formation of the water layer, in addition to its effect on masking ionised silanols. The 

observation of apparently strong ionic interactions of the hydride phase was unexpected 

compared with reports concerning the composition of this material (Boysen et al. 2011, 

Pesek et al. 2008). In fact in the present study, the hydride column appeared to behave in a 

fashion more similar to the bare silica phase, rather than phases like the zwitterionic and 

amide materials, which demonstrate reduced ionic interactions.  
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Fig. 3.5 Comparison of retention (k vs. k) plot for bare silica (Atlantis) vs. hydride silica 

(Cogent) using 90% ACN containing 5 mM ammonium formate w
w pH 3.0. Other conditions 

as Fig. 3.2. 

Fig. 3.5 shows a correlation plot of k on the bare silica phase vs. the hydride silica phase, 

showing a high degree of correlation (r = 0.996), giving further evidence for their similar 

properties. In a previous publication (Kumar et al. 2013), the average correlation coefficient 

(r) of the retention factors of pairs of six different HILIC columns, again using a set of 

neutral, cationic and anionic solute sand similar mobile phase conditions to the present 

study, was 0.58. This result emphasises the relative similarity of the hydride and silica 

phases, compared with the greater differences that typically exist between the selectivity of 

different HILIC stationary phases. 
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3.3.2. Effect of mobile phase water concentration and buffer 

on retention and peak shape 

The influence of 5–15% v/v water (95–85% v/v ACN) in mobile phases containing either 

0.1% FA or 5 mM AF was studied on the bare silica and the BEH amide stationary phases, in 

order to investigate any possible variation in findings from the previous section when 

different water concentrations were used. The bare silica and amide phase were selected 

for this further study as they are indicated above and in (Kumar et al. 2013) to give strong 

and weak ionic retention, respectively. 
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Fig. 3.6 a Fig. 3.6b 

Fig. 3.6a,b. Retention factor (k), column efficiency (N) and asymmetry factor (As0.1) 

measurements for Atlantis silica column using 85–95% ACN containing (a) 5 mM 

ammonium formate ww pH 3.0 (b) 0.1% formic acidasymmetry data in FA not shown 

for procainamide as split peaks were obtained. Other conditions see Fig. 3.2. 

b 
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Fig. 3.6c Fig. 3.6d 

Fig. 3.6c,d. Retention factor (k), column efficiency (N) and asymmetry factor 

(As0.1) measurements for BEH amide column using 85–95% ACN containing 

(c) 5 mM ammonium formate ww pH 3.0 and (d) 0.1% formic acid; asymmetry 

data in FA not shown for procainamide as split peaks were obtained. Other 

conditions see Fig. 3.2. 

 

 



 

Page 71 of 246 

 Fig. 3.6 shows in all cases that retention increases substantially as the ACN content in the 

mobile phase is increased, which is in accord with increased partition into the stationary 

phase and/or increased adsorption onto polar surface groups, dependent on the separation 

mechanism. Considering the results in AF for the silica and amide columns, respectively 

(Fig. 3.6a and c), the increases in retention with increasing ACN concentration were 

particularly marked for the cationic solutes when using the silica column, suggesting a 

possible synergistic effect between hydrophilic and ionic retention. Increases in retention 

for these solutes using the amide column under the same conditions were considerably 

smaller. Fig. 3.6a shows that the high efficiency for most solutes in AF found in 3.2 when 

using 90% ACN was largely maintained over the range 85–95% ACN for the silica column. 

Average efficiency for the range of solutes in the buffer was again around 25,000 plates (h = 

2.0). Poorer results were indicated again for 3,4,5-THBA, especially as the concentration of 

water decreased. The rapid decline of efficiency and increased asymmetry of 3,4,5-THBA in 

95% ACN is attributable to the increased retention of this solute, which is very small at 

lower concentrations of ACN. It is possible that the increased contribution of strong 

adsorption of solute hydroxyl groups at high ACN concentration contributes to the 

deterioration in performance. Using the amide column with AF (Fig. 3.6c), decreases in 

efficiency at the lowest water concentration (95% ACN) were shown for the cationic solutes; 

3,4,5-THBA was not eluted under these conditions. The decline in efficiency was 

accompanied by increased tailing of these solutes in 95% ACN. Using FA, little effect was 

observed on the efficiency of the neutral solutes on the silica column. However, a decline in 

efficiency at 95% ACN accompanied by increased tailing, was shown for these neutrals on 

the amide column (Fig. 3.6d). This decline may be connected with the decrease in the 

thickness of the water layer on the stationary phase as the concentration of water in the 



 

Page 72 of 246 

mobile phase was reduced (McCalley et al. 2008b). Remarkable again is the drastic collapse 

in efficiency on both columns for the anionic and cationic solutes in FA compared with AF, 

which occurs over the whole range of water concentrations (Fig. 3.6b and d). Again, this 

drop in efficiency is caused mostly by serious fronting of the peaks in FA. This result once 

more indicates the necessity for use of buffers in order to achieve acceptable efficiencies for 

these solutes, even using a stationary phase like BEH amide that possesses reduced ionic 

interaction characteristics. 

3.3.3. Causes of poor peak shape for cationic solutes in formic 

acid 

Fig. 3.7 shows a plot of column efficiency (using the statistical moments method) against 

sample load over the range 0.05 to 2.5  µg on column for the neutral uridine, the bases 

adenine and procainamide, and the quaternary compound TMPAC using the silica column 

and 90% ACN containing 0.1% FA as the mobile phase. It is clear that peak shape for uridine 

remains approximately constant, with the number of plates deteriorating by only around 

13% over this range of sample load. In comparison, the deterioration in efficiency for 

adenine, procainamide and TMPAC was 61%, 93% and 96%, respectively. The drop in 

efficiency for these solutes was caused by increased fronting of the peaks as the sample 

load increased. It is possible that sparse cationic retention sites (ionised silanols) are 

increasingly overloaded by protonated solutes causing the deterioration in peak shape. As 

pointed out above, the ionic strength of 0.1% FA in 90% ACN is extremely low, and the 

concentration of mobile phase counterions (hydroxonium ions) may be insufficient to pre-

vent solute interactions with these column groups. This situation would not arise in AF 

buffers, as the ionic strength is maintained by the presence of the salt. 
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Fig. 3.7. Effect of sample mass on efficiency of Atlantis silica column using 

procainamide (strong base), TMPAC (quaternary ammonium salt), adenine 

(weak base) uridine (neutral). Mobile phase 90% ACN containing 0.1% FA. 

Other conditions see Section 2. 
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3.3.4. Effect of buffer salt concentration and salt cation on 

retentionof cationic compounds 

 

Fig. 3.8. Effect of buffer salt on retention using Atlantis silica column. Mobile 

phase90% ACN containing salt adjusted to w
w pH 3.0 with FA. 

Fig. 3.7 indicates that increasing the concentration of ammonium formate pH 3.0 from 5–

10 mM in 90% ACN decreases retention for the strong bases nortriptyline and 

procainamide, and the quaternary compound TMPAC, showing the presence of ionic 

retention for these solutes on the silica column. Maintaining the buffer cation concentration 

at 10 mM by the substitution of rubidium cations for 5 mM of the AF concentration gave 

further decreases in the retention of these cationic solutes. It is well known that ion 

exchangers favour the bonding of ions of higher charge, decreased hydrated radius and 



 

Page 75 of 246 

increased polarisability. Thus for the monovalent cations elution strength is generally in the 

order (Harris 2007):  

Cs+ > Rb+ > K+ > NH4+ > Na+ > H+ > Li+ 

Ions which are smaller in their non-hydrated state such as Li+ have a higher charge density, 

attracting a larger number of water molecules, resulting in a larger hydrated radius. It is 

interesting that the weak base pyridine and also adenine show no evidence of ionic 

retention in Fig. 3.7, suggesting they are not protonated in the mobile phase. Pyridine has a 

pKa of 5.1 in water, indicating that if pH values in water were applicable, it should be 

completely protonated in a mobile phase of w
w pH 3.0. The w

s pH of a similar mobile phase 

containing 85% ACN (Table 3.1) is ∼5.1, and combined with the effect of the depression of 

pKa of bases in solutions of high organic solvent composition, would indicate that pyridine is 

not protonated, explaining the apparent lack of ionic retention and hydrophilic retention of 

this compound. The increased retention of these weak bases in 90% ACN containing 0.1% FA 

and PA as shown in Fig. 3.2a and discussed in Section 3.2 above, could be due to 

protonation of the compounds at the lower w
s pH of these mobile phases compared with 

that of AF. These results indicate that w
s pH should be considered in explaining results in 

HILIC despite the supposition of a layer of water on the surface of the phase. It is also 

possible that ionic interactions could occur between solutes situated in the bulk mobile 

phase and the column, in which case ws pH values would also be appropriate.  

Conclusions 

The retention and peak shape of some neutral, cationic and anionic solutes was investigated 

in aqueous acetonitrile mobile phases containing ammonium formate (AF), formic acid (FA) 
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and phosphoric acid (PA) on four HILIC columns of substantially different properties. 

Relatively little difference was found between these three mobile phases in terms of 

retention or column efficiency for the neutral solutes. While peak shapes of ionogenic 

solutes, particularly cationic compounds, were in general very good using AF, considerable 

deterioration in peak shape was observed when FA was used. The same result was obtained 

both on stationary phases with strong ionic retention characteristics (bare silica and hydride 

silica, which surprisingly showed very similar retention selectivity)and those exhibiting much 

lower ionic effects (hybrid silica amide and zwitterionic). Peak shape in FA became still 

worse as the sample load increased. Peak shape is likely to be related to the different pH 

and ionic strength of the various buffers, as measured in the aqueous or aqueous–organic 

portion of the mobile phase. For example, the ionic strength of FA solutions in high 

concentrations of ACN is very low, and thus may adversely affect the formation of the water 

layer. In contrast, the presence of a reasonable concentration of ammonium ions is likely to 

encourage formation of the layer as well as masking some of the effects of ionic 

interactions. Ionic retention of bases was demonstrated by increasing the salt 

concentration, and by substitution of some of the ammonium for a rubidium salt, which in 

both cases reduced retention. (Partial) suppression of cationic retention on ionised silanol 

groups afforded by the use of low pH PA did not improve column efficiency compared with 

use of AF. Differences in the pH of the various buffers will affect the relative contribution of 

hydrophilic and ionic mechanisms to retention, which in turn may have an important 

influence on peak shape. Despite the supposition of a water layer on the column surface, 

the consideration of w
s pH values seems important in explaining the retention of weak bases 

when using mobile phases rich in acetonitrile that are typical for HILIC separations.
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Chapter 4 
 

Performance of charged aerosol 

detection with hydrophilic 

interaction chromatography 
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Abstract 

The performance of the charged aerosol detector (CAD) was investigated using a diverse set 

of 29 solutes, including acids, bases and neutrals, over a range of mobile phase 

compositions, particularly with regard to its suitability for use in hydrophilic interaction 

chromatography (HILIC). Flow injection analysis was employed as a rapid method to study 

detector performance. CAD response was ‘quasi-universal’, strong signals were observed for 

compounds that have low volatility at typical operating (room) temperature. For relatively 

involatile solutes, response was reasonably independent of solute chemistry, giving 

variation of 12–18% RSD from buffered 95% ACN (HILIC) to 10% ACN (RP). Somewhat higher 

response was obtained for basic compared with neutral solutes. For cationic basic solutes, 

use of anionic reagents of increasing size in the mobile phase (formic, trifluoroacetic and 

heptafluorobutyric acid) produced somewhat increased detector response, suggesting that 

salt formation with these reagents is contributory. However, the increase was not 

stoichiometric, pointing to a complex mechanism. In general, CAD response increased as the 

concentration of acetonitrile in the mobile phase was increased from highly aqueous (10% 

ACN) to values typical in the HILIC range (80–95% ACN), with signal to noise ratios about 

four times higher than those for the RP range. The response of the CAD is non-linear. 

Equations describing aerosol formation cannot entirely explain the shape of the plots. Limits 

of detection (determined with a column for solutes of low k) under HILIC conditions were of 

the order of 1–3 ng on column, which com-pares favourably with other universal detectors. 

CAD response to inorganic anions allows observation of the independent movement 

through the column of the cationic and anionic constituents of basic drugs, which appear to 

be accompanied by mobile phase counterions, even at quite high solute concentrations. 
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1. Introduction 

An important problem for high performance liquid chromatography (HPLC) is the limited 

choice of detectors that respond to compounds containing no UV/VIS chromophores. 

Charged aerosol detection (CAD) is a relatively new type of detector developed for use in 

HPLC over the last 10 years (Dixon et al. 2002). About 100 publications concerning the 

detector have appeared to date (e.g. (Cohen et al. 2012, Gamache et al. 2005, Web of 

Science search topic ‘Chromatograph*’ AND TITLE ‘Charged Aerosol*’)).The detector seems 

very suitable for the analysis of some pharmaceuticals and compounds of biomedical 

significance, at least in the reversed-phase (RP) mode (Vervoort et al. 2008), however, more 

detailed study is necessary to further understand its properties. Its response is dependent 

on the formation of aerosol particles (see Fig. 4.1), similar to techniques such as evaporative 

light scattering detection (ELSD) (Mourey et al. 1984) and condensation nucleation light 

scattering detection (CNLSD) (Allen et al. 1993). This dependence results in a response 

which is supposedly independent of solute molecular structure, giving a signal for any 

compound that is able to form stable aerosol particles. Therefore, CAD is potentially suitable 

for impurity analysis, particularly in pharmaceutical development where measurement by 

UV or mass spectrometry (MS) requires the use of standards that maybe unavailable for 

unknown impurities. In CAD, the aerosol particle becomes charged through collision with 

positively charged nitrogen gas (Vehovec et al. 2010), which differs from MS interfaces 

which generate molecular ions rather than charged particles (Niessen 2003). The present 

work aims to study the performance of the CAD, and investigate to what extent it may fulfil 

the requirements of a universal detector, particularly with regard to its use in hydrophilic 

interaction chromatography (HILIC). Clearly some factors influencing CAD behaviour are 
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already understood, although commercial instruments have some differences from the 

prototype described by Dixon and Peterson (Dixon et al. 2002). These differences are 

sometimes ignored in the literature in discussions of the mechanism of operation of 

commercial instruments (Almeling et al. 2012, Shaodong et al. 2010). Nevertheless, the 

process in both may involve transfer of charge from the sheath gas (e.g. nitrogen)to the 

solute particles (see Fig. 4.1), which is distinct from the more direct exposure of the corona 

discharge to the eluent as occurs in atmospheric pressure chemical ionisation (APCI) sources 

used in mass spectrometry. As CAD response (along with that of all aerosol detectors) 

depends on the formation of solid particles, it is limited to solutes that have low volatility at 

the operating temperature. However, few studies have investigated in detail any 

relationship between volatility and detector signal. The ability to differentiate between 

solute and mobile phase determines the detection limit, which has been quoted as 0.1–1 ng 

sample on-column (Hutchinson et al. 2012, Cohen et al. 2012). Buffers are often critical 

additives to HPLC mobile phases in any separation mode, but are potentially detrimental to 

CAD performance. In HILIC, buffers can lead to better peak shape than simple acid solutions 

(McCalley 2007, Heaton et al. 2014c, Pesek et al. 2013), thus we wished to investigate their 

influence on CAD sensitivity. Furthermore, as with other aerosol-based detectors, detector 

response is dependent on organic solvent content. While changing detector response with 

organic solvent concentration has been investigated for its detrimental effect on response 

uniformity in gradient elution (Khandagale et al. 2014, Gorecki et al. 2006, Hutchinson, Li et 

al. 2010), high organic concentrations as used in HILIC may be advantageous for sensitivity 

as it should facilitate desolvation of particles in the CAD. Aerosol-based detectors are known 

to produce non-linear calibration curves (Hutchinson et al. 2011), which can arise for 

different reasons in different detectors. For instance in the ELSD, it is due to both the non-
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linearity of aerosol formation and a change in detection mechanism with the size of aerosol 

particles (Stolywho et al. 1983). The mechanism of detection in CAD is more straight-

forward than ELSD (Vervoort et al. 2008), and CAD calibration curves can be close to linear 

over small concentration ranges (Vehovec et al. 2010). The detailed mechanism that causes 

non-linearity of CAD calibration curves and their profile has not been described to date. 

Detector response for aerosol-based detectors is believed to be mostly independent of 

solute chemistry (Vervoort et al. 2008). However this factor has also not been investigated 

in much detail with respect to CAD for a sufficiently broad selection of solute structures. 

Approximately 50% of drug active pharmaceutical ingredients (API) are salts (Paulekuhn et 

al. 2007), and many salt counter ions do not contain chromophores. An important benefit of 

CAD is the ability to detect solutes which do not contain chromophores, and thus it should 

respond to these counterions (Schiesel et al. 2012). 
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Fig. 4.1 Simple Schematic of CAD operation 

2. Experimental 

2.1 Chemicals and reagents 

A set of 29 probe compounds comprising acids, bases and neutrals (as used in a previous 

study (Kumar et al. 2013)) was obtained from SigmaAldrich (Poole, UK) and used as probes. 

Structural and physico-chemical data are provided in Table 4.1. Log D values were calculated 

as the average from three different software packages: ACD version 12.0 (ACD Labs, 

Toronto, Canada), Marvin (Chem Axon, Budapest Hungary) and MedChem Designer 

(Simulations Plus, Lancaster, USA). Standards were diluted in the exact mobile phase from 

stock solutions typically at 10,000 mg/L made up in 50% ACN containing 0.1% FA. ACN (HPLC 

gradient grade), ammonium formate (AF), formic acid (FA) (LCMS grade), ammonium 

acetate (AA) and acetic acid (HPLC grade), were purchased from Fisher Scientific (Lough-

borough, UK). 
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Table 4.1. Identities, structures and physico-chemical characteristics of test compounds. 

Solute Structure MW FW Log D  
(pH 3)*** 
 
 
 
 

BP / °C MP / °C 

 
4-hydroxybenzoic acid 
 

 

 

 
138 

 
138 

 
1.46 

 
336* 

 
213.5 

Caffeine 
 
 
 

 

 

194 194 -0.41 178 238 

Diphenhydramine 
 
 
 
 

 

 

255 292 -0.013 344* 168# 

3,4,5–THBA 
 
 
 

 

 

170 170 0.6 501* 261.5 

BSA 
 
 

 

 

158 180 -2.35 319** 65.5 

BTEAC 
 
 
 

 

 

192 228 -1.67 445 191 

Procainamide 
 
 
 

 

 

235 272 -2.38 422* 167# 

TMPAC 
 
 

 

 

136 172 -2.01  247 
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Solute Structure MW FW Log D  
(pH 3)*** 
 
 
 
 

BP / °C MP / °C 

Cytidine 
 
 

 

 

243 243 -3.51 546* 225 

Phluroglucinol 
 
 
 

 

 

126 126 0.39 331* 204.5 

2,4–dihydroxypyridine 
 
 

 

 

111 111 -0.4 510* 274 

2-NSA 
 
 
 

 

 

208 230 -1.09 392** 124.5 

Nortriptyline 
 
 
 
 

 

 

263 300 1 403* 214$ 

2’-deoxyuridine 
 
 

 

 

228 228 -1.49 519** 165 

Theophylline 
 
 
 

 

 

180 180 -0.31 454* 272 

2,3–dihydroxypyridine 
 
 

 

 

 

111 111 -0.62 441* 245 

Pyridine 
 
 

 

 

79 79 -0.9 115 -41.6 
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Solute Structure MW FW Log D  
(pH 3)*** 
 
 
 
 

BP / °C MP / °C 

Benzoic acid 
 
 

 

 

122 122 1.65 249 122.4 

Cytosine 
 
 
 

 

 

111 111 -2.86 283** 322.5 

Paracetamol 
 
 

 

 

151 151 0.58 388* 169.75 

Thiourea 
 
 

 

 

76 76 -0.82 187* 177 

Uridine 
 
 

 

 

244 244 -2.06 556** 165 

2,3–dihydroxybenzoic 
acid 
 
 

 

 

154 154 0.86 344 205 

2,6–dimethylpyridine 
 
 

 

 

107 107 -1.11 144 -5.8 

BTMAC 
 
 

 

 

150 186 -2.18  239 

N,N–
Dimethylacetamide 
 

 

 

87 87 -0.48 166 -20 

Adenine 
 
 
 

 

 

135 135 -1.62 554* 220 
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Solute Structure MW FW Log D  
(pH 3)*** 
 
 
 
 

BP / °C MP / °C 

Uracil 
 
 
 

 

 

112 112 -0.97 367** 335 

Theobromine 
 
 
 

 

 

180 180 -0.65 483** 357 

* predicted at 760 mmHg using ACD labs program (see Experimental). 

** predicted from (www.chemspider.com) 

*** average log D from three packages (see Experimental) 

# value from (www.sigmaaldrich.com) 

$ value from (www.chemicalbook.com)  

 

2.2 Equipment and methodology 

A Thermo UltiMate 3000 Rapid Separation Liquid Chromatography system was used for all 

experiments, comprising a quaternary pump, diode array detector (DAD) and either a 

Corona Ultra or Corona Veo CAD, with Chromeleon 7.2 software (Thermo, Germering, 

Germany). The CAD is a destructive detector, therefore the DAD and CAD detectors were 

connected in series in some experiments, with flow first through the DAD. Thermo Viper 

tubing (0.13 mm ID) was used as connection tubing. Data collection rates were 100 Hz for 

both DAD and CAD, due to narrow peak widths (typically 1 s at half height in flow injection 

analysis (FIA)). The Corona Ultra nebuliser (cross flow design similar to that used in atomic 
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absorption spectrometry) was controlled at 22°C with the evaporator tube at ambient 

temperature, while the Veo (concentric flow design similar to those used in mass 

spectrometry) nebuliser was at ambient temperature and the evaporator tube set to 30°C. 

The Veo had a power function (PF) designed to ‘linearise’ data, which was set to either 0.67 

(this simulates ‘off’), 1.00 (the default) or 1.2 (optimised setting using experimental data, 

see below). An ethylene bridged hybrid (BEH) amide column (150 × 4.6 mm, particle size = 

3.5 µm, Waters, Milford, USA) was used for determination of the detection limit, linearity 

and for the salt separation experiments. An Atlantis bare silica column (250 × 4.6 mm ID, 

particle size = 5 µm, Waters) was used for some salt composition experiments. The mobile 

phase was ACN-5 mM ammonium for-mate or ammonium acetate buffer (80:20, w/w) 

unless otherwise stated. The pH meter was calibrated in aqueous buffers and formic or 

acetic acid was used to adjust the aqueous portion to w
w pH 3 or 5.Solutions at w

w pH 6.8 

were unadjusted 5 mM ammonium acetate. Care is necessary as pH calibration buffers can 

be a major source of non-volatile contaminants in the mobile phase. In flow injection 

analysis (FIA), narrow bore tubing (75 µm × 1100 mm) was used in place of the 

chromatographic column to maintain sufficient backpressure. Samples for FIA were 

prepared at a concentration of 300 mg/L; injection volumes were1 µL unless otherwise 

stated. Flow rate was 1 mL/min. For calculation of retention factors, toluene is generally 

used as a void volume marker in HILIC with UV detection (Heaton et al. 2014b), but is too 

volatile for use with the CAD. Naphtho [2,3-a] pyrene appeared to be a suitable alternative 

for CAD. 
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3. Results and discussion 

3.1.1 Detection limits (HPLC) 

When applied to the impurity profiling of amino acid mixtures in nutritional infusion bags, 

CAD limits of quantitation (LOQ) were reported at 10 ng on-column (1 µg/mL; 10 µL 

injection) (Schiesel et al. 2012). The authors used a signal to noise ratio of 5:1 to determine 

the LOQ (Schiesel et al. 2012), whereas common practice is to use a S:N of 10. Ramos et al. 

reported CAD limits of detection (LOD) 4 times lower than ELSD for analysis of membrane 

phospholipids by normal phase HPLC (Ramos et al. 2008). Hutchinson et al. reported that 

the LOD for 11 solutes was over 5 times smaller using CAD compared with ELSD (Hutchinson 

et al. 2011). Detection limits for an acid, neutral and basic solute in our experiments are 

shown in Table 4.2 for a typical HILIC mobile phase (5 mM ammonium formate pH 3 in 80% 

ACN). A signal to noise ratio of 3 was used as LOD and 10 for LOQ. The LOD of 1–3 ng and 

LOQ of 5–9 ng (both on column, 1 µL injections) compare favourably with other ‘universal’ 

detectors such as refractive index (LOD ∼1 µg on column (Yeung et al. 1986)) and ELSD (LOD 

1–100 ng on column (Vervoort et al. 2008, Shaodong et al. 2010)). While the data in Table 

4.2 was recorded for the BEH column, using the same mobile phase we did not observe 

serious noise or bleeding with the Atlantis column, as reported by Jia et al. (Jia et al. 2011). 

Table 4.2 (and indeed most of this work) was based on use of an acidic mobile phase, 

whereas Jia et al. used unbuffered ammonium acetate that has approximately neutral pH in 

aqueous solution. This higher pH might have caused some dissolution of silica and thus 

noise in the CAD. 
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Table 4.2. Detection limits for charged aerosol detection in HILIC conditions. HPLC, mobile phase 

80% ACN, 5mM ammonium formate w
w pH 3. 

Solute LOD / mg per L LOQ / mg per L 

BSA 3 9 

Uridine 2 6 

Nortriptyline 1 5 
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3.1.2 Calibration curves (HPLC) 

It has been reported that over wide ranges of analyte concentration, (e.g. 1–1000 ppm) CAD 

response is non-linear, while over narrow ranges of analyte concentration, it is quasi-linear 

(Vehovec et al. 2010). Using FIA, Hutchinson et al. investigated CAD calibration using 

sucralose, amitriptyline, dibucaine and quinine at concentrations of 1 µg/mL to 1 mg/mL (25 

µL injections) (Hutchinson et al. 2010). Although not commented on by the authors, their 

data suggest a low quasi-linear range below approximately 0.05 mg/mL and an upper quasi-

linear range between 0.4 and 1.0 mg/mL. Fig. 4.2 shows calibration plots for the acid BSA, 

the base nortriptyline and the neutral uridine over the range 1–1000 mg/L, using a BEH 

amide column with the CAD (Fig. 4.2a) and for UV detection (Fig. 4.2b). Hutchinson et al. 

(Hutchinson et al. 2010) reported maximum reliable CAD response at 70% ACN, and 

recommended this concentration for applications requiring maximum sensitivity. Retention 

is often poor at this ACN concentration in HILIC; a typical range for HILIC is 70–95% ACN. We 

therefore selected 80% ACN for our study. UV detection shows excellent linearity over the 

entire range (lowest R2 0.9995, for Nortriptyline). Our results indicate also a lower quasi-

linear range (1–100 mg/L) and an upper quasi-linear range (400–1000 mg/L) for CAD. The 

calibration curves appear to be sublinear (concave to the x-axis). The consistent general 

shape of CAD calibration curves (Fig. 4.2a; also (Hutchinson et al. 2010)) is perhaps 

described by some empirical formula, however no such interpretation has been attempted 

to date. 
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Fig. 4.2 a. Figure 4.2. Peak area vs. concentration for a neutral (Uridine), acid 

(BSA) and base (Nortriptyline) (a) CAD Ultra (HPLC, mobile phase 80%ACN, 5 

mM ammonium formate pH 3). 

 

Fig. 4.2 b Figure 4.2. Peak area vs. concentration for solutes as per Fig. 4.2a, 

(b) DAD. Conditions as per Fig. 4.2a. 
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Fig. 4.2 c. Figure 4.2. Peak area vs. concentration for solutes as per Fig. 4.2a, 

(c) log/log CAD Ultra. Conditions as per Fig. 4.2a. 

 

 

Fig. 4.2 d. Peak Area vs. Density for 17 non-volatile solutes (FIA, mobile phase 

80% ACN with 5mM ammonium formate pH 3). 
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Figure 4.2. Peak area vs. concentration for a neutral (Uridine), acid (BSA) and 

base (Nortriptyline) (a) CAD Ultra, (b) DAD and (c) log/log CAD Ultra (HPLC, 

mobile phase 80%ACN, 5 mM ammonium formate pH 3); (d) Peak Area vs. 

Density for 17 non-volatile solutes (FIA, mobile phase 80% ACN with 5mM 

ammonium formate pH 3). 

The particle size dp as described for ELSD (1) is given by the equation (4.1):  

𝒅P = 𝒅D (
𝑪

𝝆p
)

𝟏/𝟑
 (4.1) 

where dD is the diameter of the droplet, c is the analyte concentration and p is the density 

of the particle. The aerosol formation step should be similar in ELSD and CAD. It was 

assumed by Charlesworth that aerosol particles are approximately spherical for ELSD 

(Charlesworth 1978), as confirmed by fundamental studies (Reid et al. 2011). Dixon and 

Peterson assumed this for their prototype aerosol detector (Dixon et al. 2002). The authors 

of that study reported that the prototype’s detector sensitivity (defined as the gradient of 

the calibration curve) was lower for solute particles with diameters greater than 10 nm, i.e. 

the gradient of a plot of response vs. concentration is steep at low concentrations and 

becomes shallower at higher concentrations. The surface area of a sphere (A) is given by 

(4.2): 

  A = 4 πr2 (4.2) 

It follows that:  

 𝑨p = 𝒅D
𝟐𝝅 (

𝑪

𝝆p
)

𝟐/𝟑

 (4.3) 
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Thus, the surface area of the particle (Ap) is theoretically proportional to solute 

concentration via the power equation (4.3). Therefore an increase of solute concentration 

results in a larger particle surface area and higher detector response. The exponent of (4.3) 

is not unity. This theory assumes that adsorption of charged nitrogen onto the particles is a 

linear (Langmuirian) relationship with surface area. Equation (4.4) simplifies the relationship 

between CAD response and analyte concentration (c). Plotting CAD response vs. 

concentration should yield a non-linear curve with a fractional exponent of 2/3.This 

relationship is in agreement with work from the manufacturer of the charged aerosol 

detector (Thomas et al. 2014).  

 𝑪𝑨𝑫 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 ∝ 𝑪𝟐/𝟑 (4.4) 

Taking logs gives (4.5), a simple linear relationship, where log of the coefficient a becomes 

the intercept and the slope is 2/3.  

 𝒍𝒐𝒈(𝑪𝑨𝑫 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆) =
𝟐

𝟑
𝐥𝐨𝐠 𝑪 + 𝐥𝐨𝐠 𝒂  (4.5) 

Fig. 4.2c shows log/log calibration plots for Nortriptyline, BSA and Uridine. Linearity was 

very good, much-improved compared to the raw data (Fig. 4.2a) giving R2 values of 0.994–

1.000; other authors have noted similary good linearity of these log/log plots (Ramos et al. 

2008, Eom et al. 2010). The gradient of these plots ranged from 0.853 to 0.976, (as expected 

from the sublinear nature of Fig. 4.2a) which clearly is larger than the value of 2/3 expected 

from equation (4). Chaminade et al. reported gradients of CAD log/log calibration plots 

between 0.79 and 1.11 for membrane phospholipids using normal phase separation (Ramos 

et al. 2008). Nevertheless, log/log plots seem a pragmatic way to calibrate the detector. 

Newer CAD models such as the Corona Ultra RS and Corona Veo contain an in-built ‘power 

function’ feature, which is intended to ‘linearise’ data. This function appears to be based 
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broadly on the arguments presented above, although its operation is proprietary. The use of 

a user-inputted power function of 1.2 on the Corona Veo gave linearity similar to the log/log 

plots discussed. Density is also a factor affecting solute particle size in equation (4.3), 

therefore the possible effect of solute density on detector response was investigated using 

flow injection analysis data gathered later in this study (see 3.2.3). A plot of detector 

response vs. solute density is shown in Fig 4.3 d. No apparent relationship was indicated by 

the coefficient of determination (R2 = 0.0774). However the range of densities in Fig. 4.3d is 

somewhat small (1.11 – 1.9 gcm-3). It is speculated that the aerosol particles pack looser at 

high solute concentrations, leading to a low density which perhaps results in larger than 

expected particles and a response that is closer to linear than equation (4.3) suggests. To 

qualify this would perhaps require fundamental studies into measuring aerosol particle 

density at increasing solute concentration, which is outside the scope of this project.   
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3.2 Response universality and uniformity. 

3.2.1 Flow injection analysis 

FIA is a rapid method of determining detector response, avoiding any problems of 

interference from the column (e.g. irreversible adsorption of part of the injected solute). 

Problems have been reported of poor reproducibility of peak area at low solute 

concentrations by FIA (Gorecki et al. 2006). It appears that this problem may be related to 

disturbances shown in blank injections of pure mobile phase. These were minimised by 

using analyte concentrations of 300 mg/L, which gave blank disturbances that were very 

small in comparison with the analyte signal. 

3.2.2 Effect of solute salt composition on response (HPLC; 

FIA) 

To obtain net neutrality, ionised solutes must be associated with a counterion. This 

counterion is usually assumed to originate from the mobile phase, although it is conceivable 

that the counterion from the injected salt is involved, dependent on solute concentrations 

and mobile phase conditions. To investigate this further, the chloride, bromide and iodide 

salts of the quaternary ammonium compound benzyltriethylammonium (BTEA) were 

prepared at 300 mg/L of salt (e.g. 300 mg/L of BTEAC), and individually separated by HPLC 

using a BEH Amide column (80% ACN, 5 mM AF pH3) (Fig. 4.3a–c). The salts were also 

analysed by FIA, with identical mobile phase. For analysis by HPLC, peak areas for the same 

injected mass of each salt decreased for the cationic moiety in the order BTEAC > BTEABr > 

BTEAI (Table 4.3). This result is in agreement with the cationic part of the salt contributing a 

decreasing fraction of the total mass as the anion gets larger (chloride to iodide). For HPLC 
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analysis, the result indicates that the solute cation maybe accompanied by formate anions 

during passage through the column, as the injected solute cation and anion clearly separate 

on the column (Fig. 4.3a–c). Note also the different retention times of chloride, bromide and 

iodide in these Figures. However, the same pattern of detector response was found by FIA, 

which involves no separation process. The standards were first diluted from the stock 

solutions (10,000–300 mg/L) with the FIA/HPLC mobile phase and injected into the same 

solution. This suggested that the large excess of sample diluent formate anions (see Section 

2) and mobile phase buffer anions (5 mM AF pH 3) largely replace the solute (halide anions) 

in solution, which may influence the subsequent formation of aerosol particles. Thus the 

solute halide ions may have little contribution to the overall response even in FIA. A loading 

study for nortriptyline hydrochloride was carried out to further investigate the separation of 

the anion and cation in the HPLC process, up to much higher concentrations than those used 

in FIA. The salt was dissolved in the exact mobile phase at concentrations from 100 to 

10,000 mg/L; separations were carried out on the BEH Amide and also on an Atlantis silica 

column. Fig. 4.3d and e show distinct peaks for the nortriptylinium cation and the chloride 

anion at all concentrations on the amide and bare silica column respectively. In the 

separation of amino acids by electrostatic repulsion-hydrophilic interaction chromatography 

(ERLIC), Alpert (Alpert 2008) showed a symmetrical peak for arginine when the solute was 

dissolved in mobile phase −10 mM triethylaminephosphate (TEAP) pH 2 in 70% ACN, using a 

Polywax LP column. The peak was attributed to arginine phosphate. However, when the 

solute was dissolved instead in triethylaminemethylphosphonate (TEA-MePO3) an 

additional peak appeared at earlier retention time, with a continuum evident between the 

peaks. It was suggested that the earlier peak was due to arginine molecules that had 

retained MePO3as the counterion, while some slow counterion exchange takes place with 
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the mobile phase. Data in Fig. 4.3 show a different behaviour, as they suggest independent 

migration of the solute anion and cation through the column. Clearly, the result is likely to 

be influenced by the exact combination of solute, mobile phase buffer (and their 

concentrations), and stationary phase used. Fig. 4.3d shows detector overload for the 

modestly-retained nortriptyline (k = 1.9) above 20 µg sample load on the BEH amide 

column, but no evidence of detector overload for the well-retained chloride (k = 21) even at 

100 µg sample load. The chloride peak continues to increase in size even at the highest 

sample loads. Fig. 4.3e, using the Atlantis column, shows detector overload for the 

nortriptylinium cation only above 80 µg sample load and none for the chloride anion, with 

peaks continuing to behave independently. These data suggest a detector dynamic range of 

1 ng to over 20 µg, i.e. over 4 orders of magnitude. The results indicate that even at the 

highest concentrations studied, a plateau in the chloride response is not attained, 

suggesting that no association of chloride with nortriptyline occurs. The elution order of 

solute anion and cation reversed when switching from the BEH Amide (Fig. 4.3d) to the 

Atlantis bare silica column (Fig. 4.3e), due to much stronger cation exchange retention of 

nortriptyline on the Atlantis column (Kumar et al. 2013). 
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Fig. 4.3a. HILIC-CAD separation and detection of the salt (a) benzyltriethylammonium 

chloride. Peak identities 1 = benzyltriethylammonium, 2 = chloride.  HPLC, BEH Amide 

column, mobile phase 80% ACN with 5 mM ammonium formate pH 3. 300 mg/L, injection 

volume 1 µL. 

Fig. 4.3b. HILIC-CAD separation and detection of the salt (b) benzyltriethylammonium 

bromide. Peak identities 1 = benzyltriethylammonium, 3 = bromide.  HPLC, BEH Amide 

column, mobile phase 80% ACN with 5 mM ammonium formate pH 3. 300 mg/L, injection 

volume 1 µL. 
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Fig. 4.3c. HILIC-CAD separation and detection of the salt (b) benzyltriethylammonium 

iodide. Peak identities 1 = benzyltriethylammonium, 4 = iodide.  HPLC, BEH Amide column, 

mobile phase 80% ACN with 5 mM ammonium formate pH 3. 300 mg/L, injection volume 1 

µL. 

Fig. 4.3d. HILIC-CAD separation and detection of the salt (a) nortriptylinium chloride. Peak 

identities 2 = chloride, 5 = nortriptylinium.  HPLC, Atlantis column, mobile phase 95% ACN 

with 5 mM ammonium formate pH 3. Nortriptyline hydrochloride concentration 100–

10,000 mg/L, injection volume 10 µL. 
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Fig. 4.3e. HILIC-CAD separation and detection of the salt (a) nortriptylinium chloride. Peak 

identities 2 = chloride, 5 = nortriptylinium.  HPLC, Atlantis column, mobile phase 95% ACN 

with 5 mM ammonium formate pH 3. Nortriptyline hydrochloride concentration 100–

10,000 mg/L, injection volume 10 µL. 

Figure 4.3. HILIC-CAD separation and detection of the salts (a) benzyltriethylammonium 

chloride, (b) benzyltriethylammonium bromide, (c) benzyltriethylammonium iodide; (d)–

(e) nortriptyline hydrochloride. Peak identities 1 = benzyltriethylammonium, 2 = chloride, 

3 = bromide, 4 = iodide, 5 = nortriptylinium. HPLC, mobile phase 80% ACN for(a)–(c), 95% 

ACN for (d), 90% ACN for (e) all containing 5 mM ammonium formate pH 3, Atlantis 

column for (e), BEH Amide column for all others. Nortriptyline hydrochloride 

concentration 100–10,000 mg/L, injection volume 10 µL, others 300 mg/L, injection 

volume 1 µL. 
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Table 4.3. Peak areas of BTEAC, BTEABr and BTEAI by FIA and HPLC. Mobile phase 80% ACN, 5mM 

ammonium formate ww pH 3. 

Compound 

Peak area of 
BTEA+ 
(FIA) 

Peak area of 
BTEA+ 
(HPLC) 

Proportion of 
base 

BTEAC 1.70 2.89 84% 

BTEABr 1.51 2.58 71% 

BTEAI 1.39 2.28 60% 
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3.2.3 Response Uniformity (FIA)-dependence on solute and 

mobile phase buffer 

CAD peak areas were measured for injection of 300 ng of the 29 compounds in 80% ACN, 5 

mM AF pH 3 using FIA (Fig. 4a). The relative standard deviation (RSD) of the response for 21 

compounds (omitting 8 with no or low response N,N-dimethylacetamide to caffeine) was 

14% in this mobile phase, which shows reasonable uniformity considering the diverse 

structures of the compound set. Greater response uniformity for CAD in comparison with 

UV detection is also seen in Fig. 4.2a and b. Response appeared somewhat higher for basic 

compounds (shown in blue) than neutrals (green), albeit with some overlap (Fig. 4a). This 

observation is unexpected and unreported to date, as the production of physical particles by 

aerosol-based detectors should be independent of solute chemistry. Ionogenic compounds 

are often available in their salt form (e.g. Nortriptyline 300 mg/L was prepared as 300 mg/L 

of Nortriptyline HCl salt). While neutral compounds would not be expected to interact 

strongly with mobile phase buffer constituents in particle formation, this is clearly a 

possibility for ionogenic compounds, and may be responsible for the differences in 

response. The mean response for the same 21 compounds was compared for additives 

commonly used in HILIC in addition to ammonium formate (AF) including formic acid 

(0.100%, v/v) (FA), ammo-nium acetate (AA), trifluoroacetic acid (0.200%, v/v) (TFA), and 

heptafluorbutyric acid (0.345%, v/v) (HFBA) (Table 4.4). The acid solutions were equimolar 

(26.5 mM). The mean response at 80% ACN concentration did not appear to be greatly 

affected when changing the pH of the buffer, or simple acid modifiers. However, the spread 

of response to the individual compounds was greater in mobile phases of equimolar TFA 

and HFBA (23% and 30% RSD, respectively) than for the other mobile phases. For the 

particular case of ionised solutes, association with mobile phase counterions of increasing 
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mass might be expected to produce an increase in CAD response, giving some explanation 

of these data. Thus for analysis of cationic solutes, the response might increase in the order 

for-mate, trifluoroacetate (TFA) and heptaflurobutyrate (HFBA) whose anions have molar 

mass 45, 113 and 213, respectively. Koupparis and co-workers (Galanakis et al. 2006) found 

that the response for the hydrophilic antibiotic Amikacin using ELSD increased for TFA over 

FA, further increasing for higher concentrations of TFA. In addition, they evaluated HFBA 

and nonafluoropentanoic acid (NFPA), claiming that their ELSD responses increased in 

relation to the mass of the anion of these strong acids. However, the concentration of acid 

was not kept constant between datasets, either in terms of v/v or molar concentration. If 

response indeed increases in proportion to the added mass of a heavier anion, the ratio of 

response for strongly basic solutes,e.g. nortriptyline should be in the order nortriptyline 

formate: nortriptyline trifluoroacetate: nortriptylineheptafluorobutyrate 1.00:1.22:1.54. To 

investigate this hypothesis, FIA was performed in FA, TFA and HFBA each at a concentration 

of 26.5 mM. The compounds used were the stronger base nortriptyline, the weak base 

cytosine, neutral uridine as a control, the strong acid benzenesulfonic acid and the weak 

acid 4-HBA. A solute concentration of 600 mg/L was used, which is somewhat higher than 

used above because of higher baseline disturbances from TFA and HFBA compared to FA. 

The results (Fig. 4b) show that nortriptyline response did not follow the predicted ratios, 

with response of 1.00:1.03:1.13 for the FA, TFA and HFBA, respectively. The weak base 

cytosine followed the same trend, with response increasing in the ratio 1.00:1.09:1.33 for 

FA, TFA and HFBA but not in line with the predicted increase of 1:1.43:2.07.It is apparent 

from Fig. 4a that neutral solutes have broadly lower response than ionised basic solutes, 

although the cause of this is unexplained to date. There have been no published reports of 

mobile phase pH affecting small molecule solute CAD response, therefore the weak acid 4-
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HBA was expected to also be unaffected by choice of acid buffer. However, Fig. 4b shows a 

decrease in response for 4-HBA in both TFA and HFBA compared with FA (33%decrease in 

TFA compared to FA). TFA and HFBA are capable of neutralising 4-HBA under the conditions 

used; decreasing the degree of ionisation of 4-HBA in the stronger acid would result in a 

predominantly neutral form of the solute reaching the detector. BSA, which is deprotonated 

at all pH values, was unaffected by the choice of acid buffer. Uridine, which is neutral under 

these conditions showed small reductions in response in TFA and HFBA (less than 10% 

reduction in peak area). Khandagale et al. described the CAD solute plug as a ‘plume’ 

(Khandagale et al. 2013), which travels within the detector after nebulisation. The plume 

has only a finite period of time to undergo all the processes required to produce a peak in 

the CAD (Fig. 4.1). We estimated the detector residence time at ∼1 s using an effective 

detector volume of 14 µL reported by the manufacturer (Gamache et al. 2005) and a flow 

rate of 1 mL/min. The process of forming aerosol particles by evaporation of aerosol 

droplets is possibly analogous to crystal formation from bulk solution. Ionic solids have 

much higher melting points than solids of neutral compounds and it is well-known that 

optimum growth rates for ionic crystals are at least a factor of 10 times greater than for 

molecular crystals, due to the high strength of coulombic intermolecular interactions 

relative to weaker van-der-Waals and London dispersion forces (Wright 1989). Perhaps 

ionogenic solutes are better able to form stable aerosol particles within this short time 

window, compared to neutrals which are held together by weaker interactions. 

 

 



 

Page 106 of 246 

 

Fig. 4.4a. CAD response for 29 compounds (FIA, mobile phase 80% ACN, 5 mM ammonium 

formate pH 3). Blue = bases, red = acids, green = neutrals. 1 µL injections 
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Fig. 4.4b. CAD Ultra response in dilute acids for the bases nortriptyline and cytosine, acids 

BSA and 4-HBA and the neutral Uridine (FIA, 80% ACN, FA (0.1% v/v) vs. TFA (0.2%) vs. 

HFBA (0.345%)). Predicted values from ratios explained in 3.4.3 in hashed-line bars. 

Figure 4.4. (a) CAD response for 29 compounds (FIA, mobile phase 80% ACN, 5 mM 

ammonium formate pH 3). Blue = bases, red = acids, green = neutrals. (b) CAD Ultra 

response in dilute acids for the bases nortriptyline and cytosine, acids BSA and 4-HBA and 

the neutral Uridine (FIA, 80% ACN, FA (0.1% v/v) vs. TFA (0.2%) vs. HFBA (0.345%)). 

Predicted values from ratios explained in 3.4.3 in hashed-line bars. 
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3.2.4 Effect of solute volatility on response 

The CAD response using FIA for the set of 29 diverse compounds (Fig. 4a) indicates that 

eight gave low or no response, three of which were liquids at room temperature (pyridine, 

2,6-dimethylpyridineand N,N-dimethylacetamide). Solutes which respond poorly in CAD are 

too volatile to form stable aerosol particles (Gamache et al. 2005). Some relationship 

between solute volatility and response might be expected. Compounds that respond to CAD 

in general are those which have higher boiling point, melting point or molecular mass (Fig. 

5a–c respectively), which are typical indicators of solute volatility. However, there are clear 

exceptions. 2,3-dihydroxybenzoic acid (bp 344°C, mp 205°C) gives only a third of the 

response of diphenhydramine (bp 344°C, mp 168°C). Benzoic acid has an appreciably high 

boiling point at 249°C and molecular mass of 122 g/mol but gave no response whatsoever; 

thiourea is smaller with even lower boiling point (bp 187°C, MW 76 g/mol, mp 177°C) but its 

CAD response was strong. However, benzoic acid has a low mp (122°C) and is known to be 

volatile, sufficiently so that its analysis by headspace Gas Chromatography (GC)-MS is 

possible (Pellati et al. 2013). The exceptions make a definitive cut-off point for a response 

difficult to predict purely from physico-chemical indicators of solute volatility. A minority 

group of four solutes including caffeine and 4-hydroxybenzoic acid (4-HBA) responded in 

CAD, but with peak areas ca. 40% lower than the strong CAD responders. The bp and mp 

points of these solutes are diverse. Indeed the data for 4-HBA (bp 336°C, mp214°C), 2,3-

dihydroxypyridine (bp 441°C mp 245°C), and 2,3-dihydroxybenzoic acid (bp 344°C, mp 

205°C) overlap with those for strong responders. Caffeine is frequently referred to as ‘semi-

volatile’ (Lauritsen et al. 1997). It has a sublimation point (bp Table 4.1) of 178°C, 

considerably below its melting point of 238°C ( www.chemicalbook.com) which may explain 
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its behaviour, although its sublimation temperature is still well above the detector settings. 

The CAD nebuliser is set to room temperature by default, and the evaporation process is 

also endothermic. Therefore this definition perhaps does not apply to CAD. It seems that 

experimental measurement (e.g. by FIA) is necessary to confirm response. Fig. 5a–c show 

clearly that no relationships are apparent between response and melting point, molecular 

mass, and boiling point, with correlation coefficients close to zero. This result however fits 

with the claim of reasonably uniform response for non-volatile substances for the CAD. For 

ELSD, which might be expected to show similar effects, conflicting findings have been 

published on the effect of MW on detector response (Stolywho et al. 1983, Mourey et al. 

1984). 
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Figure 4.5. CAD response for 29 compounds, plotted against (a) boiling point, and 

(b) melting point; (c) molecular mass (FIA, conditions as per Fig. 4.2). 
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3.2.5 Effect of organic modifier (FIA) 

Haddad and co-workers showed that CAD signal increases in proportion to the organic 

solvent concentration of the mobile phase for acetonitrile, acetone, isopropyl alcohol and 

methanol (Hutchinson et al. 2012, Hutchinson et al. 2010). These previous studies 

considered only peak areas and not the effect on uniformity of response or signal to noise 

ratio. Fig. 4.6a shows a plot of peak area vs. organic solvent concentration for 10–95% ACN. 

CAD response is roughly proportional to ACN con-centration, in good agreement with earlier 

reports (Hutchinson et al. 2012, Hutchinson et al. 2010). Our data show peak areas under 

typical HILIC conditions (70–95%ACN) roughly twice that of typical RPLC conditions (10–50% 

ACN).Excessively large droplets are removed by droplet selection inside the nebuliser 

(Fig. 4.1). It is possible that highly-aqueous mobile phases produce excessively large droplets 

by condensation, which are removed in the nebuliser, resulting in reduced CAD response. 

Smaller droplets in greater numbers are formed with the lower viscosity, density and 

surface tension of highly organic eluents (Khandagale et al. 2014), which perhaps explains 

the better transport efficiency in these conditions. 

Table 4.4 shows that with AF pH 3 as buffer the uniformity of response was slightly 

improved in HILIC conditions compared with RPLC. Moreau found CAD background current 

was higher for organic solvents compared to water (Moreau 2006), attributable to their dry 

residue content (typically 2 ppm); it is therefore conceivable that the high ACN content 

might also cause high noise with HILIC mobile phases. We measured noise over a 30 min 

period after system stabilisation (Fig. 4.6b); noise was lower in higher ACN concentrations. 

As a result, the response of the CAD (measured in terms of S/N) was further improved (Fig. 

4.6c) under HILIC conditions compared with the improvements in terms of crude solute 
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peak area. It is possible that while organic solvents can indeed be a source of particulates, 

the fine aerosol particles are sufficiently small in organic-rich mobile phases (Khandagale, et 

al. 2014) that they are poorly detected. 

Table 4.4. Peak areas and uniformity of response for 21 compounds in a selection of HILIC mobile 

phases. 

 Mobile phase 

95% 
ACN 
5mM 
AF 
pH3 

80% 
ACN 
5mM 
AF 
pH3 

50% 
ACN 
5mM AF 
pH3 

10% 
ACN 
5mM 
AF 
pH3 

80% 
ACN 
5mM 
AF 
pH 5 

80% 
ACN 
5mM 
AA 
pH 5 

80% 
ACN 
5mM 
AA 
pH 
6.8 

80% 
ACN 
FA 
(0.1% 
v/v)* 

80% 
ACN 
TFA 
(0.2% 
v/v)* 

80% 
ACN 
HFBA 
(0.345% 
v/v)* 

Mean 
Ultra 
response / 
pA*min 
 

1.83 1.37 1.21 0.37 1.37 1.39 1.37 1.24 1.14 1.38 

Uniformity 
of 
response 
(RSD) 

12% 14% 15% 18% 13% 12% 14% 13% 23% 30% 

* Acids FA, TFA and HFBA molar concentration each 26.5mM 
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Fig. 4.6a. Effect of organic solvent content on (a) CAD peak area (FIA, mobile phase 10–

95% ACN, other conditions as per Fig. 4.2). 
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Fig. 4.6b. Effect of organic solvent content on (b) signal to noise ratio (FIA, mobile phase 

10–95% ACN, other conditions as per Fig. 4.2). 
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Fig. 4.6c. Figure 4.6. Effect of organic solvent content on (c) noise (FIA, mobile phase 10–

95% ACN, other conditions as per Fig. 4.2). 

Figure 4.6. Effect of organic solvent content on (a) peak area, (b) signal to noise ratio and 

(c) noise (FIA, mobile phase 10–95% ACN, other conditions as per Fig. 4.2). 
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3.2.6 Effect of elevated temperature (FIA) 

The simpler Corona Ultra design allows thermostatting of the nebuliser from 18 to 35°C 

(with the objective only to prevent freezing when using normal phase solvents); the 

temperature of the evaporator tube is at ambient. Using HILIC mobile phase, the Veo had a 

temperature range of 27–88°C for the evaporator tube. Fig. 4.7 shows CAD peak areas for 

the 29 test compounds at 30, 60 and 80°C at high acetonitrile content (90% ACN). The effect 

of elevated temperature on the noise was small (not shown). There is clearly no advantage 

in using high evaporation temperatures for the majority of solutes: signal drops off 

dramatically in many cases, due to volatilisation of the solute. Nevertheless, evaporation 

temperature can be a tool for distinguishing analyte from back-ground based on volatility, 

and it is possible that optimising this temperature in smaller increments (e.g. 5°C) could be 

beneficial in some cases. Compounds such as caffeine which give moderate CAD response 

show a dramatic reduction in response at higher temperatures. Xanthine derivatives 

theobromine and theophylline, which are structurally similar to caffeine, perform well at 

low temperatures, but also had low CAD response at temperatures of 60°C and above. The 

base procainamide maintains good CAD peak area at the elevated temperature of 60°C, 

whereas the base diphenhydramine shows a drop-off comparable to the xanthine 

derivatives. Procainamide is more hydrophilic than diphenhydramine, and this result 

suggested a possible relationship with solute log D values. Thus the data were plotted in 

order of increasing (more positive) log D for hydrophobic solutes from left to right. Solutes 

on the left side of the plot (negative log D values) maintained good CAD peak areas even up 

to 80°C. Solutes on the right side of the plot, (positive log D values), showed drastic 

reduction in peak area at higher temperatures. It is possible that the hydrophobic solutes 
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are lost more readily as the ACN evaporates first from the aqueous organic mixture, 

whereas hydrophilic solutes can be solvated by the remaining aqueous liquid. Fundamental 

aerosol studies by Reid et al. showed that hydrophilic/hydrophobic mixtures in aerosols can 

form a biphasic droplet (Reid et al. 2011). To gain thermodynamic stability, hydrophobic 

components form surface lenses (partially engulfed structures), due to the relative surface 

tensions of the two phases (Reid et al. 2011). Such a system can perhaps favour migration of 

hydrophobic components to the surface of aerosol droplets, and at high temperatures lead 

to their evaporation. The above confirms that low evaporation temperatures are required 

for optimal CAD performance, as loss of signal can be dramatic for a variety of solutes at 

higher temperatures. This effect was also observed with the equivalent salt-buffered mobile 

phase at 10% ACN (data not shown). 

  



 

Page 118 of 246 

 

Figure 4.7. Effect of elevated temperatures on Veo response in order of log D (−ve on left, 

+ve on right) (FIA, mobile phase 90% ACN, other conditions as per Fig. 2). Log D values 

were the average from three software packages (see Section 2) Blue = 30°C,Red = 60°C, 

Green = 80°C. 
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3.3 Analysis of salts (HPLC) 

Zhang et al. separated and detected 25 typical pharmaceutical salt counter ions by HILIC–

CAD (Zhang et al. 2010) using gradient elution and a ternary solvent system. The authors 

reported separation of each ion from each other but did not comment on the separation of 

anion and cation for single salts. A mixture of inorganic salts was analysed by HILIC-CAD 

using a BEH Amide column (Fig. 4.8). The CAD was able to detect group (I) and (II) metals, 

common halides, and nitrate. There was good separation of cations from their 

corresponding anions. With the exception of chloride and nitrate, these ions are generally 

UV-transparent. The retention order of these salts is interesting, with cations retaining 

longer than anions (Fig. 4.8), probably due to ionic retention of cations and repulsion of 

anions on ionised silanol groups, which exist on all silica based-columns (Kumar et al. 2013). 

HILIC retention for ionogenic solutes is due to a mixture of ion-exchange and partition 

mechanisms (McCalley 2014, 2014). This application demonstrates the potential application 

of the CAD in the pharmaceutical industry. 
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Figure 4.8. HILIC separation and CAD detection of (a) a mixture of inorganic salts, (b) 

calcium chloride, (c) magnesium chloride. Peak identities 1 = iodide, 2 = nitrate, 3 = 

chloride,4 = potassium, 5 = sodium, 6 = lithium, 7 = calcium, 8 = magnesium (HPLC, mobile 

phase 70% ACN, 5 mM ammonium formate pH 3, BEH Amide column). 
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4. Conclusions 

The charged aerosol detector (CAD) is a quasi-universal detector for HPLC. Flow injection 

analysis (FIA) was shown to be a rapid method for assessing the performance of the CAD, as 

long as baseline disturbances encountered in this method were taken into account. Volatile 

compounds cannot form stable aerosol particles and give no response. Some compounds 

(e.g. Caffeine) had response ca. 40% lower than the average, and can be classed as ‘semi-

volatile’ compounds although they were not readily identifiable as such from physico-

chemical data (e.g. bp or mp). Response from solute-to-solute was not truly uniform; 

however over the diverse range of solutes tested the uniformity of response was as low as 

12% RSD. The on column detection limit (1–3 ng) and limit of quantitation (5–9 ng) 

compared favourably to published LOD and LOQ for universal detectors. The detector’s 

dynamic range was over 4 orders of magnitude (1 ng to over 20 µg sample loads) for 

modestly-retained solutes, which supports data described by the manufacturer. Calibration 

curves generated by HPLC for three diverse solutes were all non-linear over three orders of 

magnitude, supporting earlier findings performed by FIA (Gorecki et al. 2006, Hutchinson et 

al. 2010). A theoretical explanation based on the findings of the manufacturers of CAD 

(Thomas et al. 2014) was unable to describe the shape of typical CAD calibration curves. 

Possible solutions are calibration over narrow concentration ranges, plotting log/log 

calibration curves and use of an inbuilt ‘power function’. These were equally effective at 

producing linear calibration. The precise workings of the ‘power function’ are proprietary 

information of the instrument manufacturer, so there may be reticence to its widespread 

use. HILIC was found to have excellent compatibility with CAD: uniformity of response was 

improved over RPLC conditions, signal under HILIC conditions was approximately twice as 
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high and signal to noise around 4 times higher. Interestingly, the CAD signal appeared 

somewhat higher for basic compounds than neutral compounds. The uniformity of response 

was less with TFA and HFBA than with AF buffers (23% RSD, 30% RSD and 14%, respectively). 

Weakly acidic solutes exhibited lower CAD responses in these buffers than for the formate 

and buffers; conversely weak bases exhibited increased CAD response. It is possible that 

increasing the mass of buffer counterions may improve the response to solute ions of 

opposite charge, which was investigated principally using stronger bases (cationic solutes) 

and different mobile phase acid anions. When maintaining constant molar concentration of 

the acid, detector response showed some increase, but not in pro-portion to the weight of 

the acid anion. Furthermore, the mobile phase pH produced by the different acids can 

change the degree of ionisation for weakly acidic and basic solutes, which may affect their 

response. Low evaporation temperatures are recommended for general use. However, 

hydrophilic solutes gave good response at higher evaporation temperatures (up to 80°C) as 

they may be retained longer in the aqueous portion of the aerosol particles. The CAD has 

many potential applications in the pharmaceutical industry, for instance in the monitoring of 

inorganic anions that can be separated as counterions of basic drugs. It appears that solutes 

injected as salts dissociate and travel through the column as separate cationic and anionic 

entities up to high concentrations, presumably accompanied by counterions from the 

mobile phase. 
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Chapter 5 
 

The viability of isocratic Hydrophilic 

Interaction Chromatography with 

Charged Aerosol Detection for 

analysis of highly hydrophilic solutes 

without chromophores; comparison 

of Ultra and Veo CAD 
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Abstract 

The viability of hydrophilic interaction chromatography (HILIC) with Charged Aerosol 

Detection (CAD) for isocratic HPLC of highly hydrophilic species with no chromophores was 

established. Using a BEH Amide column, simple sugars (e.g. fructose, glucose, ribose, 

maltose) were retained and detected; also by an Amino column. Using an Atlantis bare silica 

column, free amino acids without derivatisation (e.g. glycine, glutamine, aspartic acid and 

arginine) were retained and detected. All three separations were challenging and resolution 

was incomplete for combined standards. Sugar analysis using the Corona Veo gave poor 

signal quality, which was improved using high evaporation tube temperature from below 

the LOD to above the LOQ (70°C optimal). Like-for-like comparison was performed between 

the CAD Ultra and Veo detectors, and the Ultra was superior in terms of signal to noise ratio. 

It is speculated that the use of a concentric flow nebuliser on the Veo delivers excessive 

impurities which contribute to the higher noise observed on this detector. HILIC-CAD was 

amenable to these difficult analytes, but further work is necessary to optimise the 

separations. Development of generic methods is recommended to do this with efficient use 

of time. 
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1. Introduction 

Charged aerosol detection began from the prototype detector of Dixon and Peterson (Dixon 

et al. 2002). Since then a charged aerosol detector was developed by ESA Biosciences 

(Gamache et al. 2005), which was acquired by ThermoFisher Scientific. The technology has 

been developed from the prototype to a commercial instrument, most recently as the 

Corona Ultra, Corona Ultra RS and then Corona Veo models. A significant change was made 

by the current manufacturers, ThermoFisher Scientific, between the Ultra and Veo: the 

nebuliser changed from a cross-flow nebuliser to a concentric nebuliser. Additionally, 

whereas the Ultra had changeable nebuliser needle temperature (to prevent freezing of 

normal phase solvents), the manufacturer added features in the Veo such as temperature 

control of the evaporation tube and an in-built ‘power function’. As described in Chapter 4, 

CAD response is non-linear over a wide range of solute concentrations (1-1000 mg / L), and 

the ‘power function’ applies a mathematical formula to the Veo signal in order to ‘linearise’ 

calibration curves. Like-for-like comparison of the Ultra and Veo detectors has not 

previously been attempted, therefore prior to potential commitments to the CAD Veo as a 

generic detector, the Ultra and Veo performance was compared. The fundamental working 

of the Veo is similar to the Ultra, therefore it is expected that much of the fundamental 

studies described in Chapter 4 apply to both detectors. However the nebuliser has apparent 

importance in droplet selection for aerosol detectors: the concentric flow is designed to 

deliver large quantities of the solute to the detector. However the CAD is a quasi-universal 

detector which responds reasonably uniformly to non-volatile solutes (Chapter 4), and it is 

unclear if anticipated improvements in signal are observed with comparable signal quality 

(in terms of signal to noise ratio). The response of the CAD to solutes which do not contain 
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chromophores (Chapter 4) suggested other classes of solute such as sugars (Hutchinson et 

al. 2012) and underivatised amino acids may be amenable to charged aerosol detection. An 

additional problem these solutes pose is their hydrophilicity, which impedes their retention 

on traditional reversed-phase separations. Reducing sugars such as glucose can be subject 

to peak splitting by HPLC, which makes quantitative analysis difficult. Glucose poses 

additional health risks to the alcohol content of beer and cider. Sugars can be derivatised 

using a fluorescent-active moiety and detected by fluorescence (e.g. (Glowka et al. 2007)). 

This process is time-consuming and the Tanaka group called for alternatives to be found 

(Kawachi et al. 2011). Although applicable HPLC techniques have been established using 

refractive index (RI) or evaporative light-scattering detection (ELSD) (Nogueira et al. 2005), 

CAD detection limits can be superior to both these detectors (Chapter 4, (Hutchinson et al. 

2011) and it may offer better performance. Glucose is a health risk due to its link to 

diabetes, and fructose is subject to increasing health research focus as a possible chronic 

issue (Lustig 2010). Glucose contains an aldehyde group which undergoes internal 

nucleophilic addition from its terminal hydroxyl group to form a 6-membered pyranose ring 

(structure for glucose shown in Fig. 5.1 below). Alternatively the aldehyde can be attacked 

by the hydroxyl adjacent to the terminal position and form a 5-membered furanose 

structure, however pyranose is the predominant form in aqueous solution due to reduced 

strain in the larger ring. This reaction can form either of two isomers, where a hydroxyl 

group faces upward in the opposite side of the molecule as the –CH2OH group, or on the 

same side of the molecule (Fig. 5.1). These are known as the ‘α’ and ‘β’ anomers of the 

sugar, respectively. Similarly for fructose, its ketone group facilitates formation of an ‘α’ or 

‘β’ form. 
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Fig. 5.1 D-glucose in either (α) or (β) form 

Since reducing sugars such as glucose and fructose can exist as either structure, during HPLC 

these forms interconvert in a process known as anomerisation which produces split peaks, 

making quantitation difficult. At high pH hydroxide catalyses this, which is apparently more-

rapid than the chromatographic retention and elution processes. Therefore split peaks are 

avoided using of high-pH mobile phase with small quantities of a strong base e.g. 

triethylamine (TEA) added (Nogueira et al. 2005). However high pH mobile phase dissolves 

silica column structure by hydrolysing siloxane bonds which hold the structure together 

(Berthod 1991). Two approaches exist to deal with this: amino-bonded columns use a 

propylamine ligand as stationary phase, which in contact with water releases hydroxide 

anions which catalyse the anomerisation as above. Alternatively, hybrid silica such as 

ethylene bridged hybrid (BEH) has been designed using ethylene bridges in place of siloxane 

bonds, and mobile phase of high pH ought to be compatible with this stationary phase type. 

BEH Amide columns, as used in Chapters 3 and 4, have hybrid silica and a hydrophilic amide 

ligand and ought to be well-suited to these separations, although few reports of this have 

been published in the scientific literature. Hydrophilic solutes were retained on a range of 

HILIC columns with excellent peak shape, provided buffers were used in the mobile phase 
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(Chapter 3). Amino acids are zwitterionic due to their amine and carboxylic acid groups, 

which enables them to form peptides through condensation reactions. Ionogenic solutes in 

the form of simple bases and acids require sufficient buffer in mobile phase to 

chromatograph properly (Chapter 3), therefore buffers are anticipated as necessary for 

zwitterionic amino acids.  

2. Experimental 

2.1 Chemicals and reagents 

All sugars, amino acids and the 29 probe solutes used for Veo-Ultra comparison were 

purchased from Sigma Aldrich (Poole, UK).  

2.2 Equipment and methodology 

A Thermo UltiMate 3000 Rapid Separation Liquid Chromatography system was used for all 

experiments, comprising a quaternary pump, diode array detector (DAD) and either a 

Corona Ultra or Corona Veo CAD, with Chromeleon 7.2 software (Thermo, Germering, 

Germany). The CAD is a destructive detector, therefore the DAD and CAD detectors were 

connected in series in some experiments, with flow first through the DAD. Thermo Viper 

tubing (0.13 mm ID) was used as connection tubing. Data collection rates were 100 Hz for 

both DAD and CAD, due to narrow peak widths (typically 1 s at half height in flow injection 

analysis (FIA)). The Corona Ultra nebuliser (cross flow design similar to that used in atomic 

absorption spectrometry) was controlled at 22°C with the evaporator tube at ambient 

temperature, while the Veo (concentric flow design similar to those used in mass 

spectrometry) nebuliser was at ambient temperature and the evaporator tube set to 30°C. 
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The Veo had a power function (PF) designed to ‘linearise’ data, which was set to either 0.67 

(this simulates ‘off’), 1.00 (the default) or 1.2 (optimised setting using experimental data, 

see below). An ethylene bridged hybrid (BEH) amide column (150 × 4.6 mm, particle size = 

3.5 µm, Waters, Milford, USA) or a Kromasil NH2 amino-ligand column (150 x 4.6mm, 

particle size = 5 µm, Kromasil, LOCATION) were used for sugar separation experiments. An 

Atlantis bare silica column (250 × 4.6 mm ID, particle size = 5 µm, Waters) was used for 

amino acid experiments. The mobile phase was ACN with water. For sugar experiments with 

the Amino column, no buffer was added as the column itself aids can have a high pH in the 

vicinity of the pore surface (Kawachi et al. 2011). Sugar analysis on the BEH Amide column 

were done using trimethylamine (TEA) as a basic additive to catalyse mutarotation of 

reducing sugars. Comparative studies between the Veo and Ultra used 5 mM ammonium 

formate (80:20, w/w) unless otherwise stated, ran isocratically since CAD response sensitive 

to mobile phase organic solvent content (Russell et al. 2015, Hutchinson et al. 2012). The pH 

meter was calibrated in aqueous buffers and formic or acetic acid was used to adjust the 

aqueous portion to w
w pH 3 or 5. Solutions at w

w pH 6.8 were unadjusted 5 mM ammonium 

acetate. Care is necessary as pH calibration buffers can be a major source of non-volatile 

contaminants in the mobile phase. In flow injection analysis (FIA), narrow bore tubing (75 

µm × 1100 mm) was used in place of the chromatographic column to maintain sufficient 

backpressure. Samples for FIA were prepared at a concentration of 300 mg/L; injection 

volumes were 1 µL unless otherwise stated. Flow rate was 1 mL/min. 
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3. Results and discussion 

3.1 Viability of sugar analysis using an alternative stationary 

phase (BEH Amide) and CAD Veo detection 

A combined standard of nine sugars (1000 mg / L each) was prepared and run on a BEH 

Amide column with CAD Veo detection (power function set to 0.67) (Fig. 5.2). Levoglucosan 

was included, since this sugar is a molecular marker of biomass combustion (Fraser et al. 

2000) and there is perhaps scope for use of CAD in environmental health studies (Dixon, 

Baltzell 2006). Fig. 5.2 shows a HILIC-CAD chromatogram of the nine sugars using a BEH 

Amide column (4.6 x 150mm, 3.5 µm) with HILIC mobile phase and TEA additive (70% ACN 

with 0.1% TEA). Even using this technique and a column specifically designed for sugar 

separation, this is clearly a challenging problem for complex mixtures of multiple sugars (Fig. 

5.2). The signal quality of Figure 5.2 was poorer than expected at this somewhat high solute 

concentration (1000 mg / L). To characterise the problem of poor signal quality this, some 

individual sugars were run over the concentration range 100 – 2500 mg / L; Fig. 5.2b-d plot 

their peak areas and signal to noise ratios. As per Fig. 5.1a, signal to noise ratios were above 

typical limits of detection (S:N > 3) at solute concentrations of 100 mg / L, although these 

were below limits of quantitation (S: N < 10). This is inferior to the LOQ reported in chapter 

4, with LOD of 5-9 mg / L (also 1 µL injections). It is possible the TEA used to prepare alkaline 

mobile phase contributed to this poor signal quality, although the data in chapter 4 used the 

same type of column with appreciable salt content as mobile phase buffer, which can itself 

contribute to reduction of signal quality (Vervoort et al. 2008). As discussed in chapter 4, the 

Veo evaporation tube temperature can be increased up to around 90°C, which may aid 

signal quality. Figure 5.2e-f show the effect of increasing the evaporation tube temperature 
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from 30-80°C in 10°C increments. At 30°C, signal quality was so poor for galactose that even 

at 1000 mg / L the  S:N was below the LOD (S:N 1.2). However increasing the evaporation 

temperature to 70°C moved the same experiment to above the LOQ (S:N 15). Glucose 

showed similar improvements in signal quality at higher evaporation temperatures, with 

optimum performance also at 70°C. The improvement in S:N at higher evaporation 

temperature is interesting, as in chapter 4 it was shown that many solutes exhibit dramatic 

reductions in signal at higher evaporation temperatures. However those that lost signal 

were predominantly hydrophobic solutes (log D > 0). Glucose and galactose are highly 

hydrophilic and perhaps when inside the CAD retain in the aqueous portion of the aerosol 

droplet. The higher evaporation temperature also resulted in higher peak areas for both 

sugars, therefore perhaps at lower temperatures it is difficult to evaporate water from 

droplets containing these solutes. At higher temperatures (e.g. 70°C), it is possible that their 

droplets desolvate more efficiently to then form aerosol particles for detection. It is perhaps 

worthy of note that even with optimised evaporation temperature, the signal quality is 

somewhat low at the concentration of 1000 mg / L (Fig. 5.2 e-f). The TEA used to modify the 

mobile phase to high pH was perhaps responsible for the high noise, therefore a 10-fold 

decrease of TEA (0.01% cf. 0.1% TEA) was attempted, however peak broadening occurred 

for both glucose and galactose, with no obvious improvements in signal quality (data not 

shown). It was unclear if the Veo was perhaps responsible, and therefore like-for-like 

comparison of the Ultra and Veo was considered necessary. 
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Fig. 5.2 (a) Nine sugars on BEH Amide column. Mobile phase 70% ACN with 0.1% TEA, CAD 

Veo detection (1) Levoglucosan, (2) Ribose, (3) Fructose, (4) Mannose, (5) Maltose, (6) 

Glucose, (7) Galactose, (8) Sucrose, (9) Sorbitol. 1000mg/L each, 1 µL injections. 

 

Fig. 5.2 (b) Levoglucosan CAD Veo peak area and Signal to Noise ratios 100 – 2500 mg / L 
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Fig. 5.2 (c) Ribose CAD Veo peak area and Signal to Noise ratios 100 – 2500 mg / L 

 

Fig. 5.2 (d) Sucrose CAD Veo peak area and Signal to Noise ratios 100 – 2500 mg / L 
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Fig. 5.2 (e) Glucose CAD Veo peak area and S:N at 1000 mg / L, 1 µL injection, mobile 

phase 75% ACN with 0.1% TEA. 

 

Fig 5.2 (f) Galactose CAD Veo peak area and S:N at 1000 mg / L, 1 µL injection, mobile 

phase 75% ACN with 0.1% TEA. 
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3.2 Comparison of Ultra and Veo CAD  

The unusual results with sugars suggested a more detailed investigation of the sensitivity of 

the two detectors, using a much wider range of solutes, was necessary. Therefore this was 

investigated in some detail by flow injection analysis (FIA) using 29 diverse solutes including 

acids, bases and neutrals, performed as described in Chapter 4 at 300 mg / L, flow rate 

1mL / min and 1 µL injection volume. The concentric-flow nebuliser used in the Veo 

supposedly delivers more solute to the detector than the cross-flow nebuliser used in the 

Ultra. Figure 5.3a compares peak areas of the Ultra and Veo detectors for identical solutes 

and identical mobile phases (LCMS grade buffers used). Peak areas were around 50% larger 

with the Veo than the Ultra, as expected (Fig. 5.3a). However this does not take noise into 

account and signal quality (in terms of signal to noise ratio) perhaps better describes 

detector performance when comparing the two models. Using equation (5.1), signal to 

noise ratios were calculated for these data.  

 𝑆𝑖𝑔𝑛𝑎𝑙 ∶ 𝑁𝑜𝑖𝑠𝑒 =
𝑃𝑒𝑎𝑘 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑝𝐴)

𝑅𝑀𝑆 𝑛𝑜𝑖𝑠𝑒 (𝑝𝐴)
 (5.1) 

Noise was manually collected as per chapter 4 (30 minute collection, RMS noise measured 

by Chromeleon software over 5 min period) and signal to noise calculated using Microsoft 

Excel. In contrast to the raw peak area results of Fig. 5.3a, the S:N data (Fig. 5.3b) show 

signal to noise ratios (thus signal quality) was superior using the Ultra compared to the Veo, 

by a factor of around 9. Considering signal and noise separately, the noise values for the Veo 

are 9 times higher than the Ultra (Fig. 5.3c). Unexpectedly, with the exception of a few semi-

volatile solutes, the peak heights (Fig. 5.3d) were somewhat lower for the Veo. The net 



 

Page 136 of 246 

effect is the superior signal quality using the CAD Ultra. These data were communicated to 

the manufacturer and the industrial collaborator for further reflection (Appendix II). 

3.2.1 Noise in buffered and unbuffered mobile phase 

 It may be possible that the mobile phase buffers were responsible for the detector noise, 

therefore noise was measured for different mobile phases containing either no buffer at all, 

just acid, just salt, or acid and salt. The pH meter used to check the w
w pH of mobile phase 

leaks a small amount of  potassium chloride into the mobile phase in order to measure 

conductivity, therefore this was a possible source of contamination which perhaps can 

cause detector noise (note in Chapter 4 the CAD was sensitive to inorganic salts). Noise was 

collected using the Veo (power function 0.67) in each of these mobile phases and the results 

are shown in Fig. 5.3 e. In the absence of any buffer (red bar in Fig. 5.3 e), the noise was less 

than half of that observed in salt-acid buffers (light blue and orange bars). Therefore the 

solvents themselves perhaps contributed some of the noise and the remainder are due to 

the buffers used. The green and purple bars show noise levels in acid-only and salt-only 

mobile phase respectively (Fig. 5.3 e) suggesting the salt and acid both contribute to 

detector noise. For both the salt-acid buffers (light blue and orange bars in Fig. 5.3 e), noise 

levels were comparable. Therefore it is unlikely that the pH probe was responsible for the 

high noise observed in the Veo detector (note: LCMS grade buffers were used in all 

experiments). A pragmatic approach to continue this study of highly hydrophilic solutes with 

no chromophore was to instead use the CAD Ultra. 
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Figure 5.3a. Peak areas by flow injection analysis for 29 solutes for two CAD models. Blue = Ultra, Red = Veo 
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Fig. 5.3b Signal to noise ratios by flow injection analysis for 29 solutes for two CAD models. Blue = Ultra, Red = Veo. Noise manually 

calculated, peak heights. Veo power function set to 0.67 to simulate ‘off’. 
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Fig. 5.3c CAD noise levels, mobile phase 80% ACN with 5mM AF pH 3. Veo with power function ‘off’, ‘on’ default setting 1.00 and ‘on’ 

optimised setting 1.2, Ultra. 
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Fig. 5.3 d Peak height (as CAD signal) by flow injection analysis for 29 solutes for two CAD models. Blue = Ultra, Red = Veo. Veo power 

function set to 0.67 to simulate ‘off’.  
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Fig. 5.3 e Noise measurements to ascertain which mobile phase components contributed (FIA using Veo, Mobile phase 80% ACN with either 

no buffer, formic acid (0.1% v/v), ammonium formate (5 mM) with no acid, ammonium formate with formic acid pH measured in aqueous 

buffers (5mM  AF, ww pH 3)  or ammonium formate with formic acid added but no pH measurement made (5mM with FA). 
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3.3 Analysis of Simple Sugars in Beer and Cider 

Figure 5.4 shows overlaid chromatograms for calibration standards (Fig. 5.4a) and real 

samples of ciders (Fig. 5.4b) and beer (Fig. 5.4c), using an Amino column with HILIC mobile 

phase (Kromasil NH2, 4.6 x 150 mm, 5 µm, mobile phase 80% ACN with water) and CAD 

Ultra detection. Real samples were filtered using a 0.22 µm hydrophobic filter, which was 

tested for losses with fructose solution. Losses were around 10% which was deemed 

acceptable for this proof-of-concept study. As expected from other reports (Hutchinson et 

al. 2012), the CAD was able to detect all five sugars used. However peak shape was poor for 

glucose in the cider samples, therefore reliable quantitation was impossible. Calibration 

curves were plotted to quantify levels of sugar detected. Over a wide concentration range 

(50 – 2000 mg / L of the respective sugar), linearity was more poor than over a narrow 

concentration range (50 – 500 mg / L), which was suggested by Vehovec and Obreza in a 

review of CAD operation (Vehovec et al. 2010). The results are shown in Table 5.1. Ciders 

contained high levels of simple sugars, 10 mg / mL fructose and at least 7 mg / mL glucose, 

although further work is necessary to accurately quantify glucose due to peak shape issues. 

These are however, at approximately typical levels: a previous study by Gomis et al. using 

derivatisation and RPLC with UV detection found ciders contained 6.5 mg/mL fructose and 

17 mg/mL glucose (Gomis et al. 2001). It is possible that the cider samples were sufficiently 

acidic that the glucose did not experience a high enough pH for rapid mutarotation. It is 

possible that addition of extra base to those samples would preclude the peak distortion 

from occurring. An alternative approach is to use a BEH Amide column and alkaline mobile 

phase. Whereas the beers contained low levels of simple sugars (1 mg / mL maltose), the 

CAD detected large peaks during the column wash stage. It is possible these are more-
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complex sugars such as maltooligosaccharides which can be present in beer (Nogueira et al. 

2005), however CAD is a quasi-universal detector (Chapter 4) and use of reference standards 

is necessary to identify those peaks in the beer matrix. In the context of this project, this 

proof-of-concept study was not completed, in order to focus on core aims of the project, 

namely loadability and preparative HILIC (chapter 6), and achieve publication of Chapter 4 

findings (Russell et al. 2015). 

  

Fig. 5.4a Sugar analysis performed using an ‘Amino’ HPLC column (Kromasil NH2, 4.6 x 

150mm, 5µm) calibration using (1) Levoglucosan, (2) Fructose), (3) Glucose, (4) Sucrose, (5) 

Maltose.  

(a) 
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Fig. 5.4 b HILIC separation of sugars in Ciders with Charged Aerosol Detection. 

(1) Fructose, (2) Glucose, (3) Maltose. 

 

Fig. 5.4 c HILIC separation of sugars in Beers with Charged Aerosol Detection. (1) Maltose. 

  

(b) 
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Fig. 5.4 d Calibration curves of five sugars over a wide concentration range (50 – 2000 mg / 

mL) 

 

Fig. 5.4 e Calibration curves of five sugars over a narrow concentration range (50 – 500 mg 

/ mL) 
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Table 5.1. Sugar concentrations found in ciders and beer 

Sample Concentration / mg per mL 

 Fructose Glucose Maltose 

Ciders 

Magner’s Original 23 12-30 - 

Scrumpy Jack 10 7-22 3.6 

 

Beers 

Theakston’s Old Peculiar - - * 

Stella Artois 1 - * 

Carling Black Label - - * 

* Peaks detected during column wash possibly complex sugars such as 

maltooligosaccharides (Nogueira et al. 2005) 

3.4 Analysis of underivitised Amino Acids 

Amino acids are highly hydrophilic, which can be further affected by the functional groups 

on a particular amino acid side chain. Most underivatised amino acids do not contain strong 

chromophores for UV detection, therefore these are derivatised with reagents such as o-

phthaldialdehyde (OPA) which react with primary amines to produce a product that is 
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sufficiently hydrophobic to retain by RPLC and able to absorb either fluorescent light (Roth 

1971) . Using HILIC, amino acids have been analysed in their phosphorylated form, since the 

phosphate functionality absorbs UV adequately (Alpert 1990). Since the CAD responds to 

any non-volatile solute (Chapter 4), and HILIC retains hydrophilic species with good 

efficiency (Chapter 4), it may be possible to directly separate these by HILIC and detect by 

CAD. This was attempted using an Atlantis bare silica column (Fig. 5.5) which shows all four 

amino acids were retained by the column and detected by the CAD. However resolution was 

poor for the amino acids with neutral side-chains (glycine, glutamine) and peak shape was 

poor for aspartic acid. It may be possible to successfully separate these and even larger 

numbers of amino acids by HILIC with further method development, in particular use of a 

polar-ligand HILIC column such as BEH Amide or ZIC-HILIC which have complementary 

selectivity to the bare silica column used in Fig. 5.5. Due to time constraints that was not 

possible within the scope of this project.  

Fig. 5.5 HILIC chromatogram of four underivatised amino acids: (1) Glycine, (2) Glutamine, 

(3) Aspartic Acid), (4) Arginine. Atlantis bare silica column (4.6 x 250 mm, 5 µm), mobile 

phase 75% ACN with 5mM AF pH 3 with FA. 
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4. Conclusions 

Some highly hydrophilic solutes that have no chromophore were retained by HILIC and detected by 

CAD, namely simple sugars and amino acids. Signal quality was poor when a high pH HILIC mobile 

phase was used with the newer Veo model CAD. Further investigation showed signal quality was 

relatively poor for the Veo also in salt-buffered HILIC mobile phase. Like for like comparison of the 

older Ultra and newer Veo models showed the Ultra outperformed the Veo in terms of signal to 

noise ratio at a modest solute concentration (300 mg / L). Further investigation showed the signal 

(measured as peak height) was lower for the Veo and noise was higher, which combined made for 

the superior performance of the Ultra model. These results were fed back to the manufacturer and 

the industrial partner of this project, and it remains to be seen what the fate will be of the charged 

aerosol detector in light of reduced performance with this recent model. Levels of simple sugars 

were measured by CAD with HILIC separations on an Amino column for real samples of beer and 

cider. The beers had low levels of maltose (1mg / mL), and the ciders high levels of glucose and 

fructose (>7 and >10 mg / mL, respectively), equivalent to around 0.5 and 10 g per British pint. The 

current health guidelines advise a recommended limit of 30 g of sugar consumption per day for 

adults. Similar levels have been previously reported (Gomis et al. 2001). Therefore in addition to 

recommended guidelines for alcohol consumption, these data suggest consumption of excess of 1 

pint of sweet cider daily could have health implications for potential chronic conditions such as 

diabetes. Further work is necessary to clarify this, as the glucose levels studied are only estimates 

due to issues with glucose peak shape. Some amino acids were successfully retained by HILIC on an 

Atlantis bare silica column and detected by CAD, however there were issues with peak resolution 

and shape for one solute. There is scope for serious productivity gains in amino acid analysis through 

further method development by HILIC-CAD, compared to existing derivatisation methods. 

Development of generic HILIC methods can simplify this (Chapter 6), and future work integrating 

generic methods with inverse gradients to compensate for the sensitivity of CAD to mobile phase 

organic solvent content (Gorecki et al. 2006). 
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Abstract 

Some approaches to separate hydrophilic ‘building block’ compounds in analysis and purification by 

HPLC, useful for fragment-based drug discovery were investigated. Eight probe compounds were 

used including two weak base structural isomers, two zwitterions, two additional weak bases, a 

hydrophilic strong base and a hydrophilic neutral solute. Low pH RPLC was ineffective with no 

resolution of these compounds, and high pH separated just three out of the eight solutes. 

Hydrophilic interaction chromatography (HILIC) was instead considered. Substituting acetone for the 

more-common acetonitrile as mobile phase organic modifier, retention orthogonality was not found, 

with good agreement between k vs. k plots for the same column (Atlantis) and 29 diverse probe 

solutes. Retention was lower in acetone than acetonitrile, perhaps due to acetone’s stronger 

hydrogen-bonding basicity disrupting the HILIC water layer. Generic and focused HILIC methods 

were developed which separated all eight probe compounds on Atlantis and BEH Amide columns, 

with alternate retention order as expected from HILIC column comparison studies. Transferring 

these methods to preparative systems successfully separated simulated crudes on both columns. 

Productivity was usable on both columns, and moving to an At-Column-Dilution (ACD) system, up to 

223 mg of crude purified per hour, due to the large injection volumes an ACD system can deliver 

(4mL cf. 1mL standard prep). Diluents were considered, as low solubility can limit prep loading. 

DMSO had good apparent solubility, and addition of small quantities of TFA (1%) improved this 

further (15 and 22 mg / mL possible, respectively). However DMSO was incompatible with HILIC-

Prep-ACD. Removing the DMSO and adding TFA (1%) to HILIC mobile phase as diluent was successful 

in terms of apparent solubility and chromatographic performance. Overall, HILIC was a viable 

technique for analysis and purification of ‘building block’ solutes and is anticipated to be 

complementary to other techniques (e.g. supercritical fluid chromatography, SFC). 
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1. Introduction 

Fragment-based drug discovery requires analysis and purification of small molecules as 

potential new drugs. These can be hydrophilic, and weakly basic or zwitterionic chemical 

functional groups provide potential biological activity and capacity for formation of C-X 

bonds in further synthesis (Scott et al. 2012). Hydrophilic species retain poorly in RPLC, and 

sample overload is severe for ionogenic solutes in RPLC, many of which are hydrophilic 

(McCalley 2010b, Gritti et al. 2015). Both these problems can be overcome for strongly basic 

drug molecules (e.g. nortriptyline), as these can be retained by high-pH RPLC by neutralising 

the solute and promote hydrophobic retention on octadecylsilane (ODS) stationary phases 

(Davies et al. 2008). Retention and loadability of hydrophilic neutral solutes and zwitterions 

cannot be satiated by high pH RPLC approaches as they remain hydrophilic at high pH and 

retain poorly. Hydrophilic interaction chromatography (HILIC) (Alpert 1990) is an attractive 

solution to that. HILIC retention mechanisms are complex (McCalley 2010b, Hemstrom 

2006) and have received intense focus in recent studies (Kawachi et al. 2011, Dinh et al. 

2011, Kumar et al. 2013, Heaton et al. 2014c, Gritti et al. 2013c).  The exact mechanism 

depends on which solute, column and mobile phase pH are used (Kumar et al. 2013), and in 

a broad sense hydrophilic species retain by a mixture of partition, ion-exchange and 

hydrogen-bonding interactions (Kawachi et al. 2011, Dinh et al. 2011, Kumar et al. 2013). 

Purification is a necessary application of HILIC, however studies of this are scarce in the 

scientific literature. Purification by HPLC commonly employs sample loads far above the 

column capacity, and separation performance is degraded as a result of shifts in retention 

and broad peaks with low efficiency. McCalley reported in 2007 that bare silica HILIC 

column(s) have loading capacity around ten times higher than RPLC for bases (McCalley 

2007), which are particularly problematic in RPLC (McCalley 2010a). Gritti and Guichon 

studied the overloading of strong bases propranolol and amitriptyline hydrochloride using a 

bridged ethylene hybrid (BEH) silica in HILIC, reporting similar improvements over RPLC and 

even a CSH-C18 RPLC column which contained positive charges to control solute repulsion, 

which is thought to be responsible for the tailing overload of charged bases even at low 

solute concentration on RPLC (Gritti et al. 2015). Bonded phase columns are available with 

diverse chemistries in HILIC, which provide substantial changes in selectivity (Kawachi et al. 

2011, McCalley 2013, 2014, Dinh et al. 2011). However as far can be determined, none of 
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these columns have featured in HILIC purification or loadability studies. The principle 

interest of this project is the analysis and purification of hydrophilic pharmaceuticals and 

polar “building block” molecules. The present study evaluates HILIC in a generic method 

setup. However a basic understanding of solubility in HILIC has not been established in the 

literature. One study by Ruta et al. reported the water content of diluents used in sample 

preparation must be kept to a minimum for HILIC separations (Ruta et al. 2010) and 

alternative solvents may be possible diluents for HILIC (Ruta et al. 2010). More recently 

Heaton and McCalley also reported efficiency losses at high diluent water content, using 

UPLC columns (Heaton et al. 2016). Further work in this area is crucial if HILIC can be 

employed to purify polar solutes on the scale (e.g. in excess of 100 mg on-column) required 

by the pharmaceutical industry. 

2. Theory 

2.1 Loadability 

Loadability indicates preparative performance, as purifications are done under conditions of 

mass overload, where large samples are loaded onto the column to purify crudes 

productively. Loadability studies are typically performed on analytical scale columns and can 

inform choices of stationary phase chemistry for scale-up preparative studies. Loadability 

can be empirically measured as ω0.5 (sample load in mg, at which the column efficiency is 

reduced by half) as established by Snyder as a robust method to compare loading 

performance in terms of peak efficiency (Snyder et al. 1987). As a rule of thumb, loadability 

for neutral solutes in RPLC is proportional to approximately 0.4 times the surface area of 

stationary phase (Eble et al. 1987, Dai et al. 2009). Loadability of bases has attracted the 

majority of research focus (McCalley 2007, Gritti et al. 2015) and acids also (Hägglund et al. 

1997). Loadability has been measured by McCalley on a bare silica column in HILIC for the 

bases procainamide and nortriptyline (McCalley 2007); loadability was superior in HILIC by 

an order of magnitude (10 µg HILIC; 1 µg RPLC). Adsorption of solutes to the stationary 

phase is a mixture of linear, Langmuirian processes and kinetic contributions at higher 

sample loads (Gritti et al. 2015). At low loads, kinetic processes dominate and peaks are 
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Gaussian, at higher loads thermodymamic contributions contribute and peak shape is 

distorted. The underlying cause of kinetic processes for charged solutes, described by 

Hagglund and Stahlberg for strong acid solutes (Hägglund et al. 1997), has been scrutinised 

extensively by Guiochon and Gritti using frontal analysis (Gritti et al. 2009, 2009) and 

McCalley and co-workers using mass overload (McCalley 2007, 2008a, 2010b, 2012). Two 

principle theories explain this, that a small number of high-energy adsorption sites with slow 

kinetics which have limited loading capacity (Gritti et al. 2004), or mutual repulsion of ionic 

solutes (Hägglund et al. 1997) distorts the solute plug. A recent paper by Guichon and Gritti 

on mass transfer in HILIC concluded that long-range eddy dispersion persists in HILIC 

compared to RPLC (Gritti et al. 2013c), possibly due to slow movement of solutes through 

the relatively viscous water layer inside the stationary phase pores (Gritti et al.2013c). This 

is possibly due to the resistance to solid-liquid mass transfer caused by the relatively high 

microviscosity of the water layer (Gritti et al. 2013c, Heaton et al. 2014c), and for some 

solutes possibly multi-point hydrogen-bonding with the stationary phase silanols (Heaton et 

al. 2014c). In theory, extrapolation of analytical-level loadability to preparative separations 

is possible and this can inform a choice of suitable stationary phase for preparative 

separations. However, mass overload is just one component of the challenge in scaling-up 

separations to preparative separations. In practise loadability is not seen as sufficient proof 

that a separation can be useful in purification. Injection volumes can be scaled from 

analytical to preparative columns according to the ratio of the squares of the column 

diameters, but in practise this allows for highly limited preparative loads (e.g. acceptable 

efficiencies on 4.6mm i.d. columns require injections no larger than around 16 µL (Dolan 

2014), which scale to 441 / 21 x 16 = 336 µL). For a typical sample at 10 mg / mL, this 

corresponds to 3.36 µg per injection, which is unacceptable in terms of productivity (see 

2.4). Although loading studies using analytical columns can be used to troubleshoot 

problems of poor peak shape and demonstrate clear benefits of HILIC, these benefits have 

not been sufficiently demonstrated on preparative systems. There is therefore demand for 

an empirical study to apply HILIC in an industrial setting on preparative systems with wider-

bore columns to assess the viability of HILIC purifications. 
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2.2 Peak shape 

In RPLC, strong bases overload in a so-called ‘sharks tail’ peak shape (for examples and 

thorough discussion on the challenges of HPLC separations of basic compounds the reader is 

directed to this review (McCalley 2010a)). A HILIC study of overload using partially-porous 

bare silica particles reported fronting for the hydrophilic strong base procainamide and 

some tailing for the hydrophobic base nortriptyline (McCalley 2008a). A comparison of RPLC 

on C18 and HILIC on bare silica reported excellent peak shape in the latter, provided buffer 

or trifluoroacetic acid (TFA) was used in the mobile phase (McCalley 2007). The detailed 

study of peak shape in HILIC (chapter 3) found efficiency and asymmetry is excellent for 

neutrals, acids and bases for all HILIC columns studied, again provided buffered mobile 

phase was used. However peak shape in preparative HILIC separations has not been 

sufficiently characterised and this was a consideration of this study. 

2.3 Solubility 

Although on-column loadability is important in preparative separations, solubility is also an 

important problem. Analytical separations can be scaled-up using wide bore columns, 

theoretically with no change in separation performance. The larger injection volumes 

obviously result in larger loads of compound deposited on-column, but if sample solubility is 

not properly addressed, very large volumes or multiple injections are necessary, which is 

inefficient and time-consuming (Forssén et al. 2014).  

 log 𝑆mix = log 𝑆W + (𝑠 log 𝐾OW + 𝑡)𝑓c (6.1) 

To preclude laborious trial-and-error experiments, the equation of Yalkowsky and co-

workers can estimate the solubility of a compound in a given solvent, and those authors 

determined that solubility in a water-cosolvent system is proportional to the log of solute 

partition coefficient (log KOW = log P) when the solute is in the neutral form (Millard et al. 

2002) (equation 6.1). Smix and SW are the total solubilities of the cosolvent system and in 

water, respectively.  s and t are the cosolvent constants that are solute independent, and 

are linear regression terms for slope and intercept, respectively; fc is the volume fraction of 
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the cosolvent in the aqueous mixture. This is useful in pharmaceutical formulation 

development and also RPLC, where in both cases the primary solvent is water with a small 

concentration of organic modifier used to aid solubility. Equation 6.1 is an excellent 

predictor of solubility in the case of rather hydrophobic solutes in highly aqueous diluents. 

However HILIC mobile phase is somewhat different to these systems, typically comprised of 

less than 30% water content, and the solute is hydrophilic. Additionally, it is preferable for 

solutes to be in their ionised form in HILIC, since in this state they are more hydrophilic and 

able to retain on these columns, therefore equation 6.1 can be useful for neutral solutes. 

Although the use of water in sample diluents ought to aid solubility, this can be detrimental 

to peak shape (Ruta et al. 2010, Heaton et al. 2016) and should be kept to a minimum. 

Those authors suggested alternative solvents such as DMSO or IPA can be explored to 

achieve appreciable solubility when preparing samples for HILIC analysis.  In this study, 

solubility is termed ‘apparent solubility’, simply described by Alsenz and Kansy as ‘the 

amount of a substance that dissolves in a given volume of solvent at a specified 

temperature’ (Alsenz et al. 2007). Here the apparent solubility is used to describe dissolving 

the sample in the minimum possible volume of solvent. In this study, solute concentrations 

are typically quoted in mg per mL, as this reflects the current practise in the field. 

2.4 Productivity 

In preparative chromatography, the objective is production of pure compound using 

minimal resources within a reasonable time frame. This can be measured as productivity 

(equation 6.2). 

 𝑃R,i =
𝑛coll

𝑡c𝑉col
 (6.2) 

Fornstedt’s group showed the amount collected (ncoll), divided by the product of the cycle 

time (tc) and column volume (Vcol) can be used as an indicator of productivity (PR,i) (Forssén 

et al. 2014), (6.2). In a generic setup, cycle time (tc) and column volumes (Vcol) are kept 

constant, and the amount collected is directly proportional to the mass of crude purified in a 

cycle. Therefore a simple relationship can be measured according to equation 6.3, whereby 

productivity (PR) is measured as mass purified (mpurif) per unit time (t), in mg / hr. This can 
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be used as a simple means to quantify the usefulness of purification, provided 

chromatograms can qualify sufficient purity has been achieved. 

 𝑃R ∝
𝑚purif

𝑡
 (6.3)  



 

Page 158 of 246 

3. Experimental 

3.1 Chemicals and reagents 

Probe compounds were purchased from Sigma Aldrich (Poole, UK). Eight solutes including 

strong and weak bases, neutrals and zwitterions were used develop generic analytical and 

preparative methods (Table 6.1). These were chosen from the Sigma ‘building block’ 

catalogue according to the following criteria: a Log D vs. pH plot suggesting hydrophilic 

behaviour unlikely to be made hydrophobic by use of low or high pH modifier, and 

acceptable price of ordering small quantities (1-25 g for under around £100). For ease of 

reference, the five compounds with no obvious trivial name have been arbitrarily assigned 

four letter acronyms, described in Table 6.1 (e.g. 2-Aminopyridine-3-carboxylic acid was 

referred to as ‘APCA’). Additionally procainamide hydrochloride and cytidine were chosen as 

strongly-retained markers for the Atlantis and BEH Amide columns respectively, based on 

their behaviour in an earlier HILIC study on these column chemistries (Kumar et al. 2013). A 

diverse set of 29 solutes including acids, bases and neutrals was used to compare retention 

orthogonality of acetone and acetonitrile as mobile phase modifiers, as used in Chapter 4. 
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Table 6.1. Probe solutes used in generic and scale-up studies 

Solute Structure Log D vs. pH plot (chemicalize) 

2-Aminopyridine-3-
carboxylic acid 
(APCA) 

 

 

Adenine 

 

 

2-Amino-3-hydroxypyridine 
(AHPY) 

 

  

2-Aminopyridin-4-ol 
(APOL) 

 

 

Procainamide 
Hydrochloride 

  

Cytidine 

 
 

6-Aminoindazole  
(AIAZ) 

 

 

2,5-
Diaminobenzenesulfonic 
acid 
(DABS) 
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3.2 Apparatus and methodology 

A Thermo U3000 system was used in initial diluent experiments, with quaternary pump, 

diode array detection (DAD) and either a Corona Ultra or Corona Veo CAD, with Chromeleon 

7.2 software. The CAD is a destructive detector, therefore the DAD and CAD detectors were 

connected in series, with flow first through the DAD. 0.13 mm ID Viper tubing (Thermo, 

Munich, Germany) was used to minimise system dead volume. 

An Agilent 1100 system (Agilent, Waldbronn, Germany) was used to prepare generic and 

focused gradient analytical methods, with a binary pump and DAD for detection, with 

Chemstation software. Columns were used at ambient temperature. 

A bespoke Waters Purification system was used in preparative separations using a 2525 

inlet pump, 2767 Sample Manager with in-built injection system and post-fraction UV 

detection, custom-made timing loops connecting the injection system to the Waters QDa 

Mass Spectrometer and Waters 2996 DAD for detection. A Waters 515 pump was used as 

make-up flow to the MS. Masslynx software controlled the preparative system, with the 

fraction trigger set to discard all eluates to waste in this proof-of-concept study. A second 

bespoke Waters Purification system was used with At-Column Dilution installed, with 2 x 

2525 inlet pumps such that the one delivered the sample and the second made up flow with 

mobile phase. 

An Atlantis bare silica column (150 × 4.6 mm ID, particle size = 3 µm, Waters) and an 

ethylene bridged hybrid (BEH) amide column (150 × 4.6 mm, particle size = 3.5 µm, Waters, 

Milford, USA) were used for analytical methods. Columns with wider-bore (21 mm prep, 

4.6 mm i.d. analytical) but identical stationary phase chemistry and identical length were 

used in preparative separations, from the same manufacturer (Waters, Milford, USA). 

The mobile phase was ACN-5 mM ammonium formate buffer unless otherwise stated. The 

pH meter was calibrated in aqueous buffers and formic acid was used to adjust the aqueous 

portion to w
w pH 3. Thus the strongly-eluting mobile phase was a solution of 70% v/v 

acetonitrile; 30%  v/v pH3, 16.7mM aqueous ammonium formate (pH adjusted with formic 

acid) and the weakly-eluting mobile phase 95% v/v acetonitrile; 5% v/v pH3, 16.7mM 

aqueous ammonium formate (pH adjusted with formic acid). 
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Analytical samples were prepared as 0.5 mg /mL combined standards in 50-50 Acetonitrile-

water with 0.1% formic acid (v/v) unless otherwise stated. Alternative diluents were 

investigated at higher concentrations, including DMSO, DMF-DMSO, DMSO with TFA (1%) 

and mobile phase taken from the weakly-eluting mobile phase reservoir then TFA added 

(1%). Note: TFA was not added into the mobile phase, as this can result in exclusion of bases 

in HILIC (McCalley 2015). Sample solubility was assessed as the weighed amount dissolved in 

the minimal quantity of the appropriate solvent, termed apparent solubility as per Alsenz 

and Kansy (Alsenz et al. 2007). 

4. Results and discussion 

4.1 Choosing separation conditions with alternate selectivity 

4.1.1 Changing the selectivity using the organic solvent 

It has been reported that there are selectivity differences between acetone and acetonitrile 

mobile phases in HILIC (Heaton et al. 2011), which is beneficial for developing methods with 

alternative selectivity. However this has not been studied with a sufficiently broad range of 

solutes. Figure 6.2a shows the retention of 29 probe solutes using acetonitrile or acetone as 

organic modifier, using the 85% organic solvent and identical buffer preparation in both 

methods. Correlating retention in different conditions has been used to find alternate 

selectivity in HILIC methods (Kumar et al. 2013) and comparing columns (Heaton et al. 

2014b). The correlation coefficient (R) was calculated between retention factor in acetone 

and retention factor in ACN. This was R=0.93 which is much higher than expected. This 

which suggests that alternate selectivity can be shown for some solutes (Heaton et al. 2011) 

but is not observed for a broad range of solutes. Figure 6.1b compares the magnitude of 

retention between Acetonitrile and Acetone for neutrals and weak bases; Fig 6.1c for acids. 

For some weak bases (e.g. cytosine) and neutrals (e.g. uridine), retention was around half in 

acetone (Fig 6.1b); retention factors for all acids were zero or the acids eluted before the 

void (Fig 6.1c). The much lower retention of neutral and weak bases which contain large 

numbers of hydrogen-bonding groups is interesting (Table 6.1). There was good correlation 
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between the number of hydrogen bonding groups per solute and retention factor ratio 

(ACN/Acetone) (R2 = 0.86, see Fig. 6.1d). It is possible that hydrogen-bonding capability of 

acetone is greater than that of acetonitrile. The so-called β term which represents 

hydrogen-bond basicity is 0.38 for acetone, compared to 0.25 for acetonitrile (Snyder et al. 

2010). It is possible that solutes with hydrogen-bonding character interact favourably with 

acetone and reduce the hydrophilicity of these solutes. In HILIC, a fine layer of water is held 

to the stationary phase (Alpert 1990, McCalley et al. 2008b). In acetonitrile, there are 

relatively weak interactions between solute and solvent and it is possible that the solutes 

can displace water from the stationary phase surface. In acetone, however, solutes with 

hydrogen-bonding character are associated with the relatively hydrophobic solvent 

molecules and it is possible these are less able to displace water from the stationary phase, 

thus retention is lower in acetone rather than acetonitrile mobile phase Alternatively, as 

described above, acetone has stronger hydrogen-bond basicity than acetonitrile and it is 

conceivable that it hydrogen bonds with water, which is present both in the HILIC mobile 

phase and forms the water layer on the stationary phase. Acids should retain only by 

partition into the water layer on this silica column, due to negatively-charged silanols not 

offering ion-exchange to these solutes. However the absence of retention of acids in 

acetone mobile phase suggests they are unable to partition by a HILIC-like mechanism. It is 

possible that acetone scavenges water from the mobile phase through hydrogen-bonding 

and even possibly the water layer itself, thus reducing retention of hydrogen-bond rich 

solutes and eliminating retention of acids. ,It was considered possible that there may be 

some difference between the hydroorganic pH between the two solvents, which can affect 

retention for ionogenic solutes. Using a pH meter calibrated in aqueous solvent, the w
S pH 

was measured as 0.4 units lower in the acetone mobile phase compared to the acetonitrile 

mobile phase. This was considered a small variation, which in any case would not account 

for the reduction in retention for neutral solutes in acetone. Nevertheless acetone mobile 

phase can perhaps be useful for excessively-retained solutes which are strongly hydrophilic. 

However in a pragmatic approach, acetone does not offer alternate selectivity compared to 

acetonitrile and was not used for generic polar methods. Alternatively, stationary phases 

with alternate selectivity were investigated (see below). 
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Fig. 6.1a. k (Acetonitrile) vs. k(Acetone); Atlantis (4.6x250mm, 5µm). Mobile phase 85% organic 

solvent with 5mM ammonium formate w
w pH 3 with FA 

 

Fig. 6.1b. Retention of neutrals and weak bases; Atlantis (4.6x250mm, 5µm). Mobile phase 85% 

organic solvent with 5mM ammonium formate w
w pH 3 with FA 
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Fig. 6.1c. Retention of acids; Atlantis (4.6x250mm, 5µm). Mobile phase 85% organic solvent with 

5mM ammonium formate ww pH 3 with FA 
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Fig. 6.1d. Relationship between retention ratio in ACN vs. Acetone and number of hydrogen 

bonding groups per molecule 

Figure 6.1. (a) k (Acetonitrile) vs. k(Acetone); Atlantis (4.6x250mm, 5µm); (b) Retention of 

neutrals and weak bases; (c) retention of acids. 85% Acetonitrile or Acetone with 5mM 

Ammonium Formate pH3, LCMS grade buffers; (d) relationship between retention ratio in 

ACN vs. Acetone and number of hydrogen bonding groups per molecule. 

4.1.2 Changing the selectivity by changing the stationary 

phase in generic HILIC methods 

Bare silica and BEH Amide stationary phases were used, since these have been reported to 

have alternate selectivity with respect to each other (Kumar et al. 2013). Generic gradient 

methods were developed for each column. The generic gradient methods started with a 

brief (30s) isocratic hold at 100% solvent ‘B’ (95% ACN with 5mM ammonium formate 

w
w pH 3 with FA) to provide retention for the early-eluting solutes, then solutes were eluted 

by increasing the mobile phase water content using a gradient increase of solvent ‘A’ (70% 

ACN with 5mM ammonium formate w
w pH 3 with FA). Thus for the Atlantis column (4.6 x 
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gradient to 36% solvent ‘A’ over 15 min, wash at 60% ‘A’ in 30s held for 6.5 min, gradient 
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reset to 0% ‘A’ in 30s then equilibration held for 6.5 min to give a 29.5 min method. For the 

BEH Amide column (4.6 x 150mm, 3 µm), the generic gradient method was an isocratic hold 

for 30s, gradient to 24% solvent ‘A’ in 15.5 min, held for 6.5 min then gradient reset in 30s 

to 0% ‘A’ and equilibration held for 6.5 min, to give also give a 29.5 min method. Shorter 

equilibration and wash stages were attempted but the retention times were irreproducible 

(data not shown). Fig. 6.3a and 6.3d show generic HILIC gradient methods separating all 

eight solutes on both columns. There was alternate retention order between the Atlantis 

(Fig. 6.3a) and BEH Amide (6.3d) columns. These data therefore suggested the columns 

were indeed suitable for inclusion in a polar ‘tool-box’. However for both columns there was 

a somewhat narrow elution window for most solutes within the centre of the gradient 

(Fig. 6.3a,d). Therefore to improve upon the separation between solutes that eluted in the 

start or middle of the gradient, focused methods were developed which expand designated 

areas of the gradient and were expected to improve separation (see 4.1.3). Fig. 6.3 b-c and 

e-f show focused isocratic methods on the Atlantis and BEH Amide column respectively, 

which are discussed below in 4.1.3.  
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Fig. 6.2a. Separation of eight probe solutes using a generic gradient method on the Atlantis 

column (4.6 x 150mm, 3 µm). Solvent ‘A’  = 70% ACN with 5mM Ammonium Formate w
w pH 3 with 

formic acid; ‘B’ = 95% ACN with 5mM Ammonium Formate w
w pH 3 with formic acid. 0%  solvent 

‘A’ 30s isocratic hold, then 0-36% ‘A’ in 15 min, wash at 60% ‘A’ in 30s held for 6.5 min, gradient 

reset in 30s to 0% ‘A’ then equilibration held for 6.5 min to give 29.5 min method. Probe solutes 6-

Aminoindazole (AIAZ), 2,5-Diaminobenzenesulfonic acid (DABS), Adenine, 2-Aminopyridine-3-

carboxylic acid (APCA), Cytidine, 2-Amino-3-hydroxypyridine (AHPY), 2-Aminopyridin-4-ol (APOL), 

Procainamide Hydrochloride. Full structures shown in Table 6.1 above. 

Fig. 6.2b Separation of three probe solutes, Atlantis column elution ‘Zone 1’ (zone, column and 

solvents as per Fig. 6.2a) using a focused isocratic method. Method 0% solvent ‘A’ hold for 

15.5 min then wash at 60% ‘A’ in 30s held for 6.5 min, gradient reset to 0% ‘A’ in 30s then held for 

6.5 min to give 29.5 min method. For solute descriptions see Fig. 6.2a. 
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Fig. 6.2c. Separation of three probe solutes, Atlantis column elution ‘Zone 2’ (zone, column and 

solvents as per Fig. 6.2a) using a focused isocratic method. Method 8% solvent ‘A’ hold for 15.5 

min then wash at 60% ‘A’ in 30s held for 6.5 min, gradient reset to 0% ‘A’ in 30s then held for 6.5 

min to give 29.5 min method. For solute descriptions see Fig. 6.2a 

Fig. 6.2d. Separation of eight probe solutes using a generic gradient method on the BEH Amide 

column (4.6 x 150mm, 3.5 µm). Solvents as per Fig. 6.2a. Method 0% solvent ‘A’ 30s isocratic hold, 

then 0-24% ‘A’ in 15.5 min, held at 24% ‘A’ for 6.5 min, gradient reset in 30s to 0% ‘A’ then 

equilibration held for 6.5 min to give 29.5 min method. For solute descriptions see Fig. 6.2a. 
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Fig. 6.2e. Separation of three probe solutes, BEH Amide column elution ‘Zone 1’ (zone and column 

as per Fig 6.2d, solvents as per Fig. 6.2a) using a focused isocratic method. Method 0% solvent ‘A’ 

held for 15.5 min then wash at 24% ‘A’ in 30s held for 6.5 min, gradient reset to 0% ‘A’ in 30s then 

held for 6.5 min to give 29.5 min method. For solute descriptions see Fig. 6.2a 

Fig. 6.2f. Separation of two probe solutes, BEH Amide column elution ‘Zone 2’ (zone, column as 

per 6.2d, solvents as per Fig. 6.2a above) using a focused isocratic method. Method 0% solvent ‘A’ 

held for 15.5 min, then wash at 24% ‘A’ in 30s held for 6.5 min, gradient reset to 6% ‘A’ in 30s then 

held for 6.5 min to give 29.5 min method. For solute descriptions see Fig. 6.2a. 

Figure 6.2. Separation of probe solutes using generic and zone analytical methods, using (a) 

Atlantis column with generic gradient for eight solutes, (b) early-eluting solutes with zone 1 

isocratic method, (c) middle-eluting solutes with zone 2 isocratic method, (d) BEH Amide column 

Generic method for eight solutes, (e) early-eluting solutes with zone 1 isocratic method, (f) middle-

eluting solutes with zone 2 isocratic method. (a) – (c) Atlantis column, (d) – (f) BEH Amide column. 

Solute identities as per Table 6.1 
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4.1.3 Focused analytical ‘zone’ methods 

The chromatograms in Fig. 6.2 a,d (discussed in 4.1.2 above) show separation of all eight 

polar probe solutes by generic gradient methods on the Atlantis and BEH Amide columns 

respectively, however there is a somewhat narrow elution window for the majority of the 

probes which can perhaps be improved upon. The focused gradient approach enhances the 

separation of a compound of interest from closely-eluting impurities, and this can possibly 

be applied to improve upon the generic gradient separations. This technique is well-

established in industry as a pragmatic means to achieve separation, although its coverage in 

the literature is limited to a few application notes, e.g. (Tei et al. 2013). This approach has 

yet to be attempted with HILIC, as far can be determined in this project. Rather than using 

the full gradient, elution zones are chosen arbitrarily across the gradient, with appropriate 

probe compounds used as markers to describe the start and end of each zone. ‘Zone 1’ 

describes early-eluting solutes, ‘Zone 2’ middle-eluting solutes and ‘Zone 3’ are late-eluting 

solutes. In this study, on the Atlantis column ‘Zone 1’ was between AIAZ and Adenine 

(Fig. 6.2a-c), and ‘Zone 2’ between DABS and AHPY; on the BEH Amide column ‘Zone 1’ was 

between AHPY and APCA, and ‘Zone 2’ between Procainamide and APOL (Fig. 6.2d-f; see Fig 

6.2a for solute identities). Initially, focused gradient methods were attempted on the 

Atlantis and BEH Amide columns, where a gradient was applied to the elution zones shown 

in Figs. 6.2a and 6.2d for each column, respectively. Focused gradients are somewhat 

shallow, for example an attempted ‘Zone 2’ focused gradient on the Atlantis column was 

30s isocratic hold at 17% ‘A’ then 17-19% ‘A’ in 15 min, wash in 30s at 26% A held for 

6.5 min, gradient reset to 17% ‘A’ in 30s and equilibration for 6.5 min, solvents as per 

Fig 6.2a. Unexpectedly the focused gradients had very limited effect on improving selectivity 

of probe compounds on either column (data not shown). There was an apparent resistance 

of the probe compounds to manipulation of their retention using focused gradients, even 

those with quite different functionality. This is a phenomenon not reported to date and it is 

possible that solute retention is resistant to small changes in water content of the mobile 

phase. This perhaps relates to the water layer which is partly responsible for solute 

retention in HILIC (Alpert 1990, Irgum 2007, McCalley 2010b). It has been reported that 

more water was held on a bare silica HILIC stationary phase at higher water concentration 

(McCalley et al. 2008b). It is therefore perhaps possible that small increases in mobile phase 
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water concentration in a shallow gradient result in accumulation of that water inside the 

stationary phase pores. This perhaps counteracts the elution power of the mobile phase. 

This phenomenon was not observed in generic gradients, which change the water content 

to a greater extent and more rapidly during the method (e.g. the Atlantis generic gradient 

changed from 0-36% ‘A’ in 15 min compared to 17-19% ‘A’ in 15 min, and the BEH Amide 

generic gradient changed 0-24% ‘A’ in 15.5 min, solvents as per Fig. 6.2a). Therefore focused 

isocratic methods were developed instead, where the water held to the stationary phase 

ought not to change during the isocratic portion of the method. Fig. 6.2b shows a focused 

isocratic method on the Atlantis column (4.6 x 150mm, 3 µm) for elution ‘Zone 1’, 

corresponding to early-eluting solutes (Fig. 6.2b). Fig. 6.2c shows a focused isocratic method 

on the same Atlantis column for elution ‘Zone 2’ for medium-eluting solutes (Fig. 6.2c). Fig. 

6.2 e-f show the corresponding ‘Zone 1’ and ‘Zone 2’ focused isocratic methods on the BEH 

Amide column (4.6 x 150mm, 3.5 µm). To compare the separation of probe solutes by 

focused isocratic and generic gradient methods on both columns, the retention times of 

critical pairs from Fig. 6.2a-f are shown in Table 6.2. The difference of retention time 

between the critical pair was used to determine if any improvement was found between 

generic gradient and focused isocratic methods. Further study may consider peak capacity 

as a more robust indicator of chromatographic performance (Neue 2005) as retention time 

difference does not take peak width into account, however for this study retention time 

difference provides a simple and pragmatic means to measure separation. The elution ‘Zone 

1’ focused isocratic method on the Atlantis column (Fig. 6.2b) was particularly effective at 

improving separation of early-eluting probes: the retention time difference (ΔtR) between 

DABS and Adenine (ΔtR 4.6 min ‘Zone 1’ focused isocratic, 2.2 min generic gradient 

methods) improved in the focused isocratic method compared to the generic gradient 

method (Table 6.2). Likewise for the BEH Amide column, Fig. 6.2e and Table 6.2 show the 

focused isocratic method for elution ‘Zone 1’ on this column was also more effective than 

the generic gradient method at separating early-eluting probes, in this case AHPY and APCA 

(ΔtR 6.1 min focused isocratic, 2.3 min generic gradient). The focused isocratic method on 

the Atlantis column for elution ‘Zone 2’ also improved upon the corresponding generic 

gradient method (method described above) for that column (e.g. Cytidine and AHPY ΔtR 2.0 

min focused isocratic ‘Zone 2’ method compared to 0.6 min by generic gradient method, 

both on the Atlantis column) but to a lesser extent than the ‘Zone 1’ method (ΔtR 4.6 min 
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between DABS and Adenine by ‘Zone 1’ focused isocratic method described above). On the 

BEH Amide column the respective elution ‘Zone 2’ focused isocratic method was appreciably 

more effective at separating Procainamide and APOL than the generic gradient on that 

column (ΔtR 6.7 min focused isocratic method, 4.6 min generic gradient method as 

described above). Focused methods were developed as an elution Zone 3 methods for late-

eluting solutes but not used as these offered no improvements over generic gradients on 

either column (data not shown). The pragmatic focus of this study, however, required that 

the methods be reasonably straightforward to implement. Open Access systems were 

already well-established in GSK laboratories for day-to-day use by RP and could possibly be 

a convenient method for some polar solutes. Therefore the set of eight solutes were 

injected onto the Open Access RP system (see 4.1.3 below). 
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Table 6.2. Retention times of critical pairs in elution ‘Zone 1’ and ‘Zone 2’ by generic and 

focused isocratic methods on Atlantis and BEH Amide columns. Solvents as per Fig. 6.2a.  

Solute Generic Atlantis 

0-36% ‘A’ with wash at 60% ‘A’ 

Zone 1 Atlantis 

0% ‘A’ with wash at 60% ‘A’ 

 Retention time /  min 

DABS 7.778 9.205 

Adenine 10.023 13.790 

ΔtR 2.2 4.6 

 Generic Atlantis 

0-36% ‘A’ with wash at 60% ‘A’ 

Zone 2 Atlantis 

8% ‘A’ with wash at 60% ‘A’ 

 Retention time /  min 

Cytidine 13.240 14.221 

AHPY 13.812 16.196 

ΔtR 0.6 2.0 

 Generic  BEH Amide 

0-24% solvent ‘A’ with wash at 24% ‘A’ 

Zone 1  BEH Amide 

0% solvent ‘A’ then wash at 24% 

‘A’ 

 Retention time /  min 

AHPY 7.542 8.794 

APCA 9.770 14.922 

ΔtR 2.3 6.1 

 Generic  BEH Amide 

0-24% solvent ‘A’ with wash at 24% ‘A’ 

Zone 2  BEH Amide 

6% solvent ‘A’ then wash at 24% 

‘A’ 

 Retention time /  min 

Procainamide 6.699 7.104 

APOL 11.342 13.829 

ΔtR 4.6 6.7 
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4.1.3 Changing the selectivity using RPLC toolbox methods at 

low pH and high pH 

While RPLC is not generally a good technique for the retention of polar compounds, it might 

be possible to retain and resolve some polar solutes using variations on this mechanism, 

therefore separations were attempted on existing Open Access systems at GSK at low pH 

with Formic Acid (Fig. 6.3a), TFA (Fig. 6.3b) and high pH (Ammonium Bicarbonate adjusted 

to pH 10 with Ammonia solution) (Fig. 6.3c). Eight polar test probes were used as per Table 

6.1. The low pH method did not resolve the probe solutes (Fig. 6.3a-b). Interestingly, the 

base Procainamide did retain in RP by the high pH method (Fig. 6.3c), presumably by 

neutralisation above its pKa of 9.04, which promotes hydrophobic interactions with RPLC 

columns (Davies et al. 2008). However the high pH method resolved only three out of eight 

solutes, all three of which were all basic (Fig. 6.3c). Therefore the RP approach was 

abandoned in favour of the generic gradient methods (4.1.2) and the focused isocratic 

methods (4.1.3), which were transferred to a preparative system to then evaluate HILIC 

purifications (4.2.1).  

 

Fig. 6.3a. Injection of eight probe solutes on RP Open Access system: Formic Acid method. Acquity 

UPLC CSH C18 column (2.1mm x 50mm, 1.7μm) column compartment at 40 °C. Solvent ‘A’ 0.1% v/v 

solution of Formic Acid in Water, ‘B’ 0.1% v/v solution of Formic Acid in Acetonitrile. Gradient 97% 

‘A’ to 5% ‘A’ in 1.5 min then held for 0.4 min, reset to 97% ‘A’ in 0.1 min to give 2 min method. 

0.5 µL injection. 
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Fig. 6.3b Injection of eight probe solutes on RP Open Access system: TFA method. Acquity UPLC 

CSH C18 column (2.1mm x 50mm, 1.7μm) column compartment at 40 °C. Solvent ‘A’ 0.1% v/v 

solution of Trifluoroacetic Acid in Water, ‘B’ 0.1% v/v solution of Trifluoroacetic Acid in 

Acetonitrile. Gradient 95% ‘A’ to 5% ‘A’ in 1.5 min then held for 0.4 min, reset to 95% ‘A’ in 0.1 min 

to give 2 min method. 0.5 µL injection. 

 

 

Fig. 6.3c. Injection of eight probe solutes on RP Open Access system: high pH method. Acquity 

UPLC CSH C18 column (2.1mm x 50mm, 1.7μm) column compartment at 40 °C. Solvent ‘A’ 10 mM 

Ammonium Bicarbonate in water adjusted to pH 10 with Ammonia solution, ‘B’ Acetonitrile. 

Gradient 97% ‘A’ held for 0.05 min, then to 5% ‘A’ in 1.45 min then held for 0.4 min, reset to 97% 

‘A’ in 0.1 min to give 2 min method. 0.3 µL injection. 

Figure 6.3. Chromatograms of Eight probe solutes by RPLC Open Access system (a) Formic Acid (b) 

TFA and (c) high pH; solute identities as per Table 6.1, conditions provided in legend for each 

chromatogram. 

4.2 Sample preparation using different injection solvents to 

improve analyte solubility 

To establish if a generic HILIC-prep solvent system was possible, diluent experiments run at 

analytical-scale showed good solubility in DMSO diluent (data not shown). To prepare the 

highest concentration in the minimum solvent volume, a range of typical solvents were 

prepared, using a simulated ‘crude’ comprising of the weak base adenine and the 

zwitterionic ‘APCA’ in the ratio 1: 9 (w/w) to simulate product of 90% purity.  Apparent 
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solubility data are shown in Table 6.3. Apparent solubility in acetonitrile and acetone 

diluents containing formic acid were low at 6.4 mg /mL (Table 6.3). In preparative LC even 

stronger acids such as TFA are added, which enhance solubility. Therefore a small 

proportion (1%) of TFA was added to DMSO and an apparent solubility was observed 50% 

higher than neat DMSO (23 mg / mL). It is unclear why this as the case, and perhaps relates 

to the ion-pairing properties of this strong acid. To investigate alternative diluents to cover 

broad ranges of solute polarity, half the DMSO was substituted for dimethylformamide 

(DMF) which is an aprotic polar organic solvent commonly used in RPLC-prep to solubilise 

samples (Neue et al. 2003), again with TFA (1%). This achieved an apparent solubility of 

13 mg /mL, which was unfavourable compared to DMSO-TFA and thus not usuable as a 

generic solvent system in HILIC-prep. Mixtures of DMSO-Water-TFA were attempted (1:1 

with 1% v/v, respectively), since theory described by Yalkosky and co-workers (Millard et al. 

2002) suggested polar solutes are best solvated by water-cosolvent mixtures. This showed 

promise, with apparent solubility around double that of neat DMSO 32 mg / mL (Table 6.3). 

Higher concentrations of water with DMSO were then considered combined with a higher 

TFA content (75% water with 10% TFA added, respectively), to establish if even higher 

solubility was possible, and in fact this was no better than lower water content (30 mg/mL 

75% water-25% DMSO with 10% TFA, cf. 32 mg / mL 50% water-50% DMSO with 1% TFA). It 

is possible that such high water content in the diluents would destroy chromatographic 

performance (Heaton et al. 2016) but this has not been evaluated on preparative or At-

Column Dilution systems for HILIC (see 4.3 below). 
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Table 6.3. Apparent solubility of HILIC-prep simulated crudes for some solvent systems  

Sample Solvent Apparent solubility/ 

 mg/mL 

APCA/Adenine 9:1 (w/w) ACN-water (50-50 v/v) with 

FA (0.1% v/v) 

6.4 

APCA/Adenine 9:1 (w/w) Acetone-water (50-50 v/v) 

with FA (0.1% v/v) 

6.4 

APCA/Adenine 9:1 (w/w) DMSO 15 

APCA/Adenine 9:1 (w/w) DMSO with TFA (1% v/v) 23 

APCA/Adenine 9:1 (w/w) DMF-DMSO (50-50 v/v) with 

1% TFA (v/v) 

13 

APCA/Adenine 9:1 (w/w) DMSO-Water (50-50 v/v) 

with 1% TFA (v/v) 

32 

APCA/Adenine 9:1 (w/w) DMSO-Water (25-75 v/v) 

with 10% TFA (v/v) 

30 

 

4.3 Purification by HILIC  

4.3.1 Generic vs. focused methods on an Atlantis column 

Analytical methods (see 4.1.2-4.1.3) were transferred to a prep-scale system to evaluate 

their suitability to purify polar solutes. All the preparative methods used a generic 

volumetric flow rate of 20 mL / min and run time of 30 min on the Atlantis and BEH Amide 

columns (21 x 150mm, 5 µm) using a standard preparative system. 1% TFA in DMSO (v/v)  

chosen as a generic diluent due to its good apparent solubility (4.2.1.2 above). 

Chromatograms are shown for the Atlantis in Fig. 6.4a – c using the simulated crude 
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‘APCA/AHPY’ prepared at a concentration of 22 mg / mL. The generic gradient preparative 

method is shown in Fig. 6.4a and ‘Zone 2’ focused isocratic method in Fig. 6.4b. On the 

Atlantis column, the generic gradient method was as effective as a focused isocratic method 

for purification of this simulated crude (Fig. 6.4a-b). The poor separation by ‘Zone 2’ focused 

isocratic method is consistent with the only modest improvements in separation afforded by 

the ‘Zone 2’ isocratic method analytically (4.1.3, Fig. 6.3a,c). A focused gradient method was 

developed for this column (Fig. 6.4c) and the resulting preparative chromatogram is shown 

in Fig. 6.4c. In this case, the focused gradient outperformed the focused isocratic and 

generic gradient methods in terms of achieving baseline resolution at increasing sample 

injection volumes (Fig. 6.4). It would seem that for the gradient methods the relatively rapid 

increases in mobile phase water content favours the benefit of gradient methods where 

after initial isocratic separation, the solute band is accelerated to the mobile phase velocity 

and the band is somewhat narrower (Fig. 6.4 a,c compared to Fig. 6.4 b).  
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Fig. 6.4a.  HILIC-prep chromatograms of simulated crudes with increasing injection 

volumes, Atlantis column (21mm x 150 mm, 5µm); generic gradient method. Solutes are 

simulated crude ‘APCA/Adenine’ 9:1 (w/w), diluent 1% TFA (v/v) in DMSO. Solvents as per 

Fig. 6.3a, flow rate 20mL / min. Gradient 0% ‘A’ isocratic hold (30s) then 0-36% ‘A’ in 15 

min, wash stage at 60% ‘A’ in 30s held for 6.5 min, gradient reset to 0% ‘A’ in 30s then 

equilibration for 7 min to give a 30 minute method. 
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Fig. 6.4b. HILIC-prep chromatograms of simulated crudes with increasing injection 

volumes, Atlantis column (21mm x 150 mm, 5µm); zone 2 focused isocratic method. 

Solutes are simulated crude ‘APCA/Adenine’ 9:1 (w/w), diluent 1% TFA (v/v) in DMSO, 

flow rate 20mL / min. Method 8% ‘A’ isocratic held for 15.5 min, wash stage at 60% ‘A’ in 

30s, reset to 0% ‘A’ in 30s then equilibration held for 7 min to also give a 30 minute 

method. 
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Fig. 6.4c. HILIC-prep chromatograms of simulated crudes with increasing injection 

volumes, Atlantis column (21mm x 150 mm, 5µm); zone 2 focused gradient method. 

Solutes are simulated crude ‘APCA/Adenine’ 9:1 (w/w), diluent 1% TFA (v/v) in DMSO, 

flow rate 20mL / min, solvents as per Fig. 6.2a. Method 5-18% solvent ‘A’ in 15.5 min , 

wash at 60% ‘A’ in 30s held for 6.5 min, reset to 5% ‘A’ in 30s held for 7 min to give a 30 

min method. 

Fig. 6.4. HILIC-prep chromatograms of simulated crudes with increasing injection volumes, 

Atlantis column (21mm x 150 mm, 5µm); (a) generic gradient method; (b) zone 2 focused 

isocratic method, (c) zone 2 focused gradient method. Solutes are simulated crude 

‘APCA/Adenine’ 9:1 (w/w), diluent 1% TFA (v/v) in DMSO, flow rate 20mL / min. 

4.3.2 Generic vs. focused methods on a BEH Amide column 

Simulated crudes of ‘Procainamide/AHPY’ were prepared in DMSO-TFA (1% v/v) at a 

concentration of 22 mg / mL and injected onto the BEH Amide column using a generic 

gradient method (Fig. 6.5a) and focused isocratic method (Fig. 6.5b). On this column, 

baseline resolution by focused method was facile and scalable, whereas for the generic 

gradient the two components co-eluted and resolution was impossible (Fig. 6.5). Overall 
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Fig. 6.4-6.5 show that generic or focused gradient methods can separate hydrophilic solute 

mixtures at preparative levels. The two columns have alternate retention order, therefore in 

practise a challenging purification on one column can be overcome by switching to the other 

column or using a focused method on the same column. It is interesting that although 

Procainamide/AHPY were close-eluting on the BEH Amide by preparative methods, these 

are well-separated at analytical scale on the Atlantis column, where AHPY is within zone 2 

but procainamide is elutes later than elution zone 2 (Fig. 6.3a). In this case it is anticipated 

that solutes which behave similar to Procainamide and AHPY can also be resolved by 

switching columns. In contrast AHPY/Adenine were close-eluting on both the Atlantis and 

BEH Amide columns at analytical scale, and on both columns these in eluted in ‘zone 2’ (Fig. 

6.3a, Fig. 6.3d), therefore switching columns is unlikely to be effective at improving the 

separation of these solutes and indeed those that eluted in the ‘zone 2’ area of the 

chromatogram. Perhaps generic gradient or focused gradient methods can be more 

effective at preparative separation of such medium-eluting solutes (Fig. 6.4a-c). It is unclear, 

however if the loss of separation performance at large injection volumes is due to volume 

overload or mass overload of the stationary phase. The preparative peaks typically fronted 

on both columns, which is normally observed for mass overload of basic solutes in HILIC 

(e.g. McCalley 2007). 
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Fig. 6.5a. HILIC-prep chromatograms of simulated crudes with increasing injection 

volumes BEH Amide column (21mm x 150mm, 5µm) (a) generic gradient method for 

‘Procainamide/AHPY’. Gradient 0-24% solvent ‘A’ over 15 min with wash at 60% ‘A’ for 6.5 

min, gradient reset to 0% ‘A’ then equilibration for 7 min to give 30 min method. Diluent 

1% TFA in DMSO (v/v). 
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Fig. 6.5b. HILIC-prep chromatograms of simulated crudes with increasing injection 

volumes BEH Amide column (21mm x 150mm, 5µm), (b) elution zone 1 focused isocratic 

method for ‘Procainamide/AHPY’, flow rate 20mL / min. Method 0% solvent ‘A’ held for 

15.5 min, wash at 60% ‘A’ in 30s held for 7 min, reset to 0% ‘A’ equilibration held for 7 min 

to give 30 min method. 

Fig. 6.5 HILIC-prep chromatograms of simulated crudes with increasing injection volumes 

BEH Amide column (21mm x 150mm, 5µm) (a) generic gradient method on for 

‘Procainamide/AHPY’, (b) focused zone 1 isocratic method for ‘Procainamide/AHPY’, flow 

rate 20mL / min 

4.3.3 Purification by HILIC using an At-Column Dilution (ACD) 

system 

At-Column Dilution (ACD) is designed for purifying large quantities of compound to 

overcome poor solubility, as described by Neue et al. (Neue et al. 2003). The sample can be 

injected by ACD in a solvent with good solubility and this is diluted with mobile phase of 

weak elution power to avoid distortion in peak shape from the sample diluent. The key 

benefit of ACD is the ability to inject large volumes of crude solutions for purification, from a 
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limit of 1 mL on a standard prep system used in this study to 4 mL on the ACD system, 

respectively. Here the sample is introduced via a pump in the diluent as prepared (e.g. for 

HILIC 1% TFA (v/v) in DMSO) in a slow-moving stream, and a splitter dilutes the sample plug 

before it reached the head of the column with mobile phase of low elution power (typically 

highly aqueous in RPLC). Thus a low volumetric flow rate (3 mL / min) is directed through 

the sample introduction pump to deposit the injection on the head of the column over the 

first 4 minutes of the method. A second pump is used (17 mL / min) to make-up an overall 

flow rate of 20 mL / min through the column, with a stream solely of mobile phase reservoir 

‘B’ (95% ACN with 5mM AF pH 3 with FA).  A method was developed using the Atlantis 

column (21 x 150mm, 5 µm) using a version of the generic gradient used on the standard 

preparative system (4.3.1 above). Initially, 1% TFA (v/v) in DMSO was used as diluent but the 

peaks were smeared across the chromatogram and the separation was not usable (data not 

shown). In RPLC-ACD, it is common practise to use DMSO as a diluent, due to good generic 

solubility and also its polarity ensures it is unretained, depositing the solute onto the column 

head. Neue et al. investigated the use of DMSO diluent on standard preparative and ACD 

systems, reporting peak distortions on the standard system attributable to viscous fingering 

due to a viscosity mismatch between DMSO and aqueous mobile phase at the start of their 

RP gradient (Neue et al. 2003). However in ACD there should be efficient mixing of DMSO 

with the mobile phase to negate such effects and indeed those authors reported good 

performance in DMSO diluent when ACD was used, attributable to dilution of the DMSO 

(Neue et al. 2003). This is given further consideration in 4.4.1 below. Therefore although the 

diluents shown in Table 6.3 were clearly useful on a standard preparative system (Fig. 6.4, 

6.5), an alternative approach was necessary for HILIC-Prep-ACD. The diluent was instead 

prepared to match the mobile phase (95% ACN with 5mM AF pH 3). It was anticipated that 

solubility would be compromised by using mobile phase rather than DMSO therefore TFA 

was added at concentrations of 1, 5 or 10% to ensure solubility was adequate. Careful 

application of heat and the addition of TFA resulted in apparent solubility of 23.4 mg / mL 

(APCA/Adenine 9:1 w/w) and 31.7 mg / mL (Cytidine/Adenine 9:1 w/w) (both 1% TFA v/v). 

The resulting chromatograms on the ACD system using the Atlantis column a generic 

method are shown in Fig. 6.6a. At 1% TFA, baseline resolution of the simulated crude 

Cytidine/Adenine (31.7 mg / mL) was possible, however the peaks became distorted at 5% 

TFA and retention of both solutes collapsed at 10% TFA content (Fig. 6.6a). This suggests 
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that TFA in the diluent alters the selectivity of the mobile phase, which was unexpected 

when using HILIC on an ACD system. This is discussed further in 4.4.3 below. Nevertheless, 

limiting the TFA content to 1% (v/v) for ACD removes this issue altogether (Fig. 6.6a). 

Fig. 6.6b shows injections of simulated crude ‘Cytidine/Adenine’ on the ACD system. 

Whereas to the standard preparative system which was able to purify crudes up to 1 mL 

injection per cycle (Fig. 6.4), the ACD system can easily improve on that to 4mL injections 

per cycle (Fig. 6.5b), which represents 127 mg in a single cycle. Interestingly, there was 

comparable separation performance for a 1mL injection of Cytidine/Adenine (9:1 w/w) on 

both the ACD and standard preparative systems (data not shown). Both the standard 

preparative injections and ACD injections gave overloaded peaks which fronted with 

increasing retention time as the sample size increased, which could be due to volume or 

mass overload. On the ACD system, however, when the sample fills the loop its volume is 

made up to 4mL from a dedicated reservoir (in this study mobile phase solvent ‘B’ was used, 

to match the low elution strength of mobile phase at the start of the gradient), such that 

4mL solution is always injected onto the column. Thus the ‘sample volume’ on the ACD is 

the volume drawn from the vial into the injection loop, for example a 1mL sample is drawn 

into the loop together with 3mL of solvent ‘B’ (described above) and 4mL is injected on 

column, the composition of which broadly matches the mobile phase at the start of the 

gradient. Therefore volume overload is perhaps unlikely by ACD since the sample is injected 

at a low flow rate and mixed with mobile phase to minimise losses in separation 

performance from the diluent. The overloaded peaks by ACD therefore probably were due 

to mass overload, which is normal in the high loadings of preparative LC (Neue 2005). In 

contrast, there was no such countermeasure to volume overload on the standard 

preparative system, therefore it is possible those samples not injected by ACD experienced 

some volume overload in addition to mass overload. There are no reports of ACD being 

attempted with HILIC purification, and these results clearly show applicability of Prep-HILIC-

ACD to purify polar ‘building block’ compounds in useful quantities.  
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Fig. 6.6a. HILIC-Prep-ACD of Cytidine/Adenine (9:1 w/w) using Atlantis column (21mm x 150 mm, 

5µm); effect of diluent TFA content. Diluent ‘Mobile phase B’ with TFA added (1, 5 or 10% v/v). 

Mobile phase ‘A’ = 70% ACN with 5mM Ammonium Formate w
w pH 3 with formic acid; ‘B’ = 95% 

ACN with 5mM Ammonium Formate ww pH 3 with formic acid. Generic gradient method adapted 

to ACD: 0% ‘A’ isocratic for 30s then 0-36% ‘A’ gradient over 15 min, wash at 60% ‘A’ for 6.5 min, 

gradient reset to 0% ‘A’ then equilibration for 7 min to give 34 min method. 

mob phase B + 10%TFA 

mob phase B + 5%TFA 

mob phase B + 1%TFA 

(a) 
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Fig. 6.6b . HILIC-Prep-ACD of Cytidine/Adenine (9:1 w/w) using Atlantis column (21mm x 

150 mm, 5µm). Effect of larger injections on the ACD system. Diluent ‘Mobile phase B’ 

with TFA added (1% v/v). Mobile phases and generic gradient method modified for ACD as 

per 6.6a. 

 

Figure 6.6. HILIC-Prep-ACD of Cytidine/Adenine (9:1 w/w) using Atlantis column (a) effect of 

diluent TFA content (b) effect of larger injections on the ACD system. Mobile phase ‘A’ = 70% ACN 

with 5mM Ammonium Formate w
w pH 3 with formic acid; ‘B’ = 95% ACN with 5mM Ammonium 

Formate ww pH 3 with formic acid. Generic gradient method adapted to ACD: 0% ‘A’ isocratic for 

30s then 0-36% ‘A’ gradient over 15 min, wash at 60% ‘A’ for 6.5 min, gradient reset to 0% ‘A’ then 

equilibration for 7 min to give 34 min method. 

4.3.4 Preparative productivity 

The Fornstedt group recently considered the factors which have the strongest effect on the 

productivity in prep (Forssén et al. 2014). Those authors studied 1000 randomly-selected 

purifications and using Monte Carlo simulations, they measured productivity according to 

equation 6.2. In a generic setup, once a method has been developed with a particular 

column dimension and mobile phase, flow rate and cycle time are constant and this 
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equation simplifies to a straightforward measure of amount purified per unit time (equation 

6.3). The generic methods developed in this study are 30 minutes long, which allows for a 

simple measurement of productivity in terms of mass of crude (in mg) purified per hour. 

Note the ACD methods are 34 min, which includes a 4min sample introduction at the start 

of the method. Thus the data of 4.3.1 – 4.3.3 can be evaluated in terms of productivity. In 

daily operation, a ’yardstick’ of greater than 30 mg crude purified in a reasonable time 

frame is used to discriminate useful preparative methods (‘scalable’). However in the field of 

drug development some chemists require only a few milligrams of novel compound to be 

purified. Thus a lower, but on occasion acceptable, limit shows possible preparative 

methods to fall-back on (‘small-scale’). Figure 6.7 plots the data for three simulated crudes 

of 4.3.1 – 4.3.3 using these limits, designating 60 mg of crude purified per hour a ‘scalable’ 

limit and 20 mg crude per hour a ‘small-scale’ lower limit. ACD methods on the Atlantis 

column gave the best performance, at 223 mg per hour using 4mL injections for the crude 

‘Cytidine/Adenine’. Productivity of generic gradient methods (Fig. 6.4-6.5) was somewhat 

similar between the standard prep and ACD system (63 mg/hr standard system, 55 mg/hr 

ACD) for the same 1mL injection volume of identical crude but the ACD is 4 min longer. 

These are both around ‘scalable’ limit, but for other crudes the standard prep system was 

limited to small-scale purifications, which are acceptable in some cases. Keeping the diluent 

constant (DMSO with TFA 1%), the focused elution ‘Zone 2’ gradient method (5-18% ‘A’ in 

15 min, by wash at 60% ‘A’ in 30s held for 6.5 min, gradient reset to 5% ‘A’ in 30s then 

equilibration held for 7 min to give a 30 min method, solvents as per Fig. 6.2a) 

outperformed the generic and ‘Zone 2’ isocratic (productivity 33, 22 and 22 mg / hour, 

respectively), due to improvements in peak shape (Fig. 6.5). Using the same diluent, for the 

BEH Amide column productivity was even higher at 44 mg / hour for the crude shown in red 

(Procainamide/AHPY). Further improvements are perhaps possible through minimising the 

DMSO content of the diluent. Removing the DMSO altogether and applying careful heat 

spiking with a small amount of TFA (as described in 4.3.3), crudes in diluent taken directly 

from solvent ‘B’ with added TFA (1% TFA v/v in 95% ACN with 5mM AF pH 3 with FA), 

productivities of 46.8 and 63.4 mg / hour were observed by generic methods on the 

standard prep system (crudes APCA/Adenine and Cytidine/Adenine, respectively). The 

productivity plots of Figure 6.7 indicate that HILIC can purify hydrophilic solutes in useful 
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quantities within a reasonable timeframe. Data for all usable preparative separations are 

provided in Table 6.4, for information. 
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Fig. 6.7. Productivity plot for preparative methods on standard and ACD systems. Arbitrary cut-offs of 20 mg / hr for small-scale purifications  

(dotted line) and 60 mg / hr for large-scale shown (dashed line). 
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Table 6.4 HILIC-Prep data for information 

Method Solutes Concentration 
mg / mL 

Volume 
injected 
µL 

Productivity 
mg / hr 

Standard Prep 

Atlantis  

Generic APCA/Adenine 6.4a 250 3.2 

 APCA/Adenine 6.4b 250 3.2 

 APCA/Adenine 12c 750 18 

 APCA/Adenine 22d 500 22 

 Cytidine/Adenine 31.7e 1000 63.4 

 AHPY/APOL 12c 1000 24 

 AHPY/APOL 22d 750 33 

Z2 isocratic APCA/Adenine 22d 500 22 

Z2 gradient APCA/Adenine 22d 750 33 

     

BEH Amide     

Generic Procainamide/AHPY 22d - - 

 APCA/APOL 22d 250 11 

 APCA/Adenine 22d <250 <11 

Z1 isocratic Procainamide/AHPY 22d 1000 44 

Z2 isocratic APCA/APOL 22d <250 <11 

 APCA/Adenine 22 <250 <11 

     

ACD     

     

Atlantis Generic APCA/Adenine 23.4e 1000 46.8* 

 APCA/Adenine 39d - - 

 APCA/Adenine 23.4f 1000 46.8 

 Cytidine/Adenine 31.7e 1000 63.4 

 Cytidine/Adenine 31.7e 2000 126.8 

 Cytidine/Adenine 31.7e 3000 190.2 

 Cytidine/Adenine 31.7e 4000 253.6 

     

a = 30% ACN in Water with 0.1% Formic Acid 

b = 30% Acetone in Water with 0.1% Formic Acid 

c = DMSO-DMF with 1.0% TFA 

d = DMSO with 1.0% TFA 

e = Mobile phase B with 1.0% TFA 

f = Mobile phase B + 60% NH3 

* distorted peak shape for zwitterionic APCA  
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4.3.5 Purification of zwitterion(s) 

The zwitterions used in this study (APCA, DABS) were unretained by Open Access RPLC 

methods (Figure 6.3). Classical ion-exchange methods can purify zwitterionic amino acids 

such as threonine, serine, proline and glycine, and this technique has been established since 

at least the 1950’s (Hirs et al. 1952). In a generic approach, however, use of the same 

equipment and ideally the same stationary phase for the majority of separations is an 

attractive prospect. The crude ‘APCA/Adenine’, where the zwitterion APCA was in excess of 

9:1 by mass to the weak base adenine, was analysed using the bare silica Atlantis column on 

a generic gradient method (Figure 6.8). To simplify the zwitterion to a basic or acid form, a 

strong acid (TFA) or strong base (ammonia) was added to the diluent, respectively. Due to 

possible chromatographic interference from the DMSO (4.4.4), this was substituted for 

‘Mobile phase B’ (95% ACN with 5mM AF pH 3 with FA). The separation using TFA (Fig. 6.8 

bottom) was useable, shown by the resolution of the two components (confirmed by 

extracted ion chromatograms, not shown). However APCA peak shape was severely 

distorted, as essentially two peaks with apexes at 12.37 and 19.99 min and a connecting 

bridge. The TFA added to the diluent is a strong acid and APCA ought to be injected as a 

single form, a positively-charged base. Fig. 6.8 middle and upper chromatograms show the 

separation of the two solutes with added ammonia (20% and 60% v/v respectively), with 

improved peak shape of APCA compared to when TFA was used (Fig. 6.8 lower 

chromatogram). At 60% ammonia, the severe distortion of APCA peak shape eliminated (Fig. 

6.8 upper), and it is anticipated that this separation can scale even higher on the ACD 

system if necessary (see Figure 6.6b for comparison). Ammonia was added with caution, as 

high pH mobile phase damages silica-based stationary phases due to dissolution of the silica. 

However the ammonia was used in the diluent only, which is expected to elute from the 

column within the method cycle (which contains a wash stage), as opposed to ammonia 

used in the mobile phase, which constantly flows through the column. Nevertheless, it is 

recommended that further studies consider the use of BEH silica in as an alternative to the 

‘type B’ silica used in this study: BEH uses ethylene bridges to replace silanols and the 

stationary phase is better resistant to use of high pH mobile phase. The severely distorted 

peak shape of APCA suggests its retention is more complex than simple hydrophilic cation-

exchange which occurs on this column for simple bases (Kumar et al. 2013). It is interesting 
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that this distorted peak shape with TFA was not observed for the neutral solute cytidine 

using TFA diluent by ACD (Fig. 6.6a shown in 4.3.3 above). Therefore APCA was probably not 

present as neutral in TFA diluent, also this is unlikely given its pI is around 4.75 

(www.chemicalize.org). At the presumed high pH afforded by ammonia ACPA is an acid, 

which should not retain on this bare silica column, however it was well retained under these 

conditions (Fig. 6.6a). Due to project time constraints, this could not be investigated further. 

Comparison with basic, neutral and acid solutes under equivalent conditions would be of 

interest as further study. The data of Fig. 6.8 show HILIC can be a viable option for 

purification of hydrophilic zwitterionic compounds.  

 

Fig. 6.8. HILIC-Prep-ACD chromatograms investigating any benefit of adding acid (TFA) or 

base (NH3) to the diluent for a crude containing a zwitterionic solute (APCA) and a weak 

base (Adenine) (23.4 mg / mL). Atlantis column with generic ACD method, 1 mL injections. 

1ml mob phase B + 60%NH3 

1ml mob phase B + 20%NH3 

1ml mob phase B + 1%TFA 

http://www.chemicalize.org/
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4.4 Possible explanations for poor ACD performance using 

DMSO or TFA 

4.4.1 Characterising of the effect of DMSO on peak shape 

using an analytical system 

It became apparent during prep ACD work (4.3.3) that DMSO present in the diluent possibly 

caused distorted peaks. To characterise this further, analyses were performed on a Thermo 

UHPLC system using an isocratic method on an Atlantis column (4.6mm i.d. x 250mm, dp 

5µm) with a typical HILIC mobile phase (85% or 95% ACN, 5mM AF pH 3 with FA). To 

establish if DMSO had affinity for this HILIC stationary phase, samples were prepared as a 

combined standard in neat DMSO (Fig. 6.9a) (DABS/APCA/AHPY at 1mg / mL each), also in 

50% ACN with 0.1% FA (v/v) with no DMSO present (Fig. 6.9b). The UV diode array detector 

was set to a somewhat low wavelength (240 nm) to detect DMSO. Fig. 6.9a shows an 

injection of a combined standard of DABS, APCA and AHPY on an Atlantis column 

(4.6 x 250mm, 5um) with 85% ACN mobile phase, buffered with 5mM AF pH 3, sample 

prepared in neat DMSO. Fig. 9a shows a large peak with a retention time around 5-6 min 

which is possibly either some impurity or DMSO itself. However Fig. 9b shows the same 

sample prepared in diluent containing no DMSO (50% ACN in water with 0.1% FA (v/v)), with 

the same separation conditions as Fig 9.a. Fig. 9b does not show this peak, therefore it is 

possible that DMSO retained on the Atlantis column with a broad, overloaded peak with 

severe tailing, apex approximately 5.2 min (k≈0.7) (Fig. 9a). This suggests that DMSO does 

have some affinity for that stationary phase in HILIC. Solute peak distortion occurred for 

both AHPY and APCA when this was present in the diluent (Fig. 6.9a) in agreement with an 

earlier study (Ruta et al. 2010). The presence of DMSO prevented the loss of efficiency from 

being accurately measured due to distortion of the AHPY peak (Fig. 6.9a). To characterise 

any relationship between DMSO content in the diluent and peak efficiency, which has not 

been reported for HILIC, Fig. 6.9c shows injections made on the same column under more-

retentive conditions (95% ACN, 5mM AF pH 3 with FA). Samples were again prepared as 

combined standards, but at higher concentration (DABS/APCA/AHPY at 5mg / mL each in 

neat DMSO) to allow for further dilution of the DMSO. Each sample was diluted further with 
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either neat DMSO or solution from mobile phase reservoir ‘B’ (95% ACN with 5mM AF pH 3 

with FA) to give an overall concentration of 1mg / mL for each sample, with decreasing 

DMSO content from neat DMSO down to 20% DMSO. Measurement using 0% DMSO 

content was not possible at this solute concentration, due to insufficient solubility at 95% 

ACN. Fig. 6.9c shows some peaks are distorted even at low DMSO content. Figure 9d plots 

the data of Fig 6.9c as peak efficiency vs. DMSO content of the diluent. There was some 

tolerance of DMSO content for the well-retained zwitterion APCA (k=8.8), with only 16% loss 

of efficiency (16,699 plates at 100% DMSO, 19,812 plates at 20% DMSO) (Fig. 6.9d). 

However peaks of both the moderately-retained zwitterion DABS (k=4.8) and weakly-

retained weak base AHPY (k=3.1) were highly sensitive to DMSO content: above 30% DMSO, 

AHPY was severely distorted with peak splitting. DABS exhibited shifts in retention for all 

incremental increases in DMSO content and efficiency loss was high at 64% (Fig. 6.9d: 5,764 

plates at 100% DMSO, 16,587 plates at 20% DMSO) (data provided in Table 6.5, for 

information). It is apparent from the peak shape DMSO in Fig. 6.9a that the DMSO overloads 

the column, which may be due to volume overload or mass overload. However the injection 

volume (5 µL) is not excessively large for the standard HPLC column used in this part of the 

study (4.6 x 250mm, 5 µm) and this is perhaps unlikely. To closer examine the DMSO peak, 

Fig. 6.9e shows a zoomed in chromatogram of the 100% DMSO injection from Fig. 6.9c, with 

a low wavelength UV channel displayed (215nm in 6.9e, 330nm in 6.9c) and highly retentive 

conditions on the Atlantis column (95% ACN mobile phase buffered with 5mM AF pH 3). 

Given that DMSO has some affinity for the stationary phase (Fig. 6.9a), mass overload is 

possible. In the neat DMSO injection (Fig. 6.9a,e), 5 mg of DMSO is injected which is large for 

an analytical column, around 1000 times larger than the sample mass injected for the 

individual solutes (5 µg). Closer inspection of Fig. 6.9e shows that although the majority of 

the DMSO retains until around 7-8 min, the DMSO remains on the column until around 15 

min into the run, under these isocratic, highly-retentive conditions. It is interesting that 

DMSO has a hydrogen bond basicity of 0.43, which is somewhat higher than acetone (0.38) 

and acetonitrile (0.25) (Snyder et al. 2010). In the case of acetone as a mobile phase 

modifier (4.2.1), it is possible this solvent interacts with hydrogen bonding solutes resulting 

loss of retention. The similarly strong hydrogen bonding basicity of DMSO, when used in 

high diluent content, perhaps similarly interacts strongly with these solutes, all three of 

which contain hydrogen bonding groups (3 on AHPY, 4 on APCA, 5 on DABS). In contrast, 
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when acetone was used as diluent (4.3), its effect on retention or peak shape was negligible 

(Fig. 6.4a), presumably because it is sufficiently hydrophobic (log D > 0 

(www.chemicalize.org)) to be unretained (Fig. 6.4a) and eluted from the column before it 

could interfere with retention. DMSO, however was retained (Fig. 6.9a) and perhaps 

mediated between solute and stationary phase in a disruptive manner such that peaks were 

distorted. A recent study in a series by Dolan, Snyder et al. investigating causes of retention 

in RPLC speculated that in RPLC, solutes capable of hydrogen-bond acidity interact with 

hydrogen-bond basic silanols on the silica surface of those columns (Carr et al. 2015). 

Additionally, Heaton et al. reported that ephedrines able to internally hydrogen-bond were 

less retentive on a bare silica column than those with available hydrogen-bonding groups 

(Heaton et al. 2012). Perhaps DMSO and acetone are able to accept solute acidic hydrogen 

bonds from solutes which would otherwise interact with the water layer or silica surface. It 

is interesting to note the tailing peak shape of DMSO, in contrast to the fronting typically 

observed for charged bases in HILIC under conditions of mass overload. Nevertheless it is 

therefore preferable to minimise the quantity of DMSO used to prepare samples in HILIC, 

for both analysis and purification by ACD (4.4). 

Fig. 6.9a. Chromatograms for combined standards of DABS, APCA and AHPY. Diluent neat DMSO.  

DAD detection at 240nm, mobile phase 85% ACN 5mM AF pH 3 with FA. Atlantis column 

(4.6 x 250mm, 5 µm). Peak identities (1) AHPY, (2) DABS, (3) APCA, (4) DMSO. 5 µL injections 

2 

3 

1 
4 

(a) 



 

Page 198 of 246 

Fig. 6.9b. Chromatograms for combined standards of DABS, APCA and AHPY. Diluent ACN-water-

FA (50-50, 0.1% acid v/v). DAD detection at 240nm, Mobile phase 85% ACN 5mM AF pH 3 with FA. 

Atlantis column (4.6 x 250mm, 5 µm). Peak identities (1) AHPY, (2) DABS, (3) APCA. 5 µL injections 

Fig. 6.9c. Overlaid chromatograms combined standard prepared in diluent with increasing DMSO 

content (20-100% DMSO in mobile phase) (Atlantis column, mobile phase 95% ACN 5mM AF pH 3 

with FA, UV 330nm). Peak identities (1) AHPY, (2) DABS, (3) APCA. 5 µL injections 

2 1 

3 

2 1 
3 (b) 

(c) 
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Fig. 6.9d. Plot of efficiency (N0.5) vs. DMSO content using data from 6.9c 

 

Fig. 6.9e. Zoomed chromatogram using 100% DMSO diluent, UV 215nm. Other conditions as per 

Fig. 6.9c. Full chromatogram shown inset. 5 µL injection 

 

Figure 6.9. Effect of DMSO on isocratic analytical separations (a) chromatograms for 

combined standards of DABS, APCA and AHPY prepared in neat DMSO showing extra peak 

observed at low wavelength UV (240nm, 85% ACN 5mM AF pH 3 with FA) (b) combined 

standard prepared with ACN-water-FA (50-50, 0.1% acid v/v), (c) overlaid chromatograms 

combined standard prepared in increasing DMSO content (20-100% DMSO) (Atlantis 

column, 95% ACN 5mM AF pH 3 with FA) (d) plot of efficiency vs. DMSO content. Peak 

identities (1) AHPY, (2) DABS, (3) APCA, (4) DMSO. 
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Table 6.5 Effect of diluent DMSO content on analytical peak efficiency, for information 

DMSO content in 

1mL sample 

N / plates per column 

AHPY (k = 3.1)* DABS (k= 4.8)* APCA (k=8.8)* 

20% 12,515 16,587 19,812 

30% 6,208ᵟ 15,348 19,644 

40% Ɨ 13,335 19,428 

50% Ɨ  10,689 19,060 

60% Ɨ 8,899 18,628 

70% Ɨ 7,896 18,164 

80% Ɨ 7,215 17,588 

90% Ɨ 6,455 17,152 

100% Ɨ 5,764 16,699 

* t0 (toluene) = 3.145 min; ᵟ peak shouldering;Ɨ peak splitting; UV 330nm 
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4.4.3 Loss of resolution in ACD with 10% TFA diluent  

To maximise the mass loaded on column by ACD (4.3.3), TFA was added to sample diluents 

(1, 5 and 10% TFA v/v in 95% ACN with 5mM AF pH 3, i.e. mobile phase from reservoir B 

spiked with the respective amount of TFA), with a view to enhance apparent solubility. 

However as noted in 4.3.3, this was disastrous above 1% TFA with complete loss of 

retention at 10% TFA (v/v). The conditions used in ACD, where the diluent is slowly injected 

onto the column to maximise loadability, is perhaps analogous to the use of TFA as a mobile 

phase buffer on analytical systems. McCalley recently reported that use of TFA in HILIC 

mobile phases can result in repulsion of bases from bare silica stationary phases, with a 

possible explanation being the accumulation of positive charges in the column pores. These 

are perhaps hydroxonium ions that balance the negative charge of trifluoroacetate 

(McCalley 2015). In ACD the sample is slowly introduced in this technique (3mL / min with 

make-up from weak-eluting solvent at 17mL / min) in a similar fashion to use of TFA as a 

mobile phase buffer. It is possible that the excessive TFA (10%) used in some Prep-HILIC-ACD 

samples (Fig. 6.6a) resulted in a similar phenomenon to that reported on analytical columns 

when TFA was used as a mobile phase buffer in HILIC (McCalley 2015).   
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5. Conclusion 

This study found some generic approaches for analysis and purification of polar ‘building 

block’ compounds by HILIC-HPLC, HILIC-Prep and HILIC-Prep-ACD. Attempts at separating a 

mixture of eight polar probe solutes low pH using formic acid or trifluoroacetic acid were 

unsuccessful. A high pH method separated only three out of the eight probe solutes, 

interestingly including the strong base procainamide and the weak bases 6-Aminoindazole 

and adenine. HILIC methods were developed with alternate selectivity. Following earlier 

reports of selectivity differences between acetone and acetonitrile (Heaton et al. 2011), 

acetone was substituted for acetonitrile, however there was good correlation between 

retention of 29 probe solutes including acids, bases and neutrals in acetone and acetonitrile 

mobile phases. Retention in acetone was lower for equivalent organic content mobile phase 

on the same column compared to ACN. It is possible that acetone’s somewhat stronger 

hydrogen-bonding basicity contributes to this, perhaps through acetone-solute interactions 

or acetone-water interactions, the latter of which would preclude an appreciable water 

layer from forming on the stationary phase. Drawing on the conclusions of HILIC column 

evaluation studies (Kumar et al. 2013, Dinh et al. 2011, Kawachi et al. 2011), an Atlantis bare 

silica and BEH Amide column were chosen due to expected alternate selectivity. Generic 

HILIC methods on both the Atlantis bare silica and BEH Amide column successfully separated 

all eight test probes, which included weak bases which were structural isomers (2-Amino-3-

hydroxypyridine and 2-Aminopyridin-4-ol), two zwitterions (2,5-Diaminobenzenesulfonic 

acid and 2-Aminopyridine-3-carboxylic acid), two other weak bases (Adenine and 6-

Aminoindazole) one strong hydrophilic base (procainamide hydrochloride) and a neutral 

solute (cytidine). Retention order on these columns was alternative, suggesting in practise 

switching from one column to the other is a possible option to achieve separation of 

challenging hydrophilic solutes. Focused isocratic methods were developed using these 

probe solutes as markers dividing up the full gradient into elution zones, to enhance 

selectivity in areas where a compound of interest may elute. These methods were 

transferred to a standard prep system, where separations were possible with injection 

volumes up to 1 mL. Useful concentrations of simulated crude were achieved using DMSO 

with a small TFA content (1% v/v) and this was viable for preparative separation of up to 

16.5 mg crude on column in a single injection (Atlantis) to 22mg (BEH Amide). Moving the 
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generic method to an At Column Dilution preparative system, where the sample is 

introduced slowly onto the head of the column and a make-up flow delivers weakly-eluting 

mobile phase (95% ACN with 5mM AF pH 3, diluent of mobile phase with 1% TFA added v/v) 

improved this dramatically to 4 mL injections of similar concentrations. However the ACD 

system was somehow incompatible with the use of DMSO in the diluent, which was 

somewhat unexpected. The effect of DMSO diluent on peak shape was characterised on an 

analytical system using an Atlantis column of identical column chemistry. It was found that 

DMSO has some affinity for HILIC stationary phase, in addition to the affinity solutes have 

for DMSO implied by their good solubility in this solvent. DMSO content above 20% 

analytically resulted in peak splitting for a weakly-retained solute and loss of theoretical 

plates for better-retained solutes. However the performance of DMSO as a diluent on 

standard preparative systems was acceptable in many cases. On the ACD system, even at 

injection volumes comparable to the standard prep system (1mL), separation was 

impossible. It is unclear how ACD is incompatible with DMSO for that technique, and the 

large injection volumes used in ACD are perhaps a contributory factor. However a possible 

explanation is that the slow sample introduction, which is purposefully used in ACD, enables 

the DMSO to percolate through the column and overload adsorption sites which disrupts 

solute retention. It is advised that DMSO is used with caution in HILIC, to preserve 

acceptable chromatographic performance analytically and preparatively when ACD is used. 

Low levels of TFA, however, gave improvements in apparent solubility, and provided its 

content was limited to 1 % (v/v), there was no obvious deleterious effect on 

chromatography. Use of TFA even afforded good apparent solubility in acetonitrile-rich 

diluent with careful warming of samples (31.7 mg / mL). Productivity plots adapted from 

(Forssén et al. 2014) to a generic measurement of crude purified per hour showed clear 

viability of HILIC-Prep and HILIC-Prep-ACD to purify useful quantities of hydrophilic ‘building 

block’ compounds (63 mg /  h and 223 mg /h, respectively). Overall it is concluded that HILIC 

is viable as a technique to analyse and purify compounds in fragment-based drug design. 

Further work is necessary to evaluate both columns in ACD and apply conclusions from this 

study to broader projects. Other techniques such as supercritical fluid chromatography (SFC) 

(Lesellier et al. 2015), which uses carbon dioxide as an organic mobile phase under high 

pressure, can also separate polar solutes. Both techniques have mobile phase that is easily 

removed in work up following purification although CO2 sublimates to gas once the pressure 
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is removed. It is anticipated that HILIC and SFC are complementary options in achieving 

these aims.  
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Chapter 7 
 

Overall Conclusion and Further Work  
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1. Overall Conclusion 

Generic methods for analysis and purification of polar pharmaceuticals were developed 

using the technique hydrophilic interaction chromatography (HILIC). The mobile phase was 

chosen based on a detailed study of possible buffers, including simple acids and buffers on a 

range of stationary phases. Formic acid as a mobile phase buffer was disastrous in terms of 

peak efficiency for ionisable compounds, and resulted in retention shifts. It is believed that 

the reasons for this are the low ionic strength of formic acid, which is poorly able to shield 

ionogenic solutes from solute-solute and solute-stationary phase repulsion, thus resulting in 

poor efficiency. Ammonium formate buffer, 5mM w
w pH 3, was chosen as a generic mobile 

phase buffer, which gave good to excellent peak efficiency for most solutes on all columns 

studied. Measurement of pH where the electrode is first calibrated in aqueous buffers then 

the hydroorganic solvent (acetonitrile/water with buffer) showed the w
s pH of the buffer 

when measured in high concentrations of acetonitrile is more-neutral than expected from 

the ww pH 3 (measured in aqueous solution).  

The performance of the Charged Aerosol Detector with Hydrophilic Interaction 

Chromatography (HILIC) was evaluated with a broad range of solutes, using two HILIC 

columns and by flow injection analysis (FIA). It was anticipated that CAD response would be 

excellent in HILIC due to facile evaporation of these acetonitrile-rich mobile phases. This was 

the case: peak areas doubled in HILIC compared to RPLC conditions by FIA, and signal to 

noise ratios roughly quadrupled which was even better than expected. On further 

investigation, the noise decreased in HILIC compared to RPLC conditions, again possibly due 

to facile evaporation The CAD was found to have quasi-universal response, with no response 

for volatile solutes that are liquid at room temperature and reduced response for so-called 
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semi-volatile solutes such as caffeine. Response was reasonably uniform for 21 non-volatile 

solutes (14% RSD with HILIC mobile phase), and a previously unreported observation was 

made that bases gave higher responses than neutral compounds. It was considered possible 

that this was due to salt formation, and the increased CAD response was possibly due to 

added mass from a salt counter-ion. Studies of response for a range of solute chemistries 

using mobile phase acid buffers with increasing acid anion mass (FA, TFA and HBFA 

respectively) showed basic solutes exhibited somewhat increased response in the heavier-

acid anions. However this did not increase stoichiometrically with the increased mass of acid 

anion, suggesting a complex mechanism. Unexpectedly, response for weak acids decreased 

when TFA and HFBA were used relative to the response in FA. TFA and HFBA are stronger 

acids and it is possible that weak acids were neutralised. In accordance with earlier 

observations, the neutral form of a solute can give lower CAD response than when charged, 

and it was suggested it is possible the short time available to undergo all detector processes 

(~1s) favours rapid formation of stable aerosol particles, which is conceivably easier for 

ionogenic solutes due to stronger intermolecular forces. Detector linearity was investigated 

by HPLC for an acid, a hydrophobic base and a hydrophilic neutral solute, and found to be 

non-linear over 1-1000 mg / L (three orders of magnitude). It was attempted to fit 

experimental data to an equation derived from aerosol formation in ELSD, but the CAD plots 

were more-linear than expected over this scale. It is speculated that particle density does 

not increase in proportion to increases in solute concentration, which could explain the 

shape of the CAD calibration curves. Non-chromophoric solutes were successfully detected 

by CAD, including inorganic salts (combined standard including ions Na+, Cl-, K+, NO3-, Li+, Br-, 

I-) which were separated isocratically on a BEH Amide column. Loading large amounts of the 

salt nortriptyline hydrochloride on a BEH Amide and bare silica Atlantis column revealed 
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that chloride signal did not level off at higher concentrations. This suggested that cations 

and anions migrate separately down the column at all observed concentrations, forming 

independent solute bands. Using these data, a dynamic range over four orders of magnitude 

was observed (1 – 10,000 mg / L). A new version of the CAD, the Corona Veo, was compared 

to the previous Corona Ultra model. The Veo nebuliser was a concentric design, comparable 

to an MS interface, as opposed to the cross-flow design of the Ultra, comparable to atomic 

adsorption spectroscopy. At moderate sample concentrations, the signal to noise ratio was 

superior on the Ultra model, which was unexpected. It is speculated that the change in 

nebuliser design is a possible cause of this, since concentric nebulisers are designed to 

deliver the majority of the effluent, whereas cross-flow nebulisers send the majority of 

effluent to waste. Although more solute is delivered to the detector in the Veo, more noise 

is also transported and the signal quality suffers. A feature of the Veo was the ability to 

increase the evaporation tube temperature up to 90°C, to manipulate volatility and improve 

signal quality. This feature was used in a study on the viability of HILIC-CAD to retain and 

detect highly hydrophilic species with no chromophore: simple sugars and amino acids. Use 

of an optimised evaporation temperature at 70°C improved signal and signal quality for the 

sugars glucose and galactose from below the limit of detection to above the limit of 

quantitation. However we observed disastrous losses of signal for hydrophobic solutes at 

temperature increases (30°C to 60°C and 80°C). It is possible this was due to evaporation of 

hydrophobic species from the aerosol droplet at elevated temperatures. It was therefore 

recommended that evaporation temperature kept low as a generic detector setting. Using 

the Ultra CAD and an amino column with HILIC mobile phase, real samples of cider and beer 

were analysed for content of simple sugars. High levels of fructose (4 g per British pint) and 

glucose (~30 g per British pint) were found in the cider, though glucose peak shape was 
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distorted and quantitation of that sugar can only be roughly estimated. A possible cause was 

the acidity of the cider sample slowing down the speed of mutarotation and this analysis 

requires further method development. A combined standard of four underivitised amino 

acids was retained by HILIC on an Atlantis bare silica column and detected by CAD, although 

baseline resolution was not achieved. Separation of these highly hydrophilic species remains 

challenging even by HILIC and generic method development is preferable to optimise time 

spent on these separations. 

A selection of polar building block solutes was chosen to evaluate the viability of HILIC as 

purification technique: eight solutes containing zwitterions, weak bases, a strong base and a 

hydrophilic neutral species. Some approaches to develop methods with alternate selectivity, 

which can then be used in a ‘tool box’ of methods. Using analytical columns, separation of 

this mixture was impossible by RPLC at low pH, and at high pH only three out of eight were 

resolved. HILIC separations were therefore investigated. To achieve alternate selectivity, the 

possibility of changing mobile phase organic solvent was investigated using a bare silica 

HILIC column. Acetone was substituted for acetonitrile, as ACN is expensive and toxic and 

has been reported to show alternate selectivity (Heaton et al. 2011). However, to compare 

selectivity between the two mobile phases, the correlation coefficients of separations for 29 

solutes on an Atlantis column using acetone or ACN were found to be near one. This 

suggests the retention order is relatively unchanged between acetone and ACN and this 

alternative solvent probably offers little selectivity advantages. Interestingly, retention of 

acids was lost completely in acetone. Additionally, solutes with strong hydrogen-bonding 

character lost retention to a greater extent than those with lower hydrogen-bonding 

character. Acetone is a relatively strong hydrogen-bonding base, and it is possible this is 
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able to hydrogen-bond to the solute, and thus reduce solute-stationary phase interactions. 

Alternatively, acetone may hydrogen-bond with the stationary phase and block solute 

retention: retention for all species was lower in acetone than ACN. Instead, achieving 

alternate selectivity by changing the column was considered, as reports suggested this can 

be effective in HILIC (e.g. Kumar et al. 2013). Generic HILIC gradient methods were 

developed on bare silica and BEH Amide analytical columns and these could resolve a 

mixture of all eight solutes. Focused isocratic methods were then developed to further 

improve upon these separations for solutes eluted in early and central zones of the 

gradient. These methods were transferred to a preparative system using wider-bore 

columns with identical chemistry and length (21 vs. 4.6 mm i.d., 15 cm length, 5 µm particle 

size). A generic measure of productivity was used, measured in mg of ‘crude’ purified per 

hour, was used to evaluate performance for three simulated crudes using generic and 

focused methods. The generic method was then transferred to an At-Column Dilution 

preparative system, where the separation scaled up to 4,000 µL injections and resulted in 

productivity in excess of 250 mg of crude purified per hour. The conclusion was that HILIC is 

indeed a viable purification technique for polar pharmaceuticals. Solvents used in the 

sample diluent had some deleterious effects on the separations, namely dimethylsulfoxide 

(DMSO) and water, both of which can dissolve hydrophilic solutes. Investigation on an 

analytical system with an Atlantis bare silica column showed DMSO destroyed peak shape at 

greater than 20% v/v concentration (the rest being ACN) in the injection solvent, although it 

did improve apparent solubility for hydrophilic solutes. On balance, minimising DMSO 

content was advised in a generic setup. 
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2. Further Work 

Similarities in retention behaviour between the bare silica and type C silica were intriguing, 

similarly for reports by the Watson group (Bawazeer et al. 2012). It is unclear what the 

specific cause of this is. Further study including analysis of stationary phase emptied from 

columns and examined with a suitable technique such as FT-IR or NMR may elucidate this 

further. It is anticipated a possible cause is the silica hydride bond itself is unstable. An 

alternative interpretation is the crosslink siloxanes in the ‘silanised’ layer of silica hydride 

are not in fact connected, providing a layer of silanol groups. This would mean a highly 

hydrophilic environment in the pores of ‘type C’ silica. This would be somewhat different to 

the environment of ‘type B’ silica which contains siloxane bonds which are reasonably 

lipophilic and silanols which are hydrophilic. However, a study by Santali et al. showed the 

retention of quaternary basic solutes increased at low ACN content on both ‘type B’ and 

‘type C’ silica columns when a quaternary salt-buffered mobile phase was used. Although 

not commented on by those authors, this suggests that siloxane crosslinks were in fact 

intact. Therefore the stability of the silica hydride bond is perhaps a cause. 

The HILIC-CAD applications (Chapter 5) of sugar and amino acid analysis require further 

method optimisation. It is anticipated that use of the Ultra CAD with a BEH Amide column 

and high pH mobile phase can perform this analysis. Given that sugar consumption has 

health implications, and current labelling on sweetened beverages only states the overall 

sugar content, a generic HILIC-CAD sugar analysis would be useful to determine levels of 

individual sugars. Therefore collaboration with a healthcare researcher would perhaps be 

appropriate. Integration of a generic method similar to those in chapter 6 with inverse 

gradient equipment (Gorecki et al. 2006) is perhaps a promising strategy for that. It is a. 



 

Page 212 of 246 

priori known that beers and ciders contain sugar based on their apparent sweetness, but 

not which individual sugar and at what levels those are. Based on anecdotal evidence the 

general population are unfamiliar with HPLC or indeed any separation science beyond 

separating dyes on filter paper as taught in school. It may therefore be an interesting public 

engagement exercise to educate people about HPLC, CAD and sugar content of drinks to 

collect samples of alcoholic drinks from volunteers in an evening, for example from a 

Student’s Union, analyse those using a pre-prepared generic HILIC-CAD method and send 

those to the volunteer for their information. Perhaps even a smartphone app could be 

developed for this purpose. 

A pragmatic study of purification by HILIC showed performance in terms of productivity for 

HILIC in prep was excellent, particularly when At-Column dilution was used (chapter 6). 

However the precise reason for improved stationary phase loadability in HILIC compared to 

RPLC for polar pharmaceuticals remains elusive. Though not shown here, a brief study was 

undertaken in this project comparing bare silica, BEH amide and BEH-C18 columns for some 

bases. The Atlantis outperformed the BEH Amide and both HILIC columns outperformed 

BEH-C18. This may be due to the partition mechanism of HILIC involving the water layer, 

rather than a possible surface interaction mechanism in RP, although partition is also a 

component of RP retention. However bare silica columns in HILIC show better loadability of 

bases than RP (McCalley 2007, Gritti et al. 2015), and for example the base procainamide 

had distorted peak shape on the BEH Amide column in chapter 6. It is speculated that bare 

silica columns such as the Atlantis are optimal for purification of basic solutes by HILIC, due 

to an abundance of cation exchange sites in the form of silanols. Bonded phase columns 

such as the BEH Amide do not have such availability of cation exchange sites, as shown by 
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their weak cation exchange behaviour in terms of retention (Kawachi et al. 2011, Dinh et al. 

2011, Kumar et al. 2013). Likewise perhaps neutral solutes are perhaps better suited to a 

polar bonded phase column such as BEH Amide, as those columns are thought to hold more 

water for solute partitioning (Dinh et al. 2013). A study comparing loadability of HILIC 

column chemistries other than bare silica (e.g. BEH Amide, ZIC-HILIC, pentadiol) may show 

good performance for neutral and zwitterionic solutes. Additionally, alternative non-silica 

stationary phases such as porous graphitic carbon (PGC, Hypercarb) may have alternative 

selectivity in HILIC mobile phase. However their loadability in HILIC mobile phase is 

uncharacterised and is interesting for further study. 

The full adoption of HILIC-Prep and HILIC-Prep-ACD is desirable given the promising results 

in chapter 6. This is outside of the scope of this study, which instead has been disseminated 

to the industrial collaborator of this project to inform decisions with regards to these 

techniques. In particular, comparison to an evaluation of SFC would inform the optimum 

choice of technique for polar pharmaceuticals.  

A possible explanation for reduced retention in acetone compared to acetonitrile HILIC 

mobile phase is possibly a disruption of hydrogen bonding between the solute and 

stationary phase (chapter 6). However the main focus of that study was on developing 

generic methods for analysis and purification, and limited time could be spent investigating 

this issue. A report by Carr et al. suggested ‘type III’ hydrogen bonding columns in RPLC, i.e. 

those which contain a polar group as a ligand, had strong hydrogen-bonding with solutes 

(Carr et al. 2015). A more in-depth study comparing retention in acetone and ACN on a BEH 

Amide column in HILIC may show less-pronounced reduction in retention compared to the 

bare silica column used in chapter 6, as BEH Amide columns have hydrogen bonding 
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character shown by retention increasing greatly in 95% compared to 85% ACN for certain 

solutes. e.g. uridine (Kumar et al. 2013). The weak retention afforded by acetone mobile 

phase may be a useful attribute for highly hydrophilic species such as sugars and amino 

acids, where the UV absorbance of acetone isn’t a problem. 
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I.1 List of Figures 

Fig 1.1: bonding a ligand to silica using a condensation reaction 

Fig 1.2: Simple scheme of HILIC retention with neutral (X), basic (X+) and acidic (Y-) solutes 

Fig. 1.3: The Charged Aerosol Detector 

Figure 1.4. At Column Dilution 

Fig 3.1: Structures, pKa, log P/D and charge at ww pH 3 and ww pH 5 for the probe solutes 

Fig. 3.2. Initial results for eleven probe compounds, (a) Atlantis (b) BEH Amide, (c) Cogent, (d) ZIC-

HILIC columns. Vertical scale is peak efficiency at half-height in plates per column; peak 

asymmetry at 10% height shown in purple boxes above efficiency bar plots. Stationary phase BEH 

Amide (4.6 x 150mm, 3.5µm) mobile phase 89.425% ACN with respective buffer. Blue = 

Ammonium Formate 5mM; Red = Formic Acid 0.1% v/v. 

Fig. 3.3 ZIC-HILIC column (a) nortriptyline with mobile phase 90% ACN, 5 mM overall AF pH 3; (b) 

nortriptyline with 90% ACN containing 0.1% FA; (c) BSA with AF; (d) BSA with FA; (e) pyridine with 

AF; (f) pyridine with FA. Flow rate 0.5 cm3/min. 

Fig. 3.4 Comparison of retention (k vs. k) plot for bare silica (Atlantis) vs. hydride silica (Cogent) 

using 90% ACN containing 5 mM ammonium formate ww pH 3.0. Other conditions as Fig. 2. 

Fig. 3.5 Retention factor (k), column efficiency (N) and asymmetry factor (As0.1) measurements for 

Atlantis silica column using 85–95% ACN containing (a) 5 mM ammonium formate ww pH 3.0 (b) 

0.1% formic acid; for BEH amide column using (c) 5 mM ammonium formate ww pH 3.0 and (d) 

0.1% formic acid; asymmetry data in FA not shown for procainamide as split peaks were obtained. 

Other conditions see Fig. 2. 

Fig. 3.6. Effect of sample mass on efficiency of Atlantis silica column using procainamide (strong 

base), TMPAC (quaternary ammonium salt), adenine (weak base) uridine (neutral). Mobile phase 

90% ACN containing 0.1% FA. Other conditions see Section 2. 

Fig. 3.7. Effect of buffer salt on retention using Atlantis silica column. Mobile phase90% ACN 

containing salt adjusted to ww pH 3.0 with FA. 

Fig. 4.1 Simple Schematic of CAD operation 

Figure 4.2. Peak area vs. concentration for a neutral (Uridine), acid (BSA) and base (Nortriptyline) 

(a) CAD Ultra, (b) DAD and (c) log/log CAD Ultra (HPLC, mobile phase 80%ACN, 5 mM ammonium 

formate pH 3). 
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Figure 4.3. HILIC-CAD separation and detection of the salts (a) benzyltriethylammonium chloride, 

(b) benzyltriethylammonium bromide, (c) benzyltriethylammonium iodide;(d)–(e) nortriptyline 

hydrochloride. Peak identities 1 = benzyltriethylammonium, 2 = chloride, 3 = bromide, 4 = iodide, 5 

= nortriptylinium. HPLC, mobile phase 80% ACN for(a)–(c), 95% ACN for (d), 90% ACN for (e) all 

containing 5 mM ammonium formate pH 3, Atlantis column for (e), BEH Amide column for all 

others. Nortriptyline hydrochlorideconcentration 100–10,000 mg/L, injection volume 10 L, others 

300 mg/L, injection volume 1 µL. 

Figure 4.4. (a) CAD response for 29 compounds (FIA, mobile phase 80% ACN, 5 mM ammonium 

formate pH 3). Blue = bases, red = acids, green = neutrals. (b) CAD Ultra data indilute acids for the 

bases nortriptyline and cytosine, acids BSA and 4-HBA and the neutral Uridine (FIA, 80% ACN, FA 

(0.1% v/v) vs. TFA (0.2%) vs. HFBA (0.345%)). Predictedvalues from ratios explained in 3.4.3 in 

hashed-line bars. 

Figure 4.5. CAD response for 29 compounds, plotted against (a) boiling point, and (b)melting point; 

(c) molecular mass (FIA, conditions as per Fig. 4.2). 

Figure 4.6. Effect of organic solvent content on (a) peak area, (b) signal to noise ratio and (c) noise 

(FIA, mobile phase 10–95% ACN, other conditions as per Fig. 4.2). 

Figure 4.7. Effect of elevated temperatures on Veo response in order of log D (−ve onleft, +ve on 

right) (FIA, mobile phase 90% ACN, other conditions as per Fig. 2). Log D values were the average 

from three software packages (see Section 2) Blue = 30°C,Red = 60°C, Green = 80°C. 

Figure 4.8. HILIC separation and CAD detection of (a) a mixture of inorganic salts, (b) calcium 

chloride, (c) magnesium chloride. Peak identities 1 = iodide, 2 = nitrate, 3 = chloride,4 = potassium, 

5 = sodium, 6 = lithium, 7 = calcium, 8 = magnesium (HPLC, mobile phase 70% ACN, 5 mM 

ammonium formate pH 3, BEH Amide column). 

Fig. 5.1 D-glucose in either (α) or (β) form 

Fig. 5.2 (a) Nine sugars on BEH Amide column. Mobile phase 70% ACN with 0.1% TEA, CAD Veo 

detection (1) Levoglucosan, (2) Ribose, (3) Fructose, (4) Mannose, (5) Maltose, (6) Glucose, (7) 

Galactose, (8) Sucrose, (9) Sorbitol. 1 µL injections; (b) Levoglucosan CAD Veo peak area and Signal 

to Noise ratios 100 – 2500 mg / L; (c) Ribose CAD Veo peak area and Signal to Noise ratios 100 – 

2500 mg / L; (d) Sucrose CAD Veo peak area and Signal to Noise ratios 100 – 2500 mg / L; (e) 

Glucose CAD Veo peak area and S:N at 1000 mg / L, 1 µL injection, mobile phase 75% ACN with 

0.1% TEA; (f) Galactose CAD Veo peak area and S:N at 1000 mg / L, 1 µL injection, mobile phase 

75% ACN with 0.1% TEA. 

Figure 5.3 (a) Peak areas by flow injection analysis for 29 solutes for two CAD models. Blue = Ultra, 

Red = Veo; (b) Signal to noise ratios by flow injection analysis for 29 solutes for two CAD models. 

Blue = Ultra, Red = Veo. Noise manually calculated, peak heights. Veo power function set to 0.67 to 

simulate ‘off’; (c) CAD noise levels, mobile phase 80% ACN with 5mM AF pH 3. Veo with power 

function ‘off’, ‘on’ default setting 1.00 and ‘on’ optimised setting 1.2, Ultra; d Peak height (as CAD 

signal) by flow injection analysis for 29 solutes for two CAD models. Blue = Ultra, Red = Veo. Veo 

power function set to 0.67 to simulate ‘off’. 
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Fig. 5.4 (a) Sugar analysis performed using an ‘Amino’ HPLC column (Kromasil NH2, 4.6 x 150mm, 

5µm) calibration using (1) Levoglucosan, (2) Fructose), (3) Glucose), (4) Sucrose, (5) Maltose; (b)  

HILIC separation of sugars in Ciders with Charged Aerosol Detection (1) Fructose, (2) Glucose, (3) 

Maltose; (c) HILIC separation of sugars in Beers with Charged Aerosol Detection. (1) Maltose; (d) 

Calibration curves of five sugars over a wide concentration range (50 – 2000 mg / mL); (e) 

Calibration curves of five sugars over a narrow concentration range (50 – 500 mg / mL). 

Fig. 5.5 HILIC chromatogram of four underivatised amino acids: (1) Glycine, (2) Glutamine, (3) 

Aspartic Acid), (4) Arginine. Atlantis bare silica column (4.6 x 250 mm, 5 µm), mobile phase 75% 

ACN with 5mM AF pH 3 with FA. 

Figure 6.1. Comparison of (a) k (Acetonitrile) vs. k(Acetone); Atlantis (4.6x250mm, 5µm); (b) 

Retention of neutrals and weak bases; (c) retention of acids. 85% Acetonitrile or Acetone with 

5mM Ammonium Formate pH3, LCMS grade buffers; (d) relationship between retention ratio in 

ACN vs. Acetone and number of hydrogen bonding groups per molecule. 

Figure 6.2. Separation of probe solutes using generic and zone analytical methods, using (a) 

Atlantis column with generic gradient for eight solutes, (b) early-eluting solutes with zone 1 

isocratic method, (c) middle-eluting solutes with zone 2 isocratic method, (d) BEH Amide column 

Generic method for eight solutes, (e) early-eluting solutes with zone 1 isocratic method, (f) middle-

eluting solutes with zone 2 isocratic method. (a) – (c) Atlantis column, (d) – (f) BEH Amide column. 

Solute identities as per Table 6.1 

Figure 6.3. Chromatograms of Eight probe solutes by RPLC Open Access system (a) Formic Acid (b) 

TFA and (c) high pH; solute identities as per Table 6.1, conditions provided in legend for each 

chromatogram. 

Fig. 6.4. HILIC-prep chromatograms of simulated crudes with increasing injection volumes, Atlantis 

column (21mm x 150 mm, 5µm); (a) generic gradient method; (b) zone 2 focused isocratic method, 

(c) zone 2 focused gradient method. Solutes are simulated crude ‘APCA/Adenine’ 9:1 (w/w), 

diluent 1% TFA (v/v) in DMSO, flow rate 20mL / min. 

Fig. 6.5 HILIC-prep chromatograms of simulated crudes with increasing injection volumes BEH 

Amide column (21mm x 150mm, 5µm) (a) generic gradient method on for ‘Procainamide/AHPY’, 

(b) focused zone 1 isocratic method for ‘Procainamide/AHPY’, flow rate 20mL / min 

Figure 6.6. HILIC-Prep-ACD of Cytidine/Adenine (9:1 w/w) using Atlantis column (a) effect of 

diluent TFA content (b) effect of larger injections on the ACD system. Mobile phase ‘A’ = 70% ACN 

with 5mM Ammonium Formate w
w pH 3 with formic acid; ‘B’ = 95% ACN with 5mM Ammonium 

Formate ww pH 3 with formic acid. Generic gradient method adapted to ACD: 0% ‘A’ isocratic for 

30s then 0-36% ‘A’ gradient over 15 min, wash at 60% ‘A’ for 6.5 min, gradient reset to 0% ‘A’ then 

equilibration for 7 min to give 34 min method. 
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Fig. 6.7. Productivity plot for preparative methods on standard and ACD systems. Arbitrary cut-offs 

of 20 mg / hr for small-scale purifications (dotted line) and 60 mg / hr for large-scale shown 

(dashed line). 

 

Fig. 6.8. HILIC-Prep-ACD chromatograms investigating any benefit of adding acid (TFA) or base 

(NH3) to the diluent for a crude containing a zwitterionic solute (APCA) and a weak base (Adenine) 

(23.4 mg / mL). Atlantis column with generic ACD method, 1 mL injections. 

Fig. 6.9. Effect of DMSO on isocratic analytical separations (a) chromatograms for combined 

standards of DABS, APCA and AHPY prepared in neat DMSO showing extra peak observed at low 

wavelength UV (240nm, 85% ACN 5mM AF pH 3 with FA) (b) combined standard prepared with 

ACN-water-FA (50-50, 0.1% acid v/v), (c) overlaid chromatograms combined standard prepared in 

increasing DMSO content (20-100% DMSO) (Atlantis column, 95% ACN 5mM AF pH 3 with FA) (d) 

plot of efficiency vs. DMSO content. Peak identities (1) AHPY, (2) DABS, (3) APCA, (4) DMSO. 
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I.2 List of Tables 

3.1. pH, ionic strength and buffer capacity of aqueous buffer solutions; ws pH measured in 85% 

ACN. *This was used as 0.1% of an 85% solution (14.6 mM/L). 

Table 4.1. Identities and physico-chemical characteristics of test compounds. 

Table 4.2. Detection limits for charged aerosol detection in HILIC conditions. HPLC, mobile phase 

80% ACN, 5mM ammonium formate w
w pH 3. 

Table 4.3. Peak areas of BTEAC, BTEABr and BTEAI by FIA and HPLC. Mobile phase 80% ACN, 5mM 

ammonium formate ww pH 3. 

Table 4.4. Peak areas and uniformity of response for 21 compounds in a selection of HILIC mobile 

phases. 

Table 5.1. Sugar concentrations found in ciders and beer 

Table 6.1. Probe solutes used in generic and scale-up studies 

Table 6.2. Retention times of critical pairs in elution ‘Zone 1’ and ‘Zone 2’ by generic and focused 

isocratic methods on Atlantis and BEH Amide columns. Solvents as per Fig. 6.2a. 

Table 6.3. Apparent solubility of HILIC-prep simulated crudes for some solvent systems 

Table 6.4 HILIC-Prep data for information 

Table 6.5 Effect of diluent DMSO content on analytical peak efficiency, for information  
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I.3 List of Equations 

1.1 column volume (Vm) 

1.2 retention volume (Vr) 

1.3 retention factor (k) 

1.4 selectivity factor (α) 

1.5 Peak efficiency at half-height (N0.5) 

1.6 Height equivalent to one theoretical plate (H)  

1.7 Average velocity of the mobile phase (u) 

1.8 van Deemter equation: H, described by three processes: axial diffusion (A), longitudinal 

diffusion (B) and mass transfer (C)  

1.9 Reduced plate height (h) 

1.10 Reduced co-ordinate van Deemter equation 

1.11 System backpressure (ΔP) 

1.12 Chromatographic resolution (Rs) 

1.13 Retention (log k) as a function of the Hydrophobic-Subtraction model 

1.14 Partitioning between an aqueous and non-aqueous phase 

1.15 Partition coefficient (P) 

1.16 Log P 

1.17 Dissociation of an acid (HA) to hydroxonium (H3O+) and its anion (A-)  in the presence of water 

1.18 Acid dissociation constant (Ka) 

1.19 Henderson-Hasselbach equation 

1.20 Log D 

1.21 Preparative scale-up factor 

3.1 Column efficiency (N) measured from the first (M1) and second statistical moments (M2) 

3.2 True thermodynamic ss pH 

4.1 The diameter of the particle in ELSD (dD,) 

4.2 surface area of a sphere (A) 
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4.3 Surface area of an aerosol particle (A) in relation to solute concentration (C) 

4.4 Relationship between CAD response and analyte concentration (C) 

4.5 Relationship between log (CAD response) and log (analyte concentration) (C) 

5.1 Signal to noise ratio (S:N) 

6.1 Solubility in a cosolvent mixture (Smix) 

6.2 Preparative productivity (PR,i)  

6.3 Generic expression for preparative productivity (PR) 
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I.4 List of Symbols 

> greater than 

% percent 

£ pound sterling 

Å angstrom 

α  selectivity factor 

α’ solute hydrogen bonding interactions of an acidic solute to a basic 

stationary phase 

a intercept 

A axial diffusion coefficient (van Deemter ‘A term’) 

A column hydrogen bonding interactions of a basic solute to an acidic 

stationary phase 

A- deprotonated acid A 

A Surface area of a sphere 

Ap Surface area of a(n aerosol) particle 

As0.1 peak asymmetry at 10% height 

β hydrogen bond basicity 

β’ solute hydrogen bonding interactions of a basic solute to an acidic 

stationary phase 

B longitudinal diffusion coefficient (van Deemter ‘B term’) 

B column hydrogen bonding interactions of an acidic solute to a basic 

stationary phase 

c solute concentration 

C column interactions between an ionic solute and charge-bearing column 

C mass transfer coefficient (van Deemter ‘C term’) 

C celcius 

cm centimetre(s) 

cm3 cubic centimetre(s) 
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C(aq) solute concentration in aqueous solvent phase 

C(org) solute concentration in organic solvent phase 

Cs caesium 

δ correction of ws pH to ss pH 

D Distribution coefficient 

dD droplet diameter 

dp particle diameter 

° degree 

C18 octadecylsilyl stationary phase 

η’ solute hydrophobic interactions 

EB retention of ethylbenzene 

F volumetric flow rate 

fc volume fraction of cosolvent in an aqueous mixture 

g gram(s) 

h reduced plate height 

H height equivalent to a theoretical plate 

H column hydrophobic interactions 

H hydrogen 

Hg mercury 

H3O+ hydroxonium ion 

HA protonated acid 

HZ hertz 

κ’ solute ion-exchange between an ionic solute and charge-bearing column 

k retention factor 

K potassium 

Ka acid dissociation constant 

Kow octanol-water partition coefficient 
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k1 retention factor of weakly-retained peak (see k, α) 

k2 retention factor of strongly-retained peak (see k, α) 

p particle density 

L column length 

L litre(s) 

Li lithium 

Log D log of distribution coefficient (see D) 

µg microgram(s) 

µL microliter(s) 

µm micrometre(s) 

M1 first statistical moment 

M2 second statistical moment 

m2 square metres 

mAU milliabsorbance units 

min minute(s) 

mg milligram(s) 

mL millilitre(s) 

mm millimetre(s) 

mM millimolar 

mmol millimole(s) 

ng nanogram(s) 

nm nanometre(s) 

N plate number 

N0.5 peak efficiency at half-height (plate number) 

Na sodium 

ncoll amount collected during preparative fractionation 

NH2 amino functional group 
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NH4
+ ammonium 

Nmoments peak efficiency by moments method 

P partition coefficient 

pA picoamps 

pH scale of acidity 

pKa logarithmic acid dissociation constant 

ppm parts per million 

PR productivity of a generic preparative separation 

PR,i productivity of a preparative separation for solute i 

Rb rubidium 

t0 retention time of an unretained solute 

tR retention time of retained solute 

r correlation coefficient 

R2 coefficient of determination 

Rs Chromatographic Resolution 

σ solute steric interactions 

s second(s) 

s cosolvent constant (slope) 

S* column steric interactions 

Si-H silica hydride bond 

Smix solubility in a cosolvent mixture 

S:N Signal to Noise ratio 

Sw solubility in water 

t cosolvent constant (intercept) 

t time 

tc cycle time 

Vcol column volume 



 

Page 238 of 246 

Vm column volume 

Vr  retention volume 

v/v volume by volume 

w/w weight by weight 

W0.5 peak width at half-height 

w
w pH pH calibrated in aqueous buffers and measured in aqueous solution 

w
s pH pH calibrated in aqueous buffers and measured in hydroorganic solution 

X(aq) solute partitioned into aqueous solvent 

X(non-aq) solute partitioned into organic solvent 

Z1 zone 1 

Z2 zone 2 
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3. I.5 List of abbreviations 

AA Ammonium Acetate 

ACD At Column Dilution 

ACN Acetonitrile 

AF Ammonium Formate 

AHPY 2-Amino-3-hydroxypyridine 

AIAZ 6-Aminoindazole 

ANP Aqueous Normal Phase 

APCA 2-Aminopyridine-3-carboxylic acid 

APCI Atmospheric Pressure Chemical Ionisation 

APOL 2-Aminopyridin-4-ol 

BEH Ethylene Bridged Hybrid silica 

BP Boiling Point 

BSA Benzene sulfonic acid 

BTEA Benzyltriethylammonium 

BTEABr Benzyltriethylammonium Bromide 

BTEAC Benzyltriethylammonium Chloride 

BTMAC Benzyltrimethylammonium Chloride 

BTEAI Benzyltriethylammonium Iodide 

CAD Charged Aerosol Detection 

CNLSD Condensation Nucleation Light Scattering Detection 

CSH Charged Surface Hybrid stationary phase 

DABS 2,5-Diaminobenzenesulfonic acid 

DAD Diode Array Detector 

DMF Dimethylformamide 

DMSO Dimethylsulfoxide 

ESI-MS Electrospray Mass Spectrometry 
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ELSD Evaporative Light Scattering Detection 

EPSRC Engineering and Physical Sciences Research Council 

FA Formic Acid 

FIA Flow Injection Analysis 

Fig Figure 

FW Formula Weight 

GC Gas Chromatography 

HBA 4-Hydroxybenzoic Acid 

HCl Hydrogen Chloride 

HFBA Heptafluorobutyric acid 

HILIC Hydrophilic Interaction Chromatography 

HPLC High Performance Liquid Chromatography 

ID/i.d. Internal Diameter 

IP Ion Pairing 

IPA Isopropyl Alcohol 

LC Liquid Chromatography 

LOD Limit Of Detection 

LOQ Limit Of Quantitation 

MP Melting Point 

MS Mass spectrometry 

MW Molecular Weight 

NFPA Nonafluoropentanoic Acid 

N,N-DMAC N,N-dimethylacetamide 

NSA 2-Naphthalenesulfonic acid 

OA Open Access 

ODS octadecylsilyl (ligand) 

PA Orthophosphoric acid 
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Prep Preparative liquid chromatography 

PF Power Function 

RI Refractive Index (detection) 

RMS Root Mean Squared 

RP Reversed phase liquid chromatography 

RPLC  Reversed Phase Liquid Chromatography 

RSD Relative Standard Deviation 

SFC Supercritical Fluid Chromatography 

THBA 3,4,5-trihydroxybenzoic acid 

TEA Triethylamine 

TEA-MePO3 Triethylamine Methylphosphonate 

TEAP Trimethylamine Phosphate 

TFA Trifluoroacetic acid 

TMPAC Trimethylphenyammonium chloride 

TSK Tosoh Biosciences column brand 

UHPLC Ultra High Performance Liquid Chromatography 

USA United States of America 

UV Ultraviolet (absorbance) 

UV-VIS Ultraviolet-Visible (absorbance)  

ZIC-HILIC Zwitterionic HILIC stationary phase, Merck Sequant brand 
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Presentations and Publications  
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1. II.1 Poster Presentations 

11 Jan 2013 Centre for Research in Biosciences annual meeting, University of the West of England 

Hydrophilic Interaction Chromatography: A new separation method for the analysis of polar 

pharmaceuticals and biomedically relevant compounds 

 

10 Jan 2014 Centre for Research in Biosciences annual meeting, University of the West of England 

Charged Aerosol Detection for the analysis of pharmaceutical and biologically relevant compounds 

 

27 Jun 2014 Faculty of Applied Sciences postgraduate conference, University of the West of 

England 

Charged Aerosol Detection for pharmaceuticals and biologically relevant compounds 

 

11-15 May 2014 41st International Symposium on High Performance Liquid Phase Separations 

and Related Techniques, New Orleans, USA 

Investigations into Charged Aerosol Detection with Hydrophilic Interaction Chromatography 

 

21-25 Jun 2015 42nd International Symposium on High Performance Liquid Phase 

Separations and Related Techniques, Geneva, Switzerland 

Performance of Charged Aerosol Detection with Hydrophilic Interaction Chromatography 
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2. II.2 Oral Presentations 

08 May 2013 GlaxoSmithKline industrial partner visit to UWE, Bristol 

Why bother with salt buffer? Peak shapes in HILIC 

 

09 May 2013 Centre for Research in Biosciences fortnightly talk, UWE Bristol 

Why bother with salt buffer? Peak shapes in HILIC 

 

16 Sep 2013 GlaxoSmithKline and ThermoFisher Scientific industrial partners meeting at UWE, 

Bristol 

Development of generic methods for the analysis and purification of polar compounds by high 

performance liquid chromatography: Initial investigations 

 

27 Jan 2014 GlaxoSmithKline and ThermoFisher Scientific industrial partners meeting at 

Thermo, Hemel Hempsted 

Development of generic methods for the analysis and purification of polar compounds by high 

performance liquid chromatography: HILIC-CAD investigations 

 

11 Nov 2014 GlaxoSmithKline industrial partners meeting at UWE, Bristol 

Development of generic methods for the analysis and purification of polar compounds by high 

performance liquid chromatography: Project update November 2014 
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3. II.3 Second Author Oral Presentations 

11-15 May 2014 41st International Symposium on High Performance Liquid Phase Separations 

and Related Techniques, New Orleans, USA 

New Developments in Hydrophilic Interaction Chromatography, presentation with David McCalley and James 

Heaton 
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4. II.4 Publications 

Meeting report for ‘Automated Approaches in Modern Chromatography and Mass Spectrometry’ 

Chromsoc spring symposium, Chromatography Today, 2013 

 

Meeting report for ‘Advances in Clinical Analysis’, Royal Society of Chemistry Separation Science 

Group website, 2014 

 

Conference report for ‘41st symposium of HPLC in New Orleans’, Chromatography Today, 2014 

 

Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and 
simple acid solutions. Journal of chromatography.A, 1347, pp. 39-48. 
HEATON, J.C., RUSSELL, J.J., UNDERWOOD, T., BOUGHTFLOWER, R. and MCCALLEY, D.V., 2014. 

 

Performance of charged aerosol detection with hydrophilic interaction chromatography. Journal of 
Chromatography a, 1405, pp. 72-84. 
RUSSELL, J.J., HEATON, J.C., UNDERWOOD, T., BOUGHTFLOWER, R. and MCCALLEY, D.V., 2015. 

 

 


