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Abstract Collaborative learning has often been associated with the construction
of a shared understanding of the situation at hand. The psycholinguistics mech-
anisms at work while establishing common grounds are the object of scientific
controversy. We postulate that collaborative tasks require some level of mutual
modelling, i.e. that each partner needs some model of what the other partners
know/want/intend at a given time. We use the term “some model” to stress the
fact that this model is not necessarily detailed or complete, but that we acquire
some representations of the persons we interact with. The question we address
is: Does the quality of the partner model depend upon the modeler’s ability to
represent his or her partner? Upon the modelee’s ability to make his state clear
to the modeler? Or rather, upon the quality of their interactions? We address this
question by comparing the respective accuracies of the models built by different
team members. We report on 5 experiments on collaborative problem solving or
collaborative learning that vary in terms of tasks (how important it is to build an
accurate model) and settings (how difficult it is to build an accurate model). In 4
studies, the accuracy of the model that A built about B was correlated with the
accuracy of the model that B built about A, which seems to imply that the quality
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of interactions matters more than individual abilities when building mutual mod-
els. However, these findings do not rule out the fact that individual abilities also
contribute to the quality of modelling process.

Keywords Cognitive Modelling; Grounding; Theory of Mind

1 Introduction

From its inception, Computer Supported Collaborative Learning (CSCL) research
has been following the suggestion by Roschelle and Teasley (1995) that collabora-
tive learning has something to do with the process of constructing and maintaining
a shared understanding of the task at hand. Building a shared/mutual understand-
ing refers to the upper class of collaborative learning situations, those in which
students should build upon each other’s understanding to refine their own un-
derstanding: what is expected to produce learning is not the mere fact that two
students build the same understanding but the cognitive effort they have to engage
to build this shared understanding (Schwartz 1995). This effort can be observed
by the frequency of rich interactions, i.e. interactions whose occurrence has been
related to learning: (self-) explanations in cognitive science (Chi et al 1989; Webb
1991), conflict resolution in socio-cognitive theories (Doise et al 1975) and mutual
regulation (Blaye and Light 1995) in a Vygostkian perspective. The construction
of shared understanding has been investigated for several decades in psycholin-
guistics, under the notion of grounding (Clark and Wilkes-Gibbs 1986). However,
the relevance of grounding mechanisms for explaining learning outcomes has been
questioned in the learning sciences. Grounding mechanisms are appropriate to ex-
plain conversational events, such as referential failures in short dialogue episodes,
but they hardly predict deeper phenomena such as conceptual change (i.e. the ac-
quisition, acceptance and integration of a new belief into one’s mental model) over
longer sessions (Dillenbourg and Traum 2006). The cumulative effect of grounding
episodes can probably be better understood from a socio-cultural perspective:

Collaborative learning is associated with the increased cognitive-interactional
effort involved in the transition from learning to understand each other to
learning to understand the meanings of the semiotic tools that constitute the

mediators of interpersonal interaction (Baker et al 1999, p.31)

Along this line, several scholars suggest that CSCL research should go deeper
towards understanding how partners engage in shared meaning making (Stahl
2007) or intersubjective meaning making (Suthers 2006).

Paradoxically, while Clark’s theory is somewhat too linguistic from a learning
viewpoint, it is criticized at the same time as being too cognitivist by some psy-
cholinguists, i.e. as overestimating the amount of shared knowledge and mutual
representations actually necessary to conduct a dialogue. The fundamental issue,
as old as philosophy, is the degree of coupling between the different levels of dia-
logue, mostly between the lexical/syntactical level and the deeper semantic levels.
Pickering and Garrod (2006) argue that mutual understanding starts mostly with
a superficial alignment at the level of the linguistic representations, due to priming
mechanisms, and that this local alignment may – in some cases – lead to a global



The Symmetry of Partner Modelling 3

alignment of the semantic level (deep grounding). For these authors, the conver-
gence in dialogue, and even the repair of some misunderstandings, is explained by
this mimetic behavior more than by a monitoring of each other’s knowledge:

[. . . ] interlocutors do not need to monitor and develop full common ground
as a regular, constant part of routine conversation, as it would be unneces-
sary and far too costly. Establishment of full common ground is, we argue,
a specialized and non-automatic process that is used primarily in times of
difficulty (when radical misalignment becomes apparent). (Pickering and
Garrod 2006, p.179)

This view is actually not incompatible with Clark’s grounding criterion (Clark
and Schaefer 1989): the degree of shared understanding that peers need to reach
depends upon the task they perform. For instance, a dialogue between two surgeons
might rely on superficial alignment if they talk about their friends but has to
guarantee accurate common grounds when talking about which intervention will
be conducted in which way on which patient. In this paper, we operationalized
the grounding criterion, i.e. the necessity for accurate modelling, as the correlation

between the accuracy of partner models and measures of team performance.
This interesting cognitive science debate occurred mostly outside the field of

learning. In education, the question is to relate these mechanisms to learning
outcomes: Is linguistic alignment sufficient to trigger conceptual change? Does ne-
gotiation of meaning only occur when partners monitor and diagnose each other’s
knowledge? If the ratio between shallow alignment and deep grounding depends
upon the task, and if deep grounding is a condition for learning, then the pedagogi-
cal challenge is indeed to design tasks that require deep grounding. Most empirical
studies on grounding and alignment are conducted with simple referencing tasks
such as asking the way to the train station or helping the peer to choose a picture
among many. In the studies we report here, we explore several richer tasks such
as arguing about a sensitive issue or building a concept map.

Deep grounding or shared meaning making requires some cognitive load. For
Clark and Wilkes-Gibbs (1986), what is important is not the individual effort made
by the receiver of a communicative act, but the overall least collaborative effort. The
cost of producing a perfect utterance may be higher than the cost of repairing the
problems that may arise through misunderstandings, and in fact, subjects tend to
make less efforts adapting their utterances to a specific partner when they know
that they can later provide feedback on his/her understanding (Schober 1993).
We introduced the notion of optimal collaborative effort (Dillenbourg et al 1995) to
stress that misunderstanding should not be viewed as something to be avoided (if
this was possible), but as an opportunity to engage into verbalization, explanation,
negotiation, and so forth. This issue is related to the global argument regarding
cognitive load in learning activities, especially in discovery learning environments:
there is no learning without some cognitive load, but overload may hinder learn-
ing (Paas et al 2003). In the context of collaborative learning, we understand
the cognitive load induced by mutual modelling as part of Schwartz (1995) no-
tion of effort towards a shared understanding. For instance, CSCL researchers
expanded the use of collaboration scripts (Kobbe et al 2007). A script is a peda-
gogical method that frames collaborative learning activities in order to foster the
emergence of productive interactions such as argumentation, explanation or con-
flict. Conflict-resolution scripts such as the ArgueGraph (Dillenbourg and Hong
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2008) form pairs of students with opposite opinions, which increases the difficulty
of consensus building, requiring more justifications, more negotiation, and more
load. Similarly, jigsaw scripts (Aronson et al 1978) provide peers with different
but complementary knowledge for augmenting (reasonably) the efforts that group
members have to engage into to reach a shared solution.

In summary, the controversy around the cognitive depth of shared understand-
ing pertains to psycholinguistics, which investigates natural conversations. The
situation is different in collaborative learning; tasks are actually designed for re-
quiring a deeper negotiation of meaning. The expertise of CSCL is to design col-
laborative situations that create interdependence, avoid group think, and allow
students to detect any “illusion of shared understanding” Cherubini et al (2005).
Our question is hence not anymore “do peers build a shared understanding ?”,
but rather “whenever peers have to build a shared understanding, how do they
achieve it ?”. This question addresses the mechanisms of grounding, in which the
basic sequence is: make a proposition, detect misunderstanding and, if any, repair
them. This paper focuses on the middle part, the detection of misunderstandings.
Detecting a misunderstanding means that the emitter of a message identifies a
mismatch between his communicative intention and the way his message is under-
stood by his or her partner. Detecting one peer’s misunderstanding is investigated
hereafter under the general umbrella of partner modelling.

2 Partner Modelling

We refer to Partner modelling as the process of inferring one’s partner’s mental
states. Any claim that students carry out a detailed monitoring of their peers
would be as incorrect as any claim that they do not maintain any representation
at all. If mental modelling had to be permanently detailed and accurate, subjects
would obviously face a huge cognitive load. Conversely, peers could not collabo-
rate without some minimal amount of mutual modelling. Collaborative learning
dialogue include many instances of utterances such as “I thought he would do
that” (first order modelling) or even “He thought I would do that but I intended
something else.” (second order modelling).

The content of the partner model ranges from dispositional to situational as-
pects. The dispositional aspects refer to A’s representation of B’s long term knowl-
edge, skills or traits. It is thus closely related to the notion of transactive mem-
ory (Wegner 1987; Moreland 1999). Situational aspects refer to A’s representation
of B’s knowledge, behavior or intentions specifically activated in the situation in
which A and B are collaborating, some of them being valid for 2 seconds, other
ones for 2 hours. Examples of fragments that constitute A’s model of B regarding
to aspects X, i.e. Model(A,B,X), abbreviated M(A,B,X), could be:

– Model(A,B, knowledge): what does A know about B’s knowledge with respect
to the task at hand or, inversely, about B’s knowledge gaps? When can A
consider B’s statements as reliable?

– Model(A,B, skills): what does A know about B’s skills with respect to the
task at hand? May A expect B to perform well in a specific subtask? The
effectiveness of division of labor depends on the quality of this mutual model.



The Symmetry of Partner Modelling 5

– Model(A,B, goals): what does A know about B’s intentions with respect to
the project, including B’ motivation and commitment? Can A trust B when B
promises to deliver?

– Model(A,B, task): what does A know about B’s representation of the situation
and the task: does A knows whether B has the same understanding of the
problem at stake?

– Model(A,B, plans): what does A know about B’s strategy. Does A understand
why B did what he did? Is A able to anticipate what B will do next?

– Model(A,B, “urgent”): what does A know about B’s understanding of A’s last
utterance: does “urgent” mean now, soon or “not too late”?

The list of what X stands for in M(A,B,X) is possibly infinite: beliefs, emo-
tions, history, status, etc. A partner model is likely not a “box”, i.e. not a mono-
lithic representation but rather a mosaic of information fragments about the part-
ner, with various granularity and various life cycles. This mosaic is elaborated
through a variety of mechanisms, first for building an initial model of the partner,
then for updating this model. As two students meet for the first time, partners
models are initialized by the assumptions they make upon each other based on
cues such as his/her belonging to broad categories (age, culture, profession, . . . ),
stereotypes (sportsmen, junkie, business women, Swiss,. . . ) as well as physical ap-
pearance. Scholars studied how initial modelling impacts communication. In their
experiment, Slugoski et al (1993) pretended to their subjects that their (confed-
erate) partner had or had not received the same information. They observed that
the subjects adapted their dialogue by focusing the explanation on the items that
he/she was supposed to ignore. Brennan (1991) showed that the subjects used dif-
ferent initial strategies in forming queries depending on who they were told their
partner was.

Initial common grounds are also initiated by co-presence: they include events
to which A and B attended together (Clark and Marshall 2002) in the physical
space or in their cultural space (e.g. “09-11”). While co-presence means that they
can refer to shared objects and events, it does not imply that they give them
the same meaning. Namely, a shared screen does not mean a shared understand-
ing (Dillenbourg and Traum 2006).

After initialization, partners models are updated during the collaborative work
through verbal and non-verbal interactions. A default inference rule is that “my
partner agrees with me unless he disagrees”, which rejects the critiques that part-
ner modelling generates an unbearable cognitive load. This default rule is super-
seded by the several mechanisms for monitoring and repairing the partner under-
standing: acknowledgement, continuous attention, relevance of next turns, facial
expressions including gaze signals, etc.

Finally, partner modelling does not occur in a vacuum but it is highly contex-
tualized. Clark and Brennan (1991) review how the features of the collaborative
situation, namely the media (co-temporality,. . . ), may facilitate or hamper mutual
modelling. Hutchins and Palen (1997) reported a study in which a short silence
between two pilots was perfectly interpreted because it occurred in a highly con-
strained communication context. Some environments are more productive than
others in helping peers to detect their misunderstandings. Roschelle and Teasley
(1995) reformulate the design of CSCL interfaces to provide ways for peers to
detect and repair their misunderstanding.
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3 Mutual Modelling

Mutual modelling is bi-directional. During dyadic problem solving, partner A
builds some model of B and B build some model of A. Moreover, these two pro-
cesses are not independent: A’s model of what B knows, includes what B knows
about A. This leads to nested levels of modelling. If A states “B thinks I am good in
maths”, A builds a second level model: M(A,B,M(B,A,maths-skill)). This leads
to possibly infinite regress of nested models: A saying “B knows that I don’t expect
him to solve this statistics problem” corresponds to
M(A,B,M(B,A,M(A,B, statistic-skills))). As we will see in one study we report
on, mutuality also applies to triads in which A will elaborate a model of B and of
C, and reciprocally. This is probably also true for larger groups although one may
hypothesize that there exists (yet undefined) group size from which it is not pos-
sible to model all partners individually and, therefore, members model the group
as a whole instead as a collection of individuals. We do not explore this hypothesis
here and limit ourselves to dyads and triads.

This mutuality allows us to address a fundamental question: does the quality

of partner modelling depend upon the cognitive skills of each partner (some people be-

ing better in perceiving other’s states) or does it result from the quality of interactions

among them ? Behind his question, the reader may perceive the long lasting debate
between tenets of, respectively, the individual and social views of human cogni-
tion. The simple hypothesis is that when individuals are randomly paired for an
experiment, there is no reason for which their individual cognitive skills would
correlate. Therefore, if it occurs that the quality of the Model(A,B) is correlated
with Model(B,A), one may infer that this quality depends upon what A and B
have built together while interacting.

To answer this question, we went back to five previous studies that addressed
various other research questions, but in which the correlation between the quality
of these two models could be computed. The studies we report do not hence
constitute a clean sequence of experiments to investigate mutual modelling but
the ad-hoc revisiting of previous experiments to explore a question that we had
then neglected. Some of these studies are about collaborative learning while others
are only collaborative problem solving, but the latter rely on rich tasks that are
similar to those we use in CSCL.

4 A Notation for Discussing Mutual Modelling

Natural language becomes cumbersome when describing things such as “the model
that A builds about the model that B builds about A”. Therefore, to define hy-
potheses and report on experiments on mutual modelling, we use the notation
M(A,B,X) to denote “A knows that B knows X”. This notation is not proposed
as a formal theory of mutual modelling but as useful simplification for communi-
cating about mutual modelling. This notation does not mean A has an explicit,
monolithic representation of B: it must be understood as an abstraction refer-
ring to complex socio-cognitive processes. As explained in the previous section,
the model built by A can be fragmented, multi-dimensional, etc. This notation
is neither presented as a computational model of mutual modelling, nor as some
universal formalism; its usefulness is internal to this paper. Additionally, we refer
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to the degree of accuracy of the model as M◦(A,B,X). We discuss in the next
section the methodological difficulty in measuring this accuracy.

We parametrize and assess the mutual modelling effort through 3 variables:

1. Tasks vary a lot with respect to how much they require mutual understand-
ing. The grounding criterion – denotedM◦min– represents the minimum level of
modelling accuracy required for a task T to succeed. Qualitatively, if the perfor-
mance on a given task T is correlated toM◦(A,B,X), thenM(A,B,X) is sig-
nificant to T success, and the grounding criterion of X for T (M◦min(A,B,X, T ))
is non-zero.
Under the assumption that the higher the correlation, the more criticalM(A,B,X)
is to T , we hereafter use the correlation coefficient as an estimate of M◦min.

2. Before any specific grounding action, there is generally a non-null probability
that X is mutually understood by A and B (e.g. X is part of A’s and B’s
cultures, it is manifest to co-present subjects or simply there is not much
space for misunderstanding or disagreement about X). We simply could not
collaborate without a certain level of initial grounds. We denote the theoretical
accuracy of initial grounds with M◦t0(A,B,X).

3. The cost of grounding X refers to the physical and cognitive effort required to
perform a grounding act α: a verbal repair (e.g. rephrasing), a deictic gesture, a
physical move to adopt one partner’s viewpoint, etc. This cost varies according
to media features (Clark and Brennan 1991).

Based on these 3 parameters, the probability of making an action αt about
content X at time t during task T in order to increase M◦(A,B,X) is the ratio
between how much it is needed and how much it costs (Traum and Dillenbourg
1996):

p(αt(X,T )/M◦
t+1(A,B,X)↗) ' M

◦
min(A,B,X, T )−M◦t (A,B,X)

cost(αt)
(1)

This formula is presented as a qualitative summary, not as a real equation,
since several parameters are hard to quantify (e.g. the cost of a communication
act depends upon the user as well).

We can further clarify the parameters in the context of the experiments we
present hereafter:

– M◦(A,B,X): our experiments address different contents that can be repre-
sented in mutual models:

1. M◦(A,B, actions) is about how well A guesses what action B has performed
(study 2) or will perform next (study 1),

2. M◦(A,B, emotion): how accurately A perceives B’s emotional state (study
3),

3. M◦(A,B, knowledge): how accurately A estimates B’s knowledge with re-
spect to the material they learn together (study 4 and 5).

– M◦min(A,B,X, T ): our studies build upon various collaborative tasks: argu-
mentation (study 3), games (study 1 and 2) and concept mapping (study 4
and 5). By varying the tasks, we do actually vary the grounding criterion. The
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tasks were all designed to require a reasonably high grounding criterion, as
they are meant for the participants to have to actually build a solution or a
representation together.

– M◦t0(A,B,X): along the same reasoning, the initial degree of common grounds
should be rather low (and hence the difference between initial and required
degrees rather high) in order to make mutual modelling effort more observable.
Studies 1, 4, and 5 have been conducted with teams of students who did not
know each other. They came nonetheless from the same university (and they
hence had some general common grounds). For studies 2 and 3, students knew
each other before for reasons explained later on. In study 5, we manipulated
the initial mutual modelling by using a jigsaw script.

– cost(α): in all studies but study 4, the cost of grounding is an independent vari-
able. Study 3 uses media richness as independent variable, with the hypothesis
that modelling emotions is “cheaper” with a richer medium, i.e. when peers
can see each other. Studies 1, 2, and 4 use awareness tools which, in princi-
ple, reduce the cost of mutual modelling, but do not eliminate all costs: if the
tool provides A with information about what B does/knows, this additional
information may actually increase cognitive load. Awareness tools constitute
a kind of mutual modelling prosthesis, and, like any prosthesis, they may aug-
ment mutual modelling (by facilitating it or even scaffolding it) or inhibit it
(by making it useless).
While we introduce here formally the cost of grounding cost(α) as one rele-
vant variable for the discussion of mutual modelling situations, we will not
attempt to characterize it beyond these qualitative observations in the studies
we present hereafter.

5 Methodological Issues

Since a mental model is not directly observable, the study of mutual modelling is
methodologically difficult. How can we for instance measureM◦(A,B,X)? We pro-
ceed in two steps, first to capture M(A,B,X) and then to estimate M◦(A,B,X).

CapturingM(A,B,X): The simplest method is to ask A what he/she believes
about what B knows, feels, intends to do, etc. This raises obvious methodological
concerns since such a question triggers a modelling process beyond what would
naturally occur. To avoid this bias, one can estimate mutual modelling after task
completion. Then, the obvious drawback are memory losses and post-hoc recon-
struction. The first method was used in study 2 and the second one in the other
studies. Another option would be to rely on external behavioural metrics like eye-
tracking: we hypothesise for instance that the fixation time reflects the efforts
engaged by the human to understand, hence, model, the others. Such an approach
has however not been investigated in the presented studies.

EstimatingM◦(A,B,X): OnceM(A,B,X) is captured, we need to access the
reference model M(B,X) to estimate its accuracy. Since we can only indirectly
access it via what B reports (i.e.M(B,B,X)), accuracy can be estimated in 2 ways:
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– Subjective accuracy: In study 3, for instance, we compute M◦(A,B,X) by
measuring if A describes B’s emotions in the same way B reports its emotions
(M(A,B,X) =M(B,B,X)).

– Objective accuracy: In studies 4 and 5, we computeM◦(A,B,X) by comparing
M◦(A,B,K) to B’s actual knowledge as it has measured by a test.

Our method for investigating mutual modelling relies on the observation of
the variations of accuracy that result from variations of external parameters (the
variables of the formula 1 above): for instance, the accuracy should go down if
we increase the cost of grounding acts, and conversly go up if we increase the
grounding criterion (i.e. the necessity to build a shared understanding). One way
to produce these variations relies what CSCW researchers call “awareness tools”,
i.e. functionalities that inform A about B’s actions that A can not directly perceive
due to B working in a different subset of the virtual space. Different awareness
tools are used in the following studies as methodological levers to experimentally
manipulate the mutual modelling activity.

6 Hypotheses and Questions

The experiments we report here address mutual modelling across different tasks,
some with dyads, others with triads. They were conducted over 6 years in two
different institutions by different researchers. They used different independent,
intermediate, and dependent variables. Nonetheless, we were able to retroactively
address 3 research questions across these studies.

The symmetry question As stated earlier, the fundamental challenge is to determine
if mutual modelling is an individual skill (hypothesis H1 below) or the emergent
property of social interactions (hypothesis H3). This question is empirically trans-
lated into the symmetry of mutual modelling (Fig. 1): what is the relationship
between M◦(A,B,X) and M◦(B,A,X)? A low symmetry would mean that mu-
tual modelling is mainly an individual attitude/aptitude (H1). A high correlation
might support H3 since there is a low probability that randomly formed pairs
integrate peers with the same level of mutual modelling skills. However, a high
correlation could also have another explanation, stated in H2: it could be that A
is good at modelling B and good at helping B to model herself or himself.

– H1: M◦(A,B) depends upon A’s ability or effort to model B,
– H2:M◦(A,B) depends upon B’s ability or effort to help A to model him/herself,
– H3: M◦(A,B) depends upon the quality of interactions among A and B.

H2 relates to second level modelling since B needs to monitor A to see if A
understood him/her (M(B,A,M(A,B))). We will see that H2 and H3 are actually
difficult to differentiate.

The triangle questions With triads, we may compute the accuracy of 6 models:
M◦(A,B,X),M◦(B,A,X),M◦(A,C,X),M◦(C,A,X),M◦(C,B,X) andM◦(B,C,X).
This leads to two triangle questions (Fig. 2): Do A and B have the same accuracy
when modelling C (∆2 = ∆(M◦(A,C,X),M◦(B,C,X)))? A significant correlation
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A B

M◦(A,B,X)

M◦(B,A,X)

∆
1

Fig. 1: Mutual modelling in a dyadic interaction, ∆1 = ∆(M◦(A,B,X),M◦(B,A,X))

would support , H2 (C has helped both A and B to model C) or support H3 (the
quality of triad interactions enables all partners to model each other accurately)

Conversely, does C model with similar accuracy A and B? (low∆3 = ∆(M◦(C,A,X),M◦(C,B,X)))?
A positive answer would support H1, C being simply good at modelling any part-
ner. It could also support H3, since the quality of interactions influences the accu-
racy of two models that C is building. A negative answer would support H2 since
∆3 could mainly be explained by the fact that A helped more C to model him
than B did.

In addition, the comparison between ∆2 and ∆3 could tell us whether the
accuracy of mutual modelling depends more upon the modeller’s effort (H1) or
the modellee’s behaviour (H2).

Note that we consider the quality of interactions at triad level (A, B, C),
neglecting the cases where A and B interact better for instance than B and C,
since there was no “private” communication channel in the following studies. We
do nonetheless acknowledge that this point could be debated.

A

B

C

M◦(A,C,X)

M◦(B,C,X)
∆

2

(a)

A

B

C

M◦(C,A,X)

M◦(C,B,X)

∆
3

(b)

Fig. 2: Mutual modelling in a triadic interaction

The rectangle questions We can go further by comparing self- versus other mod-
elling (∆4 in Fig. 3). A large difference would indicate that meta-cognitive skills
(self-modelling) and partner modelling skills are rather different skills, while a
small ∆4 could be interpreted as the indications that these are two specific in-
stance of a more general cognitive process. This questions is however not central
to this paper, and the value of ∆4 is only available in one of the reported studies.

We can also question if modelling skills depend upon what aspects are being
modeled (X or Y ), which would explain vertical differences (∆5 in Fig. 3). These
differences would allow refining the notion of modelling skills, namely whether
there exist some general ability to model partners or whether this is only the



The Symmetry of Partner Modelling 11

abstraction of a beam of more specific skills such as detecting emotions versus
identifying references from deictic gestures.

M◦(A,B,X) M◦(A,A,X)

M◦(A,A, Y )M◦(A,B, Y )

∆4

∆
5

Fig. 3: Meta-cognitive skills (horizontally) and domain-dependent modelling (vertically

7 Studies

We report on five studies conducted by different researchers in different contexts
between 2000 and 2015. They do not form a consistent research strategy but the
fact that some trends emerge despite their diversity constitutes the richness of this
line of work.

Study 1 Study 2 Study 3 Study 4 Study 5

Task
game in
virtual
space

game in
physical
space

building an
argument
map

building a
concept
map

building a
concept
map

Interactions audio written audio / video audio audio

Shared editor 3D space 2D map concept map
concept
map

concept
map

Group size dyads triads triads dyads dyads

Duration
(mean)

90min 16min 61min 90min 90min

Awareness
tool

partner’s
position

partner’s
current/past
pos.

-
partner’s
concept
map

partner’s
scores at
pre-test

Dependent
variable

team/indiv.
performance

team/indiv.
performance

team
performance

team/indiv.
knowledge

team/indiv.
knowledge

Independent
variable

awareness
tool vs none

awareness
tool vs none

audio vs
audio+video

script vs
none

awareness
tool vs none

Table 1: Overview of the studies and main characteristics
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Mode

(spaceship

or scout)

Asteroid

Space
station

Launch
speed

Level
Score player 1

Score player 2

Team score

Spaceship
player 1

Spaceship
player 2

Compass

Time

Fig. 4: Screenshot of the SpaceMiners game

7.1 Study 1: Effect of an awareness tool on M◦(A,B) in a virtual game

We studied the impact of an awareness tool on group performance and mutual
modelling (Nova et al 2007). The availability of an awareness tool was our inde-
pendent variable. In previous studies, we replayed a video of the game to subjects
who surprised us by their ability to remember former states of their mutual model:
“I did that because I thought that you would do that”. Hence, this experiment
focused the representation of each other’s action plans. During the game, we asked
them to anticipate the next action of their partner as well as to announce their
own actions.

Experimental setting

SpaceMiners is a 3D game that involves two players harvesting ore found on
asteroids (Fig. 4). To do so, they must launch drones through the space after
choosing their initial direction and speed. Once launched, the trajectory of drones
is influenced by the gravity of planets and by “trajectory modification” tools.
During the experiment, the teams were confronted with three increasingly complex
situations. The experiment was 2 hours long: a 30 minute tutorial and 3 levels of
30 minutes. The players were using a regular joystick and communicated with each
other through an audio channel.

The independent variable was the availability of an awareness tool that shows
to player A the location and gaze direction of player B: in this “awareness” con-
dition, players could switch to the scout mode where they could view what their
partner was looking at. We hypothesize that this would enable subjects to more
accurately infer their teammate’s intentions. Each player sat in front of a distinct
computer located in different rooms.
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Subjects

Thirty-six persons participated in this study, all native French speakers. We formed
18 dyads who did not know each other beforehand. The pairs were randomly as-
signed to either the control condition (without the awareness tool) or the awareness
condition (with the awareness tool).

Variables

Task performance was measured by the score reached by the two subjects at the
end of the game (three levels). The effort of mutual modelling was measured as the
ratio of time that players would spend in the scout mode (divided by total time),
which is the time during which players are not performing their own actions but
monitoring their partner’s actions.

In order to evaluate M◦(A,B) during the task, we used two questionnaires
(Fig. 5) that were displayed during each of the three games, as a transparent layer
appearing over the game display. The first questionnaire concerned the player’s in-
tended actions. The second questionnaire asked each player about what he thought
her or his partner was intending to do. Some answers were identical in both ques-
tionnaires (like “adjusting a shot”) while others were reversed (“to guide my part-
ner” versus “to guide me”). This method provides us with a subjective measure
of accuracy (∆(M(A,A,X),M(A,B,X))) rather than an objective measure (i.e.
the modelM(A,B) is compared to B’s next action) because some of the activities
proposed by the questionnaire were not observable by the environment (e.g. estab-
lishing a strategy). We calculated M◦(A,B, activity)) as the number of common
answers between questionnairesM(A,A) andM(A,B) in each game and computed
the average value across the 3 levels.

Fig. 5: M(A,A) and M(A,B) questionnaires in SpaceMiners (translated from
French).
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Results

Grounding criterion The grounding criterion was high: the correlation between
M◦(A,B) and task performance was 0.42, p = 0.05. Pairs with an accurate mutual
model reached higher scores. A regression analysis confirmed the positive and
significant relation between group performance and mutual modelling accuracy
(β = 54, p = 0.02).

Study-specific questions The awareness tool permitted higher group performance,
but it did not improve the accuracy of the mutual model. Since teams were free to
use the awareness tool or not (the scout mode), we performed a post-hoc split of
players depending on how much time they used it. The split point was the mean
of time spent in the scout mode and it led to the constitution of two groups made
up of 12 individuals “short time in scout mode” and 24 individuals “long time
in scout mode”. A two-way analysis of variance conducted on these contrasted
groups revealed that pairs in the awareness condition who spent more time in the
scout mode reached higher levels of M◦(A,B)(F = 8.02, p = 0.015). Of course,
a post-hoc split does not support a causal direction. An alternative explanation
could be that good modellers are more social and hence appreciate the awareness
tool.

Symmetry question We computed intra-class correlation as described by Kenny
et al (1998) from the answers to the cross-questionnaires. Considering all pairs in
both conditions, we found a positive and significant correlation (r = 0.38, p < 0.05)
between M◦(A,B) and M◦(B,A). Interestingly, this was higher in the control
group (r = 0.44) than in the experimental group (r = 0.24). Actually,∆(M◦(A,B),M◦(B,A)),
i.e. the absolute differences between the models accuracy, was not significantly dif-
ferent with or without the awareness tool (F [1, 13] = 0.144, p > 0.5). This result
could be explained by the fact that the players without awareness tools commu-
nicated more.

The triangle and rectangle questions are not addressed in this study.

Discussion

How do we interpret a correlation of 0.38 between M◦(A,B) and M◦(B,A)? It is
significant, which supports H2 and H3. It is nonetheless far from 1, which implies
we cannot discard the individual modelling skills. We collect more evidence in the
next studies.

7.2 Study 2: Effect of an awareness tool on M◦(A,B) in a pervasive game

This study concerns a collaborative game that occurred in physical space (Nova
et al 2006). We studied whether players build an accurate model of the path fol-
lowed by their partners, assuming that this path would reflect their problem solving
strategy. We used an objective measure of M◦(A,B): the distance between where
A believes B has been walking and where B actually went. The main hypothesis
concerned the effect of awareness tools on group performance and on M◦(A,B).
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Experimental setting

CatchBob is a mobile game in which groups of 3 players have to solve a joint
task. The game was played on a university campus. Participants had to find a
virtual object (Bob) and to “catch” it by forming a triangle around it. The players
used a Tablet PC that displayed a map of the campus and an indication of their
personal distance to Bob. Their annotations on the map were shared with the
two other players (A could see what B and C wrote). These annotations faded
out after a few minutes to avoid covering the full display. The awareness tool also
displayed the location of the two other players on the map. Three conditions were
considered: the control condition (without tool) and two experimental conditions:
synchronous awareness (display of the current position of each player) and asyn-
chronous awareness (display of current position of each player as well as their
recent spatial trace).

(a) A’s drawing of B’s path. (b) Actual path followed by B.

Fig. 6: Reported and actual path of one of the player, during the CatchBob game.

Subjects

Ninety students participated in this experiment. We only selected students from
university campus since knowledge of the campus geography had an impact both
on group performance and on mutual modelling: to represent the path of someone
across some space is difficult without an a priori mental map of this space. We
formed groups of students who knew each other. We assigned 10 triads to each of
our three experimental conditions. Each condition was made up of approximately
25% of women, but we did not control gender repartition within each triad.
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Variables

The independent variable was the presence and role of the awareness tool. As a
dependent variable, we had the task performance which was the distance covered
by the team to catch Bob andM◦(A,B). To estimateM◦(A,B), we asked players
to draw on paper their own path and the path of each of their partners after
the game. This enabled us to calculate the number of errors players made while
drawing the path of their partners. We compared the path that player A attributed
to B with B’s real path recorded by the system and the same for A & C and B &
C as depicted on Fig. 6.
M◦(A,B) is the sum of errors made by A about B’s paths. An error was

either drawing a place where the partner had not been or not drawing a place
where he/she had gone. One could argue thatM◦(A,B) is biased by the subjects’
ability to translate the memory of their trajectories into a map drawing. However,
85% of subjects made no mistake at all when drawing their own path. We therefore
consider mistakes in their partners’ path as being due to a lack of mutual modelling
accuracy instead of being due to spatial reasoning skills.

Results

Grounding criterion The correlation between M◦(A,B) and the task performance
(path lengths) was low: 0.15. Using a post-hoc split on M◦(A,B), we found no
significant difference between the performance of the groups with high and low
M◦(A,B) (F = 1.45, p = 0.24). Conversely, a post-hoc split of the groups according
to their performance did not show any significant differences on M◦(A,B) (F =
1.16, p = 0.29).

Study-specific questions There was no significant difference regarding the task per-
formance. However, and surprisingly, the absence of the awareness tool was re-
lated to a higher M◦(A,B): players tended to better remember their partners’
paths when they could not constantly monitor their positions. As detailed in the
original study (Nova et al 2005), it appeared that teams without awareness tool
made more manual annotations on the map while permanent monitoring has an
underwhelming effect.

Symmetry question The correlation between M◦(A,B) and M◦(B,A) is positive
(r = 0.41) and significant (p < 0.01): the more A makes errors about B, the more
B does as well (and vice-versa).

Triangle questions Regarding ∆2, the correlation betweenM◦(A,C) andM◦(B,C)
is significant: r = 0.43, p < .001. Concerning ∆3, the correlation betweenM◦(A,B)
and M◦(A,C) is significant as well: r = 0.30, p < .01.

Discussion

The positive correlation observed in the symmetry question confirms the first
study. In this case, this was not expected given the high heterogeneity of spatial
skills among adults (Liben et al 1981). This result therefore supports H2 and
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H3. The results regarding ∆2 support both H2 and H3 but discards H1: if the
skill of the modeller would dominate – as hypothesized by H1, M◦(A,C) and
M◦(B,C) would tend not to be generally correlated. Conversely, ∆3 supports H1

and H3 but discards H2 (if the modellee’s skill were to dominate, M◦(A,B) and
M◦(A,C) would tend not to correlate). In summary, various indices support the 3
hypotheses, which implies there is some truth in each of them, but H3 is the only
hypothesis that is not rejected by any index. We may hence, with great caution,
conclude that the social perspective (H3) is moderately reinforced by this second
study. Since the correlation values for ∆2 and ∆3 are similar, we do not interpret
their minor difference as evidence for a stronger role of the modeller (H1) or the
modellee (H2).

We have also to bring some nuances to the social viewpoint (H3). The main
feature that can be associated to the team level in this experiment is probably not
the quality of their verbal interactions per se (they interact mostly by drawing on a
shared map), but rather the consistency of the spatial exploration strategy: a clear
strategy facilitates memorizing one’s partner path. One could argue whether the
team strategy can be dissociated from the team interactions quality or constitutes
one of its components.

7.3 Study 3: Effect of media richness on M◦(A,B) in argumentation

The aim of this unpublished1 study was to evaluate the effect of media richness on
M◦(A,B, emotions). The hypothesis was that video communication would lead to
a betterM◦(A,B) than audio only since emotions often impact facial expressions.

Fig. 7: Example of argumentation graph
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Experimental settings

Triads had to address an emotional societal debate: authorizing or not adoption by
homosexual couples. They worked on-line and had to structure their argumentation
with the shared concept map tool TeamWave as illustrated in Fig. 7. Ten groups
had only an audio connection while ten groups had audio and video. The video
communication was provided by a webcam and the software IVisit. For the audio
link, we used microphones, headsets and the BattleCom software. In the audio

+ video condition, the screen was divided in three sections. The main part was
devoted to the concept map window, and the images of the two peers appeared
next to it. In the audio condition, this video zone was left empty so that the size
of the concept map was equal in each condition. The subjects were located in the
same room, separated by mobile walls. Despite their headsets, non-verbal audio
cues (e.g. tapping the floor with feet) were possibly heard by the participants. The
task lasted in average 61 minutes.

Subjects

Sixty students (twenty triads) from the University of Geneva participated to this
experiment (36 women and 24 men). We formed groups of subjects who knew
each other: the task required the discussion of sensitive issues which required to
feel quite comfortable with peers. Since groups were formed a priori, we did not
balance gender in each condition.

Variables

The independent variable was the presence or not of a video link. The depen-
dent variable M◦(A,B) was measured subjectively from three questionnaires: in
the first one, A described his/her own emotions M(A,A), while in the two other
questionnaire, A described B’s and C’s emotions. The questionnaire included 18
items (7-point Likert Scale) describing emotions labeled as adjectives: anxious, en-

thusiastic, agitated, proud, excited, quiet, calm, stressed, bored, upset, relaxed, irritated,
determined, hostile, active, etc. M(A,B) was modelled as a vector of 18 numerical
values corresponding to their answers on each questionnaire items, and M◦(A,B)
was computed as the distance between the two vectors M(A,B) and M(B,B),
hence the smaller the score, the more accurate the model :

M◦(A,B, emotions) =

∑
emotions

|M(A,B, e)−M(B,B, e)|

18

Results

Grounding criterion The maps produced by teams were ranked by three indepen-
dent judges on completeness and structure quality (Kendall’s W = 0.474, limited
agreement). We used the average rank as a estimation of the team performance and
correlated it with the average of the 6 values of M◦(A,B) per team (M◦(A,B),
M◦(A,C), M◦(B,A),...). The correlation is 0.22: teams with a good M◦(A,B)
tend to be better ranked.
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Study-specific questions Our hypothesis about media richness is rejected: the av-
erage degree of accuracy for M(A,B, emotions) was 1.25 (SD = 0.53) in the au-
dio+video condition and 1.09 (SD = 0.41) in the audio alone condition (t =
1.89, df = 111, p = 0.062). The smaller distance between M(A,B, emotions) and
M(B,B, emotions) in the audio condition shows that, in average, the degree of
accuracy of M(A,B, emotions) is higher in the audio alone condition.

Symmetry question We computed the absolute differences ∆1 between M◦(A,B)
andM◦(B,A) over all pair of subjects within a triad (3 values per triad, 20 triads),
and compared them with the same differences computed from random gradings
(following the same grade distribution as for the experimental data). A t-test on the
two sets revealed a significantly lower average difference in the experimental data
(mean difference: 0.40 vs 0.54 with random gradings, t = −3.3, df = 60, p = 0.0016),
which confirms the symmetry of mutual modelling.

Triangle questions ∆2 is computed in a similar way as the average of the absolute
differences between M◦(A,C) and M◦(B,C) over the 60 subjects. The average
difference is 0.42 (SD = 0.34), and is not significantly different from the same
index computed from random gradings (t = −1.61, df = 60, p = 0.11).

For ∆3, the average absolute difference between M◦(C,A) and M◦(C,B) over
the 60 subjects is 0.40 (SD = 0.41) and is significantly lower than chance (t =
−2.62, df = 60, p = 0.01): a given subject tends to model its two partners with
similar degrees of accuracy.

Rectangle question We cannot address the relationship ∆4 between self and social
accuracy here because we do not have an estimation of self-accuracy: subjects
describe their own emotions but we have no way to check if they are correct. By
measuringM◦(A,B) on 18 emotional labels, we can however have a glimpse about
∆5: how M◦(A,B,X) varies according to X. Fig. 8 shows the range of modelling
errors: the difference between M(A,B) and M(B,B), on a scale of 7, is 0.3 in
average for the emotion discasted, and up to 1.9 for the emotion calm. This is
probably specific to the variety of scales (SD = 0.5 for discated versus SD = 0.7
for calm). Our point is not to interpret this too far, but to show that there are
large variations even within one area (perceiving emotions). These variations still
question the existence of a general aptitude to model others ( H1).

Discussion

In this third study, the accuracy of mutual modelling between two peers tend to
be symmetrical, which supports H2 and H3. This result is contradicted by the fact
that ∆2 is not significant, which contradicts both H2 and, to a lower extent, H3.
Finally, ∆3 supports both H1 and H3: this study brings some supports to H3, but
reveals again that H3 is only part of the explanation.

Like the previous one, this study leads us to refine what we mean by “quality of
interactions” in H3. We expected that the video channel would help peers building
a more accurate model of each other’s emotions. The results show the opposite:
peers in the audio-only condition built more accurate models, probably because
they concentrated more on the shared concept map. This confirms other studies
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Fig. 8: Average values of M◦(A,B,X) where X is one of the proposed emotions
(max = 7).

that revealed that viewing what one’s partner sees (shared graphical editor) is
more important than seeing each other (Gaver et al 1993; Anderson et al 1997).
Therefore, what is meant by the quality of interactions in H3 is more than the lin-
guistic features of dialogue but includes the way these interactions are articulated
to the task.

7.4 Study 4: Effects of a script on M◦(A,B) in concept mapping

This study investigated the effect of a collaboration script on collaborative learn-
ing (Molinari et al 2008). The script chosen is a jigsaw: two students receive
different but complementary subsets of the knowledge (texts) which have to be in-
tegrated to build a shared concept map. This script increases the cognitive effort
to build the map, not only to conciliate the viewpoints of each team member but,
before that, to find out what the other knows.

Experimental settings

The instructional material consisted of an explanatory text about the neurophys-
iologic phenomenon of action potential. The text was divided into 3 chapters. In
the same information (SI) condition, the same text was given to both partners. In
the complementary information (CI) condition, it was divided into two sub-texts,
one about the electrical processes of the neuron while the second one about the
chemical processes. These two versions were equivalent in terms of number of
information pieces.

The peers were located in two rooms equipped with the same computer. The
experimental session lasted around 90 minutes and consisted of 6 phases: Partici-
pants used two software components, CmapTools and TeamSpeak.

1. As a pre-test, participants were asked to write down all they knew about the
neuron and its functioning (5 minutes),

2. Participants were instructed to read a text (12 minutes),
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Self map

Partner map

Collaborative map

Fig. 9: The group concept map and the individual concept maps in study 4

3. Participants were asked to build individually a concept map in order to graph-
ically represent what they learnt from the text (10 minutes),

4. Dyads had to built a concept map during 20 minutes, communicating by audio.
The screen layout was structured into three areas (Fig. 9),

5. Participants were invited to individually complete a knowledge test (15-20
minutes),

6. Participants where asked to estimate their own- and their partner’s final knowl-
edge in a questionnaire.

Subjects

Fifty-eight first year students from EPFL (47 men and 11 women, mean age:
20.46) were remunerated for participation. Dyads were randomly assigned to one
of the two experimental conditions. Gender was balanced over the conditions.
Participants did not know each other before the experiment. Students from the
Life Sciences faculty were not recruited to avoid high initial background knowledge
on the learning domain.

Variables

The independent variable, script versus no-script, was implemented by the dif-
ference of texts that individuals had to read. The dependent variables were the
post-test scores, used to assessM◦(A,B, knowledge). In phase 6, participants were
asked to estimate (7-point Likert scale) their own and their partner’s outcome
knowledge with respect to each chapter of the learning material. The order of
questions about oneself and about the other was counterbalanced across partici-
pants.
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Results

Grounding criterion In this task, the grounding criterion was low. We did not,
however, evaluate task performance (e.g. the quality of the jointly produced con-
cept map) but learning gains. The correlation betweenM◦(A,B) and A’s learning
gains is not significant (β = 0.08, ns,N = 60). It is also not significant within each
condition.

Study-specific questions We performed a non-parametric Mann-Whitney test on
post-test scores for the questions touching the electrical inner working of neu-
rons, and a one-way ANOVA on scores for chemistry-related questions (Lev-
ene tests for homogeneity of variances): p = 0.02 and ns, respectively. Results
did not show any significant difference between the same information (SI) con-
dition and the complementary information (CI) condition, neither for electrical-
related questions (U = 388.50, z = −0.88, ns), nor for chemistry-related questions
(F (1, 58) = 0.17, ns).

The effect of scripts onM◦(A,B) was not significant (F (1, 58) = 0.78, ns) when
considering the absolute difference between M◦(A,B) and B’s post-test score.
However, A tended to underestimate B’s score in the SI condition (M = −2.06)
and to overestimate it in the CI condition (M = 1.21) (F (1, 58) = 6.44, p < 0.01).
Regarding M◦(A,A), there was no significant difference between conditions.

Symmetry question The inter-class correlation between M◦(A,B) and M◦(B,A)
is approaching significance (r = 0.26, F (1, 29) = 1.71, p = 0.075). It is indeed
significant when students read the same text (SI condition: r = 0.43, F (1, 15) =
2.53, p < 0.05) but not when they read different texts (r = 0.13, F (1, 12) = 1.3, ns).

Rectangle question The correlation betweenM◦(A,A) andM◦(A,B) (∆4) is glob-
ally not significant (r = 0.05), and neither it is in each of the conditions: someone
good at self-modelling is not necessarily good at modelling someone else and vice-
versa. This seems to indicate that partner modelling requires different skills than
meta-cognition, despite their similarity at some level of abstraction.

Discussion

In this experiment, the symmetry of mutual modelling is found but in one con-
dition, namely when subjects receive the same information before the task. This
condition corresponds to the situation tested in the three previous studies and
supports H2 and H3.

How do we interpret the fact that the symmetry vanishes when peers receive
different texts to read before the task? One explanation would be the difficulty of
mutual modelling when peers do not know what the others read, but we found no
significance of M◦(A,A) between conditions. Since texts were partly overlapping,
another explanation is that, in absence of these initial common grounds, mutual
modelling requires A to make evident to B what A thinks B does not know about
A, which is the second level of modelling described in H2 . A low symmetry means
that some peers are better than others at this second level of modelling, which
supports the existence of such an individual skill, as stated in H2.
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7.5 Study 5: M◦(A,B, knowledge) in concept mapping

This study investigates if M◦(A,B, knowledge) is related to learning outcomes by
comparing teams with or without a Knowledge Awareness Tool (KAT), i.e. a tool
that informs A about B’s knowledge as measured through a pre-test.

Experimental setting

The peers were located into two different rooms. A complete description of the
study is provided in Sangin et al (2008). The experiment lasted 90 minutes.

It started with the same two first steps as in study 4, followed by:

3. Subjects passed a pre-test, with ten questions per chapter.
4. Participants had 20 minutes to draw a collaborative concept map reporting the

content of the texts. They were able to communicate orally through headsets.
We used Tobbii eye tracking devices to record their gazes.

5. The post-test included the same items than the pre-test but in a different order.
6. Finally, participants were asked to estimate their partner’s knowledge at the

post-test for each of the three chapters on a 7-point Likert-like survey.

au repos possède
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Fig. 10: Screenshot of the KAT condition during the concept-map building phase.

Subjects

Sixty-four first year EPFL students (46 men, 18 women, mean age: 21.2) par-
ticipated to the study. They were randomly assigned to conditions and did not
know each other before. Like in Study 4, students from Life Science faculty were
excluded.
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Variables

The participants of the experimental condition group were provided with the
Knowledge Awareness Tool on the bottom part of the screen (Fig. 10): each line
represents the score obtained by the partner at the pre-test for a chapter. Par-
ticipants did not see their own score, but they usually started their discussion by
exchanging this information.

Results

Grounding criterion A linear regression revealed a positive relation betweenM◦(A,B)
and the learning gain of the pair {A,B} (calculated as the average of the individual
learning gains): β = 0.401, p < 0.001, r2adj. = 0.15, large effect. This relationship
was not significant in the previous experiment which was conducted with the same
task (using the same task should produce the same grounding criterion). This is
probably due to the fact that M◦(A,B) was influenced by the KAT.

Study-specific questions The t-test reported a significant difference between the
KAT condition participants (M = 13.4%) and the control group M = 3.6%
[t(1, 60) = 2.73, p < 0.01, Cohen’s d = 0.7, medium to large effect]: providing
learners with cues about the prior-knowledge of their partner enhances their col-
laborative learning. As a treatment check, we found a positive and significant
correlation between the amount of gazes on KAT (using eye tracking devices) and
the learning gains (r(22) = 0.54, p = 0.01). A detailed analysis revealed that the
participants look at KAT to assess their peer’s credibility when he/she provided
new information.

The KAT has a significant effect on M◦(A,B): peers more accurately esti-
mated their partners knowledge (M = 1.11) than those in the control condition
M = 0.98 [t(1, 60) = 3.19, p < 0.01, Cohen’s d = 0.83, large effect]. This is a trivial
result since the KAT provided them with an initialM(A,B). However, the partic-
ipants have to predict the post-test score while the KAT informed them about the
pre-test score. Actually, pairs in the KAT condition produced significantly more
instances of 3 interesting categories of interactions: (1) utterances asking about
the other’s knowledge such as “Did you understand how transmission works?” (2)
utterances describing one’s own knowledge (M(A,A)) such as “I don’t remember
the Ranvier’s thing...” and (3) elaborated utterances with rich contents. These
three categories provide different account of M◦(A,B): (1) as an effect of A’s ef-
fort to model B (H1), (2) as B’s effort to give cues to A about his own knowledge
(H2) and (3) as an effect of the quality of interaction (H3) .

We examined M◦(A,B) as potentially mediating the effect of the KAT factor
on the relative learning gain. A linear regression confirmed that M◦(A,B) was
significantly related to the KAT-factor (β = 0.381, p < 0.01, r2 = 0.15). The KAT-
factor was also significantly and positively related to the RLG (β = .332, p <

0.01, r2 = 0.11). We then tested the relation between the independent variable
(KAT) and the dependent variable (gains) when controlling for the mediating
variable (M◦(A,B)). A multiple regression showed that the KAT-factor was no
longer a significant predictor (β = 0.210; p = ns) whereas theM◦(A,B) was still a
significant predictor (β = 0.32, p < 0.01). Thus, it can be concluded thatM◦(A,B)
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mediated the KAT-factor’s effect on the learners’ RLG. The Sobel significance test
for indirect effects was significant [z = 1.99, p < 0.05].

Symmetry question We did not find an intra-pair correlation (ICC = 0.05, ns),
which does not support H2 and H3. In addition, the KAT supports the processing
of modelling at the first level (H1) and not at the second level (H2). Hence the
fact that the KAT enhancesM◦(A,B) brings additional supports to H1. However,
the analysis of verbal interactions finds elements that actually support the three
hypotheses.

Discussion

Despite the fact that the learning task was the same as in study 4, the conditions of
collaboration (viewing multiple maps or not) and the conditions (scripted or not,
awareness tool or not) probably explain differences in terms of mutual modelling.

8 Synthesis

In the introduction, we mentioned the controversy around the cognitive depth
of dialogues: does efficient dialogue require some modeling of what the partner
understands or intends to convey, as initially postulated by Clark and Wilkes-
Gibbs (1986), or can dialogue simply rely on some shallow syntactic alignment,
as objected by Pickering and Garrod (2006). While the shallow hypothesis may
be relevant to simple chat situations, we investigated this issue in richer problem
solving tasks that are more representative of the tasks assigned to learners in
CSCL environments. In four different tasks, we found evidence that partners model
each other since the quality of modelling emerged as an intermediate variable,
sensitive to several independent variables (like the presence of awareness tools
or media richness), and predictive of several dependent variables, such as task
performance or learning gains. Therefore, even if we do not bring any definite
conclusion to this debate, our results support the CSCL school of thought in which
shared understanding or intersubjective meaning making have been a foundational
concept (Roschelle and Teasley 1995; Schwartz 1995; Dillenbourg and Traum 2006;
Suthers 2006; Stahl 2007).

Second, we questioned whether the accuracy of the partner’s model depends
on the cognitive skills of each partner or instead results from the quality of the
interactions among them. We respectively refer to these hypothesis as H1 and H3.
Our rationale was that a symmetry of mutual modelling (correlation between the
accuracy of each other’s model) would favor H3 over H1. We also formulated H2,
by which a learner A who is good at modelling B would also help B to repair his
inaccurate representations of A.

We found a symmetry of the mutual models on 4 studies out of 5. In study 4,
this only applies to the control group (having read the same text before), which
corresponds to the situation of the 3 first studies. Evidencing this symmetry con-
stitutes per se an interesting result as we are not aware of earlier studies that have
established this relationship. Still, the symmetry alone does not allow to discrim-
inate H2 from H3. The second hypothesis is questioned by study 3 where C could
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be modelled accurately by A and not accurately by B. The same hypothesis is
however supported by the results of study 2, and indirectly by study 4.

This does not rule out entirely H1 (i.e. partner modelling is primarily a in-
dividual skill) either: even where we found significant correlations, they were all
below 0.50, not around 0.90. Hence, even if the quality of the social interaction
matters, there is obviously a large part of individual variance within teams.

In other words, these studies do not conclude that one hypothesis is right and
the others are wrong, and this is indeed the main contribution of this article. We
started from the idea that partner modelling is essentially an individual skill and
that we would therefore improve the quality of collaboration by providing aware-
ness tools, as those tools would act as a kind of prosthesis for partner modelling.
The role and importance of this individual skill cannot be discarded: everyone has
experienced the pleasure of interacting with colleagues who answer precisely to
the question we asked them and even guess the reason why we asked this ques-
tion. Conversely, everyone also experienced the frustration of someone referring to
a third person by his name, say Mike Smith, while knowing perfectly that there
is no chance that we know this Mike Smith. In fact, the role of this individual
skill is not denied by our studies; the novelty of this paper is to show, thanks to
symmetry values, that individual skills only account for a part of the accuracy in
mutual modelling.

We acknowledge that the difference between these hypotheses is rather theo-
retical since the process of modelling one’s partner H1 and the process of helping
one’s partner to model oneself H2 are mediated by verbal interactions in the team.
It is difficult to imagine someone managing a very accurate modeling despite low
quality interaction. There is a bidirectional causal link between the accuracy of
mutual modelling and the quality of the interactions. This rather artificial distinc-
tion does however contribute to the more fundamental discussion of the role of
individual and social mechanisms in human cognition. In the field of social cog-
nition, it is commonplace to state that “the whole is greater than the sum of the
parts”. This refers to the emergence of team properties than cannot be reduced to
the set of individual contributions. Our paper illustrates this emergence by show-
ing the symmetry of mutual modelling. In a nutshell, yes there is a non-negligible
component of mutuality in modelling one’s partner.

These conclusions must be presented with multiple disclaimers. First, they
heavily rely on correlations; hence we cannot identify causal links. Second, we
faced difficult methodological issues. Providing learners with on-task question-
naires introduces a bias: they will pay more attention to their partners in the re-
maining time. Providing them with “after-task” questionnaires implies mnemonic
and rationalization biases. The nature of mutual modelling implies methodological
challenges that call for new measurement methods. We have promising results for
using eye tracking methods to address this challenge. Third, our results emerge
from a post-hoc reinterpretation of studies that addressed different research ques-
tions (media richness, awareness tools, scripts,...). This diversity makes our results
difficult to integrate as they appear partly contradictory. Nonetheless, this diver-
sity also incidentally provides some generalizability: mutual modelling has been
investigated in different contexts (virtual space versus real space), with different
groups sizes (pairs and triads) and different tasks.

These limitations and our difficulty to provide clear-cut conclusions comes from
the fact that this series of experiments was not planned a priori. This paper relies
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on the post-hoc comparison of experiments conducted across various contexts. The
overall conclusion is that this research question would deserve a specific research
agenda for 3 reasons: (1) it raises fundamental theoretical dilemma on the social
nature of cognition, (2) it raises methodological challenges and (3) it could provide
empirical grounds to design decisions for CSCL environments. The eye tracking
tools we developed and the notation we used for referring to different components
of mutual modelling could pave the road for elaborating a systematic agenda for
research on mutual modelling. Let us repeat that the expressions we used, such as
M(A,B), do not imply we have a mechanical view of modelling, but were simply
useful ways to talk about mutual modelling.
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with data analysis. The main funding has been provided from a NSF Grant grant #102511-
106940.

References

Anderson AH, O’Malley C, Doherty-Sneddon G, Langton S, Newlands A, Mullin J, Fleming
AM, Van der Velden J (1997) The impact of VMC on collaborative problem solving:
An analysis of task performance, communicative process, and user satisfaction., Lawrence
Erlbaum Associates Publishers, Mahwah, NJ, US, pp 133–155. Computers, cognition, and
work.

Aronson E, Blaney N, Stephan C, Sikes J, Snapp M (1978) The jigsaw classroom. Sage
Publications

Baker M, Hansen T, Joiner R, Traum D (1999) The role of grounding in collaborative learning
tasks. Collaborative learning: Cognitive and computational approaches pp 31–63

Blaye A, Light P (1995) Collaborative problem solving with HyperCard: the influence of peer
interaction on planning and information handling strategies. In: Computer supported col-
laborative learning, Springer, pp 3–22

Brennan SE (1991) Conversation with and through computers. User Modeling and User-
Adapted Interaction 1(1):67–86

Cherubini M, Van Der Pol J, Dillenbourg P (2005) Grounding is not shared understanding:
Distinguishing grounding at an utterance and knowledge level. In: CONTEXT’05, the
Fifth International and Interdisciplinary Conference on Modeling and Using Context, pp
11–23

Chi MT, Bassok M, Lewis MW, Reimann P, Glaser R (1989) Self-explanations: How students
study and use examples in learning to solve problems. Cognitive science 13(2):145–182

Clark HH, Brennan SE (1991) Grounding in communication. Perspectives on socially shared
cognition 13(1991):127–149

Clark HH, Marshall CR (2002) Definite reference and mutual knowledge. Psycholinguistics:
critical concepts in psychology 414

Clark HH, Schaefer EF (1989) Contributing to discourse. Cognitive science 13(2):259–294
Clark HH, Wilkes-Gibbs D (1986) Referring as a collaborative process. Cognition 22(1):1–39
Dillenbourg P, Hong F (2008) The mechanics of cscl macro scripts. International Journal of

Computer-Supported Collaborative Learning 3(1):5–23
Dillenbourg P, Traum D (2006) Sharing solutions: Persistence and grounding in multimodal

collaborative problem solving. The Journal of the Learning Sciences 15(1):121–151
Dillenbourg P, Baker MJ, Blaye A, O’Malley C (1995) The evolution of research on collabo-

rative learning. Learning in Humans and Machine: Towards an interdisciplinary learning
science pp 189–211

Doise W, Mugny G, Perret-Clermont AN (1975) Social interaction and the development of
cognitive operations. European journal of social psychology 5(3):367–383



28

Gaver WW, Sellen A, Heath C, Luff P (1993) One is not enough: Multiple views in a media
space. In: Proceedings of the INTERACT’93 and CHI’93 Conference on Human Factors
in Computing Systems, ACM, pp 335–341

Hutchins E, Palen L (1997) Constructing meaning from space, gesture, and speech. In: Dis-
course, Tools and Reasoning, Springer, pp 23–40

Kenny DA, Kashy DA, Bolger N, et al (1998) Data analysis in social psychology. The handbook
of social psychology 1(4):233–265

Kobbe L, Weinberger A, Dillenbourg P, Harrer A, Hämäläinen R, Häkkinen P, Fischer F (2007)
Specifying computer-supported collaboration scripts. International Journal of Computer-
Supported Collaborative Learning 2(2-3):211–224

Liben LS, Patterson AH, Newcombe N (1981) Spatial representation and behavior across the
life span. Academic Press

Molinari G, Sangin M, Nüssli MA, Dillenbourg P (2008) Effects of knowledge interdependence
with the partner on visual and action transactivity in collaborative concept mapping.
In: Proceedings of the 8th International Conference on International Conference for the
Learning Sciences - Volume 2, pp 91–98

Moreland RL (1999) Transactive memory: Learning who knows what in work groups and
organizations. Shared Cognition in Organizations: The Management of Knowledge

Nova N, Girardin F, Dillenbourg P (2005) “Location is not enough!”: an empirical study of
location-awareness in mobile collaboration. In: IEEE International Workshop on Wireless
and Mobile Technologies in Education, pp 21–28

Nova N, Girardin F, Molinari G, Dillenbourg P (2006) The underwhelming effects of automatic
location-awareness on collaboration in a pervasive game. In: Cooperative Systems Design:
Seamless Integration of Artifacts and Conversations-Enhanced Concepts of Infrastructure
for Communication, pp 224–238

Nova N, Wehrle T, Goslin J, Bourquin Y, Dillenbourg P (2007) Collaboration in a multi-user
game: impacts of an awareness tool on mutual modeling. Multimedia tools and Applications
32(2):161–183

Paas F, Renkl A, Sweller J (2003) Cognitive load theory and instructional design: Recent
developments. Educational psychologist 38(1):1–4

Pickering MJ, Garrod S (2006) Alignment as the basis for successful communication. Research
on Language and Computation 4(2-3):203–228

Roschelle J, Teasley SD (1995) The construction of shared knowledge in collaborative problem
solving. In: Computer supported collaborative learning, Springer, pp 69–97

Sangin M, Molinari G, Nüssli MA, Dillenbourg P (2008) How learners use awareness cues about
their peer’s knowledge?: insights from synchronized eye-tracking data. In: Proceedings
of the 8th international conference on International conference for the learning sciences-
Volume 2, International Society of the Learning Sciences, pp 287–294

Schober MF (1993) Spatial perspective-taking in conversation. Cognition 47(1):1–24
Schwartz DL (1995) The emergence of abstract representations in dyad problem solving. The

Journal of the Learning Sciences 4(3):321–354
Slugoski BR, Lalljee M, Lamb R, Ginsburg GP (1993) Attribution in conversational context:

Effect of mutual knowledge on explanation-giving. European Journal of Social Psychology
23(3):219–238

Stahl G (2007) Meaning making in CSCL: Conditions and preconditions for cognitive processes
by groups. In: Proceedings of the 8th iternational conference on Computer Supported
Collaborative Learning, pp 652–661

Suthers DD (2006) Technology affordances for intersubjective meaning making: A research
agenda for cscl. International Journal of Computer-Supported Collaborative Learning
1(3):315–337

Traum D, Dillenbourg P (1996) Miscommunication in multi-modal collaboration. In: AAAI
Workshop on Detecting, Repairing, And Preventing Human–Machine Miscommunication,
pp 37–46

Webb NM (1991) Task-related verbal interaction and mathematics learning in small groups.
Journal for research in mathematics education pp 366–389

Wegner DM (1987) Transactive memory: A contemporary analysis of the group mind. In:
Theories of Group Behavior, Springer, pp 185–208



The Symmetry of Partner Modelling 29

Notes

1The data and statistical analyses of this study are available online: https://github.com/
chili-epfl/mutual-modelling-emotions-study.

https://github.com/chili-epfl/mutual-modelling-emotions-study
https://github.com/chili-epfl/mutual-modelling-emotions-study
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