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Abstract 

In the domain of UAVs, endurance and range are key utility factors. However, 

small-sized UAVs are faced with serious limitations regarding energy storage options. A 

way to address this challenge is to seek for energy from the surrounding environment. 

One flight technique, called dynamic soaring, has been perfected by large seabirds like 

the albatross, which enables them to wander effortlessly in southern oceans. This thesis 

investigates the feasibility to find inspiration from the biological world in order to 

address the issue of limited endurance. 

First of all, an extensive literature background sums-up a range of technical 

aspects that can be learnt out of the flight of albatrosses. It reviews their morphology, 

flight performance and sensitivity to wind strength, their flight characteristics and 

energy expenditure management. 

Then, a methodology to simulate dynamic soaring flight is built-up by focusing 

first on adequate models for the vehicle and for the environment. It details the way 

those models are described quantitatively and qualitatively. As for the vehicle, a point 

mass model is chosen and applied to fixed-wing gliders of several scales, as well as to an 

albatross of generic dimensions. The environment is first modelled by classical 

boundary layer theory on a rather flat surface and then refined by taking into account 

specificity about the ocean boundary layer, such as varying roughness length and 

surface waves.  

Equations of motion are detailed for both points of views, earth-relative and air 

relative. This yields two different sets of equations of motion, eventually representing 

equivalent physics. An optimization problem is then set in order to determine, for the 

vehicle, how to extract energy from its environment. Variations in objective function 

and in constraints are described before presenting the numerical integration scheme 

which converts the optimization problem into that of finite-dimension. The solving 

tools and their specificity are presented, followed by a validation of the overall 

methodology with a particular study case from the literature. 

Basic principles of dynamic soaring flight are explicated by using a specific 

closed-loop study case. Energy-harvesting mechanisms are disclosed locally and next 

integrated over the whole flight path. A further illustration of dynamic soaring is 
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provided by relaxing some periodicity constraints and opening the trajectory. The 

specificity of the ocean boundary layer environment is finally implemented and a 

refined energy-harvesting strategy is presented.  

Air relative equations of motion are dimensionless so as to highlight specific 

dynamic soaring behaviours, in the case of a simplified linear wind profile and 

eventually by finding an appropriate non-dimensionalization for a logarithmic wind 

profile. Conditions of similarities between dimensionless solutions are described and 

some basic DS characteristics are outlined.  

Finally, various dynamic soaring performance study case are computed. 

Optimized trajectories are implemented for the selected vehicles and compared on a 

required wind strength basis. The sensitivity of the required wind strength to the net 

flight heading as well as to the ground clearance and to the surface roughness length is 

determined by drawing performance charts. In order to enlarge the scope of favourable 

dynamic soaring conditions, thrust-augmented trajectories are considered. The range 

improvements offered by dynamic soaring are compared to the straight line case, for 

different wind strength and different net flight headings.  
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Résumé de la thèse en français 

Dans le domaine des drones, l'endurance et l’autonomie sont reconnues comme 

étant des facteurs d'utilité clés. Ces véhicules sans pilotes permettent d’élargir le spectre 

des missions accessibles aux aéronefs, notamment, pour certaines applications, en 

réduisant leur taille. Cependant, les drones de faibles dimensions sont confrontés à des 

limitations importantes concernant les options de stockage d'énergie. Des solutions 

alternatives de propulsion ont été approchées dans la littérature, comme le recours aux 

piles à combustible qui permet de tirer parti de l’importante densité énergétique du 

dihydrogène. Ou encore la modification de la chaine énergétique à bord, en déportant la 

source au sol et en transmettant au véhicule l’énergie via un laser. Chacune de ces 

options a ses limites à l’heure actuelle. Une autre façon de répondre à cet enjeu est 

d’extraire de l'énergie à l'environnement ambiant au véhicule. Cela peut se décliner sous 

plusieurs formes et des solutions ont été abordées par le passé, comme le vol de pente, 

le vol de thermique ou encore l’exploitation photovoltaïque de l’énergie solaire. Ce sujet 

se rallie à la même démarche générale d’exploitation de l’énergie ambiante, mais se base 

sur des principes d’extraction différents. Par ailleurs, ces problématiques s’inscrivent 

dans un contexte de bio-mimétisme, où la nature est considérée comme une source 

d’inspiration, d’autant plus alors que les drones peuvent atteindre des dimensions 

comparables à celles des oiseaux. 

Une technique de vol a été perfectionnée par de grands oiseaux de mer comme 

l'albatros, ce qui leur permet de parcourir les océans de l’hémisphère sud, sur des 

milliers de kilomètres, sans effort. En effet, les travaux de biologistes ont permis 

d’identifier certaines caractéristiques du vol de l’albatros. Parmi les plus significatives 

figurent leur vol non battu et les distances considérables qu’ils parcourent, ce qui sous-

entend une gestion énergétique intéressante. Afin de bénéficier d’une source 

d’informations aussi large que possible concernant le vol de l’albatros, une vaste revue 

bibliographique est faite des contributions biologistes offrant un éclairage sur les 

aspects physiques de l’albatros et de son vol. A ce titre, cette bibliographie s’attache à se 

distancer des aspects comportementaux, ou du moins à les distinguer, pour se 

concentrer sur les informations physiques du vol. 

Ainsi, on peut apprendre que des spécimens équipés de balises GPS ont 

parcouru des distances de voyages considérables, allant même jusqu’à des 

circonvolutions dans les latitudes sud. Ces performances sont associées à des vitesses de 
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voyage pouvant dépasser 900 kilomètres par jour. Cette vaste couverture des mers 

s’explique, pour l’aspect comportemental, par un besoin de l’oiseau de maximiser la 

probabilité de rencontrer des proies qui ont une distribution très sporadique en surface. 

Ces performances soulèvent d’autant plus d’interrogations que la morphologie des 

albatros démontre une incapacité à battre durablement des ailes. En outre, toutes les 

observations font de fait état d’un vol strictement plané, pour lequel l’albatros est en 

revanche particulièrement adapté. En effet, ses ailes ont un grand allongement et 

peuvent être maintenue déployées sans que l’oiseau force, par l’intermédiaire d’un 

tendon. Dès la fin du XXème siècle, il a été conjecturé que ces oiseaux tiraient parti du 

vent. De fait, la répartition de leurs colonies sur les iles isolées des mers du sud 

correspond effectivement aux zones qui voient les vents les plus fréquents et les plus 

puissants. Cette dépendance au vent est même marquée par des oiseaux bloqués sur 

l’eau lorsque le vent vient à tomber, alors qu’ils passent la majorité de leur temps en 

l’air. D’autres informations sont utiles pour enrichir la compréhension de ce rapport au 

vent. Leur direction de vol par rapport au vent est orientée dans le même sens que le 

vent, mais avec une composante de travers fortement prononcée, de telle sorte que 

l’oiseau vole aux alentours de 45° par rapport au sens du vent. Enfin, à plus faible 

échelle, leur vol fait apparaitre des trajectoires sinueuses et cycliques, avec des virages 

successifs en montée et en descente, entre la surface et des altitudes aux alentours de 

15-20 mètres maximum. Il apparait que les albatros tirent profit des gradients de vents 

qui se forment à la surface, dues aux interactions de couches limites atmosphériques.  

L’ensemble de ces considérations, associées au fait qu’un drone de faibles 

dimensions peut, à priori, reproduire les dimensions et performances planés de 

l’albatros, font de cette technique un sujet de recherche prometteur dans le domaine des 

drones. En effet, la source d’énergie requiert uniquement la présence de vent et est 

uniformément présente sur de vastes zones géographiques, au contraire des thermiques 

par exemples, qui sont limitées à des zones réduites et clairsemées. La technique de vol 

démontrée par les albatros est quelquefois appelée vol de gradient en français, mais on 

lui préfèrera l’expression anglo-saxonne dynamic soaring (DS), plus couramment usitée. 

Elle traduit en effet la dynamique nécessaire à l’extraction d’énergie, là où d’autres 

techniques, comme le vol de thermique ou de pente, voit l’extraction se faire sous forme 

constante, via un régime de vol statique. Lors du vol par DS, au contraire, les échanges 

d’énergie sont périodiques, avec des gains et des pertes, au travers de manœuvres 

dynamiques de vol. La question principale de ce travail de recherche consiste à savoir 

s’il est faisable, et dans quelle mesure, d’exploiter le DS afin de répondre aux enjeux de 

vol longue distance pour des drones. Ce travail de recherche a une dimension 
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clairement multidisciplinaire et on conceptualisera trois domaines de recherche afin de 

structurer notre raisonnement. Il s’agit du véhicule, de l’environnement et des 

trajectoires. Différents objectifs de recherche sont déterminés, relatifs à chacun de ces 

concepts et à la façon dont ils s’influencent. 

Afin de circonscrire le sujet et ses développements, une bibliographie de la 

littérature est faite, parcourant les différentes approches d’extraction d’énergie au vent 

qui ont pu être étudiées. Cela comprend le gust soaring, ou vol de rafale, qui exploite les 

variations stochastiques des composantes verticales de la masse d’air, au sein de la 

couche limite atmosphérique turbulente. Les échelles de temps considérées sont faibles, 

comparés au DS, qui exploite la répétabilité des conditions rencontrées au cours de 

cycles identiques de trajectoires. Le dynamic soaring nécessite la présence de gradient 

de vent ainsi que leur connaissance à priori et peut donc être envisagée sous différentes 

formes. La revue bibliographique parcoure ainsi les études du DS qui ont été faites non 

seulement sur une surface pseudo-plane, mais aussi en aval d’une colline, dans le 

courant d’altitude jet stream ou encore au sein d’une tempête avec un champ 

rotationnel. Cette revue permet de fixer les bases de notre étude et de confirmer ses 

objectifs, en révélant la nécessité de réunir les différents points de vue existants, 

notamment concernant les principes d’extraction d’énergie. 

Notre étude s’est tout d’abord attachée à modéliser l’environnement et le 

véhicule, avant de faire interagir les deux. Le chapitre III expose cette approche, en 

détaillant tout d’abord le choix des modèles physiques représentatifs de 

l’environnement et du véhicule avant de s’attarder sur leurs quantifications. Concernant 

le véhicule, un modèle de masse ponctuelle est choisi, qui concentre tous les efforts au 

centre de gravité. La simplicité de ce modèle est attractive pour l’application qui est 

recherchée et se justifie par le fait que l’échelle des gradients de vent permet d’utiliser 

une masse ponctuelle pour représenter la dynamique du vol. En revanche, certaines 

contraintes opérationnelles, liées à l’évolution du véhicule, comme la limitation du taux 

de roulis, doivent alors être déterminées intuitivement car leur évolution n’est régie par 

aucune équation. Une fois ce choix fait, le premier véhicule considéré reprend la 

morphologie de l’albatros, établie par les biologistes. Puis, afin de s’affranchir des 

disparités liées aux dimorphismes entre spécimens et aux incertitudes des mesures 

anatomiques, trois plateformes à voilure fixe, basées sur des architectures de moto-

planeurs, sont considérées. Elles correspondent à trois échelles de véhicule différentes, 

choisies pour représenter le compromis entre taille et performances de vol plané et 

permettre ainsi d’explorer la faisabilité du vol par dynamic soaring pour différentes 

dimensions de drone.  
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En ce qui concerne l’environnement, dans un premier temps, une surface 

pseudo-plane est considérée et un profil logarithmique, représentatif d’un profil de 

vitesse moyen de couche limite atmosphérique, est choisi. En raison des irrégularités de 

surface, la loi logarithmique fait intervenir la longueur de rugosité, qui est en directe 

correspondance avec l’état de surface considéré. Elle fait aussi intervenir, plus 

classiquement, la vitesse de friction qui est une représentation directe de la contrainte 

pariétale. Ainsi, ces deux variables permettent de définir un profil de vitesse moyen, qui 

prend statistiquement en compte les irrégularités de surface. Or il apparait que les 

longueurs de rugosité utilisées dans la littérature sur le DS sont d’un ordre de grandeur 

trop important pour correspondre à celles rencontrées en mer. Une correction est 

proposée avec la prise en compte d’un modèle de rugosité qui lie directement la 

longueur de rugosité au vent rencontré, suggérant ainsi une corrélation implicite entre 

contrainte pariétale et état de surface. Le profil de vitesse n’est alors plus figé mais 

dépendant des conditions environnementales. En outre, il apparait dans la littérature 

que les vagues jouent probablement un rôle dans la technique de vol des albatros. Si 

l’interaction vent-vague est un très vaste sujet, il a été décidé de se concentrer sur 

l’influence d’un vague sinusoïdale, corrélée aux conditions de vent via une 

méthodologie simple, reprenant des mesures faites en mer. Cette vague, peu creusée, est 

représentative d’une houle et engendre des déplacements d’air à son voisinage, due au 

mouvement ondulatoire de la vague. Ainsi, la face montante de la vague voit 

l’apparition d’une composante verticale montante de la vitesse air à son voisinage, alors 

qu’elle est pourtant sous le vent. 

Une fois que les modèles environnement et véhicule sont déterminés, les 

trajectoires permettant d’exploiter le DS doivent être établies. L’unique façon de 

prouver la faisabilité de cette technique de vol est en effet de montrer l’existence d’une 

trajectoire de vol y correspondant. A cet effet, il est dans un premier lieu nécessaire de 

mettre en place les équations qui régissent l’évolution de véhicule au sein de son 

environnement. Le point de vue choisi pour l’observation de cette évolution est 

primordial pour l’écriture des équations. Deux options sont possibles, se baser dans un 

repère galiléen lié à la terre ou alors se déplacer avec la masse d’air que le véhicule 

traverse. Les échanges d’énergie entre véhicule et masse d’air ont aussi des 

interprétations différentes suivant le référentiel, dans la mesure où la définition même 

de l’énergie dépend du point de vue. Le point de vue terrestre est choisi et les six 

équations de la dynamique, gouvernant l’évolution de six variables d’état liées au 

véhicule, sont écrites. Celles-ci dépendent de l’état même de ces variables ainsi que des 

variables de contrôle, en l’occurrence le coefficient de portance et l’angle de roulis. Si 
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ces paramètres ne sont en réalité pas contrôlables directement lors du pilotage réaliste 

du véhicule, ce sont les variables de plus bas niveau disponibles avec le modèle de masse 

ponctuelle. Pour garantir toutefois que l’évolution de ces variables n’est pas fantaisiste, 

il est nécessaire de borner leurs taux d’évolution ainsi que leurs dérivées première et 

seconde, ceci afin d’obtenir des fonctions doublement continue, physiquement 

cohérentes. 

La singularité du problème vient du fait de la dépendance aux variables de 

contrôle, qui pilotent la trajectoire et doivent être, d’une certaine manière, guidées dans 

leur évolution afin de trouver la trajectoire permettant d’exploiter le dynamic soaring. 

La méthodologie employée consiste à trouver la meilleure trajectoire, en mettant en 

place et en résolvant un problème d’optimisation. La formulation générale du problème 

est assez générique, avec une fonction exprimant l’objectif et des contraintes associées. 

L’objectif est de minimiser la vitesse du vent nécessaire à l’établissement d’une 

trajectoire énergétiquement neutre, c’est-à-dire qui voit les pertes du véhicules 

compensées exactement pas ses gains. Un critère important est la périodicité de la 

trajectoire. En effet, il est aisé pour un véhicule d’extraire durant une certaine période 

de l’énergie au vent. En revanche, rendre ce processus reproductible est le défi du vol 

par DS. Les contraintes du problème d’optimisation incluent ainsi une périodicité des 

variables, à l’exception, pour certains cas, ou un déplacement horizontal est permis 

entre situation initiale et finale. Il est à noter que la reproductibilité des cycles de 

trajectoires se base ainsi sur l’hypothèse d’une homogénéité de la loi de vitesse de vent.  

Une étape plus complexe est la conversion de ce problème purement 

mathématique en un problème de dimension finie, qui peut être ensuite abordé par des 

techniques numériques d’optimisation. La première tâche consiste à diviser l’intervalle 

de temps en sous-intervalles et en exprimant les équations de la dynamique sous forme 

de contraintes, grâce à un schéma d’intégration numérique sur chaque intervalle. Sans 

rentrer dans les détails, la fonction dérivée, pour chaque équation, est interpolée, sur 

chaque intervalle, par un polynôme quadratique en trois points de collocation, tandis 

que les variables d’états sont interpolés par un polynôme de Hermite. De cette manière 

l’intégration des équations est implicitement effectuée au cours de l’optimisation. 

D’autres contraintes opérationnelles sont ajoutées, en plus de celles de périodicité, 

comme par exemple le non-décrochage ou la garde au sol. Le problème engendré est un 

problème d’optimisation contrainte non linéaire, que l’on résout avec le solveur SNOPT. 

Un cas de validation est effectué en reproduisant des conditions déjà étudiées dans la 

littérature et la correspondance entre les deux valide la méthodologie. 
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Une fois la méthodologie établie, le chapitre V s’attache à l’interprétation des 

résultats, avec un accent particulier porté sur la compréhension des mécanismes 

d’extraction d’énergie. Les phases caractéristiques des trajectoires par DS sont décrites 

en se basant sur un cas de trajectoires fermées, pour laquelle le véhicule revient 

exactement à sa position de départ, avec la même énergie. Cela démontre au passage la 

faisabilité de se maintenir en position, virtuellement indéfiniment, indépendamment de 

la direction du vent. La trajectoire n’est alors pas une boucle simple mais constituée de 

deux boucles internes, enchainées pour former l’aspect d’un 8. Quatre phases de vol 

forment invariablement les trajectoires par dynamic soaring : une montée face au vent, 

un virage dans le vent en haut de boucle, une descente vent arrière et un virage contre 

le vent proche de la surface. Si ces quatre phases se retrouvent invariablement, leurs 

amplitudes dépendent de la nature de la trajectoire (ouverte ou fermée) et du cap net de 

voyage souhaité. On montre que l’extraction d’énergie se fait lors de la montée face au 

vent, du virage haut et de la descente et que le virage contre le vent concentre les 

principales pertes. Il est montré que ces échanges d’énergie sont les résultats du travail 

des forces non conservatives qui s’appliquent sur le système, en l’occurrence les forces 

aérodynamiques. Des graphiques présentant les triangles des vitesses et projections des 

forces permettent de montrer comment la portance, orientée par la vitesse 

aérodynamique, est déviée dans le sens du mouvement lors des trois phases citées et de 

manière opposée lors virage bas. En outre, l’expression de la puissance des forces se 

développe et fait apparaitre que la trainée peut, elle aussi, avoir une composante qui 

joue un rôle moteur, tandis que la seule composante invariablement négative provient 

de la composante de la trainée opposée à la vitesse air. La propension du véhicule à 

exposer sa face inferieure orthogonalement à la direction du vent lorsque l’altitude 

maximale est atteinte est similaire à ce qui est observé chez les albatros et correspond à 

la configuration qui maximise la puissance extraite au vent. Il est montré comment le 

gradient de vent permet au véhicule de ne pas perdre trop d’énergie lors du virage bas, 

mais qu’en aucun cas l’énergie est extraite du gradient de vent. A ce titre, le virage 

contre le vent est une phase particulièrement critique pour le vol par DS, dans la 

mesure où un changement mineur d’altitude a un impact direct sur la vitesse du vent 

rencontrée lors du virage, en raison du fort gradient présent à faible hauteur. La 

contrainte de garde au sol minimum représente des conditions favorables au vol par DS 

lorsqu’elle autorise des faibles séparations entre surface et véhicule.  

Après s’être intéressés au fondamentaux du vol par dynamic soaring, un cas 

d’étude simulant le vol de l’albatros de la manière la plus réaliste possible est mis en 

place. Dans un premier temps, l’impact d’une longueur de rugosité est évalué. Il est 
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montré que la prise en compte d’une longueur de rugosité représentative des conditions 

océaniques engendre une augmentation de la vitesse du vent nécessaire pour voler par 

DS (Il est montré plus tard que la vitesse de friction n’est en revanche pas impactée). 

Cela suggère que les albatros, dont le vol est observé à des vitesses de vent plus faibles, 

utilisent des mécanismes de vol non pris en compte par la simulation sur une surface 

pseudo-plane. Celle-ci est donc enrichie par la présence de vagues, et il est montré que 

le véhicule se déporte du côté de la face montante de la vague pour y effectuer son 

virage bas, là où la vague produit une composante verticale montante. Il est ainsi établi 

que le véhicule peut bénéficier de la présence de vagues, afin d’abaisser la vitesse de 

vent requise au vol par DS. Toutefois, des écarts significatifs persistent entre la vitesse 

de vent théorique obtenue et celles relevées lors des vols des albatros. Cela souligne des 

raffinements utilisés par les albatros que la simulation proposée ne couvre pas. On peut 

conjecturer sur l’exploitation des rafales au sein d’un environnement en vent non pas 

stationnaire mais turbulent, l’exploitation de vagues plus formées du spectre qui font 

apparaitre des phénomènes de nature différente, comme le décollement de la couche 

limite, ainsi qu’une rugosité de surface plus prononcée que dans notre modèle, 

correspondant à une mer plus jeune.  

La thèse, s’intéresse, au cours du chapitre VI, à une approche plus 

mathématique du DS, afin de comprendre comment les variables du problème peuvent 

être liées entre elles. En effet, un inconvénient des simulations faites dans le chapitre 

précédent est qu’elles sont propres à un véhicule, à des contraintes opérationnelles 

précises et à des conditions de vent particulières. Afin de rechercher comment les 

variables liées à ces paramètres interagissent entre elles, indépendamment des 

métriques associées, une analyse adimensionnelle des équations est effectuée. Les 

équations de la dynamique, écrites dans le référentiel lié à la masse d’air, se prêtent bien 

à cette approche en limitant les angles de projection. Elles sont donc normalisées, via un 

choix de variables de références pour chaque unité. Dans un premier temps, un profil de 

vent linéaire est choisi (avec un gradient constant) et l’adimension se fait aisément, en 

faisant apparaitre un paramètre de similitude qui implique notamment la charge alaire 

et le gradient de vent. Ainsi l’étude fait apparaitre, en théorie, des familles de problèmes 

dont les solutions adimensionnées sont identiques entre elles. Il est donc possible, à 

partir d’une solution, d’extrapoler celles qui ont le même paramètre de similitude. Cela 

est vérifié via des simulations, validant au passage la méthodologie. En revanche, une 

limitation du profil de vent linéaire est qu’il ne fait pas apparaitre l’augmentation du 

gradient de vitesse en proche surface, qui semble pourtant primordial dans le vol par 

DS, au vu des observations faites des albatros et des simulations établies plus tôt. Ainsi, 
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cette même approche est reprise pour un profil de vitesse qui suit la loi logarithmique 

définie précédemment. Une normalisation est trouvée et validée par des simulations, 

mais les solutions identiques entres elles impliquent des contraintes particulières entres 

l’altitude minimale et la vitesse de friction, ce qui, en pratique, semble peu utile. En 

revanche, cette approche illustre quelques résultats intéressants, notamment en faisant 

apparaitre la charge alaire comme paramètre de similitude et en montrant que la vitesse 

de friction nécessaire ne varie pas quand la longueur de rugosité change. 

Enfin, une fois quelques propriétés remarquables fournies par l’analyse 

adimensionnelle, la thèse s’attache, lors du dernier chapitre, à simuler les variations de 

performances qui peuvent être obtenues lors du vol par DS, en changeant le véhicule, 

les conditions opérationnelles ou encore les conditions environnementales. Ainsi, les 

trois véhicules sont testés, et il apparait que le compromis entre faible envergure et 

performances de plané tourne à l’avantage de ces dernières. En effet, le véhicule de plus 

grande envergure parvient à voler par DS avec le minimum de vent requis. Il apparait 

ainsi que le DS s’adapte moins bien, dans les conditions simulées, aux véhicules de 

faibles dimensions, mais que les perspectives pour des drones de plus grandes tailles 

sont intéressantes. Ensuite, pour un véhicule donné, les conditions opérationnelles et de 

surface sont changées. Il apparait qu’une forte rugosité permet de réduire la vitesse du 

vent nécessaire (même si la vitesse de friction est constante) et qu’elle permet aussi de 

maximiser l’étendue des angles de voyage accessible par DS. D’autre part, une faible 

garde au sol a aussi les deux avantages cités précédemment. Enfin, dans la mesure où du 

vol purement plané exige des conditions particulières en vent, le vol motorisé est 

approché pour complémenter le DS lorsque le vent est trop faible pour permettre du vol 

purement plané. L’autonomie permise alors par le DS est alors étudiée en fonction du 

cap net de voyage choisi par rapport au vent. Puis, le vent est progressivement diminué. 

Il apparait que le DS permet d’améliorer significativement l’autonomie du véhicule en 

conditions de vent, mais qu’au fur et à mesure que le vent diminue, l’avantage procuré 

par le DS faiblit et se rétrécit à une zone de direction de vol de plus en plus faible. 

Ainsi il apparait que le DS, tel que simulé sur une plaque rugueuse pseudo-

plane, permet au véhicule de se maintenir en l’air et de se déplacer gratuitement. La 

diminution du vent proche de la surface dispense la perte de trop d’énergie lors du 

virage contre le vent et permet ainsi de limiter la puissance du vent nécessaire au vol 

par DS. En revanche, il semble peu probable que les albatros parviennent à leurs 

performances en se contentant de ces seuls phénomènes. En effet, même en ajoutant un 

modèle de vague aux simulations, les vents théoriques obtenus sont encore trop élevés 

pour correspondre aux conditions mesurées en mer. Si les albatros tirent aussi parti 



 

xi 
 

d’interactions de surface plus complexes que celles modélisées, il apparait difficile pour 

un drone de piloter son vol en proche surface, au sein d’un environnement hautement 

turbulent. En revanche, une option peut être d’exploiter justement ces turbulences, à la 

manière du gust soaring, le long des trajectoires de dynamic soaring. Les simulations 

destinées à reproduire ces conditions devront probablement approcher un modèle de 

véhicule plus complexe que celui de masse ponctuelle, au vu de la faible échelle des 

gradients de vent turbulents. D’autre part, une voie de développement nécessaire 

concerne le pilotage du dynamic soaring. Deux approches peuvent être suivies, en 

mémorisant des dizaines de cycles de trajectoires, pour différentes conditions, puis en 

sélectionnant celles qui correspondent aux conditions souhaitées. Ou alors en mettant 

en place des lois de contrôle qui se basent sur la compréhension physique du dynamic 

soaring. Quel que soit le choix du mode de pilotage, la faisabilité du vol par DS reposera 

sur la capacité du véhicule à voler en proche surface, en présence de vent. 
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Souvent, pour s'amuser, les hommes d'équipage 
Prennent des albatros, vastes oiseaux des mers, 
Qui suivent, indolents compagnons de voyage, 
Le navire glissant sur les gouffres amers. 

A peine les ont-ils déposés sur les planches, 
Que ces rois de l'azur, maladroits et honteux, 
Laissent piteusement leurs grandes ailes blanches 
Comme des avirons traîner à côté d'eux. 

Ce voyageur ailé, comme il est gauche et veule ! 
Lui, naguère si beau, qu'il est comique et laid ! 
L'un agace son bec avec un brûle-gueule, 
L'autre mime, en boitant, l'infirme qui volait ! 

Le Poète est semblable au prince des nuées 
Qui hante la tempête et se rit de l'archer ; 
Exilé sur le sol au milieu des huées, 
Ses ailes de géant l'empêchent de marcher. 
 
Charles Baudelaire, L'Albatros, in Les Fleurs du Mal, 1861  
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Chapter I                                

Finding Guidance from Albatross Flight 

For many years, in the early infancy of aeronautics, human beings have been inspired by birds 

and have tried to mimic some of their features in order to take their first steps into the air. 

However, their theoretical background was sometimes lacking and the empirical field of 

knowledge was built through many hurdles. Since then, aircraft have explored a vast domain of 

flight, pushing boundaries of size, altitude and speed to levels respectively bigger, higher and 

faster than any living bird. Yet, scientific advances in the aeronautical field have not turned 

engineers away from other potential guidance that could be found by looking at nature [1]. In 

the recent-developing field of small Unmanned Aerial Vehicles (UAV), vehicles have been 

reduced in size to dimensions where birds and even insects compare on a 1:1 scale ratio, 

opening new perspectives for the potential of bio-mimicry. Festo’s SmartBird was among the 

first vehicles of that size to master flapping flight with kinematics inspired from birds and a 

design based on the herring gull [2]. Aerovironment’s Nano Hummingbird mimics the high-

frequency flapping of the bird it is inspired from so as to enable hovering flight [3]. Georgia 

Institute of Technology’s Dragonfly is based on the eponymous insect with similar dimensions 

[4]. A general introduction to the area of small UAVs will first be presented, which will lead to 

developments on the issue of long endurance flight, and then some of the explored solutions 

will be presented. An alternative that addresses this issue will be emphasized by shedding light 

on a peculiar biological system represented by the albatross genus. Finally the main features of 

their flight technique, called dynamic soaring, will be provided. Dynamic soaring will be 

referred to as DS in the remaining of this thesis 
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I.1 The UAV Context 

UAVs date from the early hours of aviation and have been developed alongside their manned 

siblings in order to address three specific aspects of flight: “dirty”, “dull” and “dangerous”. By 

replacing the human being on board, UAVs can be used in “dirty” environments, such as 

contaminated areas or high altitude, where preserving human health is a challenge with 

significant associated engineering constraints. Or it can be used in “dangerous” environments, 

such as military conflicts, where the integrity of the vehicle and the life of a potential pilot are 

deliberately put at risk to perform a mission. On top of that, “dull” missions, such as 

surveillance and monitoring, where the presence of a human being is not required, can be 

performed by UAVs. Often, a UAV is developed to combine several of those aspects. For 

instance, the Northrop X-47B, which recently achieved the first autonomous landing on an 

aircraft carrier [5], is a large UAV of several tons, with a fighter-type profile. It prefigures a 

generation of UAVs that will be exposed to obvious dangerous environments while taking 

advantage of the absence of a human being on board to achieve higher levels of stealth, 

aerodynamics and situation awareness. Another example is the development of high-altitude 

solar-powered Titan UAVs [6], which will stay aloft for up to five years to provide 

communication coverage and hence perform a satellite-like mission anywhere around the 

globe, whilst having the flexibility and cost of an aircraft. Not only is a human presence not 

needed for the job, but it would jeopardize any chance of mission feasibility by significantly 

increasing the mass of the ultra-lightweight airframe and by requiring regular stops to avoid 

pilot exhaustion. To that respect, it is somehow ironic that for the challenge set by Solar 

Impulse [7] of flying around the world on solar power, many technical hurdles and performance 

limitations are entailed by the presence of a human on board, which is more symbolic than 

necessary.  

The domain of small-sized UAVs, which are designed for much lower loads than 

manned-airframes, has seen a significant boost in recent years thanks to the miniaturization of 

technology, the development of lightweight materials and the progressive development of 

artificial intelligence. Once the pilot is removed, all size constraints related to the presence of a 

human being on board can be withdrawn and UAVs can be downsized to a scale which best 

suits their requirements. They address a potentially vast scope of mission scenarii. Advantages 

are numerous, such as providing a constrained volume of flight for indoor applications, 

reducing overall costs, or lowering the environmental impact. However, in the domain of 

small-sized UAVs, the limited mass and volume significantly challenge energy storage options. 
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Besides, those vehicles usually fly at rather low Reynolds numbers which are characteristic of a 

degraded aerodynamic efficiency. This leads to significant endurance limitations while, in fact, 

long-endurance is acknowledged to be a key factor of UAV utility [8]. In other words, without 

any pilot on board, endurance is only limited by the amount of available energy, which is part 

of the appeal for UAVs, but small vehicles are still faced with low endurance constraints. 

Innovative approaches are therefore sought in order to address that conundrum. 

Figure I.1: Ion Tiger, a fuel-cell-powered, 5.15 metres-
wingspan, which sustained flight for 48 hours in April 
2013 [9] using liquid hydrogen. 

 

 

Figure I.2: Photovoltaic panels installed as a 
laser receiver unit under the right wing of 
the 3 metres-wingspan Lockheed Stalker. 

One plan of attack concerns the on board electric energy supply chain and looks at 

new technical solutions as for energy storage that departs from the traditional battery power 

source. Research on fuel-cell propulsion for long endurance UAVs is particularly active since 

their high energy density has the potential to dramatically extend endurance [9]. Fuel-cells take 

advantage of the high specific energy of hydrogen fuel, which can be stored under high 

pressure in a specific vessel or in its liquid form to benefit from an even higher energy per unit 

volume [10]. Recently, the Ion Tiger, pictured in Fig. I.1, performed a flight of 48 hours using 

only 500 grams of liquefied hydrogen to feed its fuel-cell [11]. However, although fuel-cells 

provide high specific energy together with high power, their size and volume can only be 

constrained to a limited level. On Ion Tiger, the fuel-cell system only (fuel cell, fuel tank, 

regulator, cooling) weights 5.5 kg without either fuel or propulsion system [9]. Moreover, the 

need for heat transfer area increases the size of the fuselage, leading to increasing parasitic 

drag. In order to achieve a maximum lift to drag ratio of 17, Ion Tiger has a wingspan of up to 

5.15 metres, for a practical payload of 2.3 kg and an overall mass of 16 kg. Further advances are 

required to benefit from the high efficiency of fuel-cell propulsion on smaller scale vehicles. 

Another approach to cope with energy storage constraints is to leave the power 

supply on the ground and to establish a transmitting power link between the ground and the 
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station. That has been achieved recently with the Lockheed Stalker, seen in Fig. I.2, by using a 

laser as an illuminating power source beamed to photovoltaic cells on the UAV [12]. As long as 

the vehicle remains in line of sight of the ground platform, it can benefit from a charge in mid-

air to cope with power requirement in-flight [13]. On top of enabling a virtually unlimited 

endurance, the high energy density of the laser can enlarge the performance envelope of the 

vehicle, such as increased payload or higher airspeed, by allowing higher power requirements. 

It has been underlined that this technology could multiply the power received by an otherwise 

similar solar-powered UAV by a factor ranging from 2 to 10, depending on the technology used 

for laser and photovoltaic cells, with more consistent charge availability [14]. However, the 

efficiency of the power transmission is rather low and suffers from dependence on cloud 

coverage. The theoretical beamed-power is also limited by the heating of the illuminated 

surface of the receiver on the UAV, due to the high energy density of the laser. Besides, the 

ground station must be equipped with accurate fully-automated tracking to target only the 

laser receiver area of the UAV. Moreover, the laser-powered UAV is limited to areas where it is 

at range of a ground station, which itself must have abundant power resources, even though 

the transmission can be intermittent. Hence, the virtually unlimited endurance does not 

translate much into improved vehicle range but rather enables to keep the UAV aloft without 

the need for landing and take-off.  

One different option for improving endurance is to seek energy from the surrounding 

environment. Studies about long endurance vehicles have mainly focused on using solar power 

to maintain a vehicle aloft. Prototypes began in the seventies with flights durations under 30 

minutes [15]. With developments in lightweight materials and of photovoltaic cells, vehicles 

have started to benefit from solar power in excess of their minimum requirements, therefore 

unlocking the potential to overcome periods of sun shortage of increasing lengths. This trend 

finally opened the way for solar-powered flights all around the clock. The shortage of solar 

exposition during the night is balanced by the excess of power received throughout daylight 

that is stored into potential energy and battery charge [16]. The Qinetiq Zephyr, a 30 kg, 18-

metres-wingspan-solar-powered UAV, displayed in Fig. I.3, paved the way by performing a 

two-week-long flight in 2010, setting the absolute record for flight duration by a winged vehicle 

heavier than air [17]. Up-scaled ongoing projects, such as Titan Solara or Boeing Solar Eagle aim 

at demonstrating and exploiting solar-powered perpetual flights, with the latest claiming a five-

year-duration objective. However, those projects are among the largest UAVs and cannot be 

quite representative of the small UAV class. Indeed, those vehicles have low wing loadings and 

are designed for altitudes above 50,000 ft. Smaller UAVs, destined to fly in the lower 
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atmosphere, do not abide by the same constraints. Still, Aerovironment derived a solar-powered 

version of its Puma UAV, see Fig. I.4, which sustained flight for 9 hours in August 2013 [18]. 

This range of performance, for such small-typed UAV, is however highly dependent on the 

daily sun coverage. 

 

Figure I.3: Qinetiq Zephyr, a solar-powered, 18
metres-wingspan-UAV, which sustained flight for 
two weeks in July 2010. 

 

 

Figure I.4: Aerovironment Puma AE, a solar-
powered, 2.8-metres-wingspan, which sustained 
flight for up to 9 hours in August 2013. 

Solar array is not the only exploitable energy source in the direct environment of 

UAVs. Indeed, aerology mechanisms in the lower atmosphere, induced by local or global 

difference in temperature, entail movements of air of different scale and represent a vast source 

of energy. This alternative largely remains to be explored in the domain of UAVs, all the more 

as their eventual smaller mass may allow them to benefit from atmospheric phenomena of 

smaller scale compared with manned-gliders. For instance, some of these convective 

mechanisms are called thermals and occur when pockets of air near the ground become less 

dense, due to either heating or humidity change [19]. The challenge consists in finding a way to 

exploit it without compromising the mission scenario, since convective mechanisms directly 

affect the kinematics of any vehicle, all the more if those are of little mass. Some birds of prey 

take advantage of thermals by flying into those pockets of rising air and increasing their 

altitude, hence increasing their total energy, without flapping their wings [20]. Their 

subsequent elevated position, combined with a sharp sight, enables them to spot their prey and 

to gain the necessary speed to catch them off-guard. This technique of flight is called thermal 

soaring and has been investigated [21] and demonstrated to be practically feasible for a UAV by 

Allen in 2007 [19]. In this study, a 4.30 metres-wingspan, 6.8 kilograms-weight, Cloud Swift 

UAV is modified in order to detect and exploit thermals. Flight tests have attested that 

autonomous soaring was possible and multiple thermals were used to achieve a flight time of 

one hour. The wind can also be deflected upwards on the windward side of a ridge or a slope, 

where it would be possible to perform slope soaring by flying inside the area of rising air.  
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Those above techniques can be qualified by a broader term, as static soaring, which 

expresses the fact that a static regime of flight enables a steady increase in energy. The bird or 

the vehicle can therefore, in theory, continuously extract energy by flying steadily in the 

appropriate zone of rising air.  

However, another type of flight, more subtle, has yet again emerged by looking at 

nature. It is the main focus of the present research work and is inspired by the flight of 

albatrosses.  
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I.2 The Albatross Legacy 

Albatrosses have been at the origin of the discovery and understanding of DS flight technique. 

To this day, they remain the only ones to sustainably exploit DS flight over open ocean 

surfaces. Besides, the lack of experimental data on DS makes their study all the more critical. 

Albatross genuses form a family of fascinating birds, with peculiar behaviours, which have led 

to wide biological research over past decades. In the framework of this research, an extensive 

review of these contributions is achieved in order to retrieve potential inputs to DS knowledge 

within the biological scope of albatross flight.  

 

Figure I.5: Wandering Albatross (Diomedea Exulans) in flight close to the surface. Copyrights Kimball 
Chen, www.keaphotography.org 

I.2.1 Morphology Characteristics 

Albatrosses are among the biggest birds on the planet. One gender in particular, the 

Wandering Albatross (Diomedea Exulans), see Fig. I.5 and Fig. I.6, has been recorded with a 

weight of 12.7 kg and the maximum wingspan at 3.7 metres [22]. Most individuals would weigh 

from 7 kg to 10 kg [23, 24], with mean weights estimated, at Crozet Islands, around 7.84 kg for 

the female and at 9.44 kg for the male [24]. As for the wingspan, the sexual dimorphism is less 



From Albatross to Long Range UAV Flight by Dynamic Soaring 8
 

 

pronounced with mean values of 2.99 metres for the female and 3.11 metres for the male [24]. 

Table I-1 sums up other mean values, adapted from Schaffer et al. [24].  

Table I-1: Mean characteristics of Wandering Albatross, measured on Crozet Islands in 
1999, adapted from Shaffer et al. [24]. 

Parameter Female (mean) Male (mean) 

mass (kg) 7.84 9.44 

span (m) 2.99  3.11 

Wing area (m
2
) 0.586 0.626 

Wing loading (N/m
2
) 132 148 

Mean wing chord (m) 0.196 0.201 

Aspect Ratio 15.3 15.5 

 

 

Figure I.6: Planform of Wandering Albatross, compared on the same scale with that of a common pigeon. 
Adapted from Pennycuick [23]. 

 

One of the first striking features of albatross morphology is their long and slender 

wings, with the highest aspect ratio of any other living bird [23, 25]. For the sake of 

comparison, vultures are other remarkable soaring birds, but have an estimated aspect ratio 

around 6.9 [26], less than half of those of albatrosses. Another peculiar aspect of the anatomy of 

albatrosses is their subsequent high wing loading, see Table I-1, which is also significantly 
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higher than those of vultures, with a mean wing loading estimated at 76.5 N/m
2
 [26]. Such a 

heavy-loaded, high-aspect-ratio-wing trivially entails a high bending moment at the base of the 

wing, which requires significant force in order to maintain wings level or even to flap. This 

concurs with all observations that albatrosses do not sustain flapping flight, apart from rare 

take-off and landings [23, 27, 28, 29]. Besides, Pennycuick [23] observed that when fully 

extended, wings of albatrosses have a lock that prevents it to raise above the horizontal and 

level position. This materialized following dissections by the presence of a tendon which can 

maintain tension indefinitely at no metabolic cost [25, 23]. Hence, it allows albatrosses to 

sustain wings level at no energy expenditure, for any load factor within their structural limits. 

It can be concluded that the morphology of albatrosses is particularly adapted to gliding flight 

with a tolerance to high load factors, enabling them to cope with soaring flight within a windy 

and turbulent environment. Besides, their wing loadings and wing aspect ratio suggest high 

flying airspeeds and superior lift-to-drag ratio. Pennycuick calculates for the Wandering 

Albatross, using its software Flight [25], a best glide ratio of 21.2 at an airspeed of 16 m.s
-1

. 

I.2.2 Travelling Performances & Sensitivity to Wind 

Nothing much was known about their behaviour at sea until a breakthrough study 

was published in 1990 [30], following the first satellite-tracking campaign of wandering 

albatrosses. It shows that foraging specimens performed trips of several thousand kilometres 

out of the breeding site in Crozet Islands, the maximum standing out at 15 000 kilometres. It 

also highlights travelling speeds up to 80 km.h
-1

 and daily speeds up to 936 km/day for the 

Wandering Albatross. This study revealed travelling performances that were far greater than the 

highest estimates at the time. Those flight performances were later confirmed by Prince et al. 

[31] from South Georgia and by Weimerskirch et al. [32, 33]. More recent tracking studies 

conducted by Croxall et al. [34] were focused on year-round behaviour, outside of the breeding 

phase of albatrosses. It shows that some specimens achieved a complete circumnavigation of 

the southern ocean, the fastest in just 46 days. By analysing travelling performances over three 

sub-segments of those circumnavigations, where averages up to 950 kilometres per day were 

achieved for periods up to 13 days, authors suggest that the round-the-world journey could be 

completed in 30 days. Subsequent data are summed up in Table I-2. Those indicate that 

albatrosses are able to sustain net travelling speeds, that is to say ground speeds averaged over 

large-scale movements, around 55 km.h
-1

 over distances up to 800 kilometres. Those travelling 

speeds could reach up to 85 km.h
-1

 over shorter distances while maximum ground speeds have 

been recorded at 135 km.h
-1

, during a specific high-frequency GPS-tracking study [33].  
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Table I-2: Summary of findings from satellite tracking studies of foraging wandering 
albatrosses, adapted from [30, 31, 32, 33, 34]. 

Reference 

Mean trip 
duration 

(days) 

Mean trip 
length 
(km) 

Average 
distance 
per day 

(km) 

Mean net 
ground 
speed 
(km/h) 

Max 
ground 
speed 
(km/h) 

Average 
GPS rate 

Jouventin et al., 
1990, [30] 24.4 8045 313 54.6 81.2 

11.8 GPS 
locations 
per day 

Prince et al., 
1992, [31] 6.9 4646 675 27.5* 88.1 

15 GPS 
locations 
per day 

Weimerskirch et
al., 1993, [32] 

11.6 6091 525 21.8* N.A. 
Every 90 

s 

Weimerskirch et 
al., 2002, [33] 

N.A. N.A. N.A. 54.5 135 Every 1 s 

Croxall et al., 
2005, [34]** 

9.9 8718 872 36.3† N.A. 
Twice a 

day 

*Mean net ground speeds were simply averaged over the whole foraging trip, hence taking into 
account periods when birds are sitting on the water. Besides, foraging trips were closed loops, 
so those speeds are representative of travelling performances over a closed circuit. Other net 
speeds are calculated between two specific landings, along an open segment of travel, 
regardless of the direction of travel. 

**Tagged specimens were gray-headed albatrosses and trips were open-loops.  

†Speed averaged over the whole mean duration. 

Another common conclusion between those studies is the correlation between 

albatross travelling performances and wind speed. It was estimated that such travelling 

performances were energetically impossible for albatrosses to reach in the absence of wind [29, 

35]. Besides, it was measured that albatrosses usually spent most of their time aloft, with only 

short stops on the water [30], but that high-pressure weather systems, with their associated 

absence of winds, were grounding albatross on the water for much longer periods until 

stronger winds reappeared [30]. On a global scale, both Fig. I.7 and Fig. I.8 highlight the explicit 

correlation between albatross and wind distributions. Albatross species are endemic to remote 

islands such as Crozet, Kerguelen, South Georgia.…Their wide distribution, exposed in Fig I.7, is 

therefore only the result of singular travel abilities, as underlined before, which carries them 

over all longitudes. However their presence is strictly out of tropical latitudes, with the only 

exception being the Chatam Albatross seen in orange on Fig. I.7. Albatross species are reported 
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in every zone of average wind velocity above 9 m.s
-1

, but north Atlantic, and reciprocally very 

little albatross presence is seen outside of those areas.  

 

Figure I.7: Satellite tracking locations of albatrosses and petrels, reproduced with permission from 
Birdlife International [36]. All coloured-locations represent albatross species, the Wandering Albatross is 
pictured in bright red. 

 

Figure I.8: Estimate of wind velocity (m.s
-1

) at 50m, average over a 10-year period [37]. These data were 
obtained from the NASA Langley Research Center Atmospheric Science Data Center Surface 
meteorological and Solar Energy (SSE) web portal supported by the NASA LaRC POWER Project. 

Zones of strong winds are very much delimited by certain latitudes, pictured in Fig. I.8, 

where prevailing winds are west-to-east currents, called the westerlies. Those are the strongest 

in the southern hemisphere, within the -40°,-50°,-60° latitudes [38], referred to as the Roaring 

Forties, Furious Fifties, Screaming Sixties.  
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Although the wind strength cannot explain in itself the distribution of albatrosses, it 

reinforces the assertion that albatrosses use a wind-related phenomenon to propel themselves 

effortlessly around the globe. More precisely, it was measured that albatrosses rarely sustain 

flight for winds under 8 m.s
-1 

[39], that small albatrosses species are never observed gliding 

below 5 m.s
-1

 [28] and that the distribution of wandering albatrosses is limited to areas where 

the average annual wind speed exceeds 7.5 m.s
-1

 [38], which is very much consistent with what 

can be observed from Fig. I.7 and Fig. I.8. Weimerskirch et al. [38] even describe how a shift in 

wind patterns over the last 20 years affected the distribution and the average mass of 

wandering albatrosses. Moreover, traveling performances of albatrosses have been measured to 

be intrinsically correlated with wind strength [29, 38]. Weimerskirch et al. [38] show indeed a 

correlation between the evolution of average travelling speeds of albatrosses and mean wind 

strength at Crozet Islands over the past 20 years, seen in Fig. I.9. Although data do not permit 

to establish a one-to-one correspondence, the year 2010 appears to confirm a dependence of 

travelling performances of albatrosses on wind strength.  

 

Figure I.9: Evolution of mean wind strength at Crozet Islands over years 1990-2010 (top) and the 
associate evolution of travelling performances of female wandering albatrosses (bottom). Adapted from 
Weimerskirch et al. [38], reprinted with permission from AAAS. 

Further refinements about the flight technique of albatrosses can be learnt by getting a 

closer look at the way birds and wind currents interact. To start with, albatrosses have almost 

never been recorded to fly routes directly against the wind [30, 38, 35, 29, 32]. In particular, out 

of the 15 round-the-world journeys tracked by Croxall et al. [34], all were performed eastward, 
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in the direction of prevailing winds. This result seems somehow intuitive as the mass of air 

would have an overall tendency to carry the albatross throughout its displacement. Yet, travel 

directions of albatrosses show a predominant tendency to have a sidewind component [30, 29, 

35, 38]. That is to say that albatrosses rarely fly leeward either, directly with the wind, but 

rather show a travel direction tilted with respect to the wind direction, as seen in Fig. I.11. 

Figure I.10 (above): Definition of an 
azimuth angle � between the albatross 
travel direction and the direction from 
which the wind is coming.  

 

Figure I.11 (right): Speed and direction of 
travel of albatrosses, with the wind 
direction, obtained by radar tracking. 
Adapted from Alerstam et al. [29]. 

The azimuth angle between the albatross travel direction and wind origin is defined in Fig. I.10. 

Jouventin et al. [30] estimates that 40 % of the time, albatrosses fly at an angle � between 112.5° 

and 157.5° during the outward journey and that 90 % of the time, � is between 67.5° and 180°. 

Quite identically, Weimerskirch et al. [35] estimates that 35 % of the time, � is between 120° 

and 150° and that the ratio goes up to 80 % between 90° and 180°. Results from Alertsam et al. 

[29] are mapped on Fig. I.11 and plot the �-distribution and the travelling speed related to the 

mean wind strength. It shows that the stronger the wind is, the higher both the average � and 

the travelling speed are. It hence highlights the tendency of the mean travel direction to shift 

leeward when the wind increases and the way travelling performances improve with the wind 

strength. Furthermore, although the sample size is rather reduced and precise values of wind 

strength are unknown, the speed of travel appears to be maximum for values of � close to 140°. 

It can be observed that for winds above 13 m.s
-1

, no albatross was seen to progress against the 
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wind, which partly explains why circumnavigations recorded by Croxall et al. [34] were all 

achieved in the direction of prevailing winds. The travel direction should have a symmetrical 

distribution with respect to the wind direction. Indeed, albatrosses should behave indifferently 

whether the wind is coming from their left or their right. In most of studies, values of � are 

spread between 0° and 180°, without even mentioning if the wind comes from port or starboard 

with respect to the bird. The unsymmetrical distribution found by Alertsam et al. in Fig. I.11 

could be explained by a behavioural preference for certain routes in the area where the study 

was conducted.  

Those observations however question how those birds then manage to perform closed 

loops from their colonies. They manage to come back to their breeding site after thousand-

kilometres–long-foraging trips, within an area where west-to-east winds significantly prevail 

[38], while it has been evidenced that their ability to go against the wind is very much limited. 

The Figure I.12 has more about their overall flight strategies: two albatrosses were tracked 

leaving Crozet Islands at the same time, on the same day. The simultaneity of tracks is 

particularly interesting as it reveals the flight strategies of two specimens exposed to identical 

wind conditions.  

 

Figure I.12: Simultaneous trips of two males from Crozet Islands. Numbers indicates the successive 
counts of midnight locations. Reproduced with permission from Weimerskirch et al. [32]. 

It can be observed that although the two birds are most of the time over 50 kilometres apart, 

their overall trajectories follow very similar patterns over time. Moreover, changes in travel 

headings are correlated with changes in wind direction. First, this confirms that albatross 



From Albatross to Long Range UAV Flight by Dynamic Soaring 15
 

 

movements are intrinsically correlated with wind conditions. Then, it also concurs that 

albatross fly with the wind coming from their back and on their side the majority of the time. 

The azimuth angle defined in Fig. I.10 can be estimated to vary between 90° and 150° with the 

wind coming from either side of the birds. Still, for periods up to several days, birds were flying 

with the wind coming from only one side, which could explain asymmetries in measurements 

made by Alerstam et al. [29] on Fig. I.11. Furthermore, most of the time, the angle between 

wind and travel heading is close to 120°. This is especially explicit on the second leg and the 

fourth leg of the trip and quite consistent too, as large scale movements are very much straight 

lines with a constant heading with respect to the wind. Moreover, it shows that birds are able 

to perform a closed loop while the zonal wind, ie the component of the wind along the west-

east direction, is always directed from east to west, as it is typically the case within those 

latitudes [38]. The flight strategy takes advantage of changes in the north-south component of 

the wind, also called the meridional wind. Indeed, those shifts enable birds to change their 

travel headings and to progress westwards, even though the zonal wind is constantly directed 

eastwards.  

Up to 90 % of the time, the northern loop from Crozet Islands has been recorded to be 

anti-clockwise [35], just like the two examples pictured in Fig. I.12. Similarly, the southern loop 

is performed clockwise 90 % of the time. This reveals that the significant travel performances of 

albatrosses are possible thanks to predictable overall wind patterns over latitudes around the 

colony, which is confirmed by Fig. I.13.  

 

Figure I.13: Distribution of the Wandering Albatross with respect to mean wind strength and direction. 
From Weimerskirch et al. [38], reprinted with permission from AAAS. 

The distribution of albatrosses, depicted in Fig. I.13, depicts that the maximum is trivially 

located on the colony, but local peaks can be observed at the very same latitudes which see 
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changes in mean wind directions, for both zonal and meridional components. One is 

particularly marked, for females, north of the colony, around 38° south. This latitude 

corresponds to change in mean zonal wind from eastward to westward and in meridional wind 

from southward to northward. Such changes have been demonstrated to be necessary for 

albatrosses to alter their travel headings. The local peak in albatross presence at this latitude 

can therefore be interpreted as the average upper edge of the northern loop they perform, 

where they would change heading. This is consistent with loops displayed in Fig. I.12. This area 

is by definition more prone to uncertainties regarding the wind direction, as mean values are 

close to zero, which would locally affect travel performances and explain the increase in 

albatross presence. Again, Fig. I.12 is very much consistent with this interpretation as birds 

spent two successive nights, number 4 and 5, in this area before starting their journey back to 

the colony. It can be assumed that the duration of foraging trips, which is directly correlated to 

the speed of travel, varies depending whether mean wind predictions are met or not.  

I.2.3 Flight Behaviour and Energetics 

Figure I.13 contains another valuable piece of information. It depicts that the 

distribution is quite uneven regarding males and females and a closer look show that females 

tend to prefer areas of lower wind strength, while males seem to favour higher winds. This is 

very much relative, as females travel areas where the mean wind speed is over 7 m.s
-1

. One 

explanation to it could be the sexual dimorphism observed for the Wandering Albatross [24]. 

Indeed, as summed up in Table I-1, males have a wing loading that is on average 12 % higher 

than that of females. It results in an aerodynamic polar shifted towards higher airspeeds, which 

translates into a best-glide efficiency at a higher airspeed and a faster minimal sink rate [40]. It 

means that males could favour higher winds, where they could extract the higher energy they 

require to sustain aloft while also optimizing gliding flight at higher airspeeds which are 

characteristics to windier conditions [24, 35]. Inversely, females could take advantage of lighter 

wind conditions. 

This trend can been generalized for different albatross species, where wing loadings 

can vary up to 60 % [39]. Suryan et al. [39] specifically focus on specific albatross subspecies, 

including two with peculiar wing loadings with respect to their body size. The Waved Albatross 

is the only albatross located in the tropics, on Galapagos Islands and has a rather low wing 

loading of around 90 N/m
2
. The Short-tailed Albatross is the largest albatross species in the 

north hemisphere and has a wing loading of around 130 N/m
2
. It was measured that the Short-

tailed Albatross, was the only species to travel long distances under windier conditions 
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compared to their short-range movements. The lighter Waved Albatross did not appear affected 

by such a disparity and was the species which sustained flight for the lowest wind strength, 

around 6 m.s
-1

. Besides, it was also the only albatross to apparently fly in any heading 

disregarding of the wind direction. On the contrary, the heavier Waved Albatross were most of 

the time flying in the general direction of the wind. Hence the flight technique used by 

albatrosses seems to associate a higher wing loading to a greater dependence on the required 

wind strength as well as to a stronger bound between wind and flight direction. 

In order to fully understand the energetics involved in the flight strategy of 

albatrosses, it is important to somehow measure their energy expenditure in flight. It is 

assumed to be rather low since albatrosses mainly glide without flapping of their wings and do 

not exert power to maintain their wings level thanks to a specific tendon. Besides, the eating 

frequency of albatrosses is rather low, as they feed from rare floating preys only, with on 

average one prey every 100 kilometres [32]. Pennycuick [23] assumed that albatrosses in flight 

consumed twice their basal metabolic power, and estimated that they could fly 936 kilometres 

while consuming fat equivalent to 1 % of their body mass. As a matter of comparison, a small 

petrel would stand at 38.8 kilometres. Weimerskirch et al. [35] explores further the problematic 

of in-flight energy expenditure, in particular in relation to wind conditions, by measuring the 

heart rate of tracked albatrosses. Average results are presented in Fig. I.14. 

 

Figure I.14: Average heart rates of albatrosses for each activity. Adapted from Weimerskirch et al. [35]. 

The metabolic basal rate is obtained when birds are on their nest; the average is slightly above 

60 b.p.m (beats per minute). The biggest power requirement comes during take-off with an 
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averaged heart rate that peaks close to 130 b.p.m.. During this phase, which typically occurs 15 

times per day [35], albatrosses not only have to flap their wings but also to gain speed, quite 

similarly to an aircraft, in order to generate sufficient lift. It reinforces the assertion that 

albatrosses are not adapted to frequent landings and take-offs. The heart rate decreases 

progressively for long periods up to several hours after take-off to reach an average value 

slightly above 95 b.p.m., which is only 50 % higher than the basal metabolic rate, showing that 

the assumption from Pennycuick of twice the basal rate was rather conservative. In-flight 

power requirements are actually significantly lower than when walking on the ground. This 

emphasizes the peculiarity of their flight technique energy-wise. The longer albatrosses are 

airborne, the wider is the range of measured heart rates, as seen in Fig. I.14. We understand it 

as an increasing dependence on flight conditions, such as the travel heading with respect to the 

wind direction, which have a higher probability to change for extended flights. This is 

somehow corroborated by the analysis of the evolution of average heart rate with relative 

travel heading, as displayed in Fig. I.15. 

 

Figure I.15: Heart rates varied according to the angle between the wind direction and the flight direction. 
Adapted from Weimerskirch et al. [35]. 

Hearts rates and therefore power requirements are the highest when birds are facing 

the wind, which happens less than 5 % of the time. Then, heart rates decrease regularly when 

the flight heading shift windward. The overall average of 90 b.p.m. indicates that most of the 

time, birds are within 90° to 180° with respect to the wind incoming direction. However, given 

the assumption that albatrosses do not sustain flapping flight, whatever the relative flight 

heading is, it is a priori rather difficult to interpret the slight but clear evolution of power 

consumption in the 90° to 180° range. This concludes on the fact that their flight technique is 
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optimized for a delimited range of travelling angles with respect of the wind. Outside of that 

range, not only flight speeds decrease, but power requirements surge. 

Further contributions to the knowledge of albatross flight technique is based on 

observations or on high-frequency, small scale tracking, which in their vast majority are only 

two dimensional in the horizontal plane. Still, it could be both recorded and observed that on a 

small scale, albatross movements are rather intricate, with turns, descents and pull-ups [32, 23, 

29]. One metric which is representative to this sinuous path is the straightness ratio, which is 

obtained by dividing the straight-line distance over large scale movements by the actual 

distance covered. Data however usually only take horizontal distance covered. For albatrosses, 

straightness ratio is probably dependent on wind conditions, and estimates are between 0.7 [23] 

and 0.9 [29]. A 0.7 value for the straightness ratio means that albatrosses fly an actual distance 

50 % higher than the straight-line distance they travel. In terms of variation in height, 

albatrosses have never been observed higher than 30 metres [23, 41, 42, 43, 44], where the 

average maximum height should be between 10 metres and 15 metres. A rather recent high-

frequency acquisition campaigned by Sachs et al. [44] could obtain accurate measurements of 

the Wandering Albatross in flight. A typical trajectory is pictured on Fig. I.16, using sampling 

rates of 10 Hertz. 

 

Figure I.16: Small-scale movements recorded by Sachs et al. on a Wandering Albatross gliding under 
windy conditions. Wind is 11.2 m.s

-1
 at 10 metres, the direction is shown by the arrow. From Sachs et al. 

[44], reproduced with permission from Journal of Experimental Biology. 

The albatross trajectory appears to combine repetitive cycles of similar aspects, which 

themselves are composed of pull-ups, turns and descents. The low straightness ratio of the 
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albatross flight path mentioned in earlier observations is confirmed and well pictured in Fig 

I.16. Those small-scale movements are summed into medium-scale movements which indicate a 

clear flight heading. It appears, from measurements by Sachs et al. [44] , that the more birds are 

progressing against the wind, the more intricate the flight path becomes and the lower the 

straightness ratio is. 

Albatrosses indeed seem to take advantage of various flight techniques. Some 

observations and measurements witness cases where albatrosses were seen gliding in zero 

wind, taking advantage of propagating swell waves [23]. Authors suggest various theories to 

explain the flight of albatrosses. A majority refer to dynamic soaring, which exploits the 

vertical variation in horizontal winds, due to the boundary layer effect entailed by the air-sea 

interface. This technique was unknown before the flight of albatrosses was investigated. Others 

suggest wave soaring or slope soaring on waves, where waves play a significant role in 

disturbing the wind field close to the surface. Pennycuick has long held the view that 

albatrosses used gust soaring, where birds would exploit the separation of boundary layer 

leeward of waves to benefit from sharp local increases in wind strength, referred as gusts. 

Finally, Richardson actually supports that those theories are not mutually exclusive and that 

albatrosses probably take advantages of a combination of all those techniques. 

I.2.4 Summary of Inputs from the Biological World  

The general anatomy of albatrosses outlines an aspect ratio around 15, which is 

exceptionally high for a bird and makes them resemble small fixed-wing gliders. Their 

morphology suggests they are unsuitable to flapping flight, which is confirmed by all 

observations, but rather optimized for fast gliding flight.  

It is indeed established that they regularly travel thousands of kilometres with 

travelling speeds that can top 900 kilometres per day. Those performances are intrinsically 

correlated to wind strength, as albatrosses would not even be able to sustain flight in the 

absence of it. It explains their geographical distribution within south latitudes, where the 

strongest winds on earth blow predominantly from west to east at average speeds that can top 

10 m.s
-1

.  

Their travel heading can be observed to be very much dependent on wind direction, 

with an angle between the two such that they usually perform best with the wind coming from 

their back with a side component. Their ability to go against the wind is very limited and rarely 

used. It has been evidenced that it comes at a greater energy expense and that it results in 
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drastically reduced speeds of travel. They still manage to come back to their departure point 

while sustaining rather high speeds. To achieve that, it has been demonstrated that they have 

developed a large-scale strategy which takes advantage of predictable wind patterns. Changes 

in zonal wind direction (north-south component) are sufficient to enable them to alter their 

travel heading and to close the loop back to the colony. 

 There are strong indications that there is an interrelation between their wing loadings 

and the wind strength they exploit. To that respect, albatross species of lower wing loadings 

are seen in lighter wind areas and it is supported that the sexual dimorphism in wandering 

albatrosses explains the different distribution between males and female.  

Their own in-flight energy expenditure was measured to be very low, not much higher 

than their basal rate. On the other hand, their performances of travel are theoretically high-

demanding energy-wise, since albatrosses, as any flying vehicle, are subject to energy losses 

due to drag. This contrast emphasizes an inherent energy-extraction process and raises 

questions regarding the underlying technique they have developed.  

On a small scale, intricate trajectories, far from being straight, have been observed. 

The altitude rarely exceeds 20 metres and albatrosses are most of the time in the nearest 

vicinity of the surface. Although there still lacks a general agreement regarding their energy-

harvesting strategy, there is a concord on the fact that albatross exploit surface-induced wind 

phenomena. The predominant theory focuses on the most generic of those phenomena, which 

is the boundary layer effect that forms due to air-sea interactions. This technique is called 

dynamic soaring. 

I.2.5 Promising Perspectives  

Years of evolution have created a very adapted biological system which relies on two 

different energy resources: surface food distribution and wind. The practical response is a 

foraging flying technique which renders those two resources compatible. It consists in 

exploiting wind energy in order to fly long distances and therefore statistically increase the 

probability to harvest from scarcely distributed preys.  

No fundamental deadlocks appear to prevent the approach of transposing the flight 

technique of albatrosses to the UAV world. Although albatrosses are a class of their own 

among birds, nothing stands out in terms of their general architecture compared to a fixed 

wing glider planform. Their estimated gliding performances are well within the reach of 
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vehicles of similar size and nothing indicates that it should be otherwise in terms of 

manoeuvrability. The wind resource is evenly distributed over large areas, which suppresses 

the constraint of exploring for a sparse phenomenon of unknown location, as it is the case for 

thermals. As for the large-scale flight strategy, a vehicle would actually hold a strong advantage 

over albatrosses, as it could adapt its route by taking into account weather forecast data. In 

terms of energetics, apart from potential mission requirements, most of the expenditure comes 

from propulsion on a small UAV. Endurance would then only be limited by on board 

energetics. The feasibility for a small UAV to extract energy from the wind, in the same fashion 

as albatrosses, is therefore a promising topic, which requires further investigations.  

I.3 Main features of Dynamic Soaring Flight  

The technique of DS consists in taking advantage of vertical variations in horizontal 

wind, also called vertical wind shear gradient. One way to define DS is trivially by opposing it 

to static soaring, such as thermal soaring or slope soaring.  

 

Figure I.17: Schematic 2D display of a dynamic soaring path within the wind shear gradient. 

The latter techniques manage to extract energy at a positive and continuous rate 

through steady flight kinematics. In such cases, the variation in total energy of the vehicle 
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would depend whether it can maintain its air relative sinking speed lower than the rising speed 

of the surrounding mass of air. However, the mechanisms of energy-extraction would remain 

effective, whatever the kinematics of the vehicle is. Practically, it means that a vehicle, no 

matter how it is flown, would benefit from the uplift of the surrounding air as long as the 

vertical motion of it remains upwards. In static soaring, energy-extraction mechanisms are 

hence not correlated to the vehicle kinematics. On the opposite, DS is characterized by an 

energy-extraction which is not steady and that varies to form repetitive cycles composed of 

energy losses and gains. Losses are necessary in order to sustain respective gains and the 

periodicity of the process is ensured if gains and losses balance out along the cycle.  

 

Figure I.18: Overall aspect of a dynamic soaring trajectory. 

Practically, this translates into periodic dynamic manoeuvers within a zone where 

wind gradients form, as displayed in Figs. I.17 and I.18. More specifically, in dynamic soaring, 

the bird or vehicle would extract energy from the layer of strong wind and would be able to 

repeat the process by flying back in the zone of weaker wind. This concept can be apprehended 

by considering a ball bouncing on a wall which is moving at a fixed horizontal speed. Each time 

the ball bounces, it gains momentum from the wall, and the same principle applies to the bird 

flying in the zone of strong winds. It means that gains in total energy come through variations 

in inertial speed, as opposed to static soaring, where those gains relate to an increase in height. 
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Besides, variations in inertial speed themselves alter the dynamics of the vehicle during the 

manoeuvre. That is different again different from static soaring. 

To put in a nutshell, some particular trajectories are required through dynamic 

manoeuvres with respect to the wind. Those entail a transfer of energy from the wind to the 

vehicle, which in turn alters the dynamics of the vehicle and influences its trajectory. So the 

mechanisms of energy-harvesting are inherently bound up with the dynamics of the vehicle, 

which is specific to DS. For this reason, the mechanisms that lead to the energy extraction are 

challenging to understand and to model as they are related with other variations of kinetic and 

potential energy along the flight path. It means that flight dynamics and energy-harvesting 

strategy have to be investigated together. 

I.4 Research Question & Objectives 

I.4.1 Research Question 

The context outlined that the research is focused on the use of sustainable energy 

extracted from the wind applied to the flight of small autonomous vehicle. Therefore, one 

wants to know: 

Is it feasible for UAVs to exploit dynamic soaring in the purpose of long duration, or long 

distance autonomous flight? 

I.4.2 Research Areas Breakdown 

In order to fully understand the way the main question would breakdown into 

underlying research questions and then the way research objectives would be structured, some 

specified self-contained research areas can be derived quite straightforwardly out of the 

context. 

⋅ What would fly? The potential vehicle would have to be compliant with the 

requirements of DS flight. That is the Vehicle Model. 

⋅ Where would that vehicle fly? That is the first 30 metres over land or waves, the lower 

atmospheric boundary layer over earth oceans. A model of the wind field at the 

interaction air/sea or air/land would have to be developed. That is the Environment 

Model. 
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⋅ How would the vehicle interact with that environment? In other words, the way it is 

going to fly within that boundary layer. The flight path and dynamic parameters would 

have to be investigated. It is the core of that research work and corresponds to the 

Flight Model. 

I.4.3 Underlying Research Questions 

Answering the main research question consists in trying to build up a solution to the 

problem, which would ultimately be the only way to prove the feasibility. However, during the 

demonstration, or the construction of the solution, some deadlocks might arise and an 

alternative answer would be to bring out which variables govern the feasibility to exploit DS. 

The main research question breakdowns into three underlying research questions, 

which concerns each of the three models introduced above: 

• What trajectories would enable energy-harvesting in the framework of DS flight? 

• What is the environment, and the corresponding wind field, required for DS energy-

extraction and what is the likelihood of favourable conditions? 

• Which vehicle design would be suitable for DS flight and how do general design variables 

govern performances? 

I.4.4 Research Objectives 

The research question is there to support different aims. Their numbering is arbitrary. 

Objective 1_ “Understand”: Get a complete understanding about the energy-

harvesting mechanisms involved in the DS, applicable to the flight of albatrosses. This objective 

might see underlying challenges arise as it emerges that albatrosses seem to combine different 

processes to extract energy from the wind. 

Objective 2_ “Simulate”: Set up a methodology to simulate the physics of DS flight, 

which would give a practical answer, in terms of trajectories, to a particular mathematical 

problem, given some vehicle and environment models adequately formulated to fit the problem. 

Use those derived optimized trajectories to support the physical understanding assumed for DS. 

Get an understanding of mathematical tools used when writing down the algebraic formulation 

of the problem and of how they influence the output. 
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Objective 3_ “Model”: Understand and model the environment where the vehicle 

would perform; in particular aerodynamics of sea/wind or earth/wind interfaces. Also provide 

models of potential flying vehicles and understand how general design variables influence DS 

performances.  

Objective 4_ “Assess”: Assess potential DS performances for different key variables, 

which may influence the feasibility to exploit DS under realistic conditions. 

I.4.5 Thesis Outline 

In order to address the research question and support the aforementioned objectives, 

the following outline has been selected. 

First of all, the literature background on the topic will be reviewed to draw a sum-up 

of the current state of the art. This will be the objective of Chapter II. Then the understanding 

of DS energy-harvesting strategy would only be approached after modelling the environment 

and the vehicle in order to get to a simulation of DS. Hence Chapter III focuses on building up a 

vehicle model that applies to different UAV designs, and also on building up models of their 

environment, by focusing on a refined earth/wind interaction such as waves. The physics of the 

evolution of the vehicle within its environment is the point of Chapter IV, which then also 

presents a methodology to pilot and optimize this evolution. With simulations of DS flight 

available, Chapter V forms the core of the present work as it focuses on the characteristics of 

DS flight and on understanding the principles of energy-harvesting. Chapter VI goes further by 

conducting a mathematical analysis of EoM and the associated optimization problem in order 

to highlight some key variables about DS flight. Finally, various case scenarios are investigated 

in Chapter VII, by varying key parameters in order to assess how those govern the energy-

harvesting strategy. It includes the refined case of a powered vehicle, where DS makes sense by 

enabling range improvements. 
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I.5 Summary of Chapter I 

The advance of small scale UAVs opens up for a wide range plenty of potential 

applications, however those may be hampered by range and endurance limitations. Several 

options are being investigated to cope with this conundrum and the state of the art is 

presented. A particular scope is given to techniques which take advantage of the surrounding 

energy available to the vehicle. It bears the advantage of keeping the logistics of flying simple 

and the overall technical solutions rather unchanged. The breakthrough comes from the flight 

management approach, which is adapted to benefit from atmospheric convective inputs. 

Among those techniques, one is inspired by the flight of albatrosses. 

It appears that those big birds are actually quite close, in their morphology, to a small 

gliding UAV. Indeed, their wings have the highest aspect ratio of the living world and are 

locked in deployed position most of the flight. Yet, their flight performances are impressive, 

both in terms of speed of travel and range covered. They take advantage of the wind in a way 

that is not completely understood yet but that enables them to achieve round trips of several 

thousand kilometres out and back at their remote colonies. This peculiar flight, called dynamic 

soaring, associated with promising perspectives, makes it a consistent research subject.  

The main question associated to it concerns the feasibility for a UAV to exploit 

dynamic soaring for the purpose of long endurance, long range flight. Hence this research 

work focuses on understanding the energetics of DS, simulating this type of flight and 

assessing the constraints it implies for the vehicle and its flight. 
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Chapter II                      

Background of Wind Energy Extraction 

This Chapter aims at providing a review of the literature of wind energy extraction for 

UAV, with a specific scope on DS contributions. It will enable this present work to benefit from 

previous studies and will help to structure the research in order to focus on required 

contributions to knowledge. 

II.1 Contributions to Knowledge  

Research about flying techniques which extract energy from the wind started in late 

19
th

 century with observations of albatrosses from Lord Rayleigh [27]. In 1925, a first analytical 

analysis was undertaken by Idrac [45], in order to underline the fundamental differences 

between static and dynamic soaring. Idrac imagined different trajectories, which are 

reproduced on Fig. II.1, that could take advantage of a vertical gradient in horizontal winds.  

 

Figure II.1: Various eventual shapes of DS flight path, reprint from Idrac [45]. 

A few numerical approaches were attempted later in 1975 by Wood [46], taking 

advantage for the first time of computer power. Then in 1990, the first satellite tracking 

campaign of albatrosses enlightened the biological community with unexpected flying 

performances from albatrosses [30]. As reported before, further tracking campaigns were 

conducted during the following decade. From late 1990s, the improved knowledge of 

albatrosses performances combined with the emergence of UAVs highlighted the potential of 

DS research. Major publications on the matter appeared from 2000, while certain biologists 
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started to criticize the limited scope of numerical models developed by researchers [41]. Several 

further studies, from different institutions, followed during the decade, while research on 

miniaturized UAVs with autonomous flying capacities started to flourish from 2005. From 2010, 

researchers started to implement in-flight measurement cells on albatrosses with recent 

publications in 2011 and 2013 [43, 44]. Also in 2011, for the first time a publication from an 

oceanographer mentioned and detailed the importance of waves as part of the energy 

extraction mechanism [42]. 

II.2 Literature Background 

II.2.1  Point of view 

The literature available on the subject comes from different authors with different 

backgrounds. Although we are looking at a type of flight which exploits DS, other types of 

potential contributions are reviewed. Indeed, multi-disciplinary aspects of the research involve 

different sciences and give a pretty broad literature background. 

II.2.2 Simulation of Dynamic Soaring  

The first numerical approaches to DS flight appeared in the late 1990s. Sachs et al. 

provided one of the main publications on that matter [47]. His aim is to compute typical 

optimized DS trajectories and to understand the influence of external parameters such as the 

wind strength. Very early in the paper, the author acknowledges some limitations in the 

understanding of the energy extraction phenomenon and proposes to describe his vision of the 

energy extraction mechanism. Sachs therefore suggests a different understanding of the energy 

extraction phenomenon than the classical DS theory, which claims that the wind gradient is 

responsible for providing energy to the bird. He writes down equations of motion in a three 

dimensional reference frame linked to earth, thus inertial. He isolates a point mass vehicle 

within an environment described using a logarithm model for the wind gradient over a flat 

ocean. The aim of his model is to determine energy neutral trajectories using optimization in 

order to minimize the required wind shear strength, although the optimization process is not 

clarified. He therefore provides 3D trajectories corresponding to DS flight, such as the one 

displayed in Fig. II. 2. The UAV is apparently able to maintain a crosswind net heading while 

taking advantage of the wind through a curvy flight path. Sachs provides an energy-point-of-

view-interpretation: the energy is transferred from the wind to the vehicle during the upper 
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turn, when the vehicle finishes its upwind leg and starts to turn into the wind to start its 

downwind descent, without detailing the underlying mechanisms. 

 

Figure II.2: Overall open loop obtained by Sachs et al. [47], reproduced with permission from Ibis. 

Zhao et al. provides a slightly different approach of the same overall problem [48, 49]. 

His aim is to derive trajectories which minimize the average thrust required by the vehicle, 

taking benefits of the wind gradient over the ocean. He also isolates a point mass vehicle but 

this time in the reference frame of the wind, which is not inertial, since the wind increases with 

height. The wind gradient profile chosen is linear, which is again a strong difference compared 

to Sachs. The equations of motions see the apparition of a fictitious force (or inertial force) due 

the non-inertial reference frame. He derives an optimization problem clearly stated out of 

equations of motion, where constraints are derived from vehicle operational limits, surface 

avoidance consideration and periodicity consideration while the objective is to compute critical 

trajectories with minimal wind condition, the same as Sachs et al. He then converts the infinite 

dimensional optimization problem into a parameterized optimization problem using collocation 

techniques and finally solves it using NPSOL software. It is to be noted that he suggests 

tracking variations of energy by computing air frame based energy, i.e. energy calculated 

towards the mass of moving air, which is fundamentally different from Sachs’ earth-based 

energy. With this choice, as the lift is directed perpendicular to the relative airspeed vector, the 

lift does not work and hence does not contribute to the energy variation. He then provides 

results through optimized 3D trajectories for different case study. He concludes that the 

average thrust required for periodic trajectories is lower when the UAV aerodynamic efficiency 
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increases and when the wind strength increases. It is to be noted that the average thrust 

mentioned is positive, which means that an energy contribution from the vehicle is required to 

perform periodic trajectories, which was not the conclusion of Sachs et al. 

Another numerical approach was proposed by Deittert et al. [50], which aims at 

providing clarification about the flight performance and the likelihood of favourable winds. 

Like Zhao et al., he also opts for a point mass model observed from a wind reference point of 

view. The wind model is the same as Sachs’ and he also assumes a flat ocean surface. However, 

he decides to optimize his trajectories with a differential flatness technique which is different 

from Zhao’s collocation. He then validates his results by comparing his critical trajectory 

parameters with the one obtained by Sachs. His results consist in a detailed analysis of how the 

vehicle design variables influence the required minimal wind strength and he provides travel 

performances polar depending on wind strength. Deittert et al. identifies the ability to fly close 

to the surface as a key factor governing DS performance, as the strongest wind gradient is 

located in the first metres above the surface. The author concludes that DS would benefit from 

further research investigating the airflow over water surfaces; including the flow between 

waves and that a higher degree of fidelity would be reached by taking into account a six degree 

of freedom vehicle model. 

Lissaman [51], focuses on the principles of energy-extraction, applies DS to a linear 

wind profile to finally derive some general approximation rules. Lawrance et al. [52] derives 

low-complexity guidance and control algorithms and apply it to the case of a UAV travelling 

with the wind. Sukumar et al. [53] derive DS trajectories over open field and study the effect of 

aircraft properties. Other contributions to the topic include Akhtar et al. [54], Barate et al. [55] 

and Gao et al. [56]. 

II.2.3 Jet Stream 

Dynamic soaring flight could potentially be extended to any environment where wind 

gradient form. Grenestedt et al. investigates the feasibility to fly perpetually in the jet stream, 

where gradients are generated in the upper atmosphere between bands of strong winds [57, 

58]. The author undertakes the same approach as Zhao et al. by deriving air relative equations 

of motion from a point mass vehicle within a linear wind gradient and using collocation 

techniques. His main contribution is to extend the optimization process to the aircraft design, 

where he provides a clear definition of the aircraft model. He then goes another step forward 

by optimizing solar-assisted DS trajectories. Therefore the optimization process takes into 

account control and state variables as well as design parameters assuming solar augmented 
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trajectories. However, the author does not go into much detail regarding the results. The 

resulting trajectory is displayed in Fig. II.3, authors force the vehicle back to its initial position 

such that the flight path is closed. It seems quite similar to a circular flight path in an inclined 

plane performed at high altitude (over 10,000 metres). The overall amplitude of the flight path 

is wider than the trajectory obtained by Sachs, with a vertical amplitude of the order of 80 

metres. 

 

Figure II.3: Dynamic Soaring closed-loop within a linear gradient, reproduced with permission from
Grenestedt et al. [57], © 2011 IEEE. 

II.2.4 DS in hurricanes 

Another environment where strong wind shear from is within hurricanes, and the 

same authors Grenestedt et al. give a go at DS simulation within this peculiar wind field [59]. A 

standard hurricane wind model is chosen, where the wind speed, for a constant height, varies 

with the radius of the hurricane considered. The methodology is otherwise rather equivalent to 

their paper in the Jet Stream [58]. They conclude that the theoretical feasibility to perform DS 

within a hurricane depends on the wind section profile encountered. We see the main 

contribution of this paper as a demonstration that DS can be exploited where any wind 

gradient form. Indeed, whether the wind sees a vertical variation in its horizontal component or 

a horizontal variation of that same component, DS trajectories can potentially be found.  

 



From Albatross to Long Range UAV Flight by Dynamic Soaring 34
 

 

II.2.5 DS at Ridges 

Another potential source of wind gradient comes from wind blowing over mountain 

ridges. Richardson provides an analysis of the DS flight performed by RC gliders which enable 

vehicles to reach speeds up to 450 mph without any engine [60, 61]. His contribution consists in 

modelling ridge soaring through a simple Rayleigh cycle, which consists in assuming a circular 

loop trajectory along a plane tilted upward into the wind and crossing a two layer wind shear 

structure. This highly simplistic model still enables the author to compute the overall wind 

strength to vehicle maximal velocity behaviour. He also outlines optimal values for loop 

periodicity thanks to simple analytic calculation from the model. The main advantage of his 

approach is to be able to compare his model with achieved RC gliders flights thanks to 

measurements conducted from the ground (mainly radar speed measurement) He concludes 

that further research would consist in implementing instruments on vehicles in order to get 

more accurate elements of comparison between theory and experiment. Besides, he suggests 

that some numerical modelling would help to refine the flight model.  

II.2.6 Gust Soaring 

Gust soaring cannot quite be considered as classical DS technique. Indeed, the vehicle 

does not perform regular cycles, but rather aims at taking the maximum out of a sudden and 

unpredictable gust. However, it is nonetheless a way to extract energy from a horizontal 

variation in wind, for which the dynamics of the vehicle and the energy extraction are also 

bound up together. The main difference with DS is the time scale and the stochastic nature of 

the problem, which makes it impossible to plan trajectories.  

Patel et al. [62] detail the basic principles of gust-energy extraction in Fig. II.4, in the 

case of vertical gusts. It consists in orientating the lift in the direction of the vertical motion of 

air met by the vehicle, respectively upwards and downwards for an updraft and a downdraft. 

Although authors do not provide a scale length on the figure, those variations, both in time and 

space, are at high frequency, such that conventional pitch control is inappropriate to control 

the lift in such a way. 
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Figure II.4: Fundamental concepts of gust soaring, with the vehicle performing pull-ups within an updraft 
and pulling negative acceleration during downdrafts. Adapted from Patel et al. [62]. 

It is yet probable that albatrosses take advantage of gust soaring along their overall DS 

cycles [41, 42]. Several authors have focused on gust soaring [63, 62, 64, 65]. Lissaman et al. 

concentrated on the general understanding and simulations of the energy-extraction principles 

[63] with a methodology which is rather close to what can be done for DS, while Langelaan et 

al. [64, 65] as well as Patel et al. [62] investigate control laws. Gains were demonstrated to be 

theoretically and practically feasible. 

II.2.7 Practical Aspects 

One of the challenges of DS flight is that inherent dynamic manoeuvres make it 

difficult to comprehend and to analyse from an experimental point of view. Dynamic 

conditions obviously cannot be recreated in a static wind tunnel environment. Some 

publications have focused on the way DS flight could be practically implemented with an 

autonomous vehicle as well as on experimental processes to improve the knowledge of DS 

flight. 

Even before reaching the capabilities to perform DS flight, vehicles would need to gain 

autonomous capacity, including path planning and environment recognition. In the case of DS, 

the knowledge of the wind field is essential and usually assumed to be known in research 

approaches so far. Langelaan suggests a way to estimate the wind field for a small flying 

vehicle [66].The approach utilizes sensors which are already part of a standard autopilot sensor 

suite available on the vehicle and its primary motivation is energy-harvesting perspectives. 

Therefore, hardware only consists of on board GPS, Inertial Measurement Unit (IMU), 

magnetometers, static pressure and dynamic pressure. A flight model associated with sensor 
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fusion capacity is used to derivate a wind field estimation algorithm. The author concludes that 

errors in the estimation can be maintained low by increasing the accuracy of airspeeds 

measurements. Simulations are performed with this wind estimation algorithm and a gust 

energy-harvesting controller. It shows that energy-harvesting is still possible using a wind 

estimate and not an implicitly assumed wind field at the cost of greater control actuation, since 

the vehicle is discovering its environment in real time. 

Bower undertakes another approach to bring DS flight closer to practical feasibility 

[67, 68]. He sums up the different enabling technologies required for the practical use of DS for 

a small UAV and he underlines that technology in the field of sensing and communications 

already reached a sufficient level of maturity and miniaturization to be utilized in the purpose 

of his research. He identifies the need for measuring height over the ground in order to control 

the proximity to the waves, without being able to select an appropriate ready-to-use technical 

solution. The author then undertakes the same approach as Zhao et al. by deriving optimized 

solar augmented trajectories for a point mass model of a vehicle within an environment 

simplified to a logarithmic vertical evolution of the wind. The optimization process uses 

collocation techniques and is solved with SNOPT. He finally undertakes a vehicle design trade 

study to analyse trajectory optimization parameter sensitivity about a baseline design. He 

mentions the need for a more realistic environmental model as well as for a refined vehicle 

model with inertias He then concludes that trajectory generation and guidance capabilities are 

major challenges to overcome before DS flight can be performed and underlines that accurate 

estimation of aircraft state and wind field must be developed on the experimental side.  

Rather than recreating DS flight conditions so as to eventually validate the flight 

model, one alternative option is to compare the theory with the biological system which 

initially inspired DS. Sachs intends to prove albatross can make progress against the wind 

using DS, which is one key parameter to the feasibility to perform long endurance flight in any 

direction. Papers [43, 44] sum up the results of the first in-flight measurement campaign 

applied to DS research. The experiment is based on a GPS logger attached on the back of an 

albatross, as seen on Fig. II.5, from which raw data are post-processed with a trajectory 

reconstruction algorithm. This requires liaising with biologists on the field to set up and 

recover the device as-well-as significant logistics to perform such a test at those distant and 

remote locations. 
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Figure II.5: GPS logger attached on the back of an albatross. From Sachs et al. [43]. 

In the meantime, wind parameters were obtained using SeaWinds. Different scenarios 

of strong and weak winds are recorded and resulting trajectories are computed. The author 

then analyses and compares the patterns which show that progress against the wind was 

achieved by the tagged albatross. The bird’s trajectories are clearly different depending 

whether it goes with or against the wind. The wind strength also seems to have an influence on 

the way the bird makes progress. One of the main observations was the use of more 

pronounced tacking manoeuvres, when progressing against a stronger wind. Reconstructed 

altitude time history cycles presented in annex shows that the height reached by the bird is on 

average much lower than predicted on Sachs and Deittert numerical models. It also shows that 

an important part of the time, albatrosses are flying below 2 metres altitude, i.e. in the vicinity 

of waves. 
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II.3 Overview and Critical Summary 

The subject of DS has provided several points of views which seem to lack 

consistency so far. Even with the same and simple environment model, authors still remain 

vague in describing the energy-extraction process in their model. On this matter, Sachs 

underlines that the energy-extraction occurs during the higher turn, without providing further 

details. Zhao highlights that with an air-based point of view, energy is extracted through the 

work of a fictitious force, also called dynamic soaring force by Deittert, when the vehicle 

crosses the region of strongest wind shear, that is to say at low altitude. Lissaman details how 

energy can be locally gained from convective mechanisms via the work provided by the lift, 

without focusing on overall DS flight path, while Patel et. al applies it in the case of vertical  

drafts. 

Models developed by numerical studies hardly seem to represent the reality of the 

field observed by biologists. While biologists provides useful qualitative data but lack 

parameters to go into quantitative details, one of the main limitations about numerical studies 

is to rely on a clean model of wind gradient over a wave-less surface, which all biologists 

acknowledge as a limitation. All authors from numerical studies agree on the need to improve 

the environmental model in order to get closer to reality, by taking into account wind-waves 

interactions.  

Furthermore, all theoretical studies lack some experimental validation. Sachs in-flight 

measurement campaign was a first but lacks the measurement of further flight parameters to 

permit a thorough comparison with the flight model developed by the theory. Among those, 

the relative airspeed, the air relative flight path angles as well as the accelerations would give 

more elements of comparison.  

Another limitation acknowledged by different authors is the lack of practical point of 

view among the numerical studies. Those papers investigate DS, without assessing changes in 

vehicle properties, in flight path constraints or in environmental conditions, which is 

necessary before concluding on the eventual feasibility to exploit DS. 

To put in a nutshell, an overview of existing literature shows a lack of consistence 

between the different points of views as well as a lack of maturity in the concept of exploiting 

DS. Those limitations comfort us in our choice of research question and of research objectives 
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Chapter III                        

Modelling a Vehicle and its Environment 

The scope of DS research involves interdependent concepts, which have been 

introduced to be the vehicle, the environment and the flight model. Each has its own variables, 

as well as its own representation with respect to other models. Variables translate into 

properties for each respective representative model. Design variables for the vehicle translate 

into aerodynamic and inertial properties; direction and strength of high altitude winds 

combined with surface properties form a representation of a three dimensional wind field 

above the surface and finally, state and control variables are varied over time to form a 

consistent flight path. The core of our subject is the way for a vehicle to harvest energy from its 

windy environment in a specific fashion. Hence a vehicle and an environment model must be a 

priori determined in order to establish a flight path that relates them. This part aims at 

presenting the variables involved in both model, as well as quantifying the way those influence 

the respective representation of each.  

III.1 The Vehicle Model 

The vehicle flies a whole range of functioning point during a DS cycle, which makes it 

unappropriated to optimize a specific design. Besides, as wind field conditions change, and as 

the type of mission scenario relative to this wind field are most likely to alter, it makes it 

difficult to optimize a vehicle over such various conditions. Hence it was chosen, so far, to 

break down the research problem by isolating the vehicle design to something conventional 

and well-known. Without getting into great details, any glider-shaped vehicle with good lift to 

drag ratio has the potential to fly DS trajectories and classic architectures have been 

demonstrated to perform best in this area.  

III.1.1 Baseline Designs 

In order to understand the way general design variables can influence DS 

performances, it was still chosen to try out different vehicles, of various sizes. Indeed, one of 
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the objectives of this research is to assess whether the flight of albatrosses can be transposed to 

vehicles that could differ from albatrosses, in particular in terms of size. 

Cloud Swift 

 
Wandering Albatross 

 
Mariner 

 
DT-18 

 

 

 

Figure III.1: Planforms of the UAVs considered, on the same scale. From top to bottom, Cloud Swift [19], 
Wandering Albatross, Mariner, reproduced from Bower [67], DT-18, reproduced from Delair-Tech [69].  
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Figure III.1 presents the different vehicles chosen. It naturally starts with what will be 

called Wandering Albatross in the remaining of the document. Based on data from different 

authors on the biological field, an average geometry is outlined by Sachs [47]. Although 

variables somehow differ slightly from data gathered in Table I-1, the advantage to stick by 

Sachs’ chosen geometry is to have a support for validation. However, for the vast majority of 

simulations, UAV models were chosen, based on the architecture of a small-scale glider rather 

than that of a bird. That suppresses the need to estimate and to average a geometry between 

different albatross specimens and it makes sure that the performances of the model are 

achievable by an engineering-designed vehicle.  

Among those vehicles, the biggest is named Cloud Swift from Allen’s work [19]. It is 

based on the radio-controlled cross-country glider SBXC from RnR Products. It was chosen for 

its wide representation in other research works [19, 70] and in the way that it represents a 

performant glider in the upper range of small UAVs. It has the highest aspect ratio (AR) of the 

four designs and can be expected to have the best gliding performances.  

Next on the list is Bower’s Mariner [67], which has been developed to minimize the 

wind strength required to perform DS, under certain wind field conditions. Contrary to 

albatrosses which can have their wing tip touching the water, as presented in Fig. I.5, the ability 

of a UAV to fly very close to the surface is limited. However, in order to keep the centre of 

gravity as close to the surface as possible during manoeuvres at low height and high bank 

angles, the methodology developed by Bower limits the span, at the expense of sacrificing the 

aspect ratio.  

Finally, the smallest model is based on the DT-18, engineered by Delair-Tech [69], a 

French start-up based in Toulouse. It takes the most of the 2 kg UAV class (including mission 

payload) and is the only small civilian UAV to be approved for Beyond Visual Line-of Sight 

operations (BVLOS) by an official rule-making body [69]. Main features include an elliptical 

shape of the wing planform, which is assumed to optimize the span-wise lift distribution. 

Furthermore, the aspect ratio is lower than the other two UAVs and we interpret that as a way 

to keep the mean aerodynamic chord (MAC) at a relative high value and thus avoid local low-

Reynolds numbers on the majority of the wing.  

Each of the three UAV designs has been selected in its powered version, where an 

electric motor and a folding propeller allow the vehicle to sustain flight under its own power. 
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III.1.2 Quantification of Vehicles  

The baseline design characteristics of the four vehicles, in terms of size and weights, 

were given by respective authors and are summed up in Table III-1. It is to be mentioned that 

for the sake of comparison, the baseline mass was taken for vehicles in a ready-to-fly 

configuration, including battery, propulsion hardware, sensors, autonomous capabilities, but 

excluding any extra payload. The mass would then be eventually increased from their baseline 

values for later simulations, hence virtually adding a payload.  

The aerodynamic behaviour of small-scaled slender bodied vehicle, like the ones we 

are interested in, is quite well modelled by tools such as Xflr5 [71] or AVL [72]. Those software 

extrapolate a 2D pressure distribution around airfoils to a full 3D behaviour, by means of 

different theories, such as lifting line, 3D panels or vortex lattice methods. Initially designed for 

Radio-Controlled (RC) gliders applications, they are particularly adapted to the geometries of 

chosen vehicles. Mariner aerodynamic characteristics were obtained by Bower through AVL 

[67], while those of Cloud Swift were obtained by building a strip model from XFOIL [70]. 

Another approach is to apply a technique called Prandtl's lifting line theory in order to 

get first-order approximation for the drag coefficient [73]. It gives fairly good results for a finite 

wing with no sweep and a reasonably large aspect ratio. By modelling the wing as a fixed 

vortex with a series of trailing vortices extending behind it, contributions from each vortex are 

summed into a resulting force called the induced drag, represented by its coefficient	���. The 

zero-lift drag, represented by	���, is added so that the overall drag is represented by a quadratic 

drag polar as shown in Eq. III.1. The Oswald coefficient (e) is a correction factor that accounts 

for disparity between the elliptical lift distribution assumed in the theory and the realistic lift 

distribution.  

 �� = ��� + ��� = ��� + �*&8\��	 ( III.1 ) 

For wings of relatively high aspect ratio and no sweep, the theory is rather consistent 

and an Oswald coefficient of 1 can be assumed. It is what Sachs has done to estimate the drag 

coefficient of the Wandering Albatross. 

The DT-18 is the smallest and lightest vehicle of the three UAVs considered. Besides, 

as it was mentioned before, the aspect ratio is also the lowest and a slight sweep is integrated in 

the wing design, which is apparent from Fig. III.1. Since conventional modelling techniques and 
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tools might reach some limits for the design of the DT-18, a wind tunnel testing campaign was 

conducted in order to get accurate data. Among others, the objective of the experiment is to 

provide an aerodynamic polar over the whole range of angles of attack and assess its sensitivity 

to the Reynolds number. Different vehicle configurations are tried out by combining variations 

in some of the vehicle degrees of freedoms, in terms of engine rate, control surfaces and flaps. 

Among the two wind tunnels ISAE has at its disposal, the wind tunnel S4, (located on 

the ENSICA Campus) was selected thanks to the wide 3 m x 2m elliptical test section which 

enables to set up a full-scale instrumented replica of the DT-18. Besides, the range of speeds 

available made it possible to get data for realistic airspeeds seen in flight by the UAV.  

The S4 wind tunnel is an Eiffel-type wind tunnel with an open elliptical test section 

and a closed, non-streamlined, recirculation zone. Installation can be seen on Fig. III.2. The 

airspeed ranges from 0 to 42 m.s
-1

 and the associated turbulence rate is 0.52 %. 

 

Figure III.2: Top view of the S4 wind tunnel. All distances are in m, unless otherwise stated. The DT-18, 
colored in orange, is schematically included in the test section. Adapted from [74].  

A factory-built DT-18 was modified for the sake of the experiment. The external shape 

was not altered and main changes were conducted in order to link the replica to the rest of the 

experimental set-up. A ventral-docking configuration was selected, where the mock-up is hold 
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on top of a single mast, see Fig. III.3. Aerodynamic forces are determined via a measurement 

unit, sheltered inside the fuselage, which structurally links the mast with the aerodynamic 

mock-up. On the mock-up-side of the measurement unit, a specific holding plate was designed 

to link the standard cylinder-shaped-measurement-unit to the geometry of the DT-18 while also 

maintaining the mock-up in the correct attitude. A cut was made on the ventral panel of the 

DT-18, just enough wide so that the wires and the mast could go through. 

The mast is connected to a cradle on the ground of the test section. The cradle can 

move along two curved rails such that mock-up rotates along a fixed pitch axis (the top of the 

mast is the centre of the rotation). This change in longitudinal attitude with respect to the wind 

tunnel section is used to modify the simulated angle of attack (���). Another rotation is 

possible along the axis of the mast itself. This variation in yaw permits to simulate a side slip 

angle. 

A majority of the on board electronics were kept inside the fuselage and powered from 

outside. It enabled to control the aerodynamic surfaces and the engine output through the same 

user interface, developed by Delair-Tech, as the off-the-shelf DT-18. 
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Figure III.3: Rendering of the mechanical set-up of the mock-up on the mast. The holding plate (red), 
supports the mock-up on its upper surface and clasp the measurement-unit (horizontal, green) in one of 
its forward extremity. The measurement-unit is encircled at its aft extremity by the ventral mast 
(vertical, green). Copyrights Delair-Tech. 

 

Figure III.4: Mechanical set-up, which evidences the holding plate (top, horizontal), the ventral mast 
(bottom, vertical) and the measurement unit (middle, horizontal) in between. Here, a spirit level is laid on 
the holding plate, in order to verify its horizontality and ensure that the mock-up will be in a wings-
level-configuration, before locking the holding plate into position with respect to the measurement unit. 
The yellow cable transmits measurement data from the unit to the acquisition centre. It runs downwards 
along the mast out of the lower side of the fuselage.  
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Figure III.5: The DT-18 experimental mock-up into place, through the single ventral mast, inside the 
elliptical test section of the S4 wind tunnel. The open test section is clearly visible, as the workshop is 
visible (left) outside of the section. The suction fans are visible (top right) at the end of the suction 
chamber, leeward of the diffuser. The curved rails of the cradle can also be seen (bottom), as well as the 
external feed (bottom left) for powering on board electronics. 

Forces and moments were measured locally on different places of the measurement 

unit and then could be calculated on different virtual points. Those were calculated at the 

virtual position of the centre of gravity of the DT-18 (which is different than that of the mock-

up). Practically, what is needed for DS simulations is the variation of the drag coefficient with 

the lift coefficient. For the sake of simplification, it can be reduced to a polynomial form of the 

following. 

 �� = ��� + ��%�* + ��&�*& + ��'�*' + ��(�*( ( III.2 ) 

The respective drag coefficients can show some sensitivity to the airspeed, all the 

more if that range of considered airspeed sees strong Reynolds-number effects. The �� = X(�*) 

behavior defined by Eq. III.2 is hence dependent on the airspeed to some extent.  
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Figure III.6: Evolution of the coefficient of lift with the angle of attack (alphac) for the DT-18, for different 
wind tunnel speeds and their associated Reynolds number for the vehicle. 

 

Figure III.7: Evolution of the coefficient of drag with the angle of attack (alphac) for the DT-18, for 
different wind tunnel speeds and their associated Reynolds number for the vehicle. 
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Figure III.8: Evolution of the coefficient of lift versus the coefficient of drag for the DT-18, for different 
wind tunnel speeds and their associated Reynolds number for the vehicle. 

For wind tunnel speeds above 15 m.s
-1

, the angle of attack was limited in order not to 

damage the mock-up or the balance. A way to generally represent glider performance is to 

represent the speed polar which shows the evolution, when the vehicle is in steady equilibrium 

gliding state, of the vertical sink speed versus the horizontal speed. This curve, representative 

of steady states of the vehicle at different airspeeds, can account for variations of the �� − �* 

behavior with the airspeed. However, DS flights involve dynamic manoeuvres where the 

vehicle is rarely in an equilibrium position. Still, a relationship between lift and drag is needed 

for the vehicle and for the sake of simplification, Reynolds-number effects are neglected and 

the relationship is supposed to be independent of the airspeed. Figure III.8 displays how curves 

are mainly sensible to the airspeed for Reynolds numbers below 1.5. 10
5
. Gaps between the 

curves are narrowing for higher Reynolds numbers. Given those considerations and as the 

expected airspeed of DS flight are rather high, it was estimated that results obtained at 18 m.s
-1

 

would be quite representative of aerodynamic performances of the DT-18 for DS simulations. 

Data of the four vehicles are gathered in Table III-1 and would serve to characterize 

their respective model in the remaining of this thesis.  
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Table III-1: Comparison data between the four vehicles considered.  

Parameter 
Cloud Swift 

Wandering 
Albatross 

Mariner DT-18 

2	(+:) 6.8 8.5 2.0 1.7 

�	(2) 4.32  3.3 2.5 1.8 

D	(2&) 0.957 0.65 0.485 0.248 

�� 19.5 16.8 12.9 13.1 

P>	(@/2&) 69.7 128.2 40.44 67.2 

��� 0.017 0.033 0.0173 0.0259 

��% 0 0 -0.0022 -0.0002 

��& 0.0192 0.019 0.0629 0.0735 

��' 0 0 -0.0578 -0.0858 

��( 0 0 0.0314 0.0607 

�*-./ 1.0 1.5 1.17 1.195 

(>/7)-./ 27.7 20 20.5 15 

NT-��	(2/1) 0.39 0.6 0.42 0.76 

A�B8C-��	(P) 25.7 49.7 8.2 12.7 

��01�-��(a/+2) 2410 4174 956 1113 

Mariner stands out in terms of wing loading, which is the lowest of all four. Besides, 

Mariner manages to reach a maximum lift to drag ratio ((>/7)-./) comparable to the 

Wandering Albatross, which is has a higher aspect ratio and a longer wingspan. This is partially 

achieved through a lower zero-lift drag coefficient	���, which could only be estimated for the 

Wandering Albatross and is therefore subject to greater uncertainties. However, Pennycuick’s 

estimate of the (>/7)-./ for the Wandering Albatross does not come far at 21.2 [25]. Although 

the zero-lift drag coefficient seems rather low for Mariner, a comparable value is obtained for 

Cloud Swift which strengthens the assertion that it is an achievable value for this class of 

vehicles. Besides, another important piece of information regarding glider’s performances is the 

minimum sink speed (NT-��). Both Cloud Swift and Mariner achieve lower minimum sink 

speeds than the Wandering Albatross. Cloud Swift has the lowest minimum sink speed of all, 
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which underlines its background conception for thermal soaring [19]. Indeed, this low value of 

minimum sink speed allow it to maintain level flight by exploiting thermals rising at a 

correspondingly low minimum rate of climb, enabling it to take the most out of a wide range of 

potential thermals. The smaller DT-18 does not reach such high value in (>/7)-./ , nor low 

value in NT-��, which can partly explained by the lower Reynolds number, which hamper the 

zero-lift drag coefficient. The DT-18 is still rather interesting for our study case, precisely for its 

reduced dimensions, especially span-wise, which would allow it to get closer to the surface 

during DS manoeuvres. To put in a nutshell, the comparison between vehicles highlights that 

the Wandering Albatross has aerodynamic gliding performances that can be reached and even 

exceeded. Mariner is a sound illustration of this conclusion and combines a streamlined design 

with a lightweight architecture to outperform the Wandering Albatross. Therefore, the gliding 

performances of UAVs are not a deadlock regarding the feasibility to exploit DS flight. 

 

Figure III.9: Comparison of speed polar for each of the four vehicles. 

Additional metrics can be compared when it comes to flight performance. The first is 

directly related to the sink rate and it is the minimum power required to sustain the vehicle 

airborne (A�B8C-��). It relates to the minimum sink rate as follow.  
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 A�B8C-�� = 2	:	Tb = 2	:	[NT-��]	 ( III.3 ) 

It corresponds to the minimum power expenditure in flight, and intrinsically relates to 

the endurance of the vehicle. Indeed, if a vehicle needs to remain in the air for as long as 

possible, it should fly at the airspeed which allow for the minimum sink rate. If the vehicle is 

propelled, then by sustaining that airspeed and with a power output of its propeller equal to A�B8C-�� it will maximize its endurance. For a given charge ���� of its battery, and a 

propulsion efficiency given by	���	� , the vehicle can theoretically sustain level flight for a 

nominal period of time called 90eKC�0�8-./ and given by the following equation. 

 90eKC�0�8-./ = ���	�	����A�B8C-�� 	 ( III.4 ) 

Where ���	� is given by the following formula, J being the thrust and ��� the battery charge. 

 ���	� = J. N.���b 	 ( III.5 ) 

The energy expenditure of a gliding vehicle in steady flight over a horizontal-travelled 

distance 731� can be related to the associated loss of height h and to the lift to drag ratio as 

follow. 

 9�/���f��g�� = 2: ∗ ℎ = 2: ∗ 731�> 7⁄ 	 ( III.6 ) 

This expenditure corresponds to the energy needed by the vehicle to sustain level 

flight over the distance 731�. Therefore, the lowest nominal energy consumption per unit 

length travelled, called	��01�-��, is given by the following formula. 

 ��01�-�� = 2:(> 7⁄ )-./	 ( III.7 ) 

The lowest energy consumption per unit length travelled is obtained by flying at the 

functioning point corresponding to the maximum lift-over-drag ratio. It should be noted that 	��01�-�� is homogeneous to a force, expressed in Newton, and that it corresponds, to a slight 
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approximation, to the thrust required from the vehicle to sustain that functioning point. For a 

given charge ���� of its battery, the maximal theoretical range of the vehicle called ��0:8-./ 

is given by the following equation. 

 ��0:8-./ = ���	�	������01�-�� 	 ( III.8 ) 

It follows from those calculations that the maximal endurance and maximal range of a 

vehicle are respectively related to the minimum sink rate and the maximal lift-over-drag ratio 

of the UAV. Those performance parameters indeed permit to establish respectively the 

minimum in-flight power required,	A�B8C-��, and the minimum 	��01�-��. 

Those latter metrics are summed up for each vehicle in Table III-1. It can be seen that 

Mariner reaches both the lowest power required and the lowest consumption. Therefore, if the 

four vehicles were equipped with the same battery and assuming they all share the same 

propulsion efficiency	���	�, Mariner would fly longer and farther than any of the other three 

vehicles. 

III.1.3 Point Mass Model 

For the sake of simplification, a point-mass model was chosen to represent vehicles. 

This type of representation allows simplifying the motion of the vehicle to three degrees of 

freedom, which are the three translations.  

The main advantage is that the vehicle input to the flight model will be kept to the 

minimum, which is a strong plus for the methodology that lies behind the formulation of DS 

trajectories. Furthermore, the scale of the wind gradients is such that span-wise variations in 

wind can be neglected and that a point mass model is an adequate representation of vehicle 

dynamics. The main limitation is that the rotational behaviour of the vehicle around its centre 

of gravity is not modelled. However, it does not mean that rotations cannot be indirectly 

simulated or controlled to some extent. The lack of equations representative to the rotational 

behaviour of the aircraft would have to be partially covered by further assumptions. For 

instance, by assuming that the vehicle is in symmetric flight with respect to the surrounding 

air, there is hence no sideslip angle, and the aircraft can be simulated to be directly aligned by 

the airspeed. For a hypothetic six degree of freedom model, symmetric flight would indeed be 

sought, but this orientation would be physically modelled, rather than simply assumed. 
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Practically, all forces that apply to the vehicle are concentrated at the centre of gravity 

G. Those are respectively the lift (>) the drag (7) and the weight (P) and are expressed in Eqs. 

III.9 to III.11. 

 > = 1
2 �. D. �* . N.& ( III.9 ) 

 7 = 1
2 �. D. �� . N.& ( III.10 ) 

 P = 2: ( III.11 ) 

The orientation of the weight comes trivially, but the direction of aerodynamic forces 

is directed by the airspeed. The orientation of the lift requires the introduction of a parameter 

that is the bank angle. Once again, practically, this angle is a state of the aircraft which is 

piloted by deflections of control surfaces and which variations depend on the vehicle’s inertia 

along its roll axis. With a point mass model, this angle will be directly piloted. Further 

precisions are detailed in the part dedicated to equations of motion.  

III.2 Environment Model 

Dynamic Soaring research is faced with a significant limitation on the environment 

model it uses. Although the ocean surface holds the significant advantage to be rather flat and 

uniform compared to earth variations, the wind profile encountered is not that of a flat plate. 

So far, the environment was only taken into account through steady boundary layer vertical 

wind profiles, either following power-law behaviour [50, 56]or logarithmic evolution [47, 67] or 

even selecting a linear wind profile [49]. However, those profiles are constant in space and time 

and are not correlated to any change in environment condition, apart from changing the 

reference wind itself. The purpose of this part is to refine the environment model used in 

simulations so as to correlate the wind field with environment conditions and to describe how 

DS could be affected by the presence of a moving wavy surface. 

III.2.1 Wind Profiles over rather Flat Surfaces 

In the present case of this study, we consider neutral conditions at sea, that is to say 

that convective exchanges or heat transmission are absent. Those conditions are met whenever 
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the surface is cooler than the air above. The subsequent boundary layer is therefore solely 

driven by wind shear turbulence and classical theory of the turbulent boundary layer can be 

used. A distinction between two cases is made, either the surface is considered smooth and 

therefore the mean velocity profile is that of a flat plate, or the roughness of the surface induces 

changes in the velocity profile. Some concepts related to that theory are introduced hereafter. 

The friction velocity K∗	is defined by Eq. III.12. and is a representation of the stress 
� exerted 

by the wind on the ocean surface. The air density is represented by ρ. 

 K∗ = l
�� 	 ( III.12 ) 

The friction length T∗	of the boundary layer is the length scale of the internal sub-layer 

and is related to the viscosity ν by Eq. III.13. 

 T∗ = �K∗	 ( III.13 ) 

The general form of the dependence of the mean velocity profile over a flat rigid wall 

is called the universal law of the wall and is expressed in Eq. III.14.  

 KM(T) = K∗	. X m TT∗n	 ( III.14 ) 

The former relation is only valid for surfaces considered as dynamically smooth, that 

is to say when eventual protrusions on the surface are small enough not to entail a change in 

the mean velocity profile. Monin and Yaglom [75] propose a quantitative explanation of the 

requirement of the smoothness: the wall will be considered as dynamically smooth if the mean 

height ℎ� of the protrusions satisfies the condition given by Eq. III.15. 

 ℎ� ≤ T∗ = �K∗	 ( III.15 ) 

In the ocean atmosphere, for friction velocity of the order of 10 cm/s, the friction 

length does not exceed some tenth of a millimetre and quite trivially the ocean surface cannot 

be considered as dynamically smooth. Therefore, the main velocity profile departs from the 

case of a flat surface and will depend on irregularities of the surface. Those are considered in 



From Albatross to Long Range UAV Flight by Dynamic Soaring 55
 

 

the expression of the main wind profile, via the roughness length	T� , defined in Eq. III.16, which 

is characteristic of the dynamic interaction between flow and surface [75]. There is a one to one 

correspondence between the state of the surface, with a set of protrusions 	ℎ� irregularly 

spaced and the roughness length	T�. 

 T� = T	8Yp	q −�√2s�,(T)t	 ( III.16 ) 

�, is the friction coefficient at the altitude	T, and χ is the von Karman constant. The 

fact that the shear stress is almost the same within the boundary layer entails that T� is a 

constant [75]. The mean velocity profile over a rough surface is subsequently given in Eq. III.17 

[75]. 

 KM(T) = K∗� u�: m TT�n	 ( III.17 ) 

For the resulting log profile, the local increase in horizontal wind with altitude, or local wind 

gradient is expressed in Eq. III.18. 

vP/vT = K∗� 	1T	 ( III.18 ) 

The vertical gradient in horizontal wind is highest when closest to the ground. 

Besides, the local wind gradient is directly proportional to the wind friction velocity and the 

resulting effect is graphically displayed in Fig. III.10 (left). An important remark to be deduced 

out of Eq. III.18 is that the local wind gradient is independent from the roughness length, which 

is displayed in Fig. III.10 (right). Indeed the curvature remains identical, for a constant altitude, 

from one profile to the other. Therefore, surface roughness conditions do not alter the shape of 

the mean wind profile but shift the local mean wind speed by an identical value for the whole 

profile.  
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Figure III.10: Influence of variables from Eq. III.17 on the main wind profile. Left, variations in friction 
velocity for values representative of the atmospheric boundary layer. Right, variations in surface 
roughness length, representative, from the lowest to the highest, of open sea, open tarmac, open grass, 
low crops, and high crops respectively. 

Earlier DS studies, such as Wood [46], Sachs [47], Barate [55] and Bower [68], use and 

mention values of T� around 3 cm, which is supposed to represent a typical value over very 

rough seas. They implicitly assume that ocean surface irregularities are of the order of the 

meter, which seems a priori fair for rugged conditions at sea. However, several limitations are 

going against the use of this estimation of T� for defining the mean wind velocity profile in the 

case of DS over oceans.  

The first limitation is that specific literature on the topic refers to significant lower 

values. Stull [76] mentions values for T� of the order of the millimetre for off-sea wind in coastal 

areas, while all existing data indicate that the surface of the sea is considerably smoother than 

the majority of land surfaces, with T� < 1 mm even for a fairly strong wind. The same author 

mentions roughness lengths of the order of the cm for open flat terrain, typically covered with 

low grass and with few obstacles.  
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Moreover, the velocity profile defined in Eq. III.17 accounts for irregularities from the 

surface only in a statistical way. Although that velocity profile is mathematically defined down 

to T�, in fact the logarithmic equation loses its physical consistence at much larger values of 

altitude. Indeed, for altitudes comparable to the height ℎ� of protrusions on the surface, the 

velocity profile would vary depending on the shape and spacing of the irregularities and on the 

relative position towards those. This is especially critical as it was established before that DS 

trajectories are composed in particular of a low turn close to the surface (Sachs [47] maintains a 

1.5 metres ground clearance for the centre of gravity of the bird). So Eq. III.17, used with a T� of 

3 cm, may reach some limitations in terms of accurate modelling of the wind field in the first 

metres above the surface. 

A refined model must be approached in order to provide the roughness length T� of 

the ocean surface. Wind-waves interaction is a vast field of research, far from being completely 

explored. Nevertheless, Charnock’s roughness length model, developed by the eponymous 

author, is a generally recognized way of relating roughness length to the wave spectrum [77]. 

The Charnock’s relation follows in Eq. III.19. 

 T� = �	 K∗&: 	 ( III.19 ) 

Stronger shear stress induces higher irregularities, which results in a greater 

roughness length. The parameter � is called the Charnock’s parameter and is estimated to be 

within the [0.01; 0.035] range. This parameter was shown to depend on the wave fetch, that is 

to say the length of water over which a given wind has blown. It is directly related to the wave 

age, but it can be assumed constant for some cases. Indeed, the Charnock’s parameter �< =1/80 , 

which is then called the Charnock’s constant, was demonstrated through wind field 

measurements [78] to be accurate for long fetch cases, corresponding to old waves. The use of 

Charnock’s constant might reach some limits in coastal areas, where the surface roughness of 

young waves is higher than predicted. For a friction velocity of 50 cm/s, the corresponding 

surface roughness length obtained using Charnock’s model is 0.28 mm, which is much more 

consistent with the order of magnitude given by Stull [76]. 
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III.2.2 Ocean Waves 

The way the mean wind velocity is subsequently defined with Eq. III.17, for a 

roughness length that follows Charnock’s model with	� = �< , gives a model of shearing flow 

over a rigid ocean surface, where irregularities are taken into account statistically.  

However, the ocean surface is obviously constantly moving, and so to the effect of 

turbulent shear flow over rigid surfaces must be added the effect of surface displacement. 

Besides, only small scale structures of the surface, of the order of the cm are taken into account 

using Charnock’s model. It must be superposed an effect that accounts for larger structures, if 

the wind field in the vicinity of significant waves is to be modelled.  

Ocean waves are stochastic; the surface appears to be composed of random waves of 

various lengths and periods with no simple repeating pattern. Yet, one way to model this 

surface is the concept of wave spectrum which distributes wave energy among different wave 

frequencies. This decomposition of the ocean surface into an infinite sum of independent 

propagating sinusoidal waves relies on the fair assumption that non-linear interactions 

between waves are weak. The wave spectrum is established by measurement of the height of 

the sea surface from a fixed location, independently of the direction of waves. Pierson and 

Moskowitz did such measurements at a deep-sea location in the North Atlantic and made the 

assumption of a fully-developed sea to propose a simple, yet commonly used Pierson-

Moskowitz spectrum [79], where DHw is the wave spectral density. 

 DHw(�) = 8.110' 	 :&�S 	8Yp q−54 |��� }(t	 ( III.20 ) 

The notation �� refers to the peak angular frequency of the spectrum and is expressed in terms 

of wind speed measured at 19.5 metres, P%Q.S, which was the height of the speed taps used in 

experiments. 

 �� = 2\	X� 	= 0.8772	 :P%Q.S	 ( III.21 ) 

The following condition is indeed verified. 
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eDHwe� ���� = 0 ( III.22 ) 

Assumption is going to be made that the wavy surface used in the reminder of this 

part consists in a single sinusoidal wave at the peak angular frequency, as presented in Fig. 

III.11, obtained after the wind blew steadily for a long time over long distances. Wind and 

waves have reached equilibrium: the sea is fully-developed. For notational convenience, it will 

be assumed that the wind comes from the North, the x-axis is pointing northbound against the 

wind and z is oriented downwards. The local wind considered is at the origin of the formation 

of the wave system so waves are propagating with a phase velocity c in the same direction as 

the wind. Dispersion relations follow in Eqs. III.23 to III.25. 

 � =  :
�� ( III.23 ) 

 + =  ��&
:  ( III.24 ) 

 
 = 2\
+  ( III.25 ) 

The equation of the surface UV.W� is given by Eq. III.26. 

 UV.W� = −� ��1�+Y + ���� ( III.26 ) 

The amplitude a of the wave is also related to the wave spectrum by assuming the 

peak frequency concentrates all the energy from the wave spectrum. The standard deviation in 

surface displacement obtained from the spectrum is expressed in Eq. III.27. 

 ��&� = � DHw(�)�
�

e� = 2.74
10'  P%Q.S(

:&  ( III.27 ) 

For the sinusoidal peak wave expressed in Eq. III.26, this translates into Eq. III.28. 

 �DKCXV.W�&� = �&
2  ( III.28 ) 
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Figure III.11: Aspect of a sinusoidal wave induced by a wind blowing from the North. The wind direction 
is pictured by the green arrow 

So the amplitude considered is given in Eq. III.29. 

 � = �2 � DHw(�)�
�

e��
% &�  ( III.29 ) 

The wave considered is therefore highly dependent on wind conditions. It should be 

noted by combining Eq. III.21 and Eq. III.23 into Eq. III.30 that the wave travels faster than the 

wind, as noted by Pierson and Moskowitz.  

 � = 1.14 P%Q.S ( III.30 ) 

Therefore, the overall surface UV.W� of the wave is described by Eq. III.26 and it is 

associated with a surface roughness entailed by small irregularities from the main surface. 

Those are only taken into account statistically following Charnock’s model, as described in Eq. 

III.19. 
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III.2.3 Wind field over Waves 

The undisturbed flow over a rather flat surface has been investigated, together with 

properties of a peak-frequency wave which concentrates all the energy of the wave spectrum. 

The remaining of this part focuses on the way the latter wave alters the wind field around it. It 

is to be noted that several tens of metres above the surface, the mean velocity profile would be 

roughly unaffected so that �%Q.S is quasi constant, for a given friction velocity. 

Several authors investigated turbulent flow over such a wavy surface, using numerical 

simulations [80]or a theoretical approach [81]. It was decided to use here expressions derived 

out of Benjamin’s development [81], which provides approximations of analytical solutions 

applying stable laminar flow theory. Validity of the solution only requires that the wave 

amplitude is small relative to the wavelength in order to remain out of flow separation cases. 

This condition was chosen following results from [80, 81] and is given in Eq. III.31. 

 
�

 ≤ 0.02	38		�+ ≤ 0.126	 ( III.31 ) 

In a region where there is no large adverse pressure gradient, the flow tends to follow 

the contour of the wave in such a way that main features of the undisturbed boundary layer are 

preserved. The flow is assumed to be two dimensional in the {Y, T}	plane defined earlier, with 

the wind coming from	Y. An inertial reference frame	�Y�, ��, T�� in uniform rectilinear motion 

at phase velocity � is defined such that it translates with waves but keeps the same orientation 

as	{Y, �, T}. A surface-fitted curvilinear system of coordinates {�, �}	is defined, on the upper 

surface of the wave, as in Eq. III.32, from the set of Cartesian coordinates	�Y�, T��. 
 � � = Y� − 3�8� ��O���/��� = −T� − �	8� ��O���/��	 ( III.32 ) 

Only the real part of Eq. III.32 is to be considered, which gives Eq. III.33. 

 � � = Y� − �	130	(+Y�)8 O�� = −T� − �	��1(+Y�)8 O� 	 ( III.33 ) 

It should be observed that the equation of UV.W� in the inertial frame of reference 

�Y�, ��, T�� is given by � = 0 , to the first order in	�+. Periodical variations of	� and	�  with Y� 
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and T� are damped by the exponential term in	+T�. Hence, far away from the surface, the 

curvilinear coordinates {�, �}	fits with the Cartesian system	�Y�, ��, T��. The undisturbed mean 

velocity profile is transformed into curvilinear coordinates to follow the contour of the wave so 

that it varies with  � only. 

 KM = KM(�) = −K∗� u�: m �T�n	 ( III.34 ) 

In the present case, the wind is blowing against the x-axis such that the wave moves in the 

same direction. It means that the celerity � is expressed by Eq. III.35. 

� = 1.14	P%Q.S = −1.14	 K∗� u�: m19.5T� n	 ( III.35 ) 

In the absence of waves, the stream function ��, characteristic of the flow observed from 

�Y�, ��, T��, is expressed in Eq. III.36. 

 �� = � {KM − �}e��
� 	 ( III.36 ) 

For the disturbed flow, a periodic perturbation is introduced to	��, under the form specified by 

Eq. III.37. 

 � = �� + �	{�(�) + {KM − �}8� �}	8� �	 ( III.37 ) 

F is a perturbation velocity that must be determined. Components of the velocity parallel 

to	�and	� are expressed respectively in Eq. III.38. 

 

��
� �(�, �) = a% &� 	v�v�
N(�, �) = −a% &� 	v�v�

	 ( III.38 ) 

Where a is the Jacobian of the transformation given in Eq. III.39. 
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 a = � v�
vY��

&
+ � v�

vT��
& ( III.39 ) 

The set of velocity components (�, N) abides by non-slipping boundary conditions at the 

surface of the wave.  

 � �(0, �) = −�
N(0, �) = 0  ( III.40 ) 

Benjamin [81]decomposes F in an inviscid solution � completed with a rapid varying 

solution f which is a valid approximation of F close to the surface, where viscosity prevails. The 

region where f is significant is only several times the friction length, to the order of the 

millimetre. It was chosen to ignore that contribution that would have no incidence on flight 

dynamics since the vehicle flies well above. The following approximation for F was chosen. 

 � = � = −$KM − �) 8� � ( III.41 ) 

Speeds in curvilinear coordinates can then be expressed in Eq. III.42. 

 � �(�, �) = a% &�  $KM − �)
N(�, �) = 0  ( III.42 ) 

The �−lines are thus streamlines according to this approximation, as visualized in Fig. III.12, 

and the wave influence on the streamlines decays with altitude. 
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Figure III.12: Streamlines, pictured in a 2D plane, viewed from a reference frame translating at wave 
celerity. The wind direction is pictured by the green arrow. 

Benjamin concludes that a fair approximation to the flow pattern is obtained simply 

by bending the primary profile. The transformation into Cartesian coordinates�Y�, ��, T�� gives 

the respective components of the velocity parallel to �� and	T�. 

 

��
�
��P/� = �(�, �)a% &� 	 v�vY� =	 {KM − �}	 v�vY�
PO� = �(�, �)a% &� 	 v�vT� =	 {KM − �}	 v�vT�

	 ( III.43 ) 

Finally, in the Earth’s reference frame, the wind field is described by Eqs. III.44 to III.48.  

 �	P/ = P/���� +P/	����.6PO = PO���� +PO	����.6 	 ( III.44 ) 

 P/���� =	KM	�1 + �+8 O ��1�+Y + �����	 ( III.45 ) 
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 PO���� = KM 	��+	8 O 	130�+Y + �����	 ( III.46 ) 

 P/	����.6 = −�	��+	8 O ��1�+Y + �����	 ( III.47 ) 

 PO	����.6 =	−�	��+	8 O 	130�+Y + �����	 ( III.48 ) 

The superposition of two contributions can be observed. The first comes from the 

main velocity profile being “bent” to follow the curve of the wave. Equation III.45 is applied 

successively at the wave crest and at the wave trough, in Eqs. III.49 and III.50, so as to highlight 

the speed up at wave crest and the slow down at wave trough, induced by the bent profile. 

 P/����(B��8	�C81�) = KM	{1 + �+8 O}	 ( III.49 ) 

 P/����(B��8	�C�K:ℎ) = KM	{1 − �+8 O}	 ( III.50 ) 
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Figure III.13: Velocity profiles of the wind component due to the wave curvature. The vertical amplitude 
scale of the wave is voluntarily exaggerated. 

Moreover, this bent wind field also induces an upward deflection of the wind on the 

windward side of the wave and a downward deflection on the leeward side, in a wind-over-hill 

fashion, as can be seen in Fig. III.13. 

The second contribution is entailed by the orbital motion of the wave surface, with 

perturbations opposite to those due to the “bent” profile, see Fig. III.14. Indeed, the moving 

wave creates an upward motion of the surface on the forward moving side which is the leeward 

face of the wave, whereas the “bent” profile induces a downdraft component.  

An opposite behaviour between “orbital” and “bent” contributions can also be 

observed on the other face of the wave, windward. It is to be noted, from Eq. III.46 and Eq. 

III.48, that wherever the celerity c of the wave exceeds the local mean wind speed	KM, the orbital 

vertical contribution is predominant. This condition is verified up to large heights with the type 

of wave considered in the present case. Therefore, the overall wind field sees an updraft on the 

leeward face of the wave, as can be seen in Fig. III.15. 
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Figure III.14: Velocity profiles of the wind component entailed by the orbital motion of the wave. The 
velocity scale is five time that of Fig III.13. 

 

Figure III.15: Velocity profiles of the wind established over a moving wavy surface. 

The methodology followed above enables to set up a model of the wind field within an 

environment that includes moving waves. There is hence an implicit dependence on time, even 

though all phenomena are steady. The vertical wind behaviour, in vicinity of the wave, is 

dictated by the orbital motion of the wave and not by its bending effect on the wind profile. 
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III.3 Summary of Chapter III  

One top of the Wandering Albatross model, three vehicles architectures are 

considered, all based upon classic glider planforms, but equipped with propulsive systems. It 

enables to benefit from known designs, rather easy to quantify and to get rid of uncertainties 

linked to the dimorphism measured in albatrosses. Geometries chosen for those vehicles reflect 

variations in scale and would therefore question the feasibility of DS for various UAV sizes. 

Their aerodynamic quantification is done through simple models that are well-verified for this 

kind of high-aspect-ratio wings. Yet, the smaller UAV is tested during a wind tunnel campaign 

in order to address the issue of smaller Reynolds number. A point-mass model was chosen to 

represent the vehicle dynamics, for its simplicity. It is a sound choice given the scale of 

gradients that are involved in DS, however it bears limitations since any further degree of 

freedom would have to be synthetically constrained in its evolution rather than modelled. 

The description of the environment is a two-fold process. First the theory of turbulent 

boundary layer is applied to a rough flat surface where irregularities are taken into account in 

a statistical way through the surface roughness length. The influence of the wind friction 

velocity and of the surface roughness length on the shape of the wind profile is assessed. This 

later value, which is representative of the nature of protrusions on the surface, must be 

adapted to match conditions encountered. In particular, the surface state, in the case of oceans, 

depends on the interaction between wind and waves and its evolution over time. A simple 

Charnock model is chosen to link the surface roughness length with the wind friction velocity, 

which is a good approximation for a long fetch. Secondly, the influence of surface variations of 

bigger scale is assessed. A regular sinusoidal wave is considered out of the Pierson-Moskowitz 

spectrum, at the peak frequency, and it is assumed to concentrate all the energy from the 

spectrum. The subsequent amplitude and wave length obtained make it correspond to a swell. 

The simplicity and regularity of the wave pattern is suitable for an analytical approach of the 

wind field. Stable laminar theory is applied to this shallow wave train, which highlights a 

predominant influence of the orbital motion of the wave on the vertical wind profile. 

Models of the vehicle and of the environment are therefore set and ready to be 

considered as inputs to the flight model, which focuses on the motion of the vehicle within its 

environment. 
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Chapter IV                           

Motion & Optimization 

Once respective models of the wind and the environment have been investigated, the 

trajectory that makes those two interact must be found. There lays a methodology which is 

specific to the general topic of atmospheric energy-extraction topics, and which consists in 

providing a trajectory that is considered an optimum. The success of the approach undertaken, 

which would lead into the formulation of a three dimensional trajectory, would not mean that 

DS flight is feasible for a UAV, but rather describe the trajectory it would fly, if it were to 

perform DS. 

IV.1 Equations of Motion 

IV.1.1 Point of View 

Any motion is relative to the point of view of its observer. And so are the physical 

models built to explain it. If well expressed, they would eventually lead to a consistent picture, 

where the two versions of the analysis are simply two ways of approaching the problem. As it 

has been underlined already, two relative motions, and therefore point of views, are involved 

when it comes to analysing the flight of a vehicle in a windy environment. One is relative to 

earth, while the other is relative to the surrounding air. The following lines have more about 

how the choice of one of those two points of view affects the understanding of the physics 

involved. 

Let’s consider a vehicle and the mass of air altered by the vehicle path from instant � 

to instant � + e�, such that the system {vehicle + mass of air} is isolated. Hence, it does not 

exchange any energy with the outside; all energy transfers are internal to the system. We aim 

here at getting a qualitative understanding of the internal transfers of total energy between the 

two systems {vehicle} and {mass of air}, depending on the point of view chosen for observation. 

From an Earth based point of view, it has been established that the vehicle gains 

energy during an upwind climb. As the system {vehicle + mass of air} is isolated, when the 
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energy of the {vehicle} increases, the energy of the {mass of air} decreases by the same value. 

This case is represented in Fig. IV.1. The {vehicle} extracts energy out of the {mass of air} when 

the vehicle flies through the mass of air. The concept could be compared to wind turbines, 

where downstream air is less energized than the upwind air as the wind turbine gets energy 

out of it. 

 

Figure IV.1: Energy transfer from an Earth based point of view. 

When the same manoeuvre is observed from an air relative point of view, in Fig. IV.2, 

the {mass of air} has initially no relative velocity, hence no kinetic energy. When the vehicle 

flies through it, the circulation around its wing entails some perturbations within the mass of 

air, creating vortexes and unsteadiness. The {mass of air} receives some energy during the fly-

through which is extracted from the {vehicle} energy level.  
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Figure IV.2: Energy transfer from a wind based point of view. 

The very simple understanding of energy transfers differs depending on the point of 

view chosen. The notion of energy is therefore relative to the reference frame chosen to 

describe kinematics.  

Three dimensional inertial state variables as well as their air relative counterparts are 

introduced in Fig. IV. 3 and Fig. IV. 4 respectively. The flight path angle (�) and heading angle 

(�) are introduced, as well as the bank angle (�). Lift (>) and drag (7) keep the same notations 

as before, as well as the speed (N). An inertial earth reference frame R0 (Y�, ��, T�) is arbitrarily 

defined by orientating axis Y�, �� and T� northwards, eastwards and downwards respectively. 

The inertial speed vector is oriented with respect to R0 through the inertial heading 

angle and flight path angle, as defined by Fig. IV. 3. The inertial speed vector orientates a frame 

Ri (Y��, ��� , T��) such that it stays directed along Y��. The subsequent frame Ri is then obtained from 

R0 by rotation of �� along T� and of �� along ��� . Despite the subscript “i”, the frame Ri is not an 

inertial frame, since it rotates with the inertial speed. The same applies with the airspeed, with 

a subsequent frame Ra, as can be seen in Fig. IV.4. Aerodynamic forces are oriented by the 

airspeed such that the drag is opposed to the airspeed while the lift can rotate by � in a plane 

orthogonal to the airspeed vector. It should be mentioned that by assuming no sideslip angle, 

the attitude of the vehicle can be determined. Indeed, the longitudinal axis is therefore included 

within the (Y�. , T�.) plane, while wings are orthogonal to the lift vector. 
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Following those early definitions, the inertial and air relative velocity vectors can 

hence be expressed as follow. 

 N �� = N�. Y�� ( IV.1 ) 

 N �. = N. . Y�. ( IV.2 ) 

The relation between speeds is given by Eq. IV.3. 

 N �� = N �. + P   � ( IV.3 ) 
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Figure IV.3: Orientation of the inertial speed with respect to the reference frame R0 

 

Figure IV.4: Orientation of the airspeed and of aerodynamic forces, with respect to the reference frame 
R0. 

Unless stated otherwise, it is assumed in the remaining of the document that the wind 

is unidirectional, coming from the North, such that it is opposed to	Y�. This decision is 

particularly convenient for both calculation and trajectory visualization since it emphasizes the 

behaviour of the vehicle with respect to the wind. Although this choice is arbitrary, the 
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decision to align R0 with the compass rose was all the same. Therefore no limitative 

assumption is involved in this choice and the whole spectrum of potential vehicle’s kinematics, 

with respect to the wind, is unchanged. Therefore, the wind vector is expressed as follow. 

 P   � = P/(Y, �, T, �). Y� = P/ . Y� ( IV.4 ) 

The airspeed can be expressed as a function of the local wind strength, the inertial 

speed and the inertial flight path and heading angles. 

 N. = ¡N�² − 2. N�. P/ . ��1 ��. ��1 �� + P/& ( IV.5 ) 

Besides, air relative angles can also be deduced as follow. 

 130 �.  = N�N. 130 �� ( IV.6 ) 

 130 �.  = N� ��1 �� 130 ��N. ��1 �.  ( IV.7 ) 

Practically, the flight path angle will be limited to the interval ] −\ 2� ; \ 2� [ , such that Eq. IV.8 

can be deduced from Eq. IV.6. 

 ��1 �.  = s1 − 130& �. ( IV.8 ) 

Eq. IV.9 completes the set of respective sinus and cosinus expressions. 

 ��1 �.  = N� ��1 �� ��1 �� − P/N. ��1 �.  ( IV.9 ) 

IV.1.2 Earth Point of View 

Equations of motion of a point-mass model flying through a windy environment are 

derived in this section. Equations of motion will be referred to as EoM in the remaining of this 

thesis. Kinematics is observed from the earth-based inertial reference frame R0. Newton’s 

second law is written down in Eq. IV.10. 
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 2	 eN ��e� )5¤ =¥��C�81              ��/�→W�§�<6�	 ( IV.10 ) 

The left-hand side of Eq. IV.10 is developed by applying the derivation formula to the 

inertial speed, as follow. 

 eN ��e� )5¤ = eN ��e� )5¨ +	© �5¨/5¤⋀	N ��	 ( IV.11 ) 

The rotational speed of the reference frame Ri with respect to R0 is given by Eq. IV.12 

 © �5¨/5¤ = �b���� + �b �	T�� 	 ( IV.12 ) 

Eq. IV.13 is obtained by combining Eq. IV.11 and Eq. IV.12. 

 eN ��e� )5¤ = Nb�	Y�� + N�	��1	��	�b �	��� − N�	�b�. T�� 	 ( IV.13 ) 

External forces applied to the vehicles are the Lift, Drag and Weight. The lift is 

oriented by the bank angle with respect to the reference frame Ra. The expression of the lift is 

reminded in Eq. IV.15. It should be mentioned that the air density � is considered constant over 

the small altitude ranges of interest. 

 > � = > 130 � ��. − > ��1 � T�.	 ( IV.14 ) 

 > = 12�. D. �* . N.&	 ( IV.15 ) 

The drag is opposed to the airspeed vector, along	Y�.. 

 7  � = −7	Y�.	 ( IV.16 ) 

 7 = 12�. D. �� . N.&	 ( IV.17 ) 
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And the weight is trivially expressed as follow. 

 P   ���«§� = +2:T� ( IV.18 ) 

Equations are chosen to be projected on Ri. All forces must therefore be successively 

projected on Ra and then on Ri. Contributions from the three forces listed above are summed 

up along the main axis (Y�, ��, T�) of R0. 

 ��C�81              ��/�→W�§�<6� =  �/  Y� + �¬ �� + �O T� ( IV.19 ) 

 �/ = −> (130 � 130 �. + ��1 � ��1 �. 130 �.  ) − 7 ��1 �. ��1 �. ( IV.20 ) 

 �¬ = > (130 � ��1 �. − ��1 � 130 �. 130 �.) − 7 ��1 �. 130 �.  ( IV.21 ) 

 �O = −> ��1 � ��1 �. + 7 ��1 �. + 2: ( IV.22 ) 

Then, a further projections along (Y��, ��� , T��) of Ri is conducted in order to get to the 

first three EoM. 

 2Nb� = �/ ��1 �� ��1 �� + �¬ ��1 �� 130 �� − �O 130 �� ( IV.23 ) 

 2N� ��1 ��  �b � = −�/ 130 �� + �¬ ��1 �� ( IV.24 ) 

 −2N� �b� = �/ 130 �� ��1 �� + �¬ 130 �� 130 �� + �O ��1 �� ( IV.25 ) 

Those are completed by the three dimensional evolution of the position of the vehicle. 

 Yb = N� ��1 �� ��1 �� ( IV.26 ) 

 �b = N� ��1 �� 130 �� ( IV.27 ) 
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 Tb = −N� 130 �� ( IV.28 ) 

Therefore, Eqs. IV.23 to IV.28 describe the evolution rate, with time, of inertial state 

variables $V�, ��, ��, Y, �, T). Those equations indirectly include variables that are not piloted by 

any others, that are $�*, �). Those are the variables which pilot the evolution of the system, 

they are control variables. Besides, it should be mentioned that the wind input consists only in 

the local wind strength P/, which is taken into account as for $N. , �. , �.). Therefore, the local 

evolution of inertial state variables depends only on the local wind strength encountered by the 

vehicle and is independent of the local wind gradient. 

IV.1.3 Air relative point of view 

An alternative choice is to base the point of view on the surrounding air, such that air 

relative kinematics is observed. The subtlety in the case of DS simulations is that the 

surrounding air moves at different speeds depending on where the vehicle is, due to the 

presence of wind gradients. Hence, a reference frame linked to the air around the vehicle would 

see accelerations when the vehicle crosses regions of wind shear, such that this reference frame 

is not inertial. Fictitious forces must be added in order to describe the motion from this point of 

view.  

An air-based frame is defined such that it is moving at the speed P/(Y, �, T, �). Y�, 
where $Y, �, T) is the position of the centre of gravity of the vehicle. All axes remain parallel to 

those of R0. The inertial force is given by the local air acceleration at $Y, �, T). 

 ��������.6 = −2. 7P/7� n5¤
Y� = −2. ®vP/v� + vP/vY . Yb + vP/v� . �b + vPOvY . Tb¯ . Y� ( IV.29 ) 

The wind is taken to be unidirectional and steady, coming from the North, defined by 

the following equation. 

 P/ = − K∗� u�: −T
T�  ( IV.30 ) 

Hence, the inertial force is expressed as follow. 
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 ��������.6 = 	−2.7	P/7� n5¤ Y� = −2	 vP/vT . Tb	Y�	 ( IV.31 ) 

The local wind gradient is computed from Eq. IV.30 and gives the following expression. 

 
vP/vT = −K∗� 	1T	 ( IV.32 ) 

This yields the following expression as for the inertial force. 

 ��������.6 = 2	K∗� 	TbT 	Y�	 ( IV.33 ) 

The derivation formula is applied to the airspeed vector and generates the following 

components. 

 eN �.e� )5¤ = Nb. 	Y�. + N.��	��1	�. 	�b. 	��. − N. 	�b.. T�.	 ( IV.34 ) 

Finally, vector equations are projected on Ra to entail the following system of EoM. 

 2Nb. = −7 −2: 130 �. +2	K∗� 	TbT 	��1 �. ��1 �. 	 ( IV.35 ) 

 2N. ��1 �. �b. = > 130� −2	 K∗� 	TbT 	130�. 	 ( IV.36 ) 

 −2N.�b. = −> ��1 � +2: ��1 �. +2	 K∗� 	TbT ��1 �. 130 �.	 ( IV.37 ) 

 Yb = N. ��1 �. ��1 �. +P/	 ( IV.38 ) 

 �b = N. ��1 �. 130�.	 ( IV.39 ) 

 Tb = −N. 130 �.	 ( IV.40 ) 
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The set of Eqs. IV.35 to IV.37 shows that air relative state variables have their rate of 

evolution as a function of the local wind gradient, described in Eq. IV.32. This dependence 

comes through the presence of the inertial force that itself accounts for the acceleration of the 

air relative point of view. This term, which has indeed the dimension of a force, is sometimes 

referred to as the “dynamic soaring force” or the “fictitious force” [50]. Control variables $�*, �) 

are trivially the same as before.  

To put in nutshell, two different sets of equations of motion can be considered. Those 

are representative of the same system evolution observed from two different points of views. 

One focuses on inertial variables, and highlights that their rate of evolution depends, among 

others, on the local wind strength encountered. From that perspective, the significance of wind 

gradients is not emphasized at that stage and the set of EoM is not much different than that of a 

point-mass glider in still air. The alternative is to use air relative variables and equations, which 

then makes the local wind gradient appear. The role of wind gradients in the energy extraction 

process can already be partially comprehended when observing the motion from an air relative 

point of view. Besides, different systems of EoM can be derived out of a single point of view, 

such that the proposed equations here are not exclusive [50, 67, 49, 47]. 

Yet, whatever the chosen point of view and the related set of equations, the local 

evolution rate of state variables, either inertial or air-based, is not sufficient to describe and 

simulate DS flight. Indeed, as it was underlined during Chapter I, DS can only be approached 

along a whole cycle of trajectory. For static soaring flight techniques, an instantaneous 

description of the system is repeated identically over time and can therefore be studied over 

any fixed time position, independently of the state and control histories. However, DS requires 

integrating the evolution rate, given by EoM, over an undetermined cycle, in order to simulate 

and understand energy-harvesting mechanisms. Hence, the fact that wind gradients terms do 

not appear in inertial EoM does not mean that wind gradients are not significant for the motion 

as a whole.  

This raises the next challenge regarding DS flight simulations, which is to integrate 

EoM to form state and control histories over a cycle yet to be determined. The way control 

variables pilot the evolution of state variables over time is also unknown, such that state 

variables cannot be explicitly integrated. The problem consists in finding a cycle of coherent 

state and control evolution over time that permits to extract energy from the wind in the 

process.  
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It was chosen to conduct all calculations using the set of inertial equations of motion 

Eqs. IV.23 to IV.28. It was considered that it would be more intuitive to deal directly with 

inertial variables since ultimately earth-based travel performances are those of primary 

interest. Other studies opted for the same option [47, 43]. Still, the choice to go for air relative 

variables could also have been defended, as those are somehow more intuitive to deal with 

when it concerns a flying object. That was the choice of various authors [46, 49, 48, 67, 68, 50, 

57]. 

IV.2 Optimization  

One way to address the issue is to set and solve an optimization problem in order to 

yield the best achievable solution. It goes through a particular methodology that starts by 

identifying the objective and the constraints and then follows by converting the subsequent 

analytical problem into one of finite dimension, involving a limited number of parameters. 

Eventually, specific numerical techniques are applied to the underlying parameter optimization 

problem to converge to a solution. 

IV.2.1 Optimal Control Problem 

The classical approach to set-up an optimization problem is to identify the variables, 

the objective and the constraints. The general formulation of the optimization problem is then 

defined as follow. 

°±²³´³µ¶/°³·³´³µ¶: ¹�º8��3�8(��C3��u81) 

»³¼½	¾¶¿À¶Á¼	¼Â: ��C3��u81 

¿ÃÄÅ¶Á¼	¼Â: ��01�C�30�1 

 In our case, variables would regroup all variables that must be iterated on as part of 

the optimization problem. Since both state and control variables are unknown, the set of 

variables includes at least those variables. Besides, the cycle duration is also unknown and 

should be set free for the optimization to run on it. Indeed the trajectory which optimizes the 

objective would have a specific duration, to be determined. Practically, an initial time �% is set 

to zero and the final time �, is chosen as a variable. So the set of variables passed to the 

optimization problem is at least	{V�, ��, �� , Y, �, T, �* , �, �,}. However, further variables can be 



From Albatross to Long Range UAV Flight by Dynamic Soaring 81
 

 

considered, such as vehicle design variable or environment variable. Especially if the wind 

strength is also unknown, which would happen in many cases, the friction velocity K∗ is also a 

variable to be determined.  

Regarding the objective function, numerous choices can be considered. We would 

focus on two different ones. The first and most trivial consists in minimizing the wind strength 

required to perform DS under certain operational constraints. Then, another objective would be 

to minimize the consumption per unit distance travelled. This latter obviously only makes 

sense in the case of a powered vehicle. The battery state (���) must then be taken into account, 

its derivative is given by the power exerted by the thrust	J. Just as a reminder, ���	� is the 

efficiency of the propulsive block, including electrical, mechanical and aerodynamic 

efficiencies.  

 ���b = − J	N.���	�	 ( IV.41 ) 

Table IV-1 sums up the different objective functions that are approached in the 

framework of this research project. Once again, it constitutes a deliberate choice to focus on 

certain problematics and many further objectives can be considered. 

Table IV-1: Variation in the objective function in the framework of this thesis 

Explicit formulation 
Objective Function 

title 
Function 

scalar 
Associated 
Constraint 

Obtain the lowest wind at 
which DS flight is 
sustainable.  

Minimize 
Wind friction 

velocity 
K∗ �908C:�	08K�C�u	���u8@�	JℎCK1�A8C3�e3�3��  

Obtain the lowest electric 
consumption per unit 
distance travelled by 
taking advantage of DS. 

Minimize 

Consumption 
per unit 
distance 
travelled 

����s�Y& + ��& � 908C:�	08K�C�u	���u8A8C3�e3�3��, �uu	�K�	���
Constraints encompass all the standards that must be complied with by the eventual 

solution of the optimization problem. To start with, equations of motion must obviously be 

verified such that the solution is physical in view of the models considered. Then, periodicity is 

an essential constraint regarding eventual DS trajectories. Indeed, the problem does not consist 

in extracting energy over a certain period, but in finding a way to make that energy-extraction 

process repeatable and therefore sustainable. The solution must hence consist in a path where 
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at least some of state and control variables come back to their initial values at the end. 

Depending on the mission scenario, those periodicity constraints can be eased out to allow for 

Y, �	displacement. Then operational constraints are considered. Some can be expressed quite 

straightforwardly, such as avoiding stall, or maintaining ground clearance. Others are 

implemented to make up for limitations inherent to the point-mass model of the vehicle. 

Limitations on control rates and angular accelerations would ideally be implicitly accounted for 

through the presence of further equations of motion, relative to further degrees of freedom. 

They can be rather estimated using alternative analysis, in order to augment the reality of the 

point mass model. 

The control rate bounds, respectively �*b  and	�b , are each associated to limitations in 

control surface deflections and size. Although the coefficient of lift is considered as a variable, 

it is in fact not piloted directly, since the attitude of the vehicle is piloted, not the angle of 

attack. However, limitations in pitch rate induce subsequent constraint on the feasible	�*b . 
Besides, using conservative values for this rate limit allows ensuring that the evolution in 

coefficient of lift corresponds to a feasible variation, despite the mentioned inaccuracy inherent 

to the point-mass model. A roll rate of 90°/s was given for Mariner [68], while a much lower 

value of 30°/s was given for Cloud Swift [70]. Such a strong disparity can be explained by the 

ailerons representing a large portion of the chord (35 %) over 90 % of the span for Mariner, 

while Cloud Swift was design as a classical glider, with ailerons on the outboard part of the 

wing only. The maximum rolling rate for the DT-18 is considered to be 60°/s. Given the 

approximate similarity in horizontal tail control surface sizing for all three vehicles, the same 

bound value of 0.5/s for	�*b , given by Bower [67], is chosen. 

Bounds on angular acceleration translate into limits in �*Æ  and	�Æ . Those are significant 

to ensure that control variables follow a rather smooth evolution over time. One approach to 

get to a first-order approximation of the roll acceleration is to calculate the maximum rolling 

moment that ailerons can produce for a certain speed. The following equation expresses this 

dependence. 

 =//	�Æ = 12 	�	D	u	�5	66 	N.&	 ( IV.42 ) 

=//	is the longitudinal inertia, u the mean aerodynamic chord and �5	66 the rolling 

moment coefficient. The maximum rolling acceleration is hence given by:  
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 Ç�Æ ÇwÈÉ = 1
2	=//	 	�	. D	. u	. �5	66-./	. N.&	 ( IV.43 ) 

The maximum rolling moment coefficient is given for the DT-18 by the wind tunnel 

campaign and for Mariner from Bower [67]. No data is available for Cloud Swift and it is 

assumed that it achieves the same maximum rolling moment coefficient as the DT-18. The 

maximum value for �*Æ  is much less intuitive and is considered to be 2 s
-2

 for all vehicles. 

As for remaining constraints, the maximum load factor was considered to be 0-./ = 3 for all vehicles, although Lawrance [70] recommends only 2 for Cloud Swift. The 

reason for that is our wish to let structural considerations aside, when comparing vehicles in 

DS flight. On the contrary, a limitation that marks a difference between vehicles is the ground 

clearance constraint. One option is to limit the lowest altitude at the centre of gravity, which is 

the point where the wind is computed. A refined alternative is to impose a wing tip clearance, 

obviously on both wings, which permits to assess the influence of the span during turns close 

to the surface. The wing is oriented orthogonal to the airspeed vector and to the lift vector 

which yields the following expression for the semi span vector. 

 ;JË�        � = 	± � 2� (��1 � ��. + 130� T�.)	 ( IV.44 ) 

Hence, by defining a positive ground clearance	;<6�.�, the wing tip clearance is 

expressed by Eq. IV.45. 

 T	 ±	� 2� 130 � ��1 �. ≤ −;<6�.�	 ( IV.45 ) 

A summary of the different bound and constraints values is summed up in Table IV-2. 
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Table IV-2: Summary of constraints expressions and bounds 

Constraint 
Formulation 

 Parameters  

DT-18 Mariner Cloud Swift 

Equations of Motion  Eqs. IV.23-IV.28 See Table III-1 

Flight path bound |��	| ≤ �-./	 �-./	 = 65° 
Final time bounds �-��	 ≤	 �,	 ≤ �4g�	 to be determined and adapted  

Periodicity 
{V�, �� , �� , Y, �, T, �* , �}�= {V� , �� , �� , Y, �, T, �* , �}, to be released for x,y in case of travel 

Net travelling direction �� = ��0���� �Y ���� 	to be adapted in function of heading wanted 

Rolling bound |�| ≤ �-./	 �-./	 = 85°  
No Stall �*	 ≤ �*	-./ �*	-./= 1.2 �*	-./= 1.17 �*	-./= 1.0 

Max. load factor 
�D�*	N.&2	2: ≤ 0-./	 0-./	 = 3 

Ground Clearance T	 ±	� 2� sin� cos �. ≤ −;<6�.� 	 ;<6�.� = 50	�2 

Rolling rate Ç�b Ç ≤ �b-./	 �b-./	 = 60°/1 �b-./	 = 90°/1 �b-./	 = 30°/1 
�*	rate Ç�*	b Ç ≤ �*	b -./	 �*	b -./	 = 0.5	1�% 
Rolling acceleration Ç�Æ Ç-./ = �	D	u2	=// 	 	�5	66-./N.&	 �5	66-./	= 0.32 �5	66-./	= 1.43 �5	66-./	= 0.32 

	=//=0.184 kg.m
2	 	=//=0.378 kg.m

2 	=//=1.344 kg.m
2 

�*	double continuous Ç�*	Æ Ç ≤ �*	Æ -./  �*	Æ -./ = 2	1�&  

The general formulation of the optimization problem has been stated and that its 

terms have been expressed. At this point, the problem is expressed throughout analytical 

expressions, whether those are objective function or constraints. Those must be converted into 

a limited number of parameters in order to take advantage of numerical optimization 

techniques. 

IV.2.2 Conversion into a Parameter Optimization Problem 

The optimization problem formulated above must be converted into a finite-dimension 

optimization problem. This process involves different calculations steps. First, the time interval 

is divided into a number of subintervals, which define the future calculation nodes. Although 
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the final time	�, is unknown and part of the variables passed to the optimization problem, a 

time step ∆� can be implicitly defined by fixing the number @� of time steps. 

 ∆� = �, − �%@� − 1	 ( IV.46 ) 

Therefore a set of @� time nodes	��%, … , � , … , �FÖ = �,	�, equally spaced by ∆�, forms a 

number @� − 1 of time subintervals. Variables are also broke down into discrete sub-variables 

at each time node, where	× 	represents the value of variable × at the time node	�  . Each state 

and control variable is then represented by @� discrete variables over the time interval	Ø�%; 	�,Ù. 
So far, the evolution of the system with time is modelled by equations of motion, which are of 

the following form, for a state variable	× and a control variable	�. 

 ×b = X(×, �, �)	 ( IV.47 ) 

A way to involve the set	�×%, … , × , … , ×,�, of dimension	@� , in order to represent the 

behaviour expressed by Eq. IV.47 must be found. The analytical integration of Eq. IV.47 over 

one time subinterval	[� ; 	� Ú%] gives Eq. IV.48. 

 × Ú% − × = � X(×, �, �). e��ÛÜÝ
�Û 	 ( IV.48 ) 

If the evolution of the control variable was the only unknown to be found and 

optimized, then Eq. IV.48 could be integrated explicitly through classical Runge-Kutta 

techniques. That can happen when a trajectory is to be followed (through some waypoints) but 

the optimal way to pilot that trajectory must be established. The Eq. IV.48 could be interpolated 

in one go from �% to �, by using a time history of control variables formed by interpolation. 

This method is called direct shooting in the optimization literature [82]. 

However, in our case, state variables are also unknown and therefore the value of × 	is not available to evaluate	X(× , � , � ) to get to × Ú%through classical Runge-Kutta 

integration techniques. Still, the integral in Eq. IV.48 can be approximated by involving discrete 

variables at nodes k and k+1 via a numerical integration scheme. The most basic of those 
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schemes would be the rectangle rule, where f is supposed to be constant over the 

subinterval	[� ; 	� Ú%], which provides the following. 

 �8���0:u8	CKu8:	 � X(×, �, �). e��ÛÜÝ
�Û ≈ X(× , � , � ). ∆�	 ( IV.49 ) 

Despite being of appealing simplicity, the calculation error inherent to this 

approximation is high. Indeed, the rectangle rule is a first-order rule, which means that for a 

given value of	× , the obtained × Ú% only match the Taylor series expansion through the first 

term. The local truncation error (LTE), that is to say the error brought by the integration rule 

over one step, is proportional to	∆�&, in the case of a first-order scheme. The global truncation 

error (GTE) is one order of the step size less than the LTE [82], that is to say is proportional 

to	∆� in the case of a first-order integration technique. A more accurate approximation can be 

obtained by using a higher order integrator. Indeed, the function f can be approximated by a 

polynomial interpolant. One option for converting the optimization problem is named 

collocation technique and uses Simpson’s one-third rule to approximate the integrand function 

f [83, 84]. This alternative is commonly used for trajectory optimization problems [83]. It was 

hence chosen to approximate f by a quadratic polynomial which interpolates the function at the 

endpoints of the subinterval	[� ; 	� Ú%], as well as at the centre point �< of the interval. 

Lagrange polynomial interpolation can be used to find the interpolant. After calculation, the 

integration over the time subinterval	[� ; 	� Ú%] gives the following terms. 

 � X(×, �, �). e��ÛÜÝ
�Û ≈ ∆�6 . [X(× , � , � ) + 4X(×-, �-, �-) + X(× Ú%, � Ú%, � Ú%)]	( IV.50 ) 

The three interpolation points are called collocation points. It should be noticed that 

nothing guarantees that the slope of the polynomial is continuous between two time 

subintervals. Indeed, each interpolant is only defined over one subinterval, independently of 

the previous and the following one. Simpson’s one third rule is a fourth-order integration 

technique, which means that the GTE is proportional to	∆�(. The integrand must be evaluated 

at the mid-point of the time subinterval, where state and controls are a priori not known, since 

they are only defined by their values at the endpoints of the subinterval. Hence, a state and 

control history must be approximated in order to get values at the centre of the interval. 

Because the interpolant f, which is the derivative of ×over time, is approximated by a quadratic 

polynomial over	[� ; 	� Ú%] , × must be approximated by a cubic polynomial. Hence, four pieces 
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of information must be known about the state history in order to interpolate by a polynomial of 

order three. State values at the endpoints are used $× , × Ú%), as well as the slope at the 

endpoints	{X(× , � , � )	, X(× Ú%, � Ú%, � Ú%)}. The interpolation is made with a Hermite-cubic 

polynomial Aß	that is constructed out of those four pieces of information. By using notations X(× , � , � ) ⇌ X  and X(× Ú%, � Ú%, � Ú%) ⇌ X Ú% , the polynomial Aß  represents the time 

history of ×(�) as given by Eq. IV.51. 

 Aß(�) = (� − � Ú%)&(� − � Ú%)& áq1 − 2(� − � )� − � Ú%t . × + (� − � ). X â
+ (� − � )&(� Ú% − � )& áq1 − 2(� − � Ú%)� Ú% − � t . × Ú% + (� − � Ú%). X Ú%â	 ( IV.51 ) 

Further calculations give Eq. IV.52 by applying Eq. IV.51 at the centre of the interval. 

 Aß(�-) = Aß m� + � Ú%2 n = × + × Ú%2 + ��8 (X − X Ú%)	 ( IV.52 ) 

To put in a nutshell, EoM are implicitly integrated over each time subintervals by 

approximating the derivative function with a quadratic polynomial. Because state variables are 

not built through the numerical integration but rather involved in the calculation, the 

integration of EoM yield one subsequent constraint per time subinterval. For each one of those, 

this constraint is formed out of Eq. IV.50 and Eq. IV.52 and is called the Hermite-Simpson 

system constraint [83]. For each state variable 	�×%, ×&, … , ×�� , over each time 

subinterval	[� ; 	� Ú%], it comes in the form of a residual	� � , which is expressed in Eq. IV.53 and 

must be driven to zero in the iteration process. In the formulation below, ×  no longer 

represents the variable × at node	+, but the vector of state variables	× = Ø× %, … , × � Ùã at 

node	+. 
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� � = × Ú%� − × � − ∆�
6 . [X(× , � , � ) + 4X(×-, �-, �-) + X(× Ú%, � Ú%, � Ú%)]

B3�ℎ	
��
�
��×- = × + × Ú%2 + ��8 (X − X Ú%)

�- = � + � Ú%2�- = � + � Ú%2

	 ( IV.53 ) 

IV.2.3 Solving Methodology and Tools 

Let’s begin by defining two important terms that come into play in terms of 

optimization. A generic function of n-variables is defined in Eq. IV.54. 

X: � ℝ� ⟼ℝ(Y%, … , Y�) ↦ X(Y%, … , Y�)	 ( IV.54 ) 

The gradient vector is given by Eq. IV.55. 

	çX =
èé
éé
ê vXvY%⋮vXvY�ìí

íí
î	 ( IV.55 ) 

The Hessian matrix is symmetric and given by Eq. IV.56 and is the matrix of second-order 

derivatives.  

ï, =
èé
ééé
ê v&XvY%& ⋯ v&XvY%vY�	⋮ ⋱ ⋮v&XvY�vY%	 ⋯ v&XvY�& ìí

ííí
î
	 ( IV.56 ) 

Both the gradient vector and the Hessian matrix come into play when assessing the 

second-order condition, in order to conclude on the eventual optimality of a functioning point. 

This condition is stated in Eq. IV.57 [85, 86]. 
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��C	×∗ ∈ 	ℝ�, 3X	ï,	31	��0�30K�K1	��8C	�0	�p80	083:ℎ��Cℎ��e	�X	×∗, �ℎ80 

×∗31	�	u���u	230. (2�Y. ) ⇔ �ï,(×∗)	31	e8X303�8	p�13�3�8(08:��3�8)	çX(×∗) = 0 		 ( IV.57 ) 

The above standard comes from the Taylor series expansion of function f at the second 

order. It highlights that both the function gradient and Hessian are required in order to solve a 

basic unconstrained optimization problem where f is the objective function. Practically, in the 

field of numerical optimization, inequalities-constrained-problems are reduced to the form of a 

simpler unconstrained-problem, at the expense of adding further variables [85, 86]. For 

instance, constraints are taken into account through the set-up of a Lagrangian merit function 

which is the addition of the objective function with terms proportional to the constraints of the 

problem. The proportionality is set by Lagrange multipliers, one per constraint, that are new 

variables to the problem. An unconstrained problem, where the objective function is formed by 

the Lagrangian merit function is subsequently solved. It means that gradients of all constraints 

must be known, on top of that of the objective function. Those very brief lines are to introduce 

the basic features of the solver we chose to use. It was selected out of the different solver 

offered by the online NEOS server [87], as for nonlinearly constrained optimization. Further 

references are available about NEOS [88, 89, 90]. 

The Sparse Nonlinear OPTimizer (SNOPT) solver was selected after runs on the 

various solvers offered by the NEOS server, for its reliability as well as its rapid convergence. 

SNOPT uses sequential quadratic programming methods to solve nonlinear constrained 

optimization problems with smooth nonlinear functions and constraints [91]. Basic features are 

that the sequence of quadratic problems is guided by line-search techniques which requires 

first-order derivative to be available. Yet, the Hessian of the Lagrangian merit function is 

approximated by using a quasi-Newton method based on the BFGS updating formula [85, 91]. 

Besides, SNOPT assumes that constraint gradients are sparse. This fits quite well within the 

scope of our optimization problem, since a majority of our constraints come from EoM that are 

each discretized into a number @� − 1 of residuals, expressed in Eq. IV.53. Those residuals, at 

time step k, only depend on state and control variables at time step k and k+1, therefore 

resulting in sparse gradient vectors. 

SNOPT requires first-order derivatives to be available as well as the general structure 

of the optimization problem to be properly set. An intermediate modelling tool is used to that 

aim, it is A Mathematical Programming Langage (AMPL). It provides an interface through three 
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input files that sum-up the optimization problem formulation (.mod), the value of parameters 

(.dat) and the solving and output options (.run) [92]. This interface permits to build up large 

scale problems through a step by step declaration of variable and constraints, while AMPL 

detects eventual substitutions as well as the general structure of the problem. It then 

communicates the problem representation to the solver SNOPT. This includes first-order 

derivatives, that are computed by AMPL using Automatic Differentiation [93]. 

IV.2.4 Local Optimizer and Sensitivity to Initiation Variables 

The solver SNOPT is guaranteed only to find a locally optimal point [91]. However, it 

can be generalized into a global optimum point only if the objective function to be minimized 

(alternatively maximized) is convex (alternatively concave) and if the associated feasible 

constraint region is also convex [85]. Hence, results from the optimization process are a-priori 

local solutions.  

Furthermore, the feasibility of the convergence, as well as the nature of the optimal 

point may depend on the way variables are initialized. Indeed, within the space of optimization 

variables, the solver starts to iterate from a specific set of variables and then guides its search 

until it eventually converges to an optimal point. Hence different sets of initiation variables 

may lead to a problem that is feasible or not and may influence the convergence towards a local 

optimal point rather than another. In our present case, there are a total of 9 ∗ @�variables 

passed to the solver. Assuming that each variable can take @Wvalues, the number of different 

combinations amounts to	@WQ∗FÖ. Any reasonable assumption as for @W and @� yields a number 

of combination of such a magnitude that testing the whole range of starting points is out of the 

question. Not to mention that every combination would be tested by actually running the 

solver which takes several seconds for problems of our scale. Hence, selecting appropriate 

initiation variables would need a trial and error approach, associated with an eventual physical 

intuition of what the optimal solution may look like.  

IV.3 Validation 

IV.3.1 Simulating Albatross Flight 

One computation is made with an optimization problem matching the case from Sachs 

[47], in order to validate the optimization methodology as well as provide a classical study case 

of DS over a flat surface. All vehicle properties, environment conditions and optimization 

constraints mentioned by Sachs are reproduced here. The wind field is that of a boundary layer 
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developed over a rather flat surface, the surface roughness length is 3 cm. The vehicle is the 

Wandering Albatross, the minimal altitude was set to 1.5 metres, the maximal load factor to 3 

and the bank angle is limited to 80°.  

Regarding discretization methods, the number of time steps @� is varied to assess the 

influence on the resulting objective function, in this case the minimum wind friction velocity 

K∗, and on the calculation time from SNOPT, referred to as �EFGHI. Results are summed up in 

Table IV-3. @�=51. 

Table IV-3: Variation in ó¼ and its influence on validation results  

ó¼ Objective Ã∗ (cm.s
-1

) ¼ôóõö÷	(s) ¼ø	(s) ù¼	(s) 

41 60.533 3.07 7.018 0.175 

51 60.555 3.85 7.010 0.14 

61 60.566 8.13 7.008 0.117 

81 60.574 8.44 7.007 0.088 

101 60.577 25.47 7.000 0.070 

 

Figure IV.5: Energy-neutral trajectory for conditions representing Sachs [47]. The surface is rather flat 
with T�=3 cm. The wind friction velocity required to sustain DS is 60.6 cm/s, the duration is 7 seconds. 
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In order to keep the calculation time rather acceptable without sacrificing on the 

accuracy of the solution, it was chosen to perform the validation case with @�=51. This value 

could also enable to draw comparisons with results obtained by Bower [67].  

The resulting energy-neutral cycle described in Fig. IV.5 is obtained by minimizing the 

friction velocity required to perform the neutral cycle without any power input from the 

vehicle. Figure. IV.5 pictures in black the overall flight path, while 2-D projections are in blue. 

The wind profile and direction are plotted in green and a schematic Wandering Albatross is 

plotted in grey, at the corresponding dimension scale, such that it gives an idea of the attitude 

adopted along the cycle. Overall results match very well the simulation made by Sachs, as can 

be compared in Table IV-4. Some minor disparities can be explained by differences in the 

methodology between Sachs’ simulation and the present one. Indeed, some practical aspects, 

such as for instance the number of time discretization nodes	@�, or the selected integration 

scheme, are not specified in Sachs’ publication and therefore probably differ between the two. 

Results obtained differ from Sachs’ by less than 5 %, hence validating the methodology set in 

the case of DS over a rather flat surface with a 3 cm roughness length. 

Table IV-4: Comparison with simulations obtained by Sachs [47] and Bower [67]. 

Variables Sachs [47] Bower [67] Current Disparity with 
Sachs [47]  

¼ø	(s) 7.1 7.0025 7.0102 2.8 % 

Ã∗	(cm.s
-1

) 60.7 60.42 60.555 0.2 % 

Max. height (m) 20.5 20.038 20.1 2.0 % 

Eastern net 
speed(m.s

-1
) 

9.37 9.38 9.39 0.1 % 

Eastern period(m) 66.5 65.71 65.8 1.1 % 

Therefore, the validation case seems to validate our approach and the associated 

methodology. It entails a solution, in terms of trajectory, which appears both non-trivial as well 

as physically sound and corresponds to results obtained in the literature.  
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IV.4 Summary of Chapter IV 

The observation of the physics of the vehicle and the equations that govern it are 

dependent on the point of observation. In the present case, it is either earth-based or air-

relative. After the influence of this choice on the energetic consideration is discussed, the two 

corresponding sets of equations are expressed, which involve state and control variables. In the 

case of air relative equations, the inertial force, due to the acceleration of the point of view, 

leads to the expression of a term that is the driving force of the movement. This is more diffuse 

for the earth-relative point of view, but it is decided to go ahead with this set of equations, 

partly because range performances are earth-relative.  

The evolution of state variable over time depends on that of control variables and 

those need a guiding line in order to pilot the trajectory. This is achieved by setting up an 

optimization problem in order to provide the set of values over time that yields an optimum. 

The objective constraint, at first, is to lower the wind strength required to perform an energy-

neutral trajectory. This is complemented by constraints that include periodicity, in order to be 

able to repeat the flight path, and operational limitations, so as to ensure the flight path can be 

reasonably flown for the vehicle. The trajectory optimization problem is then converted into a

parameter optimization problem by discretizing the time interval and allocating discrete values 

by mean of adequate interpolation and collocation technique. Equations of motion are included 

as constraints of the subsequent non-linear constrained optimization problem, which is solved 

by using a modelling language AMPL coupled with SNOPT. 
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Chapter V                    

Fundamentals of DS Flight  

After the whole methodology is set up, it is time to step back and analyse the results 

obtained. This part aims at exposing those first simulation results and describing their features 

in order to build-up knowledge on DS out of those simulations. Those interpretations would 

start by simply describing the trajectory components and the evolution of variables along the 

path. The principles of DS energy extraction are somehow difficult to grasp, so a special care 

would be given to analysing those, as they are the real added value of DS flight and therefore 

questions its essence. Different trajectories would be used as case studies to support the 

analysis on energy-extraction mechanisms. The formulation of energy work and powers of 

forces would help to conceptualize the exchanges between the environment and the vehicle. 

The approach would be enriched by considering a simulation within a refined wavy 

environment. 

V.1 The 3D Closed-Trajectory 

Among different potential trajectories, the closed loop is of particular interest as the 

vehicle is forced to return back to its initial position, so that the initial and the final state are 

identical. The optimization process is run to derive a closed trajectory which minimizes the 

wind strength required to fly effortlessly, that is to say without any power supplied by the 

vehicle. In the formulation of the optimization problem, periodicity constraints are imposed for 

each state variable.  

It may be possible that such a trajectory does not exist, whatever the wind friction 

velocity is, even very high. In such a case, there is no solution to the problem and DS cannot be 

considered as a viable way to loiter over a fixed location. It may require some adjustments over 

some design variables such as the mass of the vehicle for instance, or alterations of some 

environment variables, such as the surface roughness length. 

Therefore, this approach questions the feasibility for the vehicle to perform a closed 

loop within an environment of positive vertical wind shear gradient of variable strength, as 
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well as provide a support to study variation in total energy during the cycle. It is to mention 

that the energy ratio between the initial state and the final state is 1, therefore the energy 

extracted along the path exactly compensates drag losses and the vehicle can stay aloft by 

repeating the exact same trajectory without the need to provide extra power.  

In the case presented below, in Fig. V.1, the vehicle chosen is Mariner, as it was more 

representative of a mission scenario than the Wandering Albatross. Besides, a virtual payload 

has been arbitrarily added, such that the overall mass is 6.6 kg. Furthermore, contrary to the 

validation case displayed before, the lowest altitude is constrained by a wing-tip clearance limit 

of 50 cm and not net minimum altitude anymore. The load factor was chosen not to be limited 

in this case. The number of time steps is	@�=171. 

 

Figure V.1: Closed loop energy neutral trajectory obtained for a wing tip clearance of 50 cm, a surface 
roughness length of 3 cm and a wind friction velocity of 80 cm/s, which corresponds to a wind speed of 
11.34 m/s at 10 metres. The trajectory is completed in 20.58 seconds. The wind profile and direction is 
represented by the green arrow. The scale of the vehicle (Mariner) is augmented by a factor 1.5 for better 
visibility. 

The trajectory displayed in Fig. V.1 is the result of the optimization problem explained 

above. It is obtained for a wind friction velocity of 80 cm/s, which corresponds to a wind speed 

of 11.34 m/s at 10 metres. It represents a benchmark regarding the feasibility, for a vehicle, to 

remain effortlessly in the air over a fixed position by using DS. If the actual wind is less than 

the value obtained in this simulation, then some power must be provided by a 6.6 kg-Mariner, 

operating under conditions underlined before, so as to conserve the level of total energy over 
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one cycle. On the other hand, if the actual wind is more that the benchmark value, then the 

vehicle can enter the next cycle with some extra energy. It therefore allows a margin for 

additional manoeuvres, such as travelling in one direction, before repeating the same cycle. If 

the wind is at least equal to the benchmark value, then the endurance is virtually unlimited. 

The optimal closed trajectory consists in an 8-shaped path rather than a simple loop. It 

combines different legs which are characteristic to DS flight. An upwind climb where the 

vehicle climbs straight into the wind, wings level, is followed by a turn from upwind heading to 

downwind heading where the maximal height is reached with a belly exposed to the wind 

attitude and a high bank angle, up to 80 degrees. Then starts a downwind dive, where the 

vehicle returns to wings-level and builds up inertial speed quickly. That is followed by the last 

maneuver, a turn into the wind at almost constant height close to the surface. The two inner 

loops which compose the 8-shaped path slightly differ in amplitude but are identical in their 

construction; therefore we can limit our scope to one loop of the overall trajectory, which 

consists of the four legs mentioned above. A colour scale is applied, in Fig. V.2, to the trajectory 

obtained, to highlight components of the DS trajectory. 

 

Figure V.2: Phases of flight are evidenced out using different colours. Blue for the upwind climb, magenta 
for the high turn, cyan for the downwind dive and green for the lower turn. 

Figure V.3 details the variation of different speeds along the path, in order to improve 

the understanding of the way those are associated to the four phases of flight. The wind 
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strength at the vehicle’s altitude is also pictured and gives a direct image of the height of the 

vehicle. 

 

Figure V.3: Speeds along the path, correlated to the four phases of flight. 

On the upwind climb, the vehicle starts to pull-up upwind and to climb through a zone 

where the vertical wind gradient is the strongest, since it is the lower part of the path, close to 

the surface. An associated local increase in airspeed can be observed, which is however not 

sustained for long as the wind gradient is not strong enough to allow for a steady airspeed. 

Besides, the rate of decrease in inertial speed gets lower as soon as the vehicle pulls up. This 

seems somehow counter-intuitive as the negative contribution of the weight adds up to drag 

losses as soon as the flight path deflects upwards, creating an even greater negative work 

contribution to the variation in kinetic energy. Hence, it can be deduced that another force 

provides a positive contribution to overcome this influence. Given that only three forces act on 

the vehicle, it can be deduced that the lift gives a positive work contribution during the 

headwind climb. 

The vehicle then performs an upper turn from a windward heading to a leeward 

heading. The inertial speed sharply increases when the vehicle gets pulled by the wind before 

reaching its highest altitude of 29 metres. The rate of increase in inertial speed is significantly 

higher than the rate of increase in airspeed, suggesting that the lift provides a positive 
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contribution to the movement. The airspeed has a smoother variation and reaches a minimum 

at the top of the path, when the vehicle starts to head down. 

The vehicle follows with the downwind dive. The inertial speed keeps increasing for 

some time before reaching a maximum when the vehicle starts the turn against the wind. The 

airspeed sees the combined effects of gain in kinetic energy during the descent and of 

decreasing tailwind as the vehicle goes down leeward through the vertical wind shear gradient. 

The latter effect is strong enough to keep the airspeed increasing after the inertial speed starts 

to reduce. The airspeed maximum is reached when the vehicle stabilizes at a low altitude at the 

end of the dive. 

The last component of the trajectory is the lower turn, where the vehicle turns into 

the wind, from leeward to windward, close to the surface at a constant height, in a zone of 

weak wind. The inertial speed sharply decreases at a much higher rate than the airspeed, 

suggesting that the lift provides a negative contribution during the lower turn. 

Overall, the vehicle manages to perform a non-powered closed trajectory and to 

maintain its energy level between the initial and the final state. It takes advantage of a wind 

gradient that is not strong enough to sustain steady airspeed during the climb, which takes 

aback a common misbelief about DS. Besides, that energy neutral trajectory was achieved for a 

nominal wind of 11.34 m/s at a 10 metres height, which is the minimal wind strength that 

enables an energy neutral closed trajectory.  
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Figure V.4: Evolution of	�*,	� and �* ��⁄  over time.  

It can be observed from Fig. V.4 that the bank angle reaches its maximum during the 

two higher turns, first to the right and then to the left. The two lower turns see sharp 

variations in bank angle which occur when the wing tip hits the ground clearance constraint 

limit. Three local maxima can be observed as for	�*. In the case pictured, chronologically, the 

first occur at the top of the higher turn, when the vehicles banks leeward at maximum angle. 

The second is at the beginning of the lower turn, when the vehicle pulls-up to get out of the 
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dive at maximum airspeed and start to change heading. The maximum load factor (0 = 3.54) is 

reached at that moment. The third local maximum, which is also the lowest by a significant 

margin, is the pull up at the end of the lower turn, when the vehicle starts to head upwards. 

The evolution of the lift to drag ratio is directly dependent on that of the lift coefficient.  

V.2 Energy-Harvesting Mechanisms 

V.2.1 Contributions from Aerodynamic Forces 

Dynamic soaring manages to take advantage of local contributions of aerodynamic 

forces along the flight path by combining specific manoeuvres with respect to the wind field. In 

the case of static gliding flight in still air, airspeed and inertial speeds are the same and only the 

drag contributes to the variation of total energy, as the lift is orthogonal to the direction of 

motion. However, if the vehicle flies through a mass of moving air, variations in total energy, 

in the earth reference frame, will see a contribution from the lift as well. It is to be noted that 

the work done by forces varies with the point of view of the observer. From an earth-based 

point of view, Fig. V.5 shows how forces and speeds orientate during a windward climb.  

 

Figure V.5: Orientation of speeds and forces for a 2D-simplified windward climb. The lift is tilted by an 
angle	]�� _ �.^ towards the direction of motion Y�� .This entails a positive working component which
governs the energy extraction. 

It is assumed that wings are level and that airspeed, inertial speed and wind speed are 

in the same plane. The orientation of the inertial speed and of the wind speed induces that the 
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airspeed is not directed along the direction of motion, but forms an angle ]�� _ �.��^ with it. 

Aerodynamic forces are therefore also tilted with respect to the frame of reference Ri since the 

lift and the airspeed are orthogonal while the drag and the airspeed are collinear. 

The variation of total energy is only driven by contributions of non-conservative 

forces, that is to say only the lift and the drag. The calculation of the elementary variation in 

total energy takes into account the respective work done by those forces, as presented in Eqs. 

V.1 toV.3. The elementary displacement dl is along	Y�� . 

e9�	� = 	ePF	�	ú	�4��W.��W�	û	�<�4 = ¥ �� . eu   �
Fúû

= �> � + 7  �� ∙ (eu. 	Y��^	 ( V.1 ) 

e9�	� = [>	 130]�� _ �.^ _ 7	 ��1]�� _ �.^]	eu	 ( V.2 ) 

∆9�	�Èý = � [>	 130]�� _ �.^ _ 7	 ��1]�� _ �.^]. euý
È

	 ( V.3 ) 

 

Therefore, the condition to an increase in total energy is expressed in Eqs. V.4 and V.5. 

Equation V.5 is obtained through some calculations involving Eqs. IV.6 and IV.7. 

e9�	� ≥ 0			3X			 >7 	≥ 	
1

��0]�� _ �.^	 ( V.4 ) 

e9�	� ≥ 0			3X			 >7 	≥ 	
�N� _P/� � + ��1 ��

130 �� 	 ( V.5 ) 

Equation V.5 underlines how the local energy-extraction is sensible to the 

instantaneous lift to drag ratio, which should be as high as possible, and for a large range of �* 

since the vehicle explores a full range of functioning points during the climb. Moreover, it 

shows the sensitivity of the energy-extraction to both the inertial flight path angle �� and to the 

local wind strength	P/ . A steep climb into a strong wind represents a favorable case. It should 

be mentioned that for an inertial speed twice the value of the local wind and at a 30° climb 

angle, the lift to drag ratio has to be over 5.7 in order to extract energy, which is easily 

achievable. It can be concluded that any average glider can extract energy during an upwind 
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climb. The very same principles apply to any of the four phases of flight, as aerodynamic forces 

are tilted by the wind speed. Yet, it does not translate into the same conclusion regarding the 

energy-extraction, depending on the attitude of the vehicle with respect to the wind.  

The rate of variation in total energy is expressed in Eq. V.6. The contribution of the lift 

can be simplified to the scalar product between the lift and the wind, as the lift is orthogonal to 

the airspeed vector. The power due to lift is developed in Eq. V.8, where components of two 

distinct contributions can be outlined.  

e9�	�
e� = ¥ �� . N ��

Fúû
= �> � + 7  �� ∙ (N�. Y��) 

( V.6 ) 

> � ∙ N �� = > � ∙ (N �. + P   �) = > � ∙ P   � ( V.7 ) 

> � ∙ P   � = − 1
2  � D �* N.& P/ (130 � 130 �. + ��1 � ��1 �.  130 �.) ( V.8 ) 

The first corresponds to the case seen before, with wings level (� = 0). The lift works 

positively when either the vehicle is facing the wind and climbing (�. = 0 �0e �. > 0), or 

when the vehicle flies leeward and the vehicle is descending ( �. = \ �0e �. < 0 ). 

Consequently, not only the lift contributes positively to an increase in total energy when the 

vehicle is climbing into the wind, but it does also provide power to the vehicle when it is diving 

downwind. 

The other contribution corresponds to the case where the vehicle flies crosswind in 

such a way that the longitudinal axis of the vehicle is orthogonal to the wind direction, if it is 

assumed that there is no sideslip. Considering the case where the wind comes from the left of 

the vehicle (�. = \ 2⁄ ), it can be seen that the lift works positively when the vehicle turns 

right (� > 0), that is to say opposite to the wind. This corresponds to the “belly to the wind” 

attitude of albatrosses described by Pennycuick [41]. Conversely, if the vehicle turns left into 

the wind (� < 0), then the lift contributes negatively. The same applies symmetrically when 

the wind comes from the right of the vehicle. 

Those simplified calculations underline that during a closed loop, such as the one 

obtained in Fig. V.1, the lift contributes to an increase in total energy during the upwind climb, 

as well as during the higher turn and also through the downwind dive. The last phase which 
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appears during the loop is the turn into the wind, which sees conversely a negative 

contribution from the lift. It should be noted that those statements remains valid, whatever the 

wind profile P/(T) is, even if the wind is uniform with no vertical gradients. However, the 

wind profile will determine how those respective gains and losses would weigh in the overall 

energy balance respectively to each other. 

V.2.2 Acceleration in the direction of the wind 

Another way to develop calculations leads to an interesting point of view, linking the 

power due to aerodynamic forces to the acceleration in the direction of the wind. From Eq. V.6, 

a further step of calculation gives Eqs. V.9 and V.10.  

e9�	�e� = �> � + 7  �� ∙ (N�. Y��) = > � ∙ P   � + 7  �. (N.   � + P   �) ( V.9 ) 

e9�	�e� = P/  Ø�> � + 7  ��. Y�Ù − 7 . N. ( V.10 ) 

The projection of aerodynamic forces on Y�, in Eq. V.10, corresponds to the acceleration 

of the vehicle along that same axis, such that it yields Eq. V.11. 

e9�	�e� = 2 P/  YÆ − 7 . N.  ( V.11 ) 

The above equation conveys that the instantaneous rate of total energy is a function of 

the acceleration of the vehicle in the direction of the wind, minus a term due to drag that is 

invariably a loss. Indeed, it should be noted that in Eq. V.10, a component of the drag may 

provide a positive power. Although quite unintuitive, it comes from the fact that the drag, 

which is always opposed to the airspeed vector, can actually have a component in the inertial 

direction of motion, which is in such a case providing positive work. It leaves 7 . N.  as the only 

term invariably negative, therefore corresponding to an unavoidable loss. It should be 

mentioned that, as any instantaneous calculation, Eq. V.11 is not specific to DS, but rather 

applicable to any wind energy extraction technique. Albeit rather interesting from the 

understanding point of view, Eq. V.11 is also convenient as the instantaneous power extracted 

from the wind can be maximized in real time by monitoring the acceleration along the wind 

direction.  
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Equation V.11 can be further developed and combined with air relative EoM in order 

to evidence exact differentials. After some calculation steps, the expression the total energy can 

be integrated out of the power expression, it gives Eq.V.12. 

9�	� = 12 2P/& + 2P/N. 	��1 �. +	122N.& _2:T	 ( V.12 ) 

It provides an air-based alternative to the calculation of the total energy.  

V.2.3 Overall cycle of total Energy 

If local manoeuvres can be performed in order to extract energy through the 

mechanisms that have been specified, a closed trajectory must however combine a serie of 

those manoeuvres such that the vehicle gets back to its initial position. The set of successive 

manoeuvres is a delicate solution of an optimization problem that compromises the objective 

function in order to satisfy periodicity constraints. For the closed trajectory presented in Fig. 

V.1, the evolution of total energy with time is depicted in Fig. V.6 , together with the source of 

this evolution as it superposes the variation of aerodynamic power input with time. The power 

input displayed on the lower part of the figure can be seen as the source of the variation in 

total energy depicted on the upper chart. 
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Figure V.6: Variation in total energy with time and in the associated rate of energy with time 

As it was anticipated, the lift contributes positively on the upwind climb. The overall 

contribution is also positive and some energy is therefore extracted from the wind during the 

climb. The biggest increase in total energy comes from the higher turn. The drag contribution 

is negligible as the airspeed gets quite low and the lift contribution sharply increases from 2.3 

seconds, when the vehicle gets “belly to the wind” and is being pulled by the wind. The vehicle 

still manages to gain some energy during the first part of the downwind dive but the drag 

quickly builds up as the airspeed increases and it can be seen from Fig. V.6 that the lift 

contribution turns negative as soon as the vehicle starts to bank into the wind. Finally, the 

lower turn is flown at a high airspeed while turning into the wind. The negative contribution 

brought by the lift is clearly noticeable from Fig. V.6 and it adds to significant drag losses to 

produce the highest loss in total energy along the path.  

Overall, it can be seen from Figs. V.6 and V.7 that the energy gained on the three 

segments upwind climb, higher turn and downwind dive is lost along the lower turn. Even 
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though the wind faced at that height is at its lowest value, the lower turn is the major hurdle to 

overcome in order to complete the closed loop while maintaining an objective energy ratio of 1.  

 

 

Figure V.7: Overall energy-harvesting strategy. The energy neutral closed loop trajectory from Fig. IV.1 is 
coloured following a red to green scale as a function of the local power input. Total energy is extracted at 
green-coloured positions and is lost at red-coloured positions. 

It is apparent in Figs. V.6 and V.7 that the loss in total energy occurs during a rather 

limited amount of time and on a small spatial portion of the trajectory, but represents both the 

highest power output and the highest energy variation of any other segment of the trajectory . 

It can be concluded that parameters which may govern the energy loss during the lower turn 

should have a prevailing influence on the overall balance of total energy.  

Another way to breakdown the energy extraction is to consider Eq. V.11, where the 

terms would be called Leeward Acceleration for 2	P/ 	YÆ  and Air relative Losses for _7	. N. . 
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Figure V.8: Variation of power input contributions, with respect to time. 

Figure V.8 globally shows the same evolution as Fig. V.6, with minor disparities, which 

tend to show that the positive contribution from the drag is somehow negligible. It confirms 

that the strongest contribution from acceleration terms comes during the lower turn , when the 

vehicle deflects its path towards the wind. 
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Figure V.9: Variation in power input contributions from the drag, with respect to time. 

Figure V.9 details contributions from power which are broke down into two parts. The 

first, in green is the contribution of the drag to the acceleration in the direction of the wind. 

The second, in red, is the parasitic and unavoidable loss due to the air relative motion of the 

vehicle. Even though, in the present case, the overall contribution from the drag is always 

negative, it can be seen that, for most of the trajectory, the drag contributes to the acceleration 

in the direction of the wind. In theory, nothing hamper the overall drag to be positive, even 

though it requires the wind speed to be higher than the airspeed. It can occur if the vehicle is 

flying backwards, kept aloft by a strong headwind. 

V.2.4 Exploiting Wind Power within the Wind Gradient 

As it was underlined above, the main energy input comes from the upper part of the 

curve, while the biggest losses occur in the lower part of it. It may seem ironical, as DS is 

sometimes referred to as gradient soaring that energy is actually gained where the gradient is 

the lowest and lost where the gradient is the strongest, which is particularly emphasized by Fig. 

V.10. Once again, the energy is gained out of the wind underlying power and the gradient helps 

to combine gains with limited losses in order to achieve a neutral energy performance.  
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Figure V.10: 2-D side view of the closed trajectory. The length scale is identical between the two axes and 
the wind speed scale is adapted for good visualisation. The colour scale is identical to Fig. V.7. 

The section view offered by Fig. V.10 displays the asymmetry that was mentioned for 

the two loops of the closed trajectory. Moreover, it appears that during the upwind climb, the 

inertial flight path angle increase progressively to reach values around 60°during the higher 

turn, which is achieved in a strong inclined plane. Inversely, the lower turn is carried out in an 

almost horizontal plane, as close as possible to the surface. 

 

Figure V.11: Top view of one of the two loops, with remarkable points encircled. 
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The main interest of Fig. V.11 is to underline that the maximum power input does not 

occur at the highest point of the trajectory. Although the highest altitude provides the highest 

wind strength, the vehicle extracts energy at a higher rate moments later, when it carries on 

the turn to orientate the lift in the direction of the wind. This latter configuration, dubbed 

“belly to the wind” and detailed earlier, corresponds to the vehicle flying with its longitudinal 

axis perpendicular to the wind (	�. = 90°), which is visible in Fig. V.11, and banked to the 

maximum in the direction of the wind. The acceleration in the direction of the wind is then at 

its maximum. A more precise evolution of the variable at stake is displayed in Fig. V.12. The 

reason this configuration is not achieved at the highest point of the path is due to the 

periodicity constraint of the closed trajectory, which imposes that the vehicle recovers the 

ground it loses in the direction of the wind during the energy-extraction. Hence, the highest 

altitude is reached at the northbound extreme of the path.  
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Figure V.12: Evolution of	_T	,�	and	�.��  during the first half of the cycle plotted in Fig. V.1. The moment 
of maximum power input is highlighted in dashed orange lines.  

V.3 Opening the Loop 

In the case of the open loop, two constraints are relaxed, that is the east and north 

position. Other than those, the problem and its parameters remain the same as before. Because 

the optimization problem is less constrained, it enables the vehicle to explore a wider space of 

solutions and potentially to reach a refined objective function. 



From Albatross to Long Range UAV Flight by Dynamic Soaring 113
 

 

 

Figure V.13: Energy-neutral optimized open loop obtained for a 6.6 kg Mariner. The wind friction velocity 
obtained is 64.5 cm.s

-1
, which corresponds to wind strength of 9.14 m.s

-1
 at a height of 10 metres. The 

cycle takes 9.25 seconds. The wind profile and direction is represented by the green arrow. The path is 
coloured following a red to green scale as a function of the local power input. Total energy is extracted at 
green-coloured positions and is lost at red-coloured positions. The scale of the vehicle is augmented by a 
factor 1.5 for better visibility.  

The minimum wind friction velocity required to perform DS flight along an open path 

is 64.5 cm.s
-1

. It corresponds to approximately a 20 % reduction compared to the open loop. The 

corresponding wind strength at 10 metres is 9.14 m.s
-1

. The vehicle manages to find a solution 

that requires significantly lower wind strength than for the closed loop. Yet, the performance is 

accomplished at the cost of a displacement penalty in the direction of the wind. Over one cycle, 

pictured in Fig. V.13, the vehicle is pulled by 78.5 metres in the direction of the wind. 
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Figure V.14: Evolution of the inertial speed, the wind speed and the airspeed with time. 

Compared to the closed loop, the amplitude of the inertial speed is shallower, while 

the airspeed gets to lower values. The net travelling speed is 14.82 m/s, which would 

theoretically enable the vehicle to cover 427 kilometres within 8 hours. 
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Figure V.15: Variation in total energy along the path, with the associated evolution of power 
contributions over time. 

Although the energy-harvesting mechanisms as well as their combination along the 

path are very much identical to the closed-loop case, the overall power input shows a local 

minimum around 4.5 seconds into the cycle. It corresponds to the point of highest altitude and 

can be linked to the minimum in airspeed reached at the same instant, see Fig. V.14. Indeed, the 

aerodynamic forces, which govern the energy-extraction are limited in intensity at that point of 

the path. The effect is more pronounced than for the closed-loop case because the vehicle starts 

the higher turn well before it reaches its highest altitude, see Fig. V.16, such that the energy-

extraction is already significant before that point.  
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Figure V.16: Evolution of	_T	,�	and	�.��  during the cycle plotted in Fig. V.13. The point of maximum 
altitude is highlighted in dashed orange lines. 

Contrary to the closed loop, the configuration “belly to the wind” occurs, more or less, 

at the point of maximum altitude. At 4.47 seconds into the cycle, the altitude reaches 30.13 

metres, the bank angle hits 72° to the left (for a maximum of 72.5°) and the air relative heading 

is 83.3°, the wind coming almost perpendicularly to the right hand side of the vehicle. This 

analysis is of particular interest as it makes the higher turn very much similar, from the point 

of view of aerodynamic variables, to a simple turn within an inclined plane, in still air. This 

may prove a useful piece of information for the sake of DS control. 
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Figure V.17: Top and zoomed-in view of the open loop displayed in Fig. V.13, where the specific point of 
maximum altitude is encircled in orange. 

The point of maximum altitude is not anymore at the northern extreme, but further 

down along the path, as displayed by Fig. V.17. It illustrates that, for the open loop, the higher 

turn is anticipated significantly before the vehicle reaches its maximum height. 

V.4 Albatross Flight in the Ocean Boundary Layer 

First simulations have established that the classical theory of DS could be applied for 

albatrosses (see Validation Case). Yet, it has been underlined that further refinements from the 

wind model could be rather significant as for their impact on DS flight simulation. Besides, 

several sources report the use of waves by albatrosses [41, 42] out of observation or 

conceptualization of albatross flight. This part aims at assessing the way a refined wind model 

impact DS trajectories, as well as providing a step forward in albatross flight simulation. 
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All along this part, the vehicle model is that of the Wandering Albatross (see Vehicle 

Model) and the wind model refers to terms explained earlier (see Wind Model).  

V.4.1 Realistic Roughness 

A first case was run without wave, but with a surface roughness length correlated to 

wind conditions through Charnock’s model. Other than that, the optimization problem is 

almost identical to that of the validation case, the exception being about the ground clearance 

constraint, which is evaluated at the wing tip and limited to 5 cm. The solution gives a wind 

friction velocity 0.65 m/s, with a corresponding roughness length T� of 0.48 mm. The associated 

reference wind speed, at 10 metres is 15.8 m/s. Those values strongly differ from the validation 

case, mainly because the roughness length is calculated using Charnock’s model and not fixed 

at 3 cm anymore. It can be argued that the roughness length could be higher than 0.48 mm, as a 

rather flat surface of a non-developed sea under recent winds has a higher roughness than old 

waves.  

The wind strength required to maintain the Wandering Albatross in flight is quite 

higher when a supposedly realistic roughness length is taken into account. The literature 

mentions minimum wind speeds around 7-9 m/s rather than 15.8 m/s. This confirms the need 

for further improvements in the simulation in order to fully model, if necessary, the flight of 

albatrosses. 

V.4.2 Influence of Waves 

In order to take waves and the induced wind field into account, the amplitude a of 

waves was increased manually and given as an input fixed-parameter to the solver. It then 

worked towards minimizing	K∗, within an environment with travelling waves of amplitude a 

and angular frequency	��]K∗^, and surface roughness length T�]K∗^.The amplitude a was then 

compared with the theoretical amplitude of the peak wave, see Eq. III.29, and adjusted by small 

increases. The process was eventually repeated until the two amplitudes were identical, hence 

simulating fully-developed waves under winds blowing at	K∗. 

The methodology converged to obtain the trajectory displayed in Fig. V.18. It is to be 

mentioned that a further periodicity standard was introduced with respect to the wave motion, 

with same aim to get a cycle identically repeatable. For the case displayed in Fig. V.18, the 

vehicle arbitrarily starts (t=0 s) and stops (t=6.70 s) above the crest of the wave, which is 

materialized by the yellow line.  
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Figure V.18: Evolution of the vehicle above a wave. u* = 0.57 m/s; a = 2.47 m ; λ = 193 m; c = 17.5 m/s. 

It can be observed that the vehicle gains ground towards the wave during the 

downwind dive (t=2.61 s). Hence it begins the lower turn close to the surface (t=3.95 s) ahead of 

the crest, on the forward face of the moving wave, which is the leeward side from a wind point 

of view. Then, the same type of upwind climb as for the open loop is achieved. 

Although the net speed in the y-direction is imposed to be the same as the wave 

celerity c, the vehicle is “free” to manoeuvre between initial and final positions above the crest. 

Besides, it is observed during the convergence iteration process, when the amplitude is slightly 

increased step by step, that those changes are affecting both the trajectory and the minimal 

friction velocity required. The friction velocity varies from 65 cm/s without waves to 57 cm/s 

with waves. The vehicle is therefore getting benefits from the presence of the wave, by flying 

on the forward side which sees a local wind updraft, see Fig. III.15, during the lower turn close 

to the surface. Although this contribution is not sufficient to balance drag losses and therefore 

to gain energy, it can be compared as a superposition of wind-gradient soaring with slope 

soaring, where the slope would be a travelling wave. This result is in accordance with 

observations of birds exploiting waves by flying on the rising side or face [94], and avoiding the 

back side. Cases are even reported of birds exploiting a swell wave, without the presence of 

wind, the uplift from the wave being sufficient to propel the bird. If a higher ratio � 
⁄ 	is met, 

that would increase the latter effect, by providing a stronger slope on the wave side. 

Results from Fig. V.19 are obtained by displacing the initial/final position of the 

vehicle forward, relative to the wave, rather than at the crest. It allows the vehicle to spend a 

greater fraction of the trajectory in the location of local wind updraft. It shows that both the 
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required wind strength and the wind-related amplitude are lowered. Besides, as losses during 

the lower turn are decreased, the vehicle does not need to climb as much as before, and the 

maximal height reduces from 20 metres down to 15 metres and lower, in better accordance with 

on-the-field observations of albatrosses [41]. 

Figure V.19: From top to bottom, change in periodicity with respect to the wave.  

{a (m);	K∗(m/s)} = {2.46; 0.57}; {2.25; 0.53}; {2.05; 0.51} 

Even though the required wind strength is lowered to about 12.8 m/s for the bottom 

case of Fig. V.19, this is still rather high compared to what can be expected, such that those 

albatross flight simulations still lack realism somehow. A combination of rougher wave surface 

and deeper waves is probably the link to that ideal. In particular, waves of smaller scale, but of 

slope stronger than the swell wave taken into account in the framework of this study, could be 

significant for albatross flight. Further aerodynamic effects, like flow separation on the leeward 

side of the wave, have been suggested to be exploited by albatrosses [41]. Such induced energy-

harvesting strategies are quite far down the path of UAV capabilities and have not been 

considered in the framework of this thesis. Besides, ground effect could also have a beneficial 
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influence energy-wise, since it would improve the gliding performance of the vehicle when it is 

close to the surface.  

To sum-up, environment model refinements were integrated into the DS simulation 

model and their influence has been analysed. Although the presence of wave was investigated 

for the sake of general understanding, exploiting those is beyond the current capabilities of 

UAVs. However, it is useful to have a model of the ocean roughness length at disposal and 

quite fundamental to keep in mind that sea-surface roughness lengths are well below the 

centimetre, which may hamper the feasibility to exploit DS over oceans. 
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V.5 Summary of Chapter V 

The basic characteristics of DS flight are explicated by using a specific closed-

trajectory as a support. It is laid out that every trajectory can be decomposed into four phases, 

although their amplitudes may vary, depending on the periodicity constraints that apply to the 

trajectory. From an earth point of view, energy is gained by the vehicle in all phases of flight, 

but the lower turn into the wind, close to the surface.  

The way energy transfers occur is detailed and the prevailing role of the lift is 

explained graphically and analysed analytically. It is responsible for the biggest increase in 

energy during the higher turn but is also accountable for the significant loss during the lower 

turn. By working on the expression of the power from aerodynamic forces, it is laid out that 

the drag can have a component that provides positive work, which is part of a wider resultant 

force oriented in the wind direction.  

Although the overall pattern varies with the trajectory, depending on periodicity 

constraints, it appears that the vehicle attitude towards the air remains roughly unchanged, in 

particular the attitude “belly to the wind” at the top of the curve, which has been described in 

the flight of albatrosses.  

Finally, the simulation of DS is enriched by a refined roughness length model and 

then by the presence of waves, where the wave amplitude is increased step by step until it 

corresponds to the prediction of the model. A particularity concerns periodicity constraints, 

which are established with respect to the wave and not to earth anymore. The roughness 

length predicted by the model considered is significantly lower than what is used in the DS 

literature. The required wind strength obtained for the Wandering Albatross is rather high 

compared to values that could be expected from biology input, even though the constraint of 

ground clearance is set to the minimum. The wave allows for DS flight at lower winds, since 

the vehicle takes advantage of the updraft created on the forward moving face, during its 

lower turn at the vicinity of the rising wave surface. By displacing the initial position of the 

vehicle, relative to the wave, from the crest to further down the wave slope, the vehicle 

benefits from a higher updraft and this lowers again the wind strength required. Yet, the wind 

strength obtained is still rather above values measured on the field, which suggests that 

albatrosses exploit mechanisms that are not represented by the current model. 
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Chapter VI                             

Non-Dimensionalization of DS Flight  

The chapter aims at presenting a different approach to gain understanding about DS 

principles, which is more mathematical and equation-focused. The understanding about DS laid 

out so far is based on simulations where the analysis of results is rather distant from that of 

EoM. This can be explained by the fact that multiple solutions exist and that therefore EoM are 

not sufficient to define the problem and its solution. Yet, the analysis of equations could permit 

to disclose some remarkable properties about DS. Besides, simulations obtained so far are 

dependent on the metric used for each variable, such that it is difficult to link ties between one 

simulation and another. There is hence an interest in considering equations and analysing 

simulations through a new system of dimensionless variables. Air relative equations are more 

adequate for this approach as the airspeed is directly a state variable. The associate set of EoM 

is dimensionless using specific reference variables. Simulations are then run, by using the 

unchanged methodology described earlier to support the theoretical analysis of a dimensionless 

set of different equations. Results validate both the non-dimensionalization and the simulation 

methodology, if necessary, as well as highlight interesting features about DS. 

VI.1 Linear Wind Profile 

VI.1.1 Theory 

A first objective is to find an adequate non-dimensionalization of EoM so as to 

highlight some dimensionless coefficients formed from environment and vehicle parameters. 

Eventually, such coefficients would govern dimensionless solutions of EoM as well as DS 

performance, hence shedding a new light on the understanding of DS.  

EoM are dimensionless by introducing some reference parameters, which could very 

well be arbitrary chosen, but would rather be selected such that equations can be simplified by 

gathering parameters into dimensionless coefficients. For the sake of simplicity, a linear wind 

gradient profile will be selected first, where � represents the wind gradient (s
-1

), as introduced 
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in Eq. VI.1. It is to be reminded that in the present case, the wind is coming from	Y, � is positive 

and	T is oriented downwards. 

P/ = �	T	 ( VI.1 ) 

In the particular case of a linear wind profile, both the local mean wind speed and the 

local wind gradient are determined by	�. From the set of air relative EoM, given in Eqs. IV.35 to 

IV.40, the following non-dimensionalization can be defined [49]. 

N.� = �: 	N.	 ( VI.2 ) 

]Y̅, �M, T ̅^ = �&
: 	]Y, �, T^	 ( VI.3 ) 

� ̅ = �	�	 ( VI.4 ) 

�M = �
2:	 ( VI.5 ) 

For any given variable	×, the accentuation ×M refers to the associated dimensionless 

variable, while ×< 	refers to the associated reference value, such that: 

×M = ×
×<	 ( VI.6 ) 

Besides, the notation	×�refers to the dimensionless-time derivative of variable	×. 

×� = e×
e� ̅ = �< e×e� 	 ( VI.7 ) 

EoM are thus dimensionless as presented in Eq. VI.8. 

N.� � = _�̅	N.���]�*^ _ 130 �. + N.� 130 �. ��1 �. ��1 �.	 ( VI.8 ) 
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�.� = �̅	N.��* 130 ���1 �. _ ��0 �. 130�.	 ( VI.9 ) 

�.� = �̅	N.��* ��1 � _ ��1 �.N.� _ ��1�. 130&�.	 ( VI.10 ) 

Y̅� = N.� ��1 �. ��1 �. +	T ̅	 ( VI.11 ) 

�M� = N.� ��1 �. 130�.	 ( VI.12 ) 

T ̅� = _N.� 130 �. 	 ( VI.13 ) 

The dimensionless parameter �̅ is defined in Eq. VI. 14 

�̅ = �	:&
2 ]2: D^⁄ �&	 ( VI.14 ) 

It is to be mentioned that before the non-dimensionalization, control variables are 

already represented by dimensionless values, which are the lift coefficient �* and the bank 

angle	�.  

Air relative standard EoM and reduced Eqs. VI.8 to VI.13 represent the same physics, 

but observed with different norms and therefore using differently weighted variables. It is to be 

noted that those equations are not specific to DS flight, but simply describe any in-flight 

evolution of a vehicle, within a linear wind profile. In Eqs. VI.8 to VI.13, the dimensionless 

parameter �̅ is amongst the only parameters, together with ���, ��%, ��&, ��', ��(	to influence 

equations. 

From Eqs. VI.8 to VI.13, it can be learnt that if two vehicles are in similar state in terms 

of dimensionless variables, at a given instant, if the �̅ parameter is identical between the two 

systems and if control variables follow the same evolution over dimensionless time, then the 

two system would evolve from that instant with the same dimensionless states.  

Two sets of equations would be called equivalents if they can be dimensionless into 

the same form. Comparisons between coefficients, from the dimensionless equations, then 

serve as a standard to assert if the sets are equivalent or not. In the above case, two sets of air 
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relative EoM would be equivalent if, and only if, the two respective �̅ parameters in Eqs. VI.8 to 

VI.13 are equals (assuming ���, ��%, ��&, ��', ��( are identical). In this regard, if m, �, S and � 

vary such that �̅ is constant, then equations would be equivalent. 

Besides, two solutions would be called equivalent if the respective dimensionless state 

variables follow identical sequences over dimensionless time. In the scope of the present work, 

solutions are not entirely determined by EoM, but also show a dependency on control variables. 

Consequently, two equivalent sets of EoM don’t necessarily lead to two equivalent solutions 

since the evolution of control variables could differ between the two. Further conditions are 

required in order to yield equivalent solutions.  

VI.1.2 Dimensionless Optimization Problem 

Essentially, a non-dimensionalization process focuses on rewriting equations in order 

to highlight similarities between solutions without solving equations. Because in the present 

case solutions are not entirely determined by equations, broader aspects of the problem must be 

considered as part of the non-dimensionalization. 

Solutions consist in sets of control variables and correlated state variables. Those are 

determined by solving an optimization problem, which is formed by an objective function and a 

set of constraints, including EoM, dimensionless or not. State variables are correlated to control 

variables through EoM, control variables are piloted in order to satisfy best the objective 

function and both state and control variables abide by further constraints. 

In order to draw similarities between solutions, the focus should not be only on 

invariances among dimensionless coefficients of dimensionless EoM, but also within 

constraints and objective, as seen by dimensionless variables. For instance, the ground 

clearance is simplified to a minimum altitude, through the constraint expressed in Eq. VI.15. 

T ≤ T-./ ( VI.15 ) 

By introducing the reference length T<, the constraint is tweaked to Eq. VI.16. 

T̅ ≤ T-./T<  ( VI.16 ) 
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If the minimum altitude −T-./  is kept constant, the above constraint on the 

dimensionless height T̅ is different with every varying reference length	T< , leading to a different 

optimization problem and therefore to different solutions. Hence, for dimensionless solutions to 

be identical, the minimal altitude must be adapted such that it remains the same proportion of 

the reference length.  

If two optimization problems show identical dimensionless constraints, including EoM, 

and objective, then they will trivially lead to equivalent solutions. In the scope of the present 

part, the equations that are passed to the solver are earth-relative EoM, described in Eqs. IV.23 

to IV.28. Even though this set of equations is practically used to yield solutions, its parameters 

and constraints would be carefully adjusted so that the underlying optimization problem would 

be equivalent as if it was expressed through Eqs. VI.8 to VI.13.  

VI.1.3  Simulation with Identical Wing Loading 

The non-dimensionalization introduced above is tested using a linear wind profile 

[49], for different objective functions. The vehicle chosen for this part is Mariner, described in 

Table III-1, but different values of mass and wing area are applied. The aspect ratio is left 

unchanged and it is assumed, for the sake of this study, that aerodynamic coefficients 

���, ��%, ��&, ��', ��( are unaltered by changes in mass and wing area. Besides, none of the 

associated rate constraints is applied in the following simulations, in order not to burden the 

optimization problem with varying dimensionless constraints.  

First, the objective is to minimize the wind gradient	�, which in this case is equivalent 

to minimizing the wind strength at a given height. The vehicle mass and wing area were varied 

by keeping an arbitrary constant wing loading of 141.6 N/m
2
, corresponding to a mass of 7 kg 

for Mariner.  
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Figure VI.1: Optimal open-loop trajectories, minimizing the required wind gradient	�, obtained for four 
vehicle mass, at the same wing loading. For all cases, the wing loading is 141.6 N/m

2
, the wind gradient is �= 0.1076 s

-1
 and �̅= 35.93. 

Identical wind gradient � of 0.1076 s
-1

 as well as identical solutions are obtained and it 

can be seen from Fig. VI.1 that all curves are superimposed. A remarkable result is that the 

corresponding wind strength at 10 metres, or more generally the required variation in 

horizontal wind strength over 10 metres height, is only 1.08 m.s
-1

. Such conditions of wind 

shear do not seem very demanding and may widen the scope of potential DS application.  

In the present case, � was set free for the solver to run on it which is tantamount to 

letting the solver choose �̅ and alter the set of EoM it will also derive solutions from. 

Unsurprisingly, in accordance with what could be expected out of dimensionless Eqs. VI.8 to 

VI.13, the solver came out with the same value of	�̅, and therefore in wind gradient	�, since all 

wing loadings are equivalent. What can be concluded out of this first simulation is that, in the 

case of a linear wind profile, the wing loading is a parameter of equivalence, which means that 

if two vehicles, with the same aerodynamic polar, have identical wing loadings, then they 

would perform identically by DS. Equations and simulations predict this result in accordance. 



From Albatross to Long Range UAV Flight by Dynamic Soaring 131
 

 

VI.1.4 Simulation with Various Wing Loadings 

Different wing loadings are subsequently tested with the same objective function as 

before, which is to minimize the wind strength required to fly by DS. In results to follow, the 

vehicle has a fixed wing area S of 0.485 m
2
 and the vehicle mass is changed, hence 

corresponding to a realistic operational case where the same vehicle planform is used to carry 

different loads. Solutions are expected to be different this time. 

 

Figure VI.2: Optimal open-loop trajectories, minimizing the required wind gradient	�, obtained for four 

vehicle mass, at the same wing area. For all cases, �̅ = 35.93 +/- 0.02. 

It appears from Fig. VI.2 that flight paths are regularly spaced such that they seem to 

be results of a proportional transformation. The light blue curve corresponds to trajectories 

obtained before with constant wing loading, presented in Fig. VI.1. The higher mass goes with a 

bigger amplitude of flight. Further data are summed up in Table VI-1. 
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Table VI-1: Parameters about solutions displayed in Fig. VI.2. 

Mass 
mg/S 

(N/m
2
) 

�(s
-1

) 	� 
−µ´±² 

(m) 
−µ´±²MMMMMMM ¼ø (s) 

6 kg 121.36 0.1163 35.903 9.521 0.0131 14.55 

7 kg 141.59 0.1076 35.929 11.384 0.0134 15.69 

8 kg 161.81 0.1007 35.938 12.843 0.0133 16.77 

9 kg 182.04 0.0949 35.945 14.265 0.0129 17.79 

As expected, the wind gradient � was different for each wing loading and is actually 

getting higher for low wing loadings. Hence, for the same vehicle planform, although the 

energy required to maintain a heavier load in the air is higher by definition, the wind strength 

required to fly it by DS is actually lower. This should not conceal that the heavier vehicle still 

climbs higher to benefit from stronger winds. High wing loadings therefore enable the vehicle 

to take advantage of less favourable wind conditions.  

Another important consideration is that the solver comes up with values of � between 

the different cases, which entail identical values for	�̅. The maximum relative disparity for �̅ is 

of the order of 0.1 %. Small variations like this can be explained by the use of a constant number 

of time discretization nodes	@�=71, while the total time of cycle is increasing from 14.55 seconds 

to 17.79 seconds, hence inducing varying time step length and different integration error.  
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Figure VI.3: Three dimensional curves, plotted in dimensionless coordinates, obtained by minimizing the 
required wind gradient	�, for four vehicle mass, at the same wing area. For all cases, �̅ = 35.93+/- 0.02 

Consequently, for a given vehicle with varying wing loading, the optimization selects 

� such that it sets equivalent dimensionless EoM for the vehicle. Indeed, Eqs. VI.8 to VI.13 are 

identical between cases run here, leading to similar dimensionless solutions, as plotted in Fig. 

VI.3. The overall parameter which is ultimately modified by the solver within that process is	�̅, 

whom we know from the non-dimensionalization analysis that it is the only parameter that 

defines dimensionless EoM. In this regard, �̅ can be considered as a benchmark of DS 

performance. The value of �̅ obtained actually represents the maximal value that allows the 

vehicle to fly effortlessly by taking advantage of the wind. For lower values of	�̅, conditions are 

more favourable and allow extra energy-harvesting. For higher values of	�̅, conditions become 

adverse and some extra energy is required from the vehicle to complete the cycle. The critical 

value of this parameter is actually a function of the only other varying parameters of 

dimensionless EoM, which are the drag coefficients ���, ��%, ��&, ��', ��( that defines the 

aerodynamic polar. A higher value of �̅ would be obtained with a vehicle that drags less over 

the range of �* travelled along the path, hence allowing DS flight in more adverse conditions. 
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It can be seen from Figs. VI.3 and VI.4, that the dimensionless variables match in such 

a way that the three dimensional curve of dimensionless coordinates are well superimposed. 

The order of magnitude of the maximum relative disparity is below 5 % and it can also be 

attributed to significant variations in time step length. It can be fairly concluded that solutions 

are all equivalent. 

 

Figure VI.4: Evolution of control variables over dimensionless time, obtained by minimizing the required 
wind gradient β, for four vehicle mass, at the same wing area. For all cases, �̅ = 35.93 +/- 0.02. 

One can observe from Table VI-1 that even though the lowest curve is reached by the 

lower wing loading case, its minimum altitude is still 9.5 metres above ground, while the 

ground clearance was much less restrictive and constrained in this case to a fixed minimum 

altitude of 1.7 metres, for all cases. Consequently, even though the optimization problem 

includes non-equivalent constraints as seen from dimensionless variables, variables do not 

reach the limit value and solutions are still equivalent to each other. It shows that non-

equivalent constraints do not matter on the equivalence of solutions if those are not reached 

during the optimization.  
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Figure VI.4 shows a good match between control variables. The flattened part of the 

�*	curve corresponds to the lift coefficient reaching the maximum as stated in the “no stall” 

constraint. This constraint is equivalent to every dimensionless optimization problem since the 

coefficient of lift is dimensionless. 

Consequently, it can first be learnt that, in the case of a linear wind profile, increasing 

the wing loading reduces the required wind gradient	�. Besides, the evolution of � with the 

wing loading is such that the dimensionless parameter �̅  remains the same. It can be 

interpreted as a benchmark of DS performance, depending only on the aerodynamic 

performances of the vehicle. Higher values of �̅ can be associated with adverse conditions, 

more challenging for a vehicle to exploit. Therefore, refined aerodynamics for the vehicle 

would entail a higher value of �̅ found by the solver for the problem of minimizing the wind 

gradient required. Besides, despite variations in	�, the equivalence between dimensionless sets 

of EoM, representative of the different wing loading cases, provides equivalent sets of 

dimensionless solutions. It shows that, in the case of a linear wind profile, variations in the 

wind gradient required to sustain different wind loadings can be predicted by the theory. 

Furthermore, the non-dimensionalization approach is successful in the way that it highlights a 

dimensionless parameter which characterizes the equivalence between DS cases. 

VI.2 Logarithmic Wind Profile  

VI.2.1 Non-dimensionalization of EoM 

The EoM governing the vehicle evolution within a logarithmic wind profile depart 

from the linear wind profile as the local wind gradient becomes a function of altitude and the 

local wind strength a function of roughness length. For a logarithmic profile, the local increase 

in horizontal wind with altitude, or local wind gradient is expressed is reminded in Eq. VI.17. 

vP/vT = K∗
� 	
1
T	 ( VI.17 ) 

As it was underlined in Chapter III, an important remark is that the local wind 

gradient is independent from the roughness length. Air relative EoM are developed in Eqs. 

VI.18 to VI.23. 
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2Nb. = − 12 �D��N.& − 2: 130 �. _2	K∗� N.T 130 �. ��1 �. ��1 �.	 ( VI.18 ) 

2N. ��1 �. �b. = 1
2�D�*N.& 130 � +2

K∗
�
N.
T 130 �. 130�.	 ( VI.19 ) 

_2N.�b. = _12�D�*N.& ��1 � +2: ��1 �. _2
K∗
�
N.
T ��1 �. 130& �. 	 ( VI.20 ) 

Yb = N. ��1 �. ��1 �. _ K∗� u�: m
_T
T� n	 ( VI.21 ) 

�b = N. ��1 �. 130�.	 ( VI.22 ) 

Tb = _N. 130 �.	 ( VI.23 ) 

A significant departure from the linear wind profile equations is that the airspeed 

evolution becomes sensible to the altitude, as seen in Eq.VI.18. It can be physically linked to the 

consideration that the airspeed increase due to the wind gradient is not uniform anymore, but 

depends indeed on the altitude. Besides, the altitude also alters to ability of the vehicle to 

deviate both its air relative flight path and heading. An important note is that none of the air 

relative variable is directly affected by the surface roughness length, such that the air relative 

kinematics is therefore unrelated to the surface state. Only the absolute horizontal earth 

coordinate directed along the wind direction sees a dependence on the roughness length, in Eq. 

VI.21, since the vehicle is carried along the wind direction at a speed that depends on surface 

interactions. 

The principle of establishing the non-dimensionalization based on the wind gradient 

proved successful for the linear wind profile. Therefore, a characteristic wind gradient of the 

wind profile would be sought to serve as an equivalent reference for the non-

dimensionalization. As the local wind gradient depends on altitude, any given characteristic 

gradient could be associated with a local wind gradient at a certain height. The characteristic 

gradient �< is defined to be the local gradient at an altitude corresponding to the reference 

height T< , as in Eq. VI.24. 
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�< = K∗
� 	

1
T<	 ( VI.24 ) 

Further properties about reference parameters are the same as the linear wind profile 

non-dimensionalization. Those are summed up in Eqs. VI.25 to VI.27. 

�< =	 1�<	 ( VI.25 ) 

N< =	 :�<	 ( VI.26 ) 

T< =	N<�<	 ( VI.27 ) 

It gives the following values for reference parameters. 

�< = :	�
K∗ 	 ( VI.28 ) 

�< = K∗
:	�	 ( VI.29 ) 

N< = K∗
� 	 ( VI.30 ) 

T< =	 1: m
K∗
� n

&	 ( VI.31 ) 

It entails the following non-dimensionalization of air relative EoM, described in Eqs. VI.32 to 

VI.37. 

N.� � = _�̅	N.���]�*^ _ 130 �. _ N.�T ̅ 130 �. ��1 �. ��1 �.	 ( VI.32 ) 

�.� = �̅	N.��* 130 ���1 �. +
1
T ̅ ��0 �. 130�.	 ( VI.33 ) 

�.� = �̅	N.��* ��1 � _ ��1 �.N.� + 1T ̅ ��1 �. 130&�.	 ( VI.34 ) 



From Albatross to Long Range UAV Flight by Dynamic Soaring 138
 

 

Y̅� = N.� ��1 �. ��1 �. _	u�: m_T ̅	T< 	T� n	 ( VI.35 ) 

�M� = N.� ��1 �. 130�.	 ( VI.36 ) 

T ̅� = _N.� 130 �. 	 ( VI.37 ) 

The expression of �̅ includes the expression of the characteristic gradient. 

�̅ = �	:&
2 ]2: D^⁄ �ú &	 ( VI.38 ) 

Sets of Eqs. VI.32 to VI.34 would be equivalent if parameters �̅ are equal. Sets of Eqs. 

VI.36 and VI.37 would be equivalent in any case. However, for two equations Eq. VI.35 to be 

equivalent to each other, it requires the condition expressed in Eq. VI.39 to be fulfilled. 

T�
T< = T�� = ��01��0�	 ( VI.39 ) 

If the objective function of the optimization problem is to minimize the wind friction 

velocity K∗ , whatever the net azimuth direction is, then the evolution of Y does not come into 

play regarding any constraint nor the objective. The relation in Eq. VI.39 can therefore be 

ignored, the wind friction velocity obtained would be independent from the surface roughness 

length, albeit the local wind speed would depend on it. Consequently, all dimensionless 

variables but Y would be comparable. Inversely, if the optimization problem refers to an 

objective or a constraint involving the variable Y, then Eq. VI.35 influences the solution that the 

solver comes out with. Hence, Eq. VI.35 must be adapted, by validating the condition expressed 

in Eq. VI.39, such that the whole set of Eqs. VI.32 to VI.37 could lead to invariance in 

dimensionless solutions. 

The same remark extents to the other constraints that would involve non 

dimensionless parameters, in particular the ground clearance constraint. Indeed, it has been 

observed that the vehicle tends to fly at the lowest possible altitude during the turn windward, 

in the case of logarithmic wind profiles. So on top of Eq. VI.39, another relation in Eq. VI.40 

must be validated to ensure equivalent solutions.  
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T-./T< = T-./MMMMMM = ��01��0� ( VI.40 ) 

It is to be noted that Eq. VI.40 must be fulfilled in any case, while some optimization 

scenario can do without Eq. VI.39. 

VI.2.2 Application with Identical Wing Loading 

The sensitivity to mass is tested first, at a constant wing loading, for a problem which 

consists in minimizing the wind strength at a certain height, which is tantamount to 

minimizing the friction velocity. The vehicle mass and wing area were varied by keeping an 

arbitrary constant wing loading of 141.6 N/m
2
, corresponding to a mass of 7 kg for Mariner. 

 

Figure VI.5: Optimal open-loop trajectories, minimizing the required friction velocity for various mass at 
a fixed wing loading of 141.6 N/m

2
. �̅ =0.0113 for all cases, T� was unchanged at 3 cm. 

A first remark is that the flight path obtained in Fig. VI.5 is fundamentally different to 

that corresponding to a linear profile, displayed in Fig. VI.1. Most significantly, the maximum 

altitude reached by the vehicle is about four times lower and the leeward turn is flattened at 

heights below 5 metres, while it never went under 10 metres in the case of a linear profile. It is 

to be mentioned that the wind strength at 10 metres height is 9.4 m.s
-1

 in the present case while 

it was only 1.08 m.s
-1

 in the case of linear wind profile. Those considerations confirm, if 

necessary, the predominant influence of the wind field on the overall DS trajectory and on the 

required wind strength.  
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Equations VI.32 to VI.37 suggests that trajectories should be invariant, since �̅ would 

have the same value and this is verified with a constant value of 0.0113 for all cases, a 

characteristic wind gradient �ú = 6.068 s
-1

 and a reference length T< of 0.2664 metres. The wind 

friction velocity obtained is 66.3 cm.s
-1

 and the roughness length was left untouched at 3 cm. 

However, it can be observed that trajectories only match for 7 kg and 8 kg and that the 

other masses show significant altered trajectories. Those relative disparities would remain 

when comparing dimensionless coordinates, as the reference length is identical in the four 

cases. Those can be explained by the fact that state and control variables, which govern the 

evolution of the system over time, have sets that are equivalent to each other but with a time 

offset in some case. Indeed nothing constrains the solver to start from different parts of the 

cycle, as the overall solution is equivalent, with no influence on DS performances. The inner 

calculation process of optimization makes the solver choose a different starting point between 

cases. All variables, but horizontal coordinates, are governing the evolution of the system, as 

can be seen in Eqs. VI.32 to VI.37, and are therefore correlated by the same shift in time 

compared to another solution. Horizontal coordinates are set free to be piloted by equivalent 

sets of other variable, which leads to similar trajectories with a horizontal shift respectively to 

each other.  
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Figure VI.6: Evolution of control variables over dimensionless time, obtained by minimizing the required 
friction velocity, for various mass at a fixed wing loading of 141.6 N/m

2
. �̅	=0.0113 for all cases.  

Figure VI.6 shows the correlation between the evolution of the lift coefficient time and 

the evolution of the bank angle over time. The relative shift would be the same in time or in 

dimensionless time, given that the reference wind gradient is constant. Overall, DS within a 

logarithmic wind profile shows equivalent results for identical wing loadings. 

VI.2.3 Application with Various Wing Loadings 

For a fixed planform of Mariner, the mass is varied arbitrarily from 6 kg to 9 kg, which 

represents different wing loading cases. As it was underlined before, this indeed has an interest 

as it corresponds to an operational case of various loading for the same planform. Yet, this 

study is two-fold and also aims at highlighting a behaviour which could have been challenging 

to unlock without focusing on the non-dimensionalization of EoM. Thanks to this approach, 

the way the required wind strength relates to the wing loading can be anticipated theoretically, 

which it is being validated by means of simulations here. Besides, different wind strength are 

expected, leading to different dimensionless variables so the condition stipulated in Eq. VI.40 

about adapting the minimum altitude comes into play. It means that in theory, simply changing 
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the wind strength is not sufficient to establish equivalent solutions for various wing loadings. 

None of the constraints expressed involve Y, so there is in theory no need to adapt the 

roughness length as well, which was then unchanged at 3 cm. The methodology used here is to 

start with a baseline case and then adapt the minimum altitude imposed. Baseline conditions 

were a mass of 7 kg and a minimum altitude of 1.70 metres. No attention was paid to ground 

clearance conditions, meaning that the bank angle was not limited by wing tip clearance.  

 

Figure VI.7: Three dimensional trajectories optimized to minimize the wind strength required, for 
different vehicle mass. �̅	=0.0113 for all cases. 

Some similarities can again be observed, in Fig. VI.7, between curves which seem to 

duplicate each other at a different scale. This is especially visible in the projected curves of 

trajectories in the North-Altitude plane. Just as in the case of a linear wind profile, the highest 

wing loadings correspond to greater amplitudes, reaching greater values in each coordinates. 

Table VI-2 gives some results about those solutions. 
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Table VI-2: Parameters about solutions displayed in Fig. VI.7. 

Mass  
mg/S 

(N/m
2
) 

�
 (s
-1

) µÁ (m) 
�
 = Ã∗ ��  

(m.s
-1

) 
_µ´±² (m) 	� 

6 kg 121.36 6.5543 0.228 1.497 1.457 0.011306 

7 kg 141.59 6.0681 0.266 1.617 1.700 0.011306 

8 kg 161.81 5.6762 0.304 1.728 1.943 0.011306 

9 kg 182.04 5.3516 0.343 1.833 2.186 0.011306 

A first observation concerns the evolution of the required wind friction velocity with 

the wing loading. It is reminded that this evolution does not depend on the surface roughness 

length T�, which has however influences the wind speed required. When the wing loading 

increases, the required wind friction velocity increases with the square root of the wing loading 

(noted WL in the following expression), as detailed in the calculation detailed in Eq. VI.41. 

[K∗]
*�[K∗]
*Ý
= ¡P>& P>%�  ( VI.41 ) 

This could be theoretically predicted by theory and can be verified from Table VI-2. In 

order to satisfy equivalence conditions, the minimum altitude is however raised when the mass 

increases such that the increase in wing loading alone cannot explain the increase in wind 

friction velocity. Identically to the case of a linear wind profile, the characteristic wind gradient �< is adapted such that �̅ gets a constant value which is necessary to get equivalent sets of 

EoM. Yet, in the case of the linear wind profile, the wind gradient was directly given by the 

physical model of the boundary layer that was taken into account. In the case of the log profile, 

it is a basically a parameter, directly function of K∗, which varies to ensure that sets of EoM are 

equivalent to each other. The fact that the characteristic gradient decreases when the wing 

loading increases, as it would in a linear wind profile case, teaches very few things about the 

physical properties of the boundary layer profile.  
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Figure VI.8: Three dimensional curves of dimensionless coordinates, representative of the evolution 
displayed in Fig. VI.7. 

Figure VI.8 shows that despite the slight offset, curves in dimensionless coordinates 

match quite well. Along the Y̅ coordinate (Dimensionless North), the offset that can be observed 

shows that the non-dimensionalization does not lead to an equivalent evolution. Indeed, the 

evolution of Y̅ is a function of the roughness length, see Eq. VI.35, and the roughness length 

was not adapted for the dimensionless roughness length to be constant.  

Control variables are all equivalent to evolutions displayed in Fig. VI.6. As a matter of 

fact, optimization problems were rendered equivalent, between cases, through the adjustment 

of constant �̅	by the solver. Hence, sets of control variables were identical to the baseline case 

of m=7 kg, time shift aside. This result has a significant impact on the way DS trajectories could 

be piloted, since control variables could be identical for a wide range of cases corresponding to 

�̅ constant. 

VI.2.4 Non-dimensionalization of Thrust-Powered DS 

The vehicle is able to propel itself via the thrust J, which adds to the control variables 

and modifies Eq. VI.32 in Eq. VI.42. 
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2Nb. = J − 12 �D��N.& − 2: 130 �. − 2	 K∗� N.T 130 �. ��1 �. ��1 �.	 ( VI.42 ) 

It can be dimensionless in the form specified by Eq. VI.43. 

NM � = JM _ �̅	NM��]�*^ _ 130 �. + N
M
T ̅ 130 �. ��1 �. ��1 �. 	 ( VI.43 ) 

The on board energetics is modelled through the battery state variable ���, which 

varies due to the power expense from the propulsive system, which is governed by Eq. VI.44.  

���b = _ J	N.
���	�	 ( VI.44 ) 

It can be reduced into the form expressed by Eq. VI.45, after the thrust is dimensionless by the 

weight mg. 

���MMMMM′ = _ JM	N.�
���	�	 ( VI.45 ) 

Another objective is tested for different wing loadings, but at constant	�̅, in order to 

find solutions that minimize the consumption per unit length travelled. In the case of DS flight, 

the length that is referred to is the horizontal net distance between the start and the end of the 

path. The consumption is expressed and dimensionless under ��4MMMMM	, in Eq. VI.46. 

��4 = _ ���,
¡Y,& + �,&

= _2: ���,MMMMMM
¡Y,MMM& + �,MMM&

= 2:	��4MMMMM	
( VI.46 ) 

For a given mass, minimizing ��4  amounts to a minimum in dimensionless 

consumption ��4MMMMM. The objective function is dependent on the final northbound position Y, 

which itself is a function of evolution of Y. The surface roughness length must be adapted, in 

Eq. VI.39, so that the dimensionless roughness length is equivalent in each case.  

In terms of methodology, the same baseline case is used, with a mass of 7 kg, a 

minimum altitude imposed at 1.70 metres and a surface roughness length of 3 cm. From results 



From Albatross to Long Range UAV Flight by Dynamic Soaring 146
 

 

obtained by minimizing the required friction velocity, K∗ is then reduced. The lower wind 

strength requires some thrust from the vehicle to manage the full energy-neutral cycle, and the 

wind friction velocity is decreased step by step until ��4MMMMM reaches an arbitrary value of 0.015, 

without imposing any net heading. Then the same is applied for different masses, ranging from 

6 kg to 9 kg. For each case, the minimum altitude and surface roughness length are adapted 

such that their respective dimensionless values are the same. Besides, K∗ is manually adapted 

until ��4MMMMM hits the 0.015 mark. The non-dimensionalization actually helps to predict what the 

friction velocity should be, by maintaining �̅ the same, in order for optimization problems to be 

equivalent to each other.  

 

Figure VI.9: Three dimensional trajectories optimized to minimize ��1MMMM, for different vehicle mass. ��4MMMMM
 = 

0.015 and �̅	=0.00952 for all cases. 

Similarities between curves are of the same nature as observed before. Further results 

are summed up in Table VI-3. 
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Table VI-3: Parameters about solutions displayed in Fig. VI.9. 

Mass  
´�/ô 
(N/m

2
) 
Âô 

�
 = Ã∗ ��  

(m.s
-1

) 
−µ´±² (m) µ� (m) 	� 

6 kg 121.36 0.015 1.373 1.457 0.0257 0.009518 

7 kg 141.59 0.015 1.483 1.700 0.0300 0.009518 

8 kg 161.81 0.015 1.586 1.943 0.0343 0.009518 

9 kg 182.04 0.015 1.682 2.186 0.0386 0.009518 

 

Figure VI.10: Evolution of dimensionless control variables over dimensionless time, for trajectories 

optimized to minimize ��4MMMMM and for varying vehicle mass. ��4MMMMM
 = 0.015 and �̅	=0.00952 for all cases. 

 

The evolution of control variables is displayed in Fig. VI.10. The dimensionless thrust 

is pictured in order to highlight equivalences between solutions. For all cases, the contribution 

from the thrust is only an impulse, which is due to rate and double continuous constraints 

being ignored. Control variables are well correlated with a time shift between cases. 
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Figure VI.11: Three dimensional curves of dimensionless coordinates, corresponding to Fig. VI.9. 

Higher wing loadings require a higher friction velocity in order to perform at a 

constant specific consumption, which is consistent with results obtained with a non-powered 

vehicle. Friction velocities obtained to get to the same ��1MMMMM are also responsible for equal �̅ 

between the four results, which validates the non-dimensionalization approach. In the present 

situation, the roughness length has also to be adapted in order to yield equivalent optimization 

problems. Simulation results highlight the equivalence predicted from the theory with great 

accuracy, as the four trajectories are all identical when seen from their dimensionless 

perspectives.  

This final and refined comparison between simulations validates the approach 

undertaken to normalize the equations. Several test cases have been simulated, corresponding 

to different optimization problems. For each of those, simulations validated the similarities 

anticipated by theory, which is a strong assessment regarding the reliability of our 

methodology. 

VI.2.5 Condition to equivalence 

It is assumed that parameters such as the air density or the earth gravitational 

constant are not varying. Rather, following equations sum up the requirements on parameters 

for DS dimensionless solutions to be equivalent. Two separate cases are labelled “1” and “2” in 

the following equations. 
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Let’s assume different wing loadings, whatever variations in mass and in area they 

could relate to. 

�2D �% ≠ �2D �& ( VI.47 ) 

The two cases would lead to equivalent dimensionless solutions only if the condition 

expressed in Eq. VI.48 is met. 

]K∗^&]K∗^% = ��2 D� �&�2 D� �%  ( VI.48 ) 

Besides, the minimum altitude must be adapted as detailed in Eq. VI.49. 

]T-��)&(T-��)% = �2 D� �&�2 D� �%
  ( VI.49 ) 

And the same follows with the respective roughness lengths in Eq. VI.50. 

(T�)&(T�)% = �2 D� �&�2 D� �%
  ( VI.50 ) 

If above conditions are met, then the induced wind strength PF at any given height, 

between the two cases, would compare as described in Eq. VI.51. 

(PF)& = ��2 D� �&�2 D� �%
 (PF)% + ��2 D� �&�2 D� �%

 (K∗^%� u�: �2 D� �%�2 D� �&
 ( VI.51 ) 
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VI.3 Summary of Chapter VI 

This chapter consists in looking at DS flight from a dimensionless point of view, in 

the aim of investigating remarkable properties. Reference values are introduced and related to 

each other to form dimensionless EoM. The approach should not only concern EoM, but the 

overall optimization problem in order to yield consistent solutions.  

Non-dimensionalization is first considered in the case of a linear wind profile. 

Dimensionless EoM display a sensibility to a single parameter �̅. It is verified that equivalent 

dimensionless solutions are obtained when the wind gradient � and the wing loading (WL) are 

adapted such that �̅ is constant. In particular, the WL is shown to be a parameter of 

equivalence regarding the required �. Indeed, if two vehicles, with identical aerodynamic 

polars, have the same WL, they would behave identically as far as DS is concerned. It means 

that the required � is identical and that trajectories can be superimposed. Besides, �̅ can be 

associated to a benchmark of DS performances. There is a maximal value of �̅ which allows for 

gliding DS flight. For values above, the vehicle must provide some power, for values below, 

energy expenditure margins are allowed. An increase in WL leads to a lower required �, as can 

be anticipated by the theory. This result is independent from any aerodynamic consideration, 

but deduced out of dimensionless EoM. Heavier vehicles perform DS flight paths of larger 

amplitude, with higher altitudes to reach stronger winds. Finally, simulations show that the 

required wind shear for DS is rather weak, approximately 1 m.s
-1

 over a height of 10 metres. 

Simulations within a logarithmic profile display flight paths that are much more 

flattened at lower altitudes and require a wind strength close to 10 m.s
-1

 at 10 metres height. 

An adequate non-dimensionalization is found and verified. Yet the adjustment of the minimal 

altitude and of T� is required to yield equivalent solutions. This has hence little practical use, 

since those parameters relate to operational and environment conditions. Besides, the 

interpretation of �̅  as a benchmark of DS performance is no longer accurate as the 

characteristic wind gradient does not bear any particular physical meaning. Still, the 

correspondence between theory and simulations provides a valuable support for validation. 

Besides, it can be anticipated that T� only influences the required K∗ if the variable Y is 

involved in either the objective function or operational constraints. Hence, as far as air relative 

motion is concerned, T� does not come into play. Finally, an increase in WL requires a stronger K∗ and therefore stronger winds, which again departs from the linear wind profile case. 
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Chapter VII                                

DS Flight Performances 

In order to investigate the potential scope of DS flight for UAV-typed vehicles, the 

feasibility of DS flight and the related enhancements in performance should be assessed with 

respect to a vast range of variables. It has been established that, under certain conditions, it is 

possible to sustain gliding flight by extracting energy from the boundary layer. However, the 

range of mission scenario that offers this opportunity still has to be determined. The aim of this 

chapter is to investigate variations in DS performance with respect to parameters related to the 

vehicle, the flight path constraints and the environment. First, the study focuses on vehicles, 

with the three UAV designs compared in terms of minimum required wind strength. Because 

variations in mass were indirectly performed in the previous chapter, it is chosen to focus 

rather on the way the ground clearance ;<6�.�  and the surface roughness 	T�  impact 

performances. It is to be noted that aerodynamic ground effects are not at stake here, since 

those are not taken into account. Then, new perspectives in DS flight are investigated by 

considering thrust-augmented trajectories. 

VII.1 Comparisons between UAVs 

Without getting into the detail of varying design variables, as those would alter the 

overall performances of each vehicle, it was rather chosen to apply the optimization 

methodology to each vehicle. Indeed, each vehicle embodies the feasible gliding performance at 

their scale. For this sake, similar conditions for all three cases were obviously adopted. It 

consists in a logarithmic boundary layer profile, with a surface roughness 	T� of 1 cm, and a 

ground clearance ;<6�.� of 50 cm. Those values are chosen arbitrarily, but are estimated to be 

sound and conservative values that would be adequate to represent the evolution of a UAV 

over an open flat terrain, covered with low grass. The vehicle design variables, as well as 

operating constraints adopted, are those specified in Table III-1, masses are not increased from 

their baseline. Indeed, simulations show that an increase in wing loading, within the 

logarithmic boundary layer, entails a stronger required wind friction velocity, even without 
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equivalence considerations raised by chapter VI, where the minimum altitude is adapted 

Results are presented first and then subsequently discussed. 

VII.1.1 Delair-Tech DT-18 

The first vehicle considered is the DT-18. It provides an interesting support for an 

insight into DS flight with rather small UAVs. The compromise between a reduced span at an 

expense of hampered gliding performances is of particular interest. 

 

Figure VII.1: Energy-neutral open loop obtained for the DT-18. It takes 6.90 seconds to complete the cycle 
that is achieved for a minimum required friction velocity of 76 cm.s

-1
, which corresponds to a wind 

strength of 12.80 m.s
-1

 at a height of 10 metres. The vehicle is pictured at a 1.5:1 scale. 

The minimum wind friction velocity required for the DT-18 is 76 cm.s
-1

, which 

represents significant windy conditions, to the order of magnitude of 13 m.s
-1

 at 10 metres 

height. The lowest altitude (1.24 metres) is reached at the beginning of the trajectory, where the 

vehicle is banked at 55° to the left. The overall travelling directions corresponding to this 

trajectory is 142.6°.  
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Figure VII.2: Evolution of the bank angle, the lift coefficient and the load factor with respect to time, for 
the DT-18, for the case pictured in Fig. VII.1. 

The evolution of control variables along the path, together with the load factor, is 

presented in Fig. VII.2. It can be observed that apart from barely hitting the load factor limit of 

3 and the limit of �* around 1.2, the DT-18 does not seemed hampered in its evolution by any 

structural or control rate limits. To eliminate any doubt, the maximum rolling rate was 

augmented from 60°/s to 90°/s, in order to assess the influence of this parameter on the 

minimum wind speed required. No significant improvement was observed. 
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Figure VII.3: Evolution of the inertial speed, the airspeed and the local wind speed encountered by the 
DT-18 along its optimized path, pictured in Fig. VII.1. 

As displayed in Fig. VII.3, the airspeed along the path is less than 20 m/s, which should 

not pose any problem for the DT-18.  
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VII.1.2 Mariner 

The second vehicle is Mariner, which was already used earlier. Still, it is used this time 

with its baseline mass of 2.0 kg and under the same operating constraints mentioned above. 

 

Figure VII.4: Energy-neutral open loop obtained for the Mariner. It takes 4.90 seconds to complete the 
cycle that is achieved for a minimum required friction velocity of 56.7 cm.s

-1
, which corresponds to a

wind strength of 9.55 m.s
-1

 at a height of 10 metres. The vehicle is pictured at a 1:1 scale. 

The minimum wind friction velocity required for Mariner is 56.7 cm.s
-1

, which 

represents a wind speed of 9.55 m.s
-1

 at 10 metres height. The lowest altitude (1.24 metres) is 

reached at the beginning of the trajectory, where the vehicle is banked at 36.4° against the 

wind. The overall net direction of travel is 140.6°.  

Compared to the DT-18, Mariner offers a significant improvement in the objective 

function. Indeed, it requires lighter wind conditions for Mariner to be powered by DS than the 

DT-18. Overall, the basic cycle obtained with Mariner has much lower amplitude than that of 

the DT-18. Another interesting aspect concerns the minimum altitude reached by Mariner along 

the cycle. It is very much comparable to the DT-18, while the span of Mariner is around 40 % 

larger, which indicates that Mariner, or the point mass that represents it, manages to get closer 

to the surface, relatively to its span. 
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Figure VII.5: Evolution of the bank angle, the lift coefficient and the load factor with respect to time, for 
Mariner, for the case pictured in Fig. VII.4. 

Mariner hits the maximum load factor of 3 during the lower turn. It can be deduced 

that a stronger airframe, which can allow for a higher load factor, has the potential to reduce 

further the minimum wind speed required. Besides, the limit in �*b , of 0.5 s
-1

 is reached, which 

suggests that enlarging pitch control surfaces could also play a positive role. The rolling rate is 

already at its maximum for Mariner and no further computation is made. 
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Figure VII.6: Evolution of the inertial speed, the airspeed and the local wind speed encountered by 
Mariner along its optimized path, pictured in Fig. VII.4. 

Compared to the case computed earlier for Mariner and displayed in Fig. V.13, the 

vehicle has less inertia and therefore the evolution of the airspeed and the inertial speed are 

further out of phase. It is to be noticed that speeds, either air or inertial-based, are 

comparatively lower than that of the DT-18.  

VII.1.3 Cloud Swift 

The third vehicle considered is Cloud Swift, which is of significantly bigger scale 

compared to the two previous UAVs. Although the gliding performances of Cloud Swift stand 

out and would obviously play in its favour, it may be hampered precisely by its large span, 

during the lower turn. Beyond the comparison with the two other UAVs, simulations with 

Cloud Swift would provide an insight into DS for UAVs of the upper range. Indeed, at 4.32 

metres of span, the analogy with the albatross may start to fade and it is of particular interest 

to assess whether or not DS can be scaled-up to bigger geometries.  
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Figure VII.7: Energy-neutral open loop obtained for Cloud Swift. It takes 8.12 seconds to complete the 
cycle that is achieved for a minimum required friction velocity of 62.4 cm.s

-1
, which corresponds to a 

wind strength of 10.52 m.s
-1

 at a height of 10 metres. The vehicle is pictured at a 1:1 scale. 

The minimum wind friction velocity required for Cloud Swift is 62.4 cm.s
-1

, which 

represents a wind speed of 10.52 m.s
-1

 at 10 metres height. The lowest altitude (2.06 metres) is 

reached at the end of the trajectory, where the vehicle is banked at 46.2° to the left. The overall 

net direction of travel is 133.6°. The flight path amplitude is the greatest so far, and so is the 

maximum altitude reached. 
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Figure VII.8: Evolution of the bank angle, the lift coefficient and the load factor with respect to time, for 
Cloud Swift, for the case pictured in Fig. VII.7. 

Yet, it can be observed in Fig. VII.8 that both the evolution of the bank angle and of the 

coefficient of lift show piecewise linear patterns. The bank angle hits the maximum rolling rate 

limit, which is quite low at 30°/s for Cloud Swift. Hence, the wind strength required for Cloud 

Swift could be lowered if the maximum rolling rate was increased, all the more as the vehicle is 

hampered by the constraint during most of the cycle. Besides, the coefficient of lift also reaches 

its maximum rate limit.  
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Figure VII.9: Evolution of the inertial speed, the airspeed and the local wind speed encountered by Cloud 
Swift along its optimized path, for the case pictured in Fig. VII.7. 

Since Cloud Swift appears to be rather restricted in its DS evolution, another run was 

performed by increasing the limit maximum rolling rate, first to 60°/s and then to 90°/s. The 

vehicle can reasonably achieve a higher rate of roll, by enlarging aileron surfaces, without 

sacrificing aerodynamic performances or adding too much weight. Besides, the 30°/s limit is 

somehow a conservative value, obtained from the literature [70]. Therefore, the limit in rate of 

roll is increased without modifying any other parameter, in order to unlock the real DS 

potential of Cloud Swift. 
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Figure VII.10: Energy-neutral open loop obtained for Cloud Swift for	Ç�b Ç ≤ 60°/1. It takes 6.01 seconds to 

complete the cycle that is achieved for a minimum required friction velocity of 52.2 cm.s
-1

, which 
corresponds to a wind strength of 8.80 m.s

-1
 at a height of 10 metres. The vehicle is pictured at a 1:1 scale. 

The resulting trajectory is much closer, in its overall aspect, to that obtained for 

Mariner than before. The minimum wind friction velocity is quite lowered at 52.2 cm.s
-1

, which 

represents a 16.35 % improvement from the previous case. The subsequent wind speed at 10 

metres height is 8.80 m.s
-1

. The minimum altitude is also lowered to 1.86 metres, down from 2.06 

metres. It is reached at the end of the trajectory, where the vehicle is banked at 39.2° to the left. 

Hence, relaxing the constraint on the rate of roll has enabled Cloud Swift to turn at a lower 

altitude, reached for a reduced bank angle. The overall net direction of travel is 132°. The 

overall flight path amplitude is lowered compared to the previous run and so is the time of 

flight, down to 6.01 seconds from 8.12 seconds. More aggressive banking capabilities translate 

into a narrower evolution.  

A further improvement can be achieved by increasing the maximum rolling rate to 

90°/s. Yet, it is quite marginal as the corresponding wind friction velocity is then 51.1 cm.s
-1

, 

only 2 % better than the 60°/s case. All variables were quite similar in their evolutions and it 

was chosen to only display results relative to the 60°/s case. 
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Figure VII.11: Evolution of the bank angle, the lift coefficient and the load factor with respect to time, for 
Cloud Swift, with a maximum rolling rate of 60°/s, corresponding to the flight path pictured in Fig. VII.10. 

Another limitation arises, as can be observed from the evolution of variables, plotted 

in Fig. VII.11. Indeed, the maximum rate in coefficient of lift is reached again and �* also hits 

the maximum value of 1 for a significant fraction of time, during most of the higher part of the 

curve. This suggests another way of improvement from the baseline design of Cloud Swift, 

which would focus on increasing the maximum	�*. Yet, a redesign of the wing section may 

hamper the best lift to drag ratio, such that a first approach could consist in controlling flaps 

deployment, when a high �* is required. This usually occurs at low airspeeds, such that gains 

from the higher �* should easily overcome the penalty induced by the increased drag. This 
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would add a single control variable and would allow to play with different aerodynamic polar 

while keeping a conventional design. It would constitute a promising study case which would 

approach the concept of dynamic flaps deployment.  

 

Figure VII.12: Evolution of the inertial speed, the airspeed and the local wind speed encountered by Cloud 
Swift along its optimized path, for a maximum rolling rate of 60°/s, corresponding to Fig. VII.10. 

Compared to the case of restricted roll rate, the new trajectory is flown at a lower 

average airspeed. Compared to other vehicles, Cloud Swift achieves its energy neutral trajectory 

for less favourable wind conditions, which is a significant result that is discussed below.  

VII.1.4 Discussion on Vehicle Performances 

Different results regarding the energy-neutral open loops obtained for the three vehicles are 

summed up in Table VII-1.  

Since Mariner was designed in order to minimize the wind strength required [67], it 

can serve as a baseline case for comparison. A first observation is that the DT-18 is not 

especially suited for DS flight. Indeed, the wind strength required is significantly higher than 

all other cases and variables weren’t observed to be limited by any specific rate constraint. 

The maximum altitude reached by Mariner is significantly lower than that of the DT-

18, 11.8 metres against 17.5 metres. Because of the lower wind strength and the lower altitude, 

Mariner therefore manages an energy-neutral trajectory which requires a lower wind power 

density than the DT-18. It may be correlated to the fact that Mariner needs a lower minimal 

power to be maintained aloft, see Table III-1.  
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Table VII-1: Summary of results regarding the DS trajectory obtained for minimum 
required wind friction velocity. 

Variable 
DT-18 Mariner 

Cloud Swift 
(30°/s) 

Cloud Swift 
(60°/s) 

K∗ (cm/s) 76.0 56.7 62.4 52.2 |P/|-./(m/s) 13.8 9.8 11.7 9.6 

�, (s) 6.90 4.90 8.12 6.01 

T-�� (m) 1.24 1.24 2.06 1.86 

T-�� ��  70 % 50 % 48 % 43 % 

0-./  3 3 3 3 

�-./ (°) 74.8 72.9 60.0 74.4 

���� (°) 142.6 140.6 133.6 132.0 

  The lowest altitude reached by the DT-18 accounts for 70 % of the span, while Mariner 

manages to reach the same lowest altitude which is only 50 % of its span. The DT-18 is banked 

at a higher angle (55°) at its lowest altitude. It may be interpreted as a way to reduce the radius 

and the amplitude of the lower turn and therefore to limit the parasitic drag losses that occur at 

high airspeed. Our interpretation is that, in the framework of DS, the DT-18 sacrifices too much 

gliding performances for the sake of a reduced size. It has to fly at a rather high airspeed in 

order to be able to reach favourable wind strength at high heights and hence has to bank 

aggressively during the lower turn to avoid losing momentum. This manoeuvre induces some 

performance penalty, due to the windward acceleration during the lower turn, on top of the 

parasitic drag.  

Although different designs could be investigated for small fixed-wing UAVs, the 

deterioration of aerodynamic performances does not shed a promising light on the exploitation 

of DS on rather flat surfaces by very small UAVs. Yet, other environments, where the wind 

shear is restricted to limited areas, such as the leeward side of buildings could inversely favour 

small designs. 

However, at the other extremity of the range, results are rather promising. Once the 

flight path limitations due to rolling rate constraints are fixed, Cloud Swift can actually exploit 

DS for a wind friction velocity 13 % lower than Mariner. It must be nuanced by the fact that 

Cloud Swift reaches a maximum altitude of around 18 metres, while Mariner does not exceed 12 
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metres. Hence, the maximum wind strength encountered is not that different, but still at the 

advantage of Cloud Swift, which encounters a maximum wind speed |P/|-./ of ~9.6 m/s at the 

top of the path, while Mariner sees winds of ~9.8 m/s. The wind power density required by 

Cloud Swift is hence lower.  

It does not put the design of Mariner into question as the authors voluntarily limited 

its span to 2.5 metres and imposed that the vehicle could be hand-launched [67]. Still, the 

interpretation of the comparison with Cloud Swift is not especially intuitive since the tentative 

explanation of the lower in-flight required power is not verified in this case. Quite the contrary 

actually, since Cloud Swift requires, for static flight, a minimum power that is more than three 

times that of Mariner, see Table III-1. Therefore, Cloud Swift exploits lighter winds even though 

it requires more power to balance drag losses. So the minimum required power isn’t the driving 

parameter regarding the feasibility to exploit DS. Yet, the right consideration may have to be 

with minimum sink rate, as it is for thermal soaring or slope soaring [95], rather than minimum 

required power. Even though the two quantities are trivially related, the feasibility to exploit a 

thermal is theoretically assessed by comparing the vertical thermal velocity to the minimum 

sink rate of the vehicle. In this respect, Cloud Swift still has an edge over Mariner, with a 

minimum sink rate of 0.39 m.s
-1 

(see Table III-1), against 0.42 m.s
-1

 for Mariner. 

On the lower part of the flight path, the minimum altitude reached by Cloud Swift is 

higher than for Mariner, and accounts for 43 % of its span, compared to 50 % for Mariner. This 

proportion is to be put on the fact that the minimum altitude is the sum of the wing tip 

clearance, imposed at 50 cm, and of the vertical projection of the span. Therefore, an increase in 

span can lead to a decrease in height-to-span ratio, even though the vehicle is banked at a 

higher angle. It happens in the present case, with Cloud Swift banked at 39.2° at its lowest 

point, compared to 36.4° for Mariner. It would be interesting, in further studies, to assess the 

influence of the wing tip clearance on the DS operating advantage of Cloud Swift. Anyway, the 

absolute height, encountered by Cloud Swift during the lower turn, is higher than for Mariner. 

In itself, it represents adverse conditions to DS flight, even though the increased span 

contributes to increase the lift-to-drag ratio. 

To sum up, compared to Mariner, Cloud Swift exploits more adverse conditions (ie 

lower wind friction velocity) along a path that sees lower wind strength at the top of the curve. 

Hence, the increased mass, due to the bigger scale, as well as the minimum height penalty, 

induced by the higher span, can be overcome by refined aerodynamics (higher (L/D)max, lower 

Vzmin), which enables Cloud Swift to maximize the energy extraction at minor parasitic expense. 
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Our results suggest that the DS scope could be enlarged by using UAVs of larger size 

with improved aerodynamic performances. The upper edge of that trend will be reached when 

the aerodynamic benefits of increasing the span are cancelled by the minimum height penalty. 

Besides, since the version of Cloud Swift used is not especially lightly built, using large 

lightweight planforms of the size of Cloud Swift could enable to lift higher payloads by DS. 

VII.2 Variation in DS performance 

VII.2.1 Sensitivity to Surface Roughness Length 

The way the surface roughness length 	T� influences the required wind strength is of 

particular interest as 	T� is representative of irregularities of the surface and therefore of the 

type of terrain where the vehicle could possibly exploit DS. Besides, the relationship between 

the net travel heading ����, with respect to the wind, and the wind strength required is also of 

particular interest. 

Therefore, from the baseline case study of Mariner, presented in VII.1, the roughness 

length is altered from its value of 1 cm. A 0.4 mm value is chosen to approximately represents 

the roughness length of the open sea, while 25 cm is representative of high crops. Besides, the 

net travelling direction ���� is not set free anymore, but imposed through an added constraint. 

The ground clearance was fixed at 50 cm regardless of the chosen roughness length. Figure 

VII.13 displays results under the form of a polar plot. The radius is representative of K∗, while 

the angle is given by ����.  

Some discontinuities can be observed on the polar plot, especially marked on the red 

curve. Those happen because the optimization methodology, from one calculation point to the 

following one, identifies a better family of solutions and suddenly changes many of its 

variables. Such a discontinuity in the objective function, 	K∗ in the present case, occurs due to 

the local nature of optimums yielded by the solver. If only global optimums were found, the 

transition between two calculation points could still lead to differences in nature between flight 

paths, but the objective function should be continuous as long as an optimum exists. In the 

current case, variables of the next calculation step are initiated by using results of the previous 

one and then passed to the solver with a 0.5°.variation in the constrained 	���� .This 

methodology entails solutions that therefore depend on the set of initiated variables, due to the 

local nature of the optimum point, and that hence have the potential to be improved. This 

happens suddenly for a given 	����, when the solver switches from one family of solution to 
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another. The fundamental difference between trajectories of different families is illustrated in 

Fig. VII.14, where three types of flight path are displayed, each being optimal for a certain 

range of ����. 

 

Figure VII.13: Evolution of the required friction velocity K∗ (radius in m/s), with the net travelling 
direction	���� , for different surface roughness	T�. In blue, 	T�=0.4 mm, in purple 	T�=1 cm (baseline case) 
and in red, 	T�=25 cm. Green dots correspond to simulation cases of unconstrained in	���� , which yield, 
for each value of	T� , the lowest	K∗. 

All three curves of Fig. VII.13 are obtained by starting the iteration in ���� from 

respective simulation cases of unconstrained	����, marked by green dots. Solutions are then 

obtained by either increasing or decreasing	����, through the additional constraint. It can be 

observed that all discontinuities correspond to a sudden improvement of the objective function 

in the direction of the iteration in 	����. Going through 	���� calculations an opposite way 



From Albatross to Long Range UAV Flight by Dynamic Soaring 168
 

 

would therefore yield different curves at the neighbourhood of the observed discontinuities, 

due to the same effect. 

To sum up on the matter of discontinuities in the objective function, each calculation 

point corresponds to a consistent trajectory that represents a local solution. In the worst case, a 

better optimum than the one actually found is available. Before those discontinuities, relative to 

the iteration direction, the true optimum could belong to the family of curves corresponding to 

the other side of the discontinuity. Each discontinuity can therefore be interpreted as a region 

of uncertainty regarding the true optimum. 

As it was determined by the non-dimensionalization study in Chapter VI, the 

minimum required friction velocity does not vary with	T�. It indeed remains at 56.7 cm.s
-1

, 

regardless of the roughness length, because air relative kinematics remains the same when only 

the roughness length is varied. Yet, in the earth-relative point of view, those trajectories 

translate differently. It can be seen for instance, that the net heading angle which corresponds 

to the minimum wind friction velocity, is shifted leeward when the roughness length decreases. 

Besides, it is all the more difficult for the vehicle to progress against the wind when 	T� 

decreases, meaning that the range of feasible 	���� shrinks leeward when 	T� decreases. In Fig. 

VII.13, for a roughness length of 25 cm, Mariner can fly in any heading. The required wind 

friction velocity is then minimal for 	���� around 120° and shows a maximum around 23°. Then, 

a new family of optimal trajectories is found and the vehicle manages to progress against the 

wind, for a friction velocity that remains around 69 cm.s
-1

, regardless of 	����. It should be 

mentioned that if the required net heading is around 23°, the destination can still be reached by 

combining cycles of higher and lower net heading angles that requires lower wind strength.  

As it was mentioned above, the following Fig. VII.14 illustrates the three families of 

optimal trajectories found by the solver. They each correspond to the three continuous regions 

K∗ = X]����^ seen on Fig. VII.13, for T�= 25 cm. The significant disparities in shape between 

the three trajectories explain the discontinuities that can be observed in Fig. VII.13. When the 

vehicle is imposed to travel directly headwind, the trajectory obtained resembles that of the 

closed loop presented in Chapter V, except that there is a small distance gained against the 

wind. It is then feasible to progress directly against the wind, cycle after cycle, at the price of a 

rather small net speed of 0.4 m/s. 
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Figure VII.14: Solution cases corresponding to Fig. VII.13, for	T�=25 cm. Top: net flight path heading 0°, 
directed windward, K∗=69.2 cm/s, N���=0.4 m/s. Middle: net flight path heading 120°, minimal K∗=56.7

cm/s, N���=8.0 m/s. Bottom: net flight path heading 180°, directed leeward, K∗=58.2 cm/s, N���=4.8 m/s. 
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The main result is to highlight that there exists a roughness length which permits the 

vehicle to progress against the wind. Inversely, the vehicle ability to progress against the wind, 

and therefore to fly in any heading on the long term, is highly dependent on the surface 

roughness length. This ability is hampered when the terrain has a lower roughness length. 

VII.2.2 Sensitivity to Wing Tip Clearance 

The issue of minimum ground clearance is of particular importance because it calls 

attention to the antinomic tendency between safe operations and favourable DS conditions. 

Therefore, investigating the influence of the ground constraint on DS performances may help 

to determine a compromise. The same methodology as before is adopted so that from the 

baseline case study of Mariner, presented in VII.1, the ground clearance is altered from its value 

of 50 cm. The roughness length was fixed at 1 cm, regardless of the chosen ground clearance. 

Results are presented in Fig. VII.15. Each of the three curves shows, at their extremum, 

an asymptotic behaviour around certain values of 	���� , where the required 	K∗  sharply 

increases to suggest a diverging behaviour. Those values of 	���� correspond to the extremum 

in feasible ���� that Mariner can exploit by DS, respectively to each ground clearance imposed. 

The vehicle cannot orientate its net heading further windward of those values. It can be 

observed that the vehicle covers a wider ���� range when the ground clearance is lower. 

Besides, for each available ����, the required friction velocity is reduced when the ground 

clearance is lower. Furthermore, the net travelling angle that sees the minimum required 	K∗, 
marked by green dots on Fig. VII.15, moves windward when the ground clearance reduces. 
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Figure VII.15: Evolution of the required friction velocity K∗ with the net travelling direction	���� , for 
different ground clearance	;<6�.� . In blue, ;<6�.�=0 cm, in purple ;<6�.�=50 cm (baseline case) and in red, 
;<6�.�=1 m. Green dots corresponds to the simulation case unconstrained in	���� , which yield, for each 
value of	;<6�.�  , the lowest	K∗. 

This indicates overall that when the vehicle is allowed to fly closer to the surface, it 

can exploit DS at lower wind strength and for a wider range of net travelling angles. Still, even 

when the ground clearance is set to zero, virtually allowing wingtips to touch the surface, 

Mariner is not able to make any headway against the wind. Indeed, the net travelling angle does 

not go below 111°. 

VII.3 Thrust-Augmented Dynamic Soaring 

The study case approached by varying the surface roughness and the ground clearance 

underlines that flying against the wind by pure DS flight requires a combination of high surface 
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roughness and low ground clearance. On top of that, requirements in terms of wind strength 

are sometimes demanding and the likelihood to meet favourable conditions can be assumed to 

be rather low. Rather than expecting a complete provision of the vehicle energy needs by the 

wind; those could be only partially covered by DS flight, while the vehicle would provide the 

rest on its own power. Such a configuration would widen the scope of DS application, by 

lowering requirements related to environmental conditions, while still benefiting from the 

same energy-harvesting principles. A thrust-augmented DS study case is presented before 

exposing some range-improvement charts.  

VII.3.1 Basic features 

The principle of adding thrust (J) as a third control variable is introduced in Chapter 

VI. In the following study, inspired by the baseline case obtained in VII.1 for Mariner in pure 

gliding flight, K∗ is arbitrarily decreased from the minimum required, 56.7 cm.s
-1

, down to 47.5 

cm.s
-1

, so the wind strength is 8.00 m.s
-1

 at 10 metres height The wind friction velocity is not the 

objective function anymore and is determined as an input to the optimization problem.  

 

Figure VII.16: Thrust-augmented-energy-neutral open loop obtained for Mariner, achieved within 4.86 
seconds, for K∗ = 47.5 cm.s

-1
. The pink-coloured dots are proportional, in size, to the intensity of the 

thrust provided by the vehicle. The vehicle is pictured at a 1:1 scale. 

The objective function is to minimize the energy consumption per unit distance 

travelled (��4), that is defined in Eq.VI.46. The corresponding trajectory is shown in Fig. VII.16, 
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with the variation of the thrust also pictured along the path. The flight path of minimal ��4 is 

performed with thrust applied during the climb, with a peak reached at the steepest climb 

slope. The maximal thrust intensity accounts to just under 5 % of the weight. The ��4 obtained 

represents only 45 % of ��01�-��, suggesting that, under flight conditions specified by Fig. 

VII.16, the range could be more than doubled. 

Subsequent variables, relative to Fig. VII.16, are plotted in Figs. VII.17 and VII.18. It 

shows the evolution of the thrust with respect to time and relative to other control and state 

variables. It can be observed that the peak in thrust occurs when wings are close to level, in the 

steepest part of the climb.  
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Figure VII.17: Evolution of �, �* and J with time, for Mariner, along the flight path that minimizes	��1. 

 

Figure VII.18: Evolution of the altitude and ��  with time, for Mariner, along the flight path that 

minimizes	��1. 
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VII.3.2 Range Sensitivity to the Wind  

Since DS flight is investigated as a way to enhance the vehicle range and endurance 

through the exploitation of wind, it is necessary to compare DS simulations with appropriate 

baseline cases. The approach undertaken in this part is to compare DS-induced performances 

with the nominal range of the vehicle in the presence of wind. Basic nominal performances 

calculations are introduced in Eq. III.4 and Eq. III.8 for the endurance and the range 

respectively. However, those are valid in still air and one may wonder how those vary with 

wind. Besides, as DS flight requires the presence of wind anyway, it is only consistent to 

compare DS-induced performances with wind-altered performances, before concluding on the 

eventual advantages of DS flight. The vehicle considered here is Mariner. 

It has been presented earlier that endurance is directly related to the minimum sink 

rate of the vehicle. That latter parameter will not be influenced by the presence of horizontal 

wind, which basically means that the baseline maximum endurance of a vehicle would remain 

identical regardless of the presence of horizontal wind. However, the vehicle will be carried 

away by the wind during its flight. So if the endurance performance is required in association 

with the coverage of a specific area on the ground, the conclusion that the endurance does not 

depend on the wind strength is not so obvious. Still, let’s try to address this question without 

calculations, but by conceptualizing a vehicle gliding in the wind. The endurance of the vehicle 

won’t be affected if the vehicle manages to sustain its minimal sink rate. This functioning point 

is associated, among other parameters, to a specific airspeed, which would be called the 

airspeed of minimum sink rate. As long as the wind strength encountered is lower than the 

airspeed of minimum sink rate, the vehicle can make headway against the wind while 

maximizing its endurance. Hence, a closed trajectory, with respect to earth, can be flown 

without sacrificing the endurance. The extreme case of this later consideration happens if the 

wind speed is equal to the airspeed of minimum sink rate. In that case, the vehicle can face the 

wind, being motionless with respect to earth. It can be seen from Fig. III.9 that, in any case, the 

speed of minimum sink rate is just above 8 m.s
-1

 for Mariner, which gives an order of magnitude 

of the maximal wind strength the vehicle can handle without compromising on endurance. It 

can then be concluded that, unless specific cases, the endurance does not depend on the wind 

strength. 

The case of the range is different. It refers indeed to a distance, while the vehicle flies 

with respect to the surrounding mass of air. The following lines detail a methodology that 

provides the functioning point of maximal range, for a vehicle in static flight within a windy 
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environment. A top view of that configuration case is provided by Fig. VII.19, the vehicle is 

flying in a straight line. 

 

Figure VII.19: Top schematic view of the triangle of speed, between inertial speed, wind speed and 
airspeed, for a given inertial speed heading and a given wind speed.  

The ratio between the distance flown, relative to earth, and the theoretical loss of 

height in gliding flight is expressed in Eq. VII.1. 

 731�h = ¡N�/& + N�¬&
N�O  ( VII.1 ) 

The vectorial relation between speeds is reminded in Eq. VII.2. 

 N �� = N �. + P   � ( VII.2 ) 

It breaks down into three scalar equalities, detailed in Eq. VII.3. 

 �N�/ = N./ − PFN�¬ = N.¬N�O = N.O
 ( VII.3 ) 

By combining Eq. VII.1 and Eq. VII.3, the ratio between the distance flown and the 

corresponding loss of height is expressed in Eq. VII.4. 
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 731�h = ¡N./& + N.¬& + PF& − 2N./PF
N.O = lN./& + N.¬&

N.O& + PF&
N.O& − 2N./PFN.O&  ( VII.4 ) 

Besides, the equilibrium state is translated into Eq. VII.5, regarding forces involved. 

 
12 �. D. �*. N.& = 2: ��1 �.  12 �. D. �� . N.& = −2: 130 �. ( VII.5 ) 

Hence the lift to drag ratio is expressed in Eq. VII.6. 

 
�*�� = − 1��0 �.  ( VII.6 ) 

The airspeed components relate, by definition, as detailed in Eq. VII.7. 

 
N.O = −N. 130 �.  ¡N./& + N.¬& = N. ��1 �. ( VII.7 ) 

By combining Eq. VII.6 and Eq. VII.7, it directly leads to Eq.VII.8. 

 �*�� = ¡N./& + N.¬&
N.O  ( VII.8 ) 

Hence, be replacing Eq. VII.8 into Eq.VII.4, the ratio between distance flown and loss 

of height is expressed in Eq. VII.9. 

 731�h = l®�*��¯& + PF&
N.O& − 2N./PFN.O&  ( VII.9 ) 

Equation VII.9 underlines that, with the presence of wind, the ratio between distance 

travelled and height lost is no longer equal to the lift to drag ratio. Rather, it involves, among 
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others, the wind speed. Yet, the ratio detailed in Eq. VII.9 is directly related to the in-flight 

energy-expenditure, as it is reminded in Eq. VII.10. 

 9�/���f��g�� = 2: ∗ ℎ = 2: ∗ ℎ
731� ∗ 731� ( VII.10 ) 

The Eq. VII.11 is therefore obtained, specifying the minimum energy consumption per 

unit length travelled, which guarantees the maximal range. 

 ��01�-�� = 2:(731� h⁄ )-./ ( VII.11 ) 

By replacing Eq. VII.9 in Eq. VII.11, the minimum consumption writes down as in Eq. VII.12. 

 ��01�-�� = 2:
�l��*���& + PF&

N.O& − 2N./PFN.O& �
-./

 
( VII.12 ) 

In order to maximize the range in the presence of wind, the vehicle must not fly at the 

maximum lift to drag ratio anymore, but rather maximize the expression into brackets detailed 

in Eq. VII.12. Note that if the wind PF is zero, Eq. VII.12 does well merge into Eq. III.7. The 

result highlighted by Eq. VII.12 is well known by glider pilots, which must adapt their airspeed 

to the wind intensity in order to optimize their range. This also applies when the motion of air 

is vertical, when meeting updrafts or downdrafts, albeit speed components obviously right 

down differently. An application is given by Chakrabarty et al. [96], which focuses on 

exploiting an a-priori map of vertical components of the air using heuristic search. Adapting 

the airspeed to in-flight conditions is part of the problem. In the present case, conditions in 

terms of flight path heading and wind speed are known, the objective consists in maximizing 

the range and is formalized in the Eq. VII.13.  

 ?�Y323T8    q®�*��¯& + PF&
N.O& − 2N./PFN.O& t ( VII.13 ) 

It is a relatively straightforward optimization problem, as the airspeed is the only 

variable at stake. A simple methodology to find the extremum is derived in the following lines. 

First, an expression for the x-component N./ of the airspeed is sought.  
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By definition, components of the horizontal inertial speed relate to the inertial flight 

heading angle as given in Eq. VII.14. 

 ��0 �� = N�¬N�/ ( VII.14 ) 

Equation VII.15 is obtained by substituting Eq. VII.3 into Eq. VII.14. 

 ��0 �� = N.¬N./ − PF ( VII.15 ) 

Equation VII.16 is given by definition. 

 N./& + N.¬& = (N.  ��1 �.^& ( VII.16 ) 

Equation VII.15 and Equation VII.16 form a system with two unknowns, N./ and N.¬, 

summed up in Eq. VII.17. 

 � ]N./ − PF^ ��0 �� = N.¬N./& + N.¬& = (N.  ��1 �.^& ( VII.17 ) 

The x-component of the airspeed can be found by solving the quadratic Eq. VII.18, 

obtained from Eq. VII.17. 

 N./&]1 + ��0& ��) − N./  2 PF ��0& �� + ØPF& ��0& �� − (N.  ��1 �.^&Ù = 0 ( VII.18 ) 

Finally, the process to maximize the expression stated in Eq. VII.13 is to iterate 

through discrete values of the airspeed N.. Steps are enumerated as follow. First, for a given 

value of the airspeed N., the corresponding aerodynamic coefficients at equilibrium are trivially 

computed through Eq. VII.19. 

 ��� = ��� + ��%�* + ��&�*& + ��'�*' + ��(�*(
¡�*& + ��& = 2:1 2� �. D. N.&  ( VII.19 ) 
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Then, the corresponding air relative glide angle is computed out of the aerodynamic 

coefficients �� and �*, as follow in Eq. VII.20. 

 �. = − ���0 ���*  ( VII.20 ) 

So it directly gives Eq. VII.21, providing the air relative sink rate. 

 N.O = N. 130 �.  ( VII.21 ) 

The final step is to find N./ by solving Eq. VII.18. Therefore, by knowing N./ and N.O, 

the expression defined in Eq. VII.13 can be estimated. And so on so forth for various iterations 

on the input value of the airspeed N., until a maximum is reached.  

Therefore, for any given travel heading �� with respect to the wind direction, and for 

any given wind strength PF, the airspeed corresponding to the minimal consumption per unit 

length travelled can be found. And so is the related consumption.  

This methodology is applied, for Mariner, in a specific case, in order to illustrate the 

influence of PF and �� on the achievable range in straight flight. Since the vehicle’s range 

depends on the capacity of its battery, which is undetermined, the ratio between the range with 

wind and the nominal range enables to draw performance comparisons. It can be expressed in 

Eq. VII. 22. 

 

��0:8 ���3� = ��0:8 B3�h P30e@�230�u C�0:8 =
�l��*���& + PF&

N.O& − 2N./PFN.O& �
-./(> 7⁄ )-./  ( VII.22 ) 
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Figure VII.20: Evolution of the range ratio versus the flight heading, for a given wind. Chart obtained for 
Mariner, flying in straight line, under a wind strength of 8 m.s

-1
. 

The influence of the wind on the achievable range is clearly depicted on Fig. VII.20. It 

displays that if Mariner flies straight into 8 m.s
-1

-strong headwind, its maximum range would be 

reduced by more than half compared to its nominal range without wind. On the opposite, if 

Mariner flies completely leeward, its range can almost be doubled. The overall “egg-shaped” 

pattern obtained is not a circle, as it would be if the vehicle was flying at a constant airspeed in 

all directions. An interesting aspect of the alteration of range performance can be observed. It 

concerns the case where the vehicle needs to follow a heading on the ground which is oriented 

crosswind, in this case, ��=90° (or 270°). It can be observed that the associated range is 

significantly reduced, by more than 25% compared to the nominal case. The proper explanation 

is that the vehicle is actually facing the wind to some extent in order to maintain an inertial 

crosswind heading. The airspeed has a component against the direction of the wind, which 

comes at a direct range penalty. A true air relative crosswind flight happens when the airspeed 
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is orthogonal to the wind. In this latter case, the range along the direction orthogonal to the 

wind is unaffected, but the vehicle is also carried away by the wind in the process, which 

means that the overall range is augmented. It happens, in Fig. VII.20, for ��=132° (or 228°), 

where it can be observed that the crosswind component of the range ratio is equal to 1. Stated 

otherwise, it is the only inertial heading that gives the maximum range in the crosswind 

direction.  

Now that the methodology to find the maximum range of a vehicle in straight static 

flight, under windy conditions, is laid down, it can be applied for the sake of comparison with 

DS-enabled range.  

VII.3.3 Range enhancement by DS 

For this last study case, the range in straight line is compared to the range obtained by 

DS, for various heading angles and for several wind speeds. The objective function is still to 

minimize	��4. However, operational parameters were chosen carefully to match potential 

realistic operational conditions. Indeed, the aim is to get to a consistent quantification of the 

improvement DS could provide to the long range flight of a UAV. 

 The vehicle is Mariner, with a virtual payload of 2 kg, such that the overall mass is 4 

kg. The surface roughness length T�=2 cm is chosen in order to match that of an open terrain, 

covered with low grass [76]. The altitude is limited directly through a minimal altitude 

constraint at the centre of gravity, as it is assumed it corresponds to a more realistic operational 

case than monitoring the wing tip clearance. A conservative value of 2 metres was chosen, such 

that even banked to the maximum, Mariner would clear the ground, at its wing tips, by a 

margin of at least 75 cm. Besides, since DS results would be compared to a straight line case, it 

is also necessary to limit the maximal altitude, otherwise the vehicle could opt for unlimited 

heights to seek for stronger winds and the problem would be unconstrained. We decided that 

1000 metres was a fair order of magnitude, for both the upper validity bound of our log-wind 

profile model and the operational altitude of a small UAV. Other than that, all other parameters 

were kept identical. 

The metric plotted consists in the range ratio, defined in Eq. VII.22. Straight line 

results are obtained by applying the methodology applied developed in VII.3.2, with a further 

degree of freedom since the altitude can vary between 2 and 1000 metres. A simple comparison 

loop is used to determine the altitude which optimizes the straight-line range. As for DS results, 

the net heading angle ���� is incremented step by step by intervals of 0.2°. Variables of the next 
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calculation point are initiated by using results from the previous calculation point, leading to 

potential discontinuities, in the objective function, related the local nature of the optimum 

found, as discussed earlier. 

 

Figure VII.21: Variation of the range ratio with respect to the net heading angle, compared to the straight 
line case, for K∗=66 cm/s, which corresponds to a wind strength of 10 m/s at an height of 10 metres. In 
green, results from straight line, in blue, results from DS. 

A first simulation is run for a wind friction velocity just below the minimum wind 

strength required for DS gliding flight. To begin with, the straight line case, seen in Fig. VII.21, 

displays the leeward shift that was described earlier. Yet, a variation in curvature can be 

noticed for ���� ~ ±135°. It corresponds to the net heading angle at which the vehicle swap 

from a straight line at the lowest altitude to a straight line at the highest altitude. On the 

windward part of the curve, the vehicle flies as close as possible to the surface to get the lowest 

headwind as possible. On the contrary, on the leeward side, the vehicle takes advantage of the 
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strongest possible tailwind to increase its range. Regarding DS results, the range shows a 

significant maximum for ���� around 135°, which corresponds to values of the heading angle 

that were minimizing the required wind strength. It hence reinforces the assertion that DS 

flight largely favours flight headings in this area. Besides, it is also the zone that was identified 

by biologists as the predominant travel heading of albatrosses under strong wind conditions 

[29]. At the maximum, the range provided by DS is more than a 1000 times the straight line 

range. It almost diverges because the wind strength is close to that which allows virtually 

perpetual flight. An important aspect is that for windward flight headings, the DS curve merges 

with the straight line curve, suggesting that when heading ±45° into the wind, the best option 

is to fly straight, at the minimum altitude. DS proves more efficient than the straight line for 

some flight paths that have a windward facing component. This underlines that DS can be 

beneficial, even in some cases when the flight path has a windward component. The advantage 

of using DS versus straight line in those configurations is not to be underestimated by the log-

scale applied, as the range offered by DS can be up to 30 % higher. For leeward flight headings, 

even though the vehicle flies at the maximum altitude in straight line, the DS flight provides a 

significant range advantage all the way until ����=±180°, where the two curves join.  

 



From Albatross to Long Range UAV Flight by Dynamic Soaring 185
 

 

 

Figure VII.22: Variation of the range ratio with respect to the net heading angle, compared to the straight 
line case, for K∗=59.4 cm/s, which corresponds to a wind strength of 9 m/s at an height of 10 metres. In 
green, results from straight line, in blue, results from DS. 

When the wind strength decreases to 9 m/s at 10 metres, as displayed in Fig. VII.22, the 

maximum of the DS range shrinks to only 5 times the nominal zero wind range, which is also 

almost 5 times the straight line range. All other aspects of the curves mentioned earlier are 

repeated here, to the exception of flight paths directly down wind, where the DS range is lower 

than the straight line range. This illustrates very well the fact that the optimum found by the 

optimization routine can be local and can therefore be outperformed by a trajectory which is 

also a solution of the optimization problem. Even though DS trajectories merge into a straight 

line, when the flight path orientates windward, it does not happen identically leeward. 
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Figure VII.23: Variation of the range ratio with respect to the net heading angle, compared to the straight 
line case, for K∗=54.7 cm/s, which corresponds to a wind strength of 8 m/s at an height of 10 metres. In 
green, results from straight line, in blue, results from DS. 

For a wind strength of 8 m/s at 10 metres, as presented in Fig. VII.23, the maximum in 

DS range shrinks to around 2 times the range of the straight line and the heading angle of that 

maximum is shifted windward. Overall, DS becomes advantageous over the straight line for 

only ~50 % of the flight headings. Besides, the gap, leeward, between straight line and DS, 

increases. 
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Figure VII.24: Variation of the range ratio with respect to the net heading angle, compared to the straight 
line case, for K∗=47.9 cm/s, which corresponds to a wind strength of 7 m/s at an height of 10 metres. In 
green, results from straight line, in blue, results from DS. 

For a wind strength of 7 m/s at 10 metres, as displayed in Fig. VII.24, the improvements 

in range do not seem high enough, on most of the compass rose, to justify the complexity of DS 

flight. To the exception of flight path near ����=±120°, where DS trajectories still manage 

around 50 % better range compared to straight line.  
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Figure VII.25: Variation of the range ratio with respect to the net heading angle, compared to the straight 
line case, for K∗=41.06 cm/s, which corresponds to a wind strength of 6 m/s at an height of 10 metres. In 
green, results from straight line, in blue, results from DS. 

For wind strength of 6 m/s at 10 metres, as seen in Fig. VII.25, the difference in range 

between straight line and DS is marginal and do not justify the use of DS on any heading of the 

compass rose. An interesting aspect at leeward headings is that the DS curve finally merges 

with the straight line curve. The DS optimization process indeed yields a straight line at the 

maximum altitude for those headings. The subsequent discontinuity in the DS range curve 

confirms the local nature of the optimum before it merges with the straight line curve. 
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VII.4 Summary on DS Performances 

It is first demonstrated that DS is potentially feasible for a wide array of vehicle size, 

with yet significant disparities in required wind strength. It is established that larger vehicles 

could benefit from less favourable conditions. Even though no specific driving aerodynamic 

parameter is outlined, aerodynamic refinements of larger vehicle enable to overbalance their 

induced mass and wingspan penalties. Ideally, lightweight architectures of small wing span, 

low sink rate and high lift to drag ratio would favour DS flight. Practically, some of those 

properties are antinomic and the compromise appears to favour larger vehicles. This result is 

somehow encouraging from an application’s perspective, yet there must be an upper scale to 

that trend and limitations of the point mass model certainly arise when the scale of the 

wingspan becomes comparable to that of the wind gradient.  

As for variations in DS performance, a specific focus is given to two governing 

variables: the ground clearance and the surface roughness length T�. The ground clearance 

directly affects the required wind strength and the array of feasible net travelling angle ����
towards the wind. A reduced ground clearance lowers the required K∗ and widens the range of 

feasible ����. Yet, for T�=1 cm and zero tip clearance, flight headings are still limited such that 

making headway against the wind is not possible. As for T�, in confirmation with the theory 

from Chapter VI, it does not affect the minimum required K∗. Yet it changes the earth-relative 

motion of the vehicle: a rougher surface enables to exploit DS for lower wind speeds and for a 

wider scope of ����, eventually leading to DS opportunities all around the compass rose. 

Therefore, DS performances are intrinsically linked to surface characteristics and sea-surface 

conditions are challenging to exploit. 

In order to widen the range of favourable DS conditions, thrust was added as an extra

control variable. The wind hence only contributes to a fraction of the vehicle’s energy needs. 

When thrust is applied during the upwind climb, the vehicle can take the most out of its 

propelling work by reaching stronger winds. The advantage of DS flight is assessed by 

comparing DS-enabled-range and straight-line-range. Significant improvements can be 

achieved by DS, even when the wind is 30 % lighter than previously required, but there are 

significant variations with ����. Range enhancements are possible even when heading against 

the wind, but when K∗ decreases, the advantage of DS reduces and becomes limited to values 

of ���� where DS is most efficient, around 135°, in accordance with albatross observations 



From Albatross to Long Range UAV Flight by Dynamic Soaring 190
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



From Albatross to Long Range UAV Flight by Dynamic Soaring 191
 

 

Conclusion 

The present work has focused on providing an in-depth analysis of DS flight, by 

detailing the methodology, the understanding and the performances associated with DS 

simulations. It completes past studies on DS by investigating further many multidisciplinary 

aspects associated with the topic and by its intention to give shape to a consistent and 

extensive overview of DS challenges.  

Summary of findings 

An extensive review of the engineering inputs from albatross biology studies is 

undertaken in the first Chapter. Although many publications on DS mention some aspects 

related to the albatross flight, this part aims at gathering in a single document all the pieces of 

information that can raise interest and guidance out of the observation of albatrosses. Then this 

literature review is extended to publications in the domain of in-flight energy extraction. 

A methodology is set up in order to adequately model the flying system and its 

environment. In particular, the choice of a point mass model for the vehicle is explained and is 

quantified for one of the three geometries chosen, through a wind tunnel testing campaign. 

Besides, a methodology to relate wind and ocean surface state is extensively detailed, which 

constitutes a first step towards conciliating wave soaring with dynamic soaring. The main 

contribution from this part is to underline that realistic ocean surface roughness lengths are an 

order of magnitude lower than what has been considered in DS literature so far. Only shallow 

wave trains are considered, representative of a well-developed swell and the hypothesis behind 

the model are developped.  

Equations of motion are derived by beginning to underline the significance of the 

point of view considered. Both earth-relative and air relative systems of EoM are derived before 

selecting inertial equations for the remaining of the methodology. An optimization problem is 

set up, laid out in its structure before a particular focus is given to numerical integration 

techniques required to convert the underlying problem. Collocation methods are presented step 

by step, by highlighting the underlying mathematical hypothesis. The induced parameter 

optimization problem is detailed and numerical values for operational constraints are given for 

each vehicle. The solving methodology and the associated tools are presented with a brief 



From Albatross to Long Range UAV Flight by Dynamic Soaring 192
 

 

description of their mathematical background. The problematic of variable initiation and of 

local optimizer is introduced, to be reminded for results obtained. Eventually, a trajectory of 

similar conditions as in the literature is run before validating the methodology thanks to the 

analogy obtained.  

A specific closed-trajectory is produced to highlight the loitering potential of DS flight, 

as well as to serve as a support for developing an understanding of energy-harvesting 

mechanisms. Local power input expressions are established for various contributions and 

explained in their variations, before integrating those along the whole flight path into evolution 

in total energy. A particular focus is given to wind energy exchange within the boundary layer. 

Periodicity constraints are partly relaxed to get to an open loop which combines the same 

phases of flight as the closed loop. Then a specific study case that optimizes DS within the 

wavy ocean boundary layer model is established. It shows that the methodology of DS flight 

simulation can be applied to a three dimensional moving wind field to produce trajectories that 

associates classical DS with a kind of slope soaring on the forward moving face of wave. The 

positive contribution from the wave updraft is detailed and changes in wave phase periodicity 

are performed.  

Fundamentals of DS flight are then approached by non-dimensionalization of the air 

relative EoM. First with a linear wind profile, as inspired from the literature, then by achieving 

for the first time a non-dimensionalization with a logarithmic wind profile. Several objective 

functions are tested and a thrust-augmented case is introduced. Conditions to equivalences in 

dimensionless solutions are given. On top of providing a strong support for validating the 

simulation methodology, the approach permits to highlight certain remarkable behaviour about 

DS, such as the sensitivity to wing loading and the invariance of the minimum required wind 

friction velocity with the roughness length.  

Then, the focus was given to flight performances by DS. The three different vehicle 

architectures are tested under identical operational constraints, before concluding that the 

planform of the biggest scale is the most promising for maximizing the likelihood of DS flight. 

Then, the influence of the net heading angle, the ground clearance and the surface roughness 

length was established for DS gliding flight. It leads to the conclusion that favourable 

conditions for DS flight over a wide range of heading angles are difficult to meet. Hence an 

alternative is presented by assisting thrust-powered flight with DS. The evolution of that third 

control variable is detailed before DS range charts are produced and compared against the case 

of straight line case.  
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With the benefit of hindsight, this project managed to outline a methodology that 

successfully simulates DS flight. It shows to be rather robust and can accommodate varying 

constraints and objectives. One of the strongest assumptions is the choice of a point mass 

model, which imposes that the operational constraints linked with the vehicle dynamics are 

artificially imposed rather than modelled. Besides, this model reaches its limit when the length 

scale of the wind gradient gets similar to that of the vehicle. This may happen especially during 

the low turn, when the vehicle is banked at low altitude within the zone of strong shear. 

Furthermore, the initiation of variables, before passing the problem to the solver, is also critical 

and may lead to different solutions. It requires a careful approach and eventually a guess of 

what the solution may look like.  

Then, mechanisms of energy-harvesting are properly understood and thoroughly 

detailed. The work of aerodynamic forces is the main parameter at stake and the DS flight path 

is a cycle that orientates those forces successively such that gains overbalance losses. The 

upper turn is the main contributor to the energy gain, through the attitude belly-to-the-wind-

attitude that sees a strong acceleration of the vehicle in the direction of the wind. The lower 

turn is all the more critical as it concentrates the biggest losses. As such, the minimum altitude 

allowed is a key parameter since it directly impacts the wind strength opposed to the vehicle. 

The wind gradient does not alter the local work of aerodynamic forces but plays a role when 

the vehicle kinematics is integrated over the whole flight path, as it introduces disparities in 

wind strength between the top and the bottom of the trajectory. 

Finally, variations in DS performances were quantified against variations in vehicle 

design, ground clearance and surface roughness length, before drawing DS-induced range 

performance charts. A first conclusion is that practical flight applications are favourable for a 

lightweight planform of bigger scale than the albatross, with refined gliding performances. A 

second result is that unless very rough terrain is met, with close ground clearance margins, the 

scope of DS is limited to certain flight headings with respect to the wind. Hence, one approach 

to cope with such limitations is to introduce thrust-augmented DS, where the vehicle provides 

only a fraction of the energy it requires to stay aloft. Results show that the range can be 

improved for a wide range of flight path headings, for winds that are lighter than those 

required for pure gliding DS flight.  
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Perspectives 

Given that even thrust-augmented DS requires rather demanding windy conditions in 

order to stand out performance-wise, the challenge of future DS research is to find solutions 

that lower the required wind strength and hence widen the scope of exploitable environment 

conditions. As such, several direction of research can be followed. 

• Investigate the vehicle planform optimized for lowering the required wind 

strength to exploit DS, without a-priori limitations regarding the vehicle 

design, in order to yield the absolute lowest wind strength exploitable, given 

state of the art designs. Orientate the design towards a planform of bigger 

scale than the albatross. 

 

• Integrate further refined control behaviours, by investigating the potential 

advantage of active flap deflection. Since the vehicle is defined by an 

aerodynamic polar, morphing the polar along the flight path has obvious 

promising prospective, and a simple and known way to do so is to introduce 

flap deflection. Besides, ground effect would also influence the aerodynamic 

polar at low altitudes and it would be interesting to weigh the influence it has 

on DS trajectories by implementing a simple model of ground effect. Also, the 

theme of regenerative soaring can be approached by first investigating the 

influence of a thrust which can be negative, in order to model in-flight energy 

recuperation.  

 

• In the case of DS within a turbulent boundary layer, develop an objective 

function which integrates DS inputs of various frequencies due to different 

wind contributions. Hence, augment classical DS within the mean wind profile 

of the boundary layer with gust soaring contributions that benefit from the 

stochastic turbulent behaviour of the boundary layer. It would be essential to 

model the influence of a local span-wise variation in wind strength on the 

flight dynamics and energetics and hence move to a six-degree-of freedom-

model to fully investigate its influence. 
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• Approach DS within various wind shear regions to benefit from stronger wind 

gradients or from a linear spatial variation. As for the first case, DS on the 

leeward side of a hill, or a building, may benefit from a stronger wind shear, 

without the inconvenience of very close ground proximity. As for the second 

case, it is shown in Chapter VI that a linear wind profile could be exploited for 

much lower wind speeds. An environment where this happens and is rather 

predictable is the so-called jet stream. 

Another area requires further research in order to conclude on the feasibility to 

perform DS for a UAV. The demonstration would be indeed completed when a proper vehicle 

manages to autonomously exploit DS trajectories and when the subsequent energy-harvesting 

mechanisms are measured and validated. To that extent, several directions of research can be 

outlined. 

• Propose a flight control strategy that uses only limited a-priori knowledge of 

the wind field, together with in-flight wind measurements and ground 

proximity sensors in order to autonomously pilot DS trajectories. 

 

• Apply the state of the art DS methodology within a stochastic turbulent 

boundary layer to assess the influence of gusts on the flight path for 

unchanged flight controls and quantify the influence on the energy-

harvesting. Conclude on the feasibility to apply the current DS strategy to the 

real-world. 

 

• Finally, set-up an experiment using a well-quantified platform over an open 

field covered with regular low grass, such as an airfield. The vehicle has to be 

equipped with the appropriate airspeed and GPS sensors to be able to 

reconstruct the local wind speed. The experiment can be guided by a human-

pilot at first, that approximately reproduce DS flight path, and then the 

guidance should be left to an auto-pilot in order to validate the flight path 

strategy. A robust design should be chosen, as the close ground proximity 

would likely induce accidental collisions until the ground clearance constraint 

is well integrated into the flight path management. 
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