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ABSTRACT 29 

Bacterial microcolonies with heterogeneous sizes are formed during 30 

colonization of Phaseolus vulgaris by Pseudomonas syringae. Heterogeneous 31 

expression of structural and regulatory components of the P. syringae type 3 32 

secretion system (T3SS), essential for colonization of the host apoplast and 33 

disease development, is likewise detected within the plant apoplast. T3SS 34 

expression is bistable in the homogeneous environment of nutrient-limited 35 

T3SS-inducing medium, suggesting that subpopulation formation is not a 36 

response to different environmental cues. T3SS bistability is reversible, 37 

indicating a non-genetic origin, and the T3SSHIGH and T3SSLOW subpopulations 38 

show differences in virulence. T3SS bistability requires the transcriptional 39 

activator HrpL, the double negative regulatory loop established by HrpV and 40 

HrpG, and may be enhanced through a positive feedback loop involving HrpA, 41 

the main component of the T3SS pilus. To our knowledge, this is the first 42 

example of phenotypic heterogeneity in the expression of virulence 43 

determinants during colonization of a non-mammalian host. 44 

45 



SIGNIFICANCE 46 

The plant pathogen Pseudomonas syringae requires a type III secretion system 47 

(T3SS) to inject effector proteins into host cells and to cause disease. This 48 

study shows that expression of T3SS genes is activated in a heterogeneous 49 

fashion during colonization of plant tissues. Cell-to-cell differences in T3SS 50 

gene expression are likewise observed in the homogeneous environment of 51 

nutrient-limited culture medium, where an isogenic bacterial population 52 

bifurcates into lineages that express or not the T3SS. Differences in T3SS 53 

expression are non-heritable, are established through the action of a double-54 

negative regulatory feedback loop, and determine differences in plant disease 55 

severity. Phenotypic heterogeneity is therefore a factor that must be considered 56 

when portraying bacterial adaptation to plant niches. 57 

58 



INTRODUCTION 59 

Bacterial infections involve spatial and temporal changes in gene expression 60 

that accompany the migration of pathogens from the site of invasion to target 61 

tissues. Pathogen progression inside the host is therefore accompanied by 62 

physiological adjustments to respond to different stimuli and 63 

microenvironments. However, phenotypic changes are not always deterministic, 64 

directly correlated with stimuli. Stochastic events such as an uneven distribution 65 

of regulators during cell division can produce cell-to-cell differences within a 66 

homogeneous microenvironment. This can lead to probabilistic determination of 67 

certain phenotypic traits, generally known as phenotypic heterogeneity or 68 

phenotypic variation (Davidson and Surette, 2008). 69 

Phenotypic heterogeneity has been known to take place in microbial clonal 70 

populations for decades (Bigger, 1944; Novick and Weiner, 1957). In certain 71 

cases, phenotypic heterogeneity merely reflects the occurrence of cell-to-cell 72 

differences generated by molecular noise. In other cases, however, phenotypic 73 

heterogeneity reflects the occurrence of bistability, the bifurcation of a unimodal 74 

physiological state into two distinct states, generating two bacterial 75 

subpopulations or lineages. 76 

Bistability is usually the consequence of bimodal gene expression, which can be 77 

generated by a positive feedback loop as described in the E. coli lac operon 78 

(Novick and Weiner, 1957) or by a double negative feedback loop as in the 79 

lysis/lysogeny decision of bacteriophage lambda (Novick and Weiner, 1957; 80 

Herskowitz and Hagen, 1980). The literature on bacterial bistable switches has 81 

been enriched with interesting examples in the last decade (Dubnau and Losick, 82 

2006; Davidson and Surette, 2008; van der Woude, 2011; Sánchez-Romero 83 



and Casadesús, 2014; van Vliet and Ackermann, 2015; Uphoff et al., 2016). In 84 

certain cases, the biological significance of bistability remains a mystery. In 85 

other examples, however, subpopulation formation may be viewed either as a 86 

division of labour within the population or as a bet-hedging strategy that may 87 

facilitate adaptation to environmental challenges (Veening et al., 2008). 88 

The importance of analysing phenotypic heterogeneity has been highlighted in 89 

the context of antibiotic exposure for animal and human and in the colonization 90 

of animals (Helaine and Holden, 2013; Arnoldini et al., 2014; Campbell-Valois et 91 

al., 2014; Claudi et al., 2014; Sánchez-Romero and Casadesús, 2014; Manina 92 

et al., 2015; Bram Van den Bergh, 2016; Brian P. Conlon, 2016; Victor I. Band, 93 

2016). In Salmonella enterica pathogens, for instance, phenotypic heterogeneity 94 

has been observed at several stages of host colonization including invasion of 95 

the intestinal epithelium, survival in macrophages, and colonization of the gall 96 

bladder (Stecher et al., 2004; Saini et al., 2010; Bäumler et al., 2011; Stewart 97 

and Cookson, 2012). Other examples that highlight the relevance of phenotypic 98 

heterogeneity in bacterial infections are bistable expression of the cholera toxin 99 

in Vibrio cholerae (Nielsen et al., 2010), and of the NO-detoxification system in 100 

Yersinia pseudotuberculosis (Davis et al., 2015). 101 

Despite increasing evidence supporting the notion that bacterial pathogens 102 

exploit non-genetic variation to adapt to mammalian hosts, little is known about 103 

the occurrence or potential impact of these processes in the adaptation of 104 

bacteria to non-animal hosts. In this work, we have addressed this issue in the 105 

archetypal plant pathogen Pseudomonas syringae (Mansfield et al., 2012). P. 106 

syringae is an academically relevant model pathogen of increasing economical, 107 



impact in agriculture, with recent resurgence of old diseases and emergence of 108 

new ones (Shenge, 2007; Green et al., 2010).  109 

P. syringae enters the plant from the leaf surface through natural openings or 110 

wounds reaching the intercellular spaces of the leaf parenchyma, the apoplast, 111 

where it replicates. In the apoplast, P. syringae uses a type III secretion system 112 

(T3SS) to deliver effector proteins into the plant cell cytosol (Alfano and 113 

Collmer, 1997; Rohmer et al., 2004). Many of these effectors act to suppress 114 

plant defences to allow bacterial colonization (Macho and Zipfel, 2015).  115 

In this study, we show that phenotypic heterogeneity occurs during plant 116 

colonization by P. syringae. Structural and regulatory components of the P. 117 

syringae T3SS display heterogeneous expression within the plant apoplast, and 118 

bistable T3SS expression is detected in the homogeneous environment of 119 

nutrient-limited T3SS-inducing medium. T3SS bistability is reversible, 120 

supporting a non-genetic origin, and generates bacterial subpopulations with 121 

differences in virulence. To our knowledge, this is the first example of bacterial 122 

phenotypic heterogeneity in a non-mammalian host. 123 

124 



RESULTS 125 

Expression of the T3SS is heterogeneous within the plant apoplast 126 

Following the dynamics of fluorescently labelled P. syringae pv. phaseolicola 127 

populations during colonization of Phaseolus vulgaris, we observed that the size 128 

of bacterial microcolonies within the apoplast was heterogeneous (Fig. 1A and 129 

B). Since the apoplast is a complex and multifarious environment, heterogeneity 130 

might reflect adaptation of P. syringae to distinct microenvironments. An 131 

alternative possibility, however, is that heterogeneous colony size might result 132 

from random differences in the expression of virulence factors, as described in 133 

certain animal pathogens (Nielsen et al., 2010; Davis et al., 2015).  134 

To evaluate if apoplast-growing bacteria could display heterogeneous gene 135 

expression, we applied single-cell methods to analyse transcriptional fusions to 136 

gfp of several P. syringae genes. Given the relevance of the T3SS in plant 137 

colonisation by P. syringae, we focused our study on T3SS genes. The choice 138 

was further supported by a report on the necrotrophic plant pathogen Dickeya 139 

dadantii showing that a plasmid-cloned type III promoter displayed phenotypic 140 

heterogeneity under laboratory conditions (Zeng et al., 2012). We generated 141 

transcriptional fusions to gfp downstream of chromosome-located native copies 142 

of three genes encoding T3SS elements: hrpL, encoding an alternative sigma 143 

factor of the extracytoplasmic factor (ECF) family (Fouts et al., 2002), hrcU, the 144 

promoter-distal gene of the HrpL-controlled hrcQRSTU operon, encoding a 145 

structural component of the T3SS (Charkowski et al., 1997), and hopAB1, 146 

encoding a type III secreted effector involved in suppressing plant defences 147 

(Jackson et al., 1999). All three strains displayed wild type virulence (Fig. S1). 148 

Bacterial distribution within a microcolony developing in the confines of the 149 



intercellular spaces of the leaf apoplast is heterogeneous (Fig. S2 and Video S1 150 

and S2) and can thus lead to apparent differences in fluorescence intensity as 151 

judged by microscopic examination. Therefore, to unequivocally associate 152 

potential differences in fluorescence to individual bacteria, we applied single-cell 153 

analyses to apoplast-extracted bacteria. Microscopic analysis on apoplast-154 

extracted bacteria carrying the T3SS gene fusions to gfp revealed strong cell-to-155 

cell differences in fluorescence, supporting that expression of the T3SS genes 156 

is phenotypically heterogeneous within the plant (Fig. 1C and 1D). Bacteria not 157 

expressing the genes were found for all three fusions both by microscopic 158 

examination (Fig. 1C), and by flow cytometry analyses (Fig. 1D), indicating that 159 

a subpopulation of bacteria that do not express the T3SS genes does appear 160 

during colonization of the host plant tissue. 161 

 162 

P. syringae bifurcates into two subpopulations due to bistable expression 163 

of T3SS genes  164 

To ascertain whether the phenotypic heterogeneity observed for expression of 165 

the T3SS genes was a response to environmental cues or could have 166 

stochastic origin, we examined gene expression in the homogeneous 167 

environment of nutrient-limited Hrp-inducing medium (HIM) (Huynh et al., 1989) 168 

(Fig. 2). Growth in HIM triggers a signalling cascade that activates expression of 169 

HrpL, which in turn activates expression of all T3SS genes (Fig. 2A and B). A 170 

remarkable observation, however, was that all three expression patterns were 171 

heterogeneous in HIM, in contrast with those obtained in non-inducing medium 172 

(i.e. LB medium, Fig. S3). Heterogeneity was higher during exponential growth 173 

(24h) than in stationary phase (48h) (Fig. 2B). In all cultures, a fraction of 174 



bacterial cells carrying gfp fusions displayed fluorescence levels overlapping 175 

with those of non-GFP control bacteria (Fig. 2B, centre and right panels). This 176 

was particularly clear in exponentially growing bacteria (24h), where expression 177 

of all three gfp fusions reached a bistable state (Fig. 2B, centre panels). 178 

Because the differences in T3SS expression between the two subpopulations 179 

were not all-or-none, we use the terms TSS3HIGH and T3SSLOW instead of 180 

T3SSON and T3SSOFF. Bistability was no longer detected in stationary phase 181 

cultures (48h), supporting a reversible and non-genetic origin for the differences 182 

observed between subpopulations (Fig. 2B, right panels).  183 

 184 

Bistability of the T3SS genes requires HrpL and is established through the 185 

HrpV/HrpG double-negative regulatory loop 186 

Because HrpL activates expression of hrcU and hopAB1 (Xiao and Hutcheson, 187 

1994) (Fig. 2A), we considered the possibility that the bistable state might be 188 

passed down from HrpL to genes under its control. To test this hypothesis, we 189 

introduced into the strains carrying hrpL::gfp or hopAB1::gfp fusions, a plasmid 190 

carrying a copy of hrpL under the control of the lacZ promoter, which enables 191 

moderate, constitutive expression in P. syringae (Ortiz-Martín et al., 2010b), to 192 

evaluate its impact on gfp expression by flow cytometry (Fig. 3A). The bimodal 193 

distribution of hrpL::gfp expression (Fig. 3A in black) becomes unimodal in the 194 

presence of constitutively expressed HrpL (coloured). In the case of 195 

hopAB1::gfp, bistability is reduced, although not entirely abolished in the 196 

presence of plasmid-encoded HrpL, but the population displays a shift towards 197 

the T3SSHIGH state. These observations suggest that HrpL may play a central 198 

role in the establishment of bistability in the system.  199 



Bistability is often triggered by transforming a quantitative cell-to-cell difference 200 

into a qualitative difference through the action of one or more feedback loops 201 

(Veening et al., 2008). Two such feedback loops regulate the expression of the 202 

T3SS genes in P. syringae: (i) a positive feedback loop controlled by HrpA, the 203 

main subunit of the T3SS pilus (Roine et al., 1997; Wei et al., 2000); (ii) a 204 

double negative feedback loop regulated by HrpV and HrpG (Wei et al., 2005) 205 

(Fig. 2A). We analysed the roles of these regulators in the establishment of 206 

T3SS bistability using mutants defective in these genes and/or plasmids 207 

carrying the individual genes under study. Although bistability in hopAB1::gfp 208 

expression was reduced in a ΔhrpA mutant, bimodal expression of the hrpL::gfp 209 

fusion was still observed in the absence of HrpA, thus making HrpA an unlikely 210 

candidate to be the molecular switch required to trigger the bistable state (Fig. 211 

3B).  212 

Bistability of hopAB1::gfp was abolished in a ΔhrpG mutant (Fig. 3C). In turn, 213 

absence of HrpV increased the proportion of cells expressing higher levels of 214 

hopAB1::gfp (Fig. 3C). This happened regardless of the presence of HrpG, as 215 

indicated by the fact that a ΔhrpV mutation was epistatic over a ΔhrpG 216 

mutation. Constitutive expression of either regulator from a plasmid led to 217 

reciprocal results on hopAB1::gfp expression: a stronger bistable phenotype 218 

was detected upon overexpression of HrpG, and bistability was abolished in 219 

cultures that constitutively expressed HrpV (Fig. 3C). The effect that constitutive 220 

expression of these regulators have on hrpL::gfp closely matched the effect 221 

seen on hopAB1::gfp (Fig. 4B). A tentative interpretation of the above 222 

observations is that HrpG and HrpV may be key elements in T3SS bistability, 223 



perhaps due to the existence of cell-to-cell differences in the amount or activity 224 

of these regulators. 225 

 226 

Differences in gene expression correlate with differences in virulence  227 

Validation of our reductionist observations in HIM was pursued by analysis in 228 

planta. In P. syringae, the T3SS is necessary to suppress basal defences and 229 

T3SS absence limits bacterial proliferation within the plant and prevents the 230 

development of disease (Alfano and Collmer, 1997). Thus, if heterogeneous 231 

expression of the T3SS genes were associated to the heterogeneity observed 232 

in the size of apoplast-located microcolonies, T3SSHIGH and T3SSLOW 233 

subpopulations would be expected to differ in their ability to interact with the 234 

plant host. To test this possibility, we analysed the development of disease in 235 

leaves inoculated with T3SSHIGH and T3SSLOW bacterial subpopulations, sorted 236 

according to their level of expression of hopAB1 (Fig. 4A, upper panel). The 237 

sorted populations were both virulent, an observation consistent with the fact 238 

that bacteria expressing hopAB1 were detected in both subpopulations although 239 

in different numbers (Fig. 4A, centre panel and 4B). However, the development 240 

of disease symptoms was faster in leaf areas inoculated with the population 241 

expressing higher levels of hopAB1, and the symptoms were also stronger (Fig. 242 

4B). The spread of the disease symptoms was also faster beyond the areas 243 

inoculated with the T3SSHIGH subpopulation, suggesting a more efficient 244 

colonization of distal tissues by this population. Thus, differences in T3SS gene 245 

expression appear to correlate with differences in virulence: namely, the 246 

T3SSHIGH subpopulation is more virulent than the T3SSLOW subpopulation. 247 

248 



DISCUSSION 249 

This study shows that colonisation of the plant apoplast by Pseudomonas 250 

syringae involves cell-to-cell differences in expression of its T3SS. Although 251 

microenvironments within the apoplast might provide different signals to control 252 

bacterial gene expression, heterogeneous T3SS expression is also detected in 253 

the homogeneous environment of nutrient-limited T3SS-inducing medium 254 

(HIM), thus making unlikely it results as a direct response to environmental 255 

cues. Flow cytometry analysis of cultures grown in HIM showed the occurrence 256 

of two bacterial lineages, one of which expressed the T3SS at high levels while 257 

the other did not show significant T3SS expression. This bistable pattern of 258 

gene expression appeared during exponential growth, and reverted to unimodal 259 

heterogeneity in stationary cultures, thus suggesting a non-genetic origin and 260 

making phase variation an unlikely one (van der Woude, 2011). 261 

A key factor in bistable expression of the P. syringae T3SS appears to be the 262 

HrpL sigma factor (Fouts et al., 2002), as indicated by the disappearance of the 263 

T3SSLOW subpopulation when expression of HrpL was uncoupled from its 264 

regulation (i.e. upon constitutive expression of HrpL from a plasmid). HrpL 265 

activates expression of more than 50 genes within the nutrient-limited plant leaf 266 

apoplast (Ferreira et al., 2006; Lam et al., 2014; Mucyn et al., 2014), including 267 

the hrp/hrc genes that encode the T3SS, and effector genes (Xiao et al., 1994; 268 

Fouts et al., 2002). Bistable expression was detected in hrcU, which encodes a 269 

structural component of the T3SS required for secretion and translocation 270 

(Charkowski et al., 1997), and in hopAB1, encoding a type III secreted effector 271 

involved in suppression of plant defences (Jackson et al., 1999). Hence, 272 



transmission of HrpL bistability appears to occur downstream the regulatory 273 

cascade, generating T3SSHIGH and T3SSLOW cells. 274 

Bistability is hindered either by deletion of hrpG or by constitutive expression of 275 

HrpV (Fig. 3C), suggesting that the HrpV/HrpG pair may constitute the bistable 276 

switch involved in turning quantitative differences in gene expression into 277 

qualitative differences. Although HrpA does not seem to be essential, it may 278 

contribute to bistability by increasing the number of bacteria with gene 279 

expression levels high enough to cross the threshold for activation. 280 

Heterogeneous expression of the P. syringae T3SS is also observed during 281 

growth within the apoplast, and T3SSHIGH and T3SSLOW cells are recovered 282 

from P. syringae apoplast colonies. This observation, together with the fact that 283 

T3SSHIGH and T3SSLOW subpopulations differ in virulence, suggests that 284 

heterogeneous T3SS expression may play a role in the adaptation of P. 285 

syringae to plant hosts. Unfortunately, a direct test is not feasible because 286 

genetic changes that abrogate bistability in laboratory medium (mutation of 287 

hrpG or plasmid-borne expression of HrpL or HrpV) alter T3SS expression 288 

mean levels in a way that impairs virulence (Ortiz-Martín et al., 2010b; Ortiz-289 

Martín et al., 2010a). 290 

While the ultimate significance of T3SS heterogeneity in P. syringae remains to 291 

be established, a tentative interpretation is that heterogeneous expression of 292 

virulence determinants may serve as a stealth strategy for defence evasion in 293 

the apoplast, an environment where unsuppressed plant defences are operative 294 

(Mitchell et al., 2015). This possibility is supported by theoretical studies 295 

indicating that phenotypic heterogeneity can have adaptive value in changing 296 

and/or hostile environments (Kussell et al., 2005; Kussell and Leibler, 2005), 297 



and by experimental evidence of host defence evasion by lineage formation in 298 

animal pathogens (Srikhanta et al., 2010; Lovell et al., 2011; Hernández et al., 299 

2012; Claudi et al., 2014; Sánchez-Romero and Casadesús, 2014; Manina et 300 

al., 2015). Moreover, the phenotypic heterogeneity observed in P. syringae 301 

T3SS genes could also play a role in adaptation to other stages of its life cycle. 302 

Among plant pathogens, high frequencies of T3SS polymorphism are detected 303 

in natural Arabidopsis-associated populations of P. syringae, and less 304 

aggressive variants, increase their growth potential in mixed infections and have 305 

a fitness advantage in non-host environments (Barrett et al., 2011). Furthermore 306 

natural isolates of P. syringae from agricultural and non-agricultural niches 307 

display differences in the phenotypic (but not the genotypic) structure of the 308 

populations (Morris et al., 2008). On these grounds, we tentatively propose that 309 

phenotypic heterogeneity in T3SS gene expression may protect P. syringae 310 

populations from plant defences. Furthermore, it seems conceivable that 311 

T3SSLOW subpopulations may persist undetected in plant leaves, in a fashion 312 

reminiscent of the animal pathogens that cause persistent and chronic 313 

infections. Whatever the case, our description of bistable expression of the P. 314 

syringae T3SS brings about the notion that subpopulation formation during 315 

infection is not restricted to animal pathogens. 316 

317 



EXPERIMENTAL PROCEDURES 318 

Bacterial strains and growth conditions 319 

Bacterial strains used in this work are listed in Table S1, and plasmids are listed 320 

in Table S2. Escherichia coli and Pseudomonas syringae pv. phaseolicola (Pph) 321 

were grown at 37°C and 28°C, respectively, with aeration in Lysogeny Broth 322 

(LB) medium (Bertani, 1951) or Hrp-inducing medium (HIM) at pH 5.7 (Huynh et 323 

al., 1989). Solid media contained agar at a final concentration of 15%. 324 

Antibiotics were used at the following concentrations: ampicillin (Amp), 100 325 

µg/ml for E. coli DH5α, kanamycin (Km), 50 µg/ml for E. coli DH5α and 15 326 

µg/ml for Pph 1448A derivative strains. 327 

 328 

Fluorescent labelling of bacterial strains 329 

Constitutively expressed fluorescent reporter gene eYFP was introduced into 330 

the chromosome of Pph strains 1448A using a Tn7 delivery system 331 

(Lambertsen et al., 2004). Bacterial strains carrying chromosome-located 332 

transcriptional fusions to a promoterless gfp gene of the hrp genes hrpL, hrcU 333 

and hopAB1 were generated using an adaptation of a previously described 334 

method (Zumaquero et al., 2010). The hrpL and hopAB1 genes are encoded as 335 

monocistronic units, while hrcU is the last gene of an operon (Rahme et al., 336 

1991; Xiao and Hutcheson, 1994; Jackson et al., 2000). For each gene, two 337 

fragments of approximately 500 bp were amplified from Pph 1448A genomic 338 

DNA using iProof High-Fidelity DNA Polymerase (Bio-Rad, USA); one fragment 339 

corresponding to the 3’ end of the ORF, including the STOP codon, and the 340 

other corresponding to the sequence immediately downstream the STOP 341 

codon. Primers used are listed in Table S3. The fragments obtained were used 342 



in a PCR reaction without additional primers or template, generating single 343 

fragments including the end of each ORF and its downstream sequences 344 

separated by an EcoRI site, which were A/T cloned into pGEM-T (Promega, 345 

USA) and fully sequenced to discard mutations, giving raise to pDLM3 346 

(phopAB1-EcoRI), pDLM4 (phrcU-EcoRI), and pDLM5 (phrpL-EcoRI).  347 

Plasmid pZEP07 (Hautefort et al., 2008) was used to amplify a fragment 348 

containing a promoterless gfp gene carrying its own ribosomal-binding site 349 

(Willmann et al., 2011), followed by an EcoRV site and chloramphenicol 350 

resistance cassette. This fragment was A/T cloned into pGEM-T (Promega, 351 

USA) generating pDLM1. The nptII kanamycin resistance gene, flanked by FRT 352 

sites (Flippase Recognition Target), was PCR-amplified using pDOC-K (Lee et 353 

al., 2009) as a template, and cloned into the EcoRV site from pDLM1, to 354 

generate pDLM2. pDLM2 was used to amplify a fragment containing the 355 

promoterless gfp gene with its RBS, the kanamycin resistance gene, and the 356 

chloramphenicol resistance gene, and the fragment obtained cloned into 357 

pDLM3, pDLM4 and pDLM5, digested with EcoRI and treated with the Klenow 358 

polymerase fragment (Takara, Japan) generating plasmids pDLM6, pDLM7 and 359 

pDLM8, respectively. These resulting plasmids were introduced into Pph 1448A 360 

and derivatives, as previously described (Zumaquero et al., 2010). Southern 361 

blot analysis, using the nptII gene as a probe, was used to confirm that allelic 362 

exchange occurred at a single and correct position within the genome.  363 

 364 

Plant growth and inoculation 365 

Phaseolus vulgaris bean cultivar Canadian Wonder plants were grown at 23°C, 366 

95% humidity, with artificial light maintained for 16-h periods within the 24-h 367 



cycle. For inoculum preparation, bacterial lawns were grown on LB plates for 48 368 

h at 28°C and resuspended in 2 mL of 10 mM MgCl2. The OD600 was adjusted 369 

to 0.1 (5 x 107 colony forming units or cfu/mL) and serial dilutions made to reach 370 

the final inoculum concentration.  371 

Infiltration of bean leaves for confocal microscopy or symptom development 372 

was carried out using a needless syringe and a 5 x 106 cfu/ml bacterial 373 

suspension in 10 mM MgCl2. Infiltration of bean leaves to be analysed for flow 374 

cytometry was carried out after dipping a whole leaf into a 5 x 108 cfu/ml 375 

bacterial solution in 0.01% Silwett L-77 (Crompton Europe Ltd, Evesham, UK), 376 

using a pressure chamber. Five days post inoculation (dpi) bacteria were 377 

recovered from the plant by an apoplastic fluid extraction. The apoplastic fluid 378 

extraction was carried out by pressure infiltrating a whole leaf with 10 ml of a 10 379 

mM MgCl2 solution inside a 20 ml syringe. Following 5 cycles of pressure 380 

application, the flow-through was removed and placed in a fresh 50 ml tube, 381 

and the leaf retained within the syringe was introduced into another 50 ml tube. 382 

Both tubes were centrifuged for 30 min at low speed (900 g) at 4ºC. Pellets 383 

were resuspended into 1 ml of MgCl2 and analysed by flow cytometry. 384 

 385 

Flow Cytometry and Cell Sorting  386 

Five hundred µl of an overnight P. syringae LB culture was washed twice in 10 387 

mM MgCl2 and added to 4.5 ml of HIM. Cultures and apoplast-extracted 388 

bacterial suspensions were analysed using a BD FACSVerse cytometer and the 389 

BD FACSuite software (BD Biosciences) after incubation at 28ºC. Stationary 390 

cultures were sorted using a MoFloTM XDP cytometer (Beckman Coulter). 391 

Immediately before sorting, 5 x 106 cells were analysed for GFP fluorescence. 392 



Based on this analysis, gates were drawn to separate the cells displaying 393 

fluorescence levels overlapping the 1448A non-GFP bacterial population used 394 

as a negative control, from cells expressing higher GFP levels, as indicated in 395 

the corresponding histogram. From each gate, cells were collected into a sterile 396 

tube. After sorting, cells were spun at 12,000 g for 10 min, and the resulting 397 

pellets resuspended into 10mM MgCl2, and bacterial concentration adjusted to 398 

1 x 106 cfu/ml. An aliquot of sorted cells was run again at the cytometer to 399 

confirm the differences in expression of the separated populations. Data were 400 

analysed with FlowJo Software. All experiments included two replicate samples 401 

and a number of independent experiments carried out as indicated for each 402 

figure, which shows typical results. 403 

 404 

Microscopy 405 

Sections of inoculated P. vulgaris leaves (approximately 5 mm2) were excised 406 

with a razor blade, and mounted on slides in double-distilled H2O (lower 407 

epidermis toward objective) under a 0.17 mm coverslip. Images of the leaf 408 

mesophyll and apoplast-extracted bacteria were taken using the Leica SP5 II 409 

confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany). Apoplast-410 

extracted bacteria were stained with FM4-64 at 20 µM (Life Technologies). 411 

Variable AOTF filters were used for the visualization of the following 412 

fluorophores (excitation/ emission): eYFP (514 nm/ 525 to 600 nm), GFP (488 413 

nm/ 500 to 533 nm), FM4-64 (488 nm/ 604-674 nm) plant autofluorescence 414 

(514/ 605 to 670 nm). Z series imaging were taken at 1 µm or 10 µm intervals 415 

when using 40x or 10x objectives respectively. Image processing was 416 

performed using Leica LAS AF (Leica Microsystems). Colony area was 417 



calculated using Fiji distribution of ImageJ software. All experiments included 418 

two replicate samples and a number of independent experiments carried out as 419 

indicated for each figure, which shows typical results. 420 

421 
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FIGURE LEGENDS  440 

Figure 1. Colony development and T3SS gene expression in P. syringae 441 

display phenotypic heterogeneity within the plant. (A and B) Colony 442 

development is phenotypically heterogeneous within the plant apoplast. (A) 443 

Representative confocal microscopy image of bean leaves inoculated with 444 

5x106 cfu/ml of wild type eYFP (yellow) 3 days post-inoculation (dpi). Boxes 445 

highlight small microcolonies among the typical and more abundant larger ones. 446 

Largest not-rounded microcolonies typically result from closely located colonies 447 

merging. Red corresponds to auto-fluorescence generated by chloroplasts. 448 

Scale bar corresponds to 100 µm. At least three independent experiments were 449 

carried out (B). Graph showing relative area of individual microcolonies. Colony 450 

area is expressed in percentage of total image area. (C and D) Expression of 451 

the T3SS is phenotypically heterogeneous within the plant. (C) Fluorescence 452 

microscopy images of apoplast-extracted bacteria from bean leaves 5 days 453 

post-inoculation with a 5x105 cfu/ml inoculum of each of the strains carrying 454 

chromosome-located transcriptional gfp fusions to the T3SS genes hrpL, hrcU 455 

or hopAB1. Left panels show GFP fluorescence, and right panels this image 456 

merged with that obtained from bacterial staining with the membrane dye FM4-457 

64 (red). Inset shows a close up of the area of the corresponding image 458 

enclosed by a solid line square. Dotted line squares highlight other examples of 459 

bacteria displaying GFP fluorescence below the level of detection. Scale bar 460 

corresponds to 10 µm.  (D) Flow cytometry analysis of apoplast-extracted 461 

bacteria carrying hrpL::gfp, hrcU::gfp or hopAB1::gfp fusions, obtained from 462 

bean leaves 5 days after inoculation with a 5x105 cfu/ml inoculum. Non-GFP 463 

1448A was also included as a reference to differenciate OFF and ON 464 



subpopulations. Data are represented as a dot plot (forward scatter [cellular 465 

size] versus GFP fluorescence intensity).  All data were collected for 100,000 466 

events per sample. At least three independent experiments with two replicates 467 

each were carried out. Figure shows typical results. 468 

Figure 2. Expression of hrpL::gfp, hrcU::gfp and hopAB1::gfp is bistable 469 

during exponential growth in Hrp-inducing medium. (A) Schematic 470 

representation of the two feedback regulatory loops operating on the expression 471 

of the T3SS genes: a positive feedback loop controlled by HrpA, and a double 472 

negative feedback loop regulated by HrpV, an anti-activator of the T3SS genes 473 

that binds to HrpS the enhancer-binding protein required for HrpL expression, 474 

and HrpG, which binds to HrpV acting as an anti-anti-activator. Expression of 475 

hrpA, hrpV, hrpG, hrcU, and hopAB1, is HrpL-activated, although in the case of 476 

highly expressed hopAB1 some expression can still be detected in the absence 477 

of HrpL. (B) Histograms show flow cytometry analysis of strains carrying 478 

chromosome-located transcriptional fusions to the T3SS genes hrpL (top row), 479 

hrcU (middle row) or hopAB1 (bottom row). Histograms show cell counts versus 480 

GFP fluorescence at 0h (immediately after a 1:10 dilution into HIM of an 481 

overnight LB culture), 24h after the dilution into HIM (exponential phase) or 48h 482 

(stationary phase). Black histograms show non-GFP 1448A included as a 483 

reference. Coloured histograms show GFP fluorescence for the strains carrying 484 

the fusions as indicated in each case. Dotted lines show the results of a 485 

replicate experiment. All data were collected for 100,000 events per sample. At 486 

least three independent experiments with two replicates each were carried out. 487 

Figure shows typical results. 488 



Figure 3. Bistability of hrpL::gfp and hopAB1::gfp is abolished by 489 

constitutive expression of HrpL, deletion of hrpG or constitutive 490 

expression of HrpV. (A) Flow cytometry analysis of HIM-growing bacterial 491 

strains carrying chromosome-located transcriptional fusions to the T3SS genes 492 

hrpL or hopAB1, carrying or not a plasmid expressing hrpL under the control of 493 

Plac, a constitutive promoter of moderate expression in P. syringae. Histograms 494 

show cell counts versus GFP fluorescence after 24h of growth in HIM. Black 495 

histograms show fluorescence of the fusions in the absence of the plasmid. 496 

Coloured histograms show fluorescence of the fusions in the strain carrying the 497 

plasmid as indicated. Dotted lines show the results of a replicate experiment. 498 

(B) Flow cytometry analysis of HIM-growing bacterial strains carrying 499 

chromosome-located transcriptional fusions to the T3SS genes hrpL or hopAB1, 500 

in different genetic backgrounds. Histograms show cell counts versus GFP 501 

fluorescence after 24h of growth in HIM. Black histograms show fluorescence of 502 

the fusions in an otherwise wild type background. Coloured histograms show 503 

fluorescence of the fusions in a strain carrying the ΔhrpA mutation. Dotted lines 504 

show the results of a replicate experiment. All data were collected for 100,000 505 

events per sample. (C) Flow cytometry analysis of HIM-growing bacterial strains 506 

carrying chromosome-located transcriptional fusions to the T3SS genes 507 

hopAB1 or hrpL, in different genetic backgrounds. Histograms show cell counts 508 

versus GFP fluorescence after 24h of growth in HIM. Histograms show 509 

fluorescence of the fusions in each of the indicated genetic backgrounds. WT 510 

indicate the strain that only carries the indicated gene fusion. All data were 511 

collected for 100,000 events per sample. At least two independent experiments 512 

with two replicates each were carried out with similar results. 513 



Figure 4. Bacterial populations sorted according to hopAB1 expression 514 

display differences in virulence. (A) Flow cytometry analysis of a HIM-515 

growing culture of the strain carrying hopAB1::gfp. GFP fluorescence intensity is 516 

shown as a green histogram. Gates were drawn to separate hopAB1::gfp 517 

bacteria displaying fluorescence levels overlapping the 1448A non-GFP 518 

bacterial population (indicated with a line marked as low), used as a negative 519 

control (Grey histogram), from cells expressing high GFP levels (indicated with 520 

a line marked as high, and including the mode for the expressing population). 521 

After sorting, aliquots of sorted cells were run again through the cytometer to 522 

confirm the efficacy of the sorting process (below), and bacterial concentration 523 

adjusted to 1 x 106 cfu/ml. Some overlap caused by the dynamic and reversible 524 

nature of the process can be detected (B) Disease symptom progression in 525 

bean leaves inoculated with 1 x 106 cfu/ml of each of the sorted populations at 6 526 

and 11 days post inoculation (dpi). Results from three replicate experiments are 527 

shown. 528 

Supplemental figures 529 

Figure S1. Strains carrying transcriptional fusions to gfp of hrpL, hrcU or 530 

hopAB1 display wild type virulence. Symptom development 7 days post 531 

inoculation of a bean leaf with 5x105 cfu/ml or either wild type Pph 1448A or 532 

each of its derivatives carrying the indicated gene fusions. 533 

Figure S2. Bacterial colonies display heterogeneous distribution of gfp 534 

fluorescence that cannot be unequivocally associated to individual cells. 535 

Confocal microscopy images showing bacterial microcolonies within the 536 

apoplast of bean leaves, 5 days post-inoculation with 5x106 cfu/ml of each of 537 

the strains carrying the chromosome-located transcriptional hrpL::gfp, hrcU::gfp 538 



or hopAB1::gfp fusions. Red corresponds to auto-fluorescence generated by 539 

chloroplasts. Scale bar corresponds to 50 µm. 540 

Figure S3. Flow cytometry analysis of in LB-grown bacterial cultures. 541 

Histograms of GFP fluorescence distribution in the strains carrying the 542 

chromosome-located transcriptional hrpL::gfp, hrcU::gfp or hopAB1::gfp fusions 543 

growing at 24h (A) or 48h (B). Grey histograms show a strain not expressing 544 

GFP.  All data was collected for 100,000 events per sample.  545 

Video S1 and S2 3D reconstructions of 1 µm z-stack confocal images showing 546 

the uneven distribution of bacteria within two different apoplast-located 547 

microcolonies of Pph 1448A constitutively expressing GFP. Bean leaves were 548 

inoculated with 5x105 cfu/ml, and visualized 3 days post inoculation. 549 

550 
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Figure	S1	

Fig	 S1.	 Strains	 carrying	 transcrip2onal	 fusions	 to	 gfp	 of	 hrpL,	 hrcU	 or	 hopAB1	
display	wild	type	virulence.	Symptom	development	7	days	post	 inocula7on	of	a	
bean	 leaf	 with	 5x105	 cfu/ml	 or	 either	 wild	 type	 Pph	 1448A	 or	 each	 of	 its	
deriva7ves	carrying	the	indicated	gene	fusions.		



hrpL::gfp hrcU::gfp hopAB1::gfp 

Figure	S3	

Fig	S3.	Bacterial	colonies	display	heterogeneous	distribu7on	of	gfp	fluorescence	
that	cannot	be	unequivocally	associated	to	individual	cells.	Confocal	microscopy	
images	showing	bacterial	microcolonies	within	the	apoplast	of	bean	leaves,	5	days	
post-inocula?on	with	5x106	cfu/ml	of	each	of	the	strains	carrying	the	chromosome-
located	transcrip?onal	hrpL::gfp,	hrcU::gfp	or	hopAB1::gfp	fusions.	Red	corresponds	
to	auto-fluorescence	generated	by	chloroplasts.	Scale	bar	corresponds	to	50	μm.	
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Figure	S4	

Figure	S4.	Flow	cytometry	analysis	of	in	LB-grown	bacterial	cultures.	Histograms	of	
GFP	fluorescence	distribu:on	in	the	strains	carrying	the	chromosome-located	
transcrip:onal	hrpL::gfp,	hrcU::gfp	or	hopAB1::gfp	fusions	growing	at	24h	(A)	or	48h	
(B).	Grey	histograms	show	a	strain	not	expressing	GFP.		All	data	was	collected	for	
100,000	events	per	sample.		



Table 1. Strains used and generated in this work. 

Strain Genotype Reference 

1448A P. syringae pv. phaseolicola wild-type 

strain race 6 

Teverson, 1991 

JRP9 1448A Tn7-eYFP, GmR This work 

JRP8 1448A Tn7-eGFP, GmR This work 

DLM1 1448A hrpL::gpf, KmR This work 

DLM2 1448A hrcU::gpf, KmR This work 

DLM3 1448A hopAB1::gpf, KmR This work 

IOM49 1448A ΔhrpA Ortiz-Martín et al., 2010a 

JRP-F1 1448A ΔhrpA; hrpL::gpf, KmR This work 

JRP-F2 1448A ΔhrpA; hopAB1::gpf, KmR This work 

IOM57 1448A ΔhrpG Ortiz-Martín et al., 2010b 

IOM48-F 1448A ΔhrpV Ortiz-Martín et al., 2010b 

IOM58 1448A ΔhrpG ΔhrpV Ortiz-Martín et al., 2010b 

JRP-F3 1448A ΔhrpG; hopAB1::gpf, KmR This work 

JRP-F4 1448A ΔhrpV; hopAB1::gpf, KmR This work 

JRP-F5 1448A ΔhrpG ΔhrpV; hopAB1::gpf, KmR This work 

 

Table 2. Plasmids used in this work. 

Name Description Reference 

pIOM22 pBBR1-MCS-4 derivative, contains a 
promotorless hrpL gene expressed from the 
lacZ promoter  

Ortiz-Martín et al., 

2010a 

pIOM92 pBBR1-MCS-4 derivative, contains a 
promotorless hrpG gene expressed from the 
lacZ promoter  

Ortiz-Martín et al., 

2010b 

pIOM53 pBBR1-MCS-4 derivative, contains a 
promotorless hrpV gene expressed from the 
lacZ promoter  
 

Ortiz-Martín et al., 

2010b 

 



Table 3. Primers used in this work. 

Name Description Restriction 

site 

HrpL A1 CGGTATCCGTCAACTGACGG NA 

HrpL A2 GAATTCTATCCACTCAGGCGAACGGG EcoRI 

HrpL B1 TGAGTGGATAGAATTCTCTGTCTGGAACCAAC
TCGC 

EcoRI 

HrpL B2 ATGGGCGACCATCGGATCC NA 

HrcU A1 GTGATTCTGGGGTTGCTGC NA 

HrcU A2 GAATTCAGCTCCCAGCTTAAAGCTCC EcoRI 

HrcU B1 AGCTGGGAGCTGAATTCGCAAGCCAGGCGTA
ACAGG 

EcoRI 

HrcU B2 TTCTACTACAACGTCGCTGC NA 

HopAB1 A1 GCATCCTTTATAACTGACCC NA 

HopAB1 A2 GAATTCCTGAAATCAGTTCAGCTTAACG EcoRI 

HopAB1 B1 CTGATTTCAGGAATTCTCGTTGTAGTGGCCGG EcoRI 

HopAB1 B2 GGACAGGTCGTAGTAGAGCG NA 

Zep07F GAATTCTAAGAAGGAGATATACATATGAG NA 

Zep07F GAATTCTTATCACTTATTCAGGCGTA NA 
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