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ABSTRACT 7 

Existing flips for tetrahedral meshes simply make a selection from a few possible 8 

configurations within a single shell (i.e., a polyhedron that can be filled up with a mesh 9 

composed of a set of elements that meet each other at one edge), and their effectiveness is 10 

usually confined. A new topological operation for tetrahedral meshes named shell 11 

transformation is proposed. Its recursive callings execute a sequence of shell transformations 12 

on neighboring shells, acting like composite edge removal transformations. Such topological 13 

transformations are able to perform on a much larger element set than that of a single flip, 14 

thereby leading the way towards a better local optimum solution. Hence, a new mesh 15 

improvement algorithm is developed by combining this recursive scheme with other schemes, 16 

including smoothing, point insertion and point suppression. Numerical experiments reveal 17 

that the proposed algorithm can well balance some stringent and yet sometimes even conflict 18 

requirements of mesh improvement, i.e., resulting in high-quality meshes and reducing 19 

computing time at the same time. Therefore, it can be used for mesh quality improvement 20 

tasks involving millions of elements, in which it is essential not only to generate high-quality 21 

meshes, but also to reduce total computational time for mesh improvement. 22 

KEY WORDS: mesh improvement; mesh generation; shell transformation; mesh smoothing; 23 

topological transformation; tetrahedral meshes 24 

1. INTRODUCTION 25 

For numerical simulations with complex geometries, mesh generation typically represents a 26 

large portion of the overall computational time. Thus, the ability of performing computations 27 

on large-scale tetrahedral elements has always been regarded as an important issue. The 28 

fundamental reason is mainly because a theoretically valid tetrahedral mesh can always be 29 

automatically generated for a valid 3D domain [1-5], despite that this is not always the case 30 

for other specific types of volume elements. Despite of the validity, the quality of an initial 31 

tetrahedral mesh produced by a mesher may not be high enough for simulations. A follow-up 32 

mesh improvement step is thus indispensable to remove those poorly shaped elements 33 

contained in the initial meshes to prevent their adverse effects on the stability and accuracy of 34 

the simulations. 35 

In general, a mesh improver executes the following types of local operations iteratively: 36 

(1) Smoothing, which repositions mesh points to improve the quality of adjacent elements. 37 

(2) Local reconnection, which replaces a local mesh with another mesh that fills up the 38 

same region. The new mesh will have the same point set as the old mesh but applying 39 

different point connections. 40 
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(3) Point insertion/suppression, which improves a mesh by inserting new points into the 41 

mesh or removing existing points from the mesh. 42 

Our primary focus in this study is on local reconnection, although all the local operations 43 

mentioned above will be combined in the developed mesh improver. If the point set is fixed, 44 

the quality of mesh elements is apparently determined by how these points are connected. It is 45 

unrealistic to search for a global optimal mesh topology by directly iterating a large number of 46 

possible solutions to connect a point set because this number could expand exponentially with 47 

the increase of the number of points. Thus, heuristics prevail in improving the quality of a 48 

mesh by iteratively changing the local connections of points.    49 

The most frequently used local reconnection technique for tetrahedral meshes is based on 50 

elementary flips [6], including 2-3, 3-2 and 4-4 flips (note that the numbers in these names 51 

denote the number of tetrahedra removed and created by the flips, respectively; see Figures 1a 52 

and 1b). Because the elementary flips simply make a selection from several possible 53 

configurations within a relatively small region, their effectiveness in mesh quality 54 

improvement is usually confined. To overcome this limit, three advanced flips that involve 55 

more elements were later suggested, i.e., edge removal [7], multi-face removal [8] and multi-56 

face retriangulation [9] (see Figure 1c). They enrich the possible configurations within 57 

relatively larger regions and therefore behave more effectively in mesh quality improvement 58 

than the elementary flips. 59 

  60 
(a)                                         (b)  61 

 62 
(c) 63 

Figure 1. Existing flips for a tetrahedral mesh: (a) 2-3 flip and 3-2 flip; (b) 4-4 flip; (c) multi-64 

face removal, edge removal and multi-face retriangulation. 65 

In general, the effect of a local reconnection technique highly depends on the size of a local 66 

mesh it treats. The more elements it treats during one operation; the more possibility it 67 

improves the quality of a local mesh to a higher level. This motivates the development of 68 

more aggressive local reconnection techniques for mesh quality improvement. For instance, 69 

Joe [6] once proposed nine schemes to combine the elementary flips for mesh improvement. 70 

Later, Shewchuk [10] pointed out that the composite flips proposed by Joe [6] could be 71 
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expressed as one or two edge removal operations. Thus, Shewchuk suggested that the study of 72 

composite edge removal transformations was a fruitful direction for mesh improvement 73 

research. Unfortunately, Shewchuk did not present details about what such composite 74 

transformations are and how to implement such transformations efficiently. As a result, it was 75 

observed that no composite transformations are actually incorporated into the open-source 76 

tetrahedral improver (namely Stellar thereafter) developed by Klinger and Shewchuk [11, 12].  77 

The main contribution of this present study is the development of a new local reconnection 78 

technique that could act like composite edge removal transformations. This technique is based 79 

on the recursive callings of a new flip named shell transformation. The single calling of shell 80 

transformation could be considered as an enhanced version of edge removal transformation. 81 

However, an essential difference exists between two approaches, and enables shell 82 

transformation to be executed recursively (see Section 2.4 for details). Thus, edge removal 83 

only makes a selection from a few possible configurations within a single shell (i.e., a 84 

polyhedron that can be filled up with a mesh composed of a set of elements that meet each 85 

other at one common edge). However, the recursive callings of shell transformations can 86 

execute a sequence of shell transformations on neighboring shells. In other words, recursive 87 

shell transformations could be performed on a much larger element set than that of edge 88 

removal, thereby leading the way towards a better local optimum solution.  89 

Another focus of this study is about the efficient implementation of the new local 90 

reconnection technique, because local reconnections need to be employed for a large number 91 

of times during the entire mesh improvement workflow. The dynamic programming algorithm 92 

suggested by Shewchuk for edge removal [10, 13] will be revisited at first and then further 93 

enhanced to implement the basic shell transformation routine. Besides, the computing 94 

efficiency of recursive callings of shell transformations is investigated carefully because the 95 

number of such callings may increase exponentially when the recursive level increases. 96 

Reasonable restrictions are provided to prevent inefficient recursive callings. Meanwhile, 97 

several strategies are suggested to improve the efficiency. 98 

Finally, the ability of the proposed local reconnection technique will be demonstrated by 99 

performing various mesh improvement tasks, some of which involve millions of elements. In 100 

a pipeline of producing meshes of this magnitude, mesh generation itself may only consume a 101 

few seconds computing time, owing to recent advancement in the field of fast and parallel 102 

mesh generation techniques [14-17]. However, a mesh improver possibly consumes many 103 

minutes computing time or even longer in order to manage such a big mesh. Therefore, to 104 

ensure the applicability of this newly developed mesh improver for large-scale problems, an 105 

essential requirement we will take into account is the cost-effectiveness of the mesh improver, 106 

i.e., the ability to balance the conflict requirements of resulting in a high-quality mesh and 107 

saving computing time of mesh improvement. Following this concept, a set of existing 108 

smoothing, point insertion and point suppression schemes are selected. Combining these 109 

schemes with the proposed local reconnection technique, a cost-effective improver applicable 110 

to large-scale meshes is therefore developed and verified. 111 

The remainder of this article will be organized as follows. In Section 2, related works are 112 

firstly reviewed, followed by the introduction of the new local reconnection technique in 113 

Section 3. Sections 4 describes the basic implementation of shell transformation, while 114 

Section 5 presents the recursive scheme of shell transformation and the local reconnection 115 

scheme based on this recursive scheme. Section 6 introduces other local operations that are 116 

combined to form the developed new mesh improver. Section 7 provides various examples of 117 

numerical experiments demonstrating the effectiveness and efficiency of the proposed 118 

scheme. Section 8 concludes with outcomes of the study. 119 
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2. RELATED WORKS  120 

Firstly, related works on local reconnection techniques are reviewed in details (see Section 121 

2.1). After that, a brief review on other types of local operations (see Sections 2.2 and 2.3, 122 

respectively) is presented to justify our choices of these types of operations in the developed 123 

mesh improver.   124 

2.1 Related work on local reconnection techniques 125 

Local reconnection techniques are frequently used in various circumstances of mesh 126 

generation, such as Delaunay refinement [18], mesh adaptation [19], boundary recovery [1-5], 127 

and mesh quality improvement [6-12, 20, 21]. The first type of local reconnection techniques 128 

is based on the flips presented in Figure 1. The 3-2, 2-3 and 4-4 flips are defined as 129 

elementary flips, not only because they are special cases of the advanced flips, but also 130 

because they could be combined to form the advanced flips. For instance, the edge removal 131 

transformation could be implemented as a sequence of 2-3 flips followed by a single 3-2 flip 132 

(see Figure 2) [10]. This possibly explains why Shewchuk [10] judged that the composite 133 

transformations of the elementary flips proposed earlier by Joe [6] could be expressed as one 134 

or two edge removal transformations. However, this does not mean that a local reconnection 135 

technique based on the elementary flips could achieve the same effect as the techniques based 136 

on the advanced flips. In general, the advanced flips provide elaborate ‘patterns’ for how to 137 

combine the elementary flips such that those involved elementary flips could work together in 138 

a much larger element set. As a result, the local reconnection techniques based on the 139 

advanced flips could usually improve the quality of a mesh to a higher level than that by the 140 

techniques based on the elementary flips.   141 

 142 
 143 

Figure 2. Implementing edge removal as a sequence of 2-3 flips followed by a 3-2 flip. 144 

Differently, Liu et al. proposed to improve mesh quality by a local remeshing technique 145 

named small polyhedron reconnection (SPR) [21]. The SPR algorithm initializes an empty 146 
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polyhedron in the neighbourhood of a poorly shaped element, and then performs an 147 

exhaustive search to find the optimal tetrahedralization of this polyhedron. Typically, the 148 

advanced flips treat only a local mesh composed of a few tetrahedral elements, while the SPR 149 

algorithm can search for the optimal tetrahedralization of a polyhedron composed of 20-40 150 

tetrahedral elements. Consequently, it was reported that the SPR algorithm could achieve a 151 

better mesh improvement result than that of the flip-based algorithm [21]. However, the main 152 

issue of the SPR algorithm is its computing complexity, since the problem of meshing an 153 

empty polyhedron is NP hard. Although some strategies have been proposed in the past to 154 

improve the timing-related performance of the SPR algorithm [4, 21], our experience shows 155 

that, if the local reconnection scheme of a mesh improver is completely dependent on the SPR 156 

algorithm. In addition, the runtime of a mesh improver may be beyond the user’s expectation, 157 

in particular when the treated mesh is composed of one million or more elements.   158 

2.2 Related work on mesh smoothing 159 

The mesh smoothing methods can be classified into two categories in general, i.e., the 160 

Laplacian-type method [22] and the optimization-based method [20, 23-28]. The Laplacian-161 

type method moves each mesh vertex towards the center of its neighboring vertices. It 162 

provides no guarantee for the improvement of mesh quality, therefore leading to either low 163 

quality or even possibly invalid elements. To overcome this drawback, various optimization-164 

based approaches were proposed. These approaches can be divided into two types in 165 

accordance with the choice of objective functions. The local method maximizes a quality 166 

function for the elements surrounding each mesh vertex by relocating mesh vertices 167 

iteratively [20, 23, 24]. The global method maximizes a quality function for all elements by 168 

relocating all mesh vertices simultaneously [25-28]. While the local method may improve an 169 

element at a cost of degrading its neighboring elements, the global method relieves this 170 

conflict to some extents by considering the quality of the entire mesh as a whole. 171 

Nevertheless, because the global method needs to solve a large-scale optimization model, the 172 

choice of solution methods for this optimization model will be the key step to achieve 173 

acceptable computing time and performance [28]. Likewise, in the case of surface mesh 174 

smoothing, various local and/or global shape-preserving approaches have been developed, in 175 

which the global approach based on geometric flows is now still prevailing because of its 176 

powerful ability to preserve geometric features and thus reduce volume shrinkage [25]. 177 

  Since the cost-effectiveness of a new mesh improver is our primary goal to achieve, we 178 

select a local approach instead of a more time-consuming global approach for mesh 179 

smoothing. More specifically, we combine an optimization-based algorithm [20] with the 180 

Laplacian smoothing [22]. See Section 5.4 later for more details.  181 

2.3 Related work on point insertion and point suppression 182 

It is intuitive to eliminate low-quality elements by inserting vertices into existing meshes. 183 

Typically, a new vertex can be located at the circumcenter [5, 29] or centroid of a poor 184 

element [1, 4], or the midpoint of the longest edge of this element [2, 30]. One typical strategy 185 

to insert this kind of vertex into a mesh is by Delaunay refinement [1-5, 29, 31], or more 186 

simply, by splitting the element(s) containing the new vertex (which may result in temporary 187 

low-quality elements) firstly and then improving the mesh by combining smoothing and local 188 

reconnection [19]. Besides, Klingner and Shewchuk suggested an effective but very time-189 

consuming point insertion scheme that combines a Delaunay-type algorithm with smoothing 190 

operations [11]. It is possible that hundreds of elements are involved in just one single 191 

operation. Nevertheless, to meet our goal of developing a cost-effective mesh improver for 192 

large-scale problem inputs, we adopt an edge-splitting based point insertion scheme.  193 
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As a reverse operation of point insertion, it is not surprising that point suppression can also 194 

improve local mesh quality by remeshing an empty polyhedron composed of all elements 195 

surrounding the vertex to be removed. The challenge mainly comes from those polyhedra that 196 

cannot be tetrahedralized if no Steiner points are allowed [31]. Meanwhile, even if a 197 

polyhedron can be tetrahedralized without inserting Steiner points (although the prediction of 198 

this is NP hard [31]), it is not easy to find an optimal mesh to fill in that polyhedron (it is also 199 

NP hard [4, 21]). Theoretically, the SPR algorithm mentioned in Section 2.1 [4, 21] could be 200 

a good candidate for remeshing an empty polyhedron because it can provide an optimal 201 

solution when the polyhedron is meshable. Nevertheless, as we pointed earlier, the main issue 202 

of the SPR algorithm is its relatively poor timing performance. Therefore, we adopt an edge-203 

contraction based point suppression routine that is available from Stellar [12, 13].  204 

See Section 5.5 later for the developed point insertion and suppression schemes. 205 

3. SHELL TRANSFORMATION AND ITS RECURSIVE CALLINGS: 206 

THE MAIN IDEA 207 

For the completeness, we have briefly reviewed different types of local operations in order to 208 

justify our choices. However, it must be emphasized that the main contribution of this study is 209 

the development of a new local reconnection technique. With respect to other local 210 

operations, we only select a suitable operation among various existing approaches to meet our 211 

goal of developing a cost-effective mesh improver.    212 

  Before introducing the new local reconnection technique, Figure 3 illustrates some 213 

terminologies in relation with a shell structure because all of the flips discussed in this study, 214 

including those presented earlier in Figure 1 and the new proposed shell transformation, will 215 

involve this structure.  216 

It was reported that edge removal might be the most effective flip for mesh quality 217 

improvement [12], although other flips could provide marginal improvements additionally. To 218 

remove a low-quality element (for instance, the element abp5p6 in Figure 4), we could pick up 219 

an edge of this element (denoted by e), and perform the edge removal transformation in the 220 

shell of e (i.e., e is the supporting edge of the shell). For instance, e refers to ab in Figure 4. If 221 

the output covering mesh of the transformation is better than the old one, edge removal 222 

succeeds and the low-quality element is removed (since e is removed). In such a case, the 223 

skirt polygon of the shell is completely triangulated (see Figure 4). However, it is not 224 

uncommon that the edge removal could not provide a better mesh than the old one and thus 225 

fails to remove e and the low-quality element bounded by e. Instead, a covering mesh of the 226 

shell that is better than the old one might be the one shown in the bottom of Figure 4, where a 227 

core referring to the unmeshed part of the skirt polygon exists in the resulting mesh. In this 228 

case, we say the shell of e can only be partially reduced
†
, and the remaining supporting faces 229 

must be removed to reduce the shell further. Obviously, if one of the link edges that bound a 230 

supporting face f is removed, f will be removed accordingly. For the case shown in the bottom 231 

of Figure 4, f could be the face abp5, and the link edge could be ap5 or bp5. Assuming that ap5  232 

is picked up for removal, the above transformation is called again to reduce the shell of ap5. If 233 

the reduced shell of ap5 does not contain the face abp5 and any new supporting faces sharing 234 

                                                 

†
Here, the degree of a covering mesh refers to the number of elements that share the supporting edge in this mesh. A shell is 

reduced if the degree of the new covering mesh is becoming smaller than that of the old mesh. In particular, if the degree of 

the new mesh becomes zero, the shell is completely reduced, and the new mesh is a completely reduced mesh; otherwise, the 

shell is partially reduced, and the new mesh is a partially reduced mesh. 
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ab, the shell of ab is reduced as well; otherwise, a process that attempts to remove the 235 

supporting faces around ap5 is repeated. 236 

To better understand the above recursive scheme, Figure 5 illustrates how this scheme 237 

works on a local mesh composed of two shells (see Figure 5a), aimed at removing the edge ab 238 

from the mesh. Firstly, a transformation is called on the shell of ab. Since the shell cannot be 239 

completely reduced, the edge ab still exists in the output mesh (see Figure 5b). Nevertheless, 240 

the degree of the shell is reduced from 5 to 4. To reduce the shell further, a link edge bh is 241 

picked up and a transformation is called on the shell of bh and reduces this shell completely. 242 

Besides, the degree of the shell of ab is reduced from 4 to 3 after this step (see Figure 5c). 243 

Finally, a transformation is called to update the shell of ab to remove ab by a single 3-2 flip 244 

(see Figure 5d for the final output). 245 

 246 

Figure 3. The terms defined for the mesh entities of a shell. 247 

 248 

Figure 4. The difference between edge removal and a single calling of shell transformation. 249 

This difference enables shell transformation to be called recursively while edge removal 250 

cannot. This recursive ability is the main advantage of shell transformation technique.   251 

Here, given the covering mesh of a shell, the transformation that attempts to reduce the 252 
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shell is denoted as shell transformation. The main difference between shell transformation 253 

and edge removal is that shell transformation allows the output mesh containing a partially 254 

triangulated skirt polygon while edge removal does not. If the output covering mesh of shell 255 

transformation does not contain a core, shell transformation is the same operation as edge 256 

removal. In this respect, edge removal could be considered a special case of shell 257 

transformation. In other words, shell transformation could be considered as an enhanced 258 

version of edge removal because it considers more possibility to mesh a shell. Moreover, the 259 

main advantage of shell transformations is rooted in its recursive ability. As Joe have 260 

demonstrated [6] that the composite transformations of elementary flips could improve the 261 

quality of a mesh to a much higher level than elementary flips, and the recursive callings of 262 

shell transformations, acting like composite edge removal transformations, could perform 263 

much better than edge removal in most mesh improvement tasks, as we will demonstrate in 264 

Section 6. 265 

 266 
(a)                    (b)                    (c)                    (d) 267 

Figure 5. Illustration for the recursive callings of shell transformations. (a) The input mesh. 268 

(b) The output after the first shell transformation calling on the shell of ab. (c) The output 269 

after the second shell transformation calling on the shell of bh. (d) The final output after the 270 

third shell transformation calling on the shell of ab. 271 

4. A SINGLE CALLING OF SHELL TRANSFORMATION   272 

To implement a shell transformation procedure, a key step is to develop an algorithm that can 273 

triangulate a skirt polygon partially. Meanwhile, among all of the valid triangulation schemes, 274 

an algorithm needs to find the triangulation corresponding to an optimal covering mesh. In 275 

this section, we will first reproduce a dynamic programming algorithm suggested by 276 

Shewchuk [10], which can be used to triangulate the skirt polygon completely and optimally. 277 

Next, the proposed shell transformation algorithm is described in details, which enhances the 278 

Shewchuk’s algorithm in order to triangulate the skirt polygon partially and optimally. 279 

4.1 The algorithm proposed by Shewchuk [10] 280 

Given a shell covered by a set of tetrahedra 1 ( 1,2, , )i ip p ab i m  , each triangulation 281 

1 2 2{ , , }mt t t    of the skirt polygon induces a tetrahedralization of the shell: 282 

{conv( , ) conv( , ) | 1,2, , 2}i it a t b i m     . 283 

Here, conv( )  refers to a tetrahedron formed by a face and a node. We define the quality of 284 

  to be the quality of the worst tetrahedron within the tetrahedralization  . 285 

For each node (1 )ip i m  , i mp   is its alias. ,R i j  defines a ring of edges whose ending 286 

nodes are 287 
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1

,

1

{ , , } 1
P

{ , , } 1

i i j

i j

j j i m

p p p i j m

p p p j i m



 

   
 

  

. 288 

Selecting a node ,Pk i jp   other than ip  and jp , the triangulation of ,R i j  includes three 289 

parts, as shown in Figure 6: 290 

, . ,T T Ti j i k k j i k jp p p   . 291 

We can define a matrix qM  to record the quality of the optimal triangulation of ,R i j  as:  292 

,P , ,
( , ) max min{ ( , ), ( , ), ( , , , ), ( , , , )}

k i j k i j

q q q i j k i j k
p p p p

i j i k k j q a p p p q p p p b
 

M M M ,    (1) 293 

where ( )q   is the quality function for tetrahedral elements. ( , )q i j M  when 1j i  . 294 

Since 1 ,i j m   ( m  refers to the size of the skirt polygon), we know qM  is a m m  295 

matrix. 296 

Based on Equation 1, Algorithm 1 fills in the upper triangular part of qM  by an order of 297 

decreasing i  and increasing j  so that ( , )q i kM  and ( , )q k jM  are computed before 298 

( , )q i jM . Meanwhile, Algorithm 1 fills in another matrix kM  that records the values of k  299 

that maximize Equation 1 in order to reconstruct the optimal triangulation optT :  300 

opt opt

1,

opt opt opt

, , ,

T T

T T T ( ( , ))

m

i j i k k j i k j kp p p k i j

 


    M
. 301 

Algorithm 1. Filling in the upper triangular part of 
qM  and kM  302 

fillInMatrices_UpRight(a, b, P, Mq, Mk) 

Inputs:  

a and b: the support nodes of a shell,  

P = {p1, p2, …, pm}: the skirt polygon of a shell  

1. for i = m – 2 downto 1  

2.   for j = i + 2 to m  

3.     for k = i + 1 to j – 1 

4.       q = min{q(a, pi, pk, pj), q(pi, pk, pj, b)} 

5.       if k < j – 1 

6.         q = min{q, Mq(k, j)} 

7.       if k > i + 1 

8.         q = min{q, Mq(i, k)} 

9.       if k = i + 1 or q > Mq(i, j) 

10.         Mq(i, j) = q 

11.         Mk(i, j) = k  303 

 304 
Figure 6. Decomposing a triangulation optimization problem into sub-problems. 305 
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4.2 The proposed shell transformation algorithm  306 

Firstly, we introduce the concept of triangulation graph. It is a directed graph defined on a 307 

polygon that is bounded by a set of nodes 1 2{ , , }mp p p  . A graph node corresponds to a 308 

polygon node, and a graph edge ,i jp p  exists if there are valid triangulations for the ring 309 

,R i j . Note that qM  provides a representation of the triangulation graph: ( , ) 0q i j M  310 

means that there is a valid triangulation for the ring ,R i j ; thus, ,i jp p  is a graph edge.  311 

Algorithm 1 only fills in one half of qM  and kM . To get a complete representation of 312 

the triangulation graph, the lower left elements of qM  and kM  must be computed. 313 

Algorithm 2 present a routine that fills in all of useful elements of qM  and kM , which 314 

could be located in either side of the main diagonal of the two matrices. In the new algorithm, 315 

one diagonal of qM  and kM  is computed at a time in the increasing order of the size of 316 

,R i j  (i.e., number of vertices). Note that after calling Algorithm 2, (1, )q mM , and 317 

(2,1)qM , ……, and ( , 1)q m mM  all records the quality of the optimal triangulation of the 318 

complete skirt polygon, but with different start and end vertices. Based on Algorithm 2, we 319 

could then implement a single calling of shell transformation (see Algorithm 3), where a key 320 

step is to define the core of the shell. As shown in Figure 7, the core introduced in shell 321 

transformation corresponds to a simple cycle of the triangulation graph of the skirt polygon. 322 

Therefore, once the graph is set up by calling Algorithms 1 and 2, all of the simple cycles are 323 

visited, and the optimal one is picked up to reconstruct the triangulation of the skirt polygon 324 

(i.e., Line 5 of Algorithm 3). Here, a simple cycle is identified as optimal when it corresponds 325 

to an optimal covering mesh (K). Note that the definition on the optimality of a mesh could be 326 

application specific, see Section 4.3 for details. 327 

Algorithm 2. Filling in 
qM  and kM  328 

fillInMatrices(a, b, P, Mq, Mk) 

Inputs:  

a and b: the support nodes of a shell  

P = {p1, p2, …, pm}: the skirt polygon of a shell  

1. for d = 2 to m - 1  

2.   for i = 1 to m   

3.     j′ = i + d  

4.     for k′ = i + 1 to j′ – 1 

5.       j = j′ > m ? j′ - m : j′ 

6.       k = k′ > m ? k′ - m : k′ 

7.       q = min{q(a, pi, pk, pj), q(pi, pk, pj, b)} 

8.       if k′ < j′ – 1 

9.         q = min{q, Mq(k, j)} 

10.       if k′ > i + 1 

11.         q = min{q, Mq(i, k)} 

12.       if k′ = i + 1 or q > Mq(i, j) 

13.         Mq(i, j) = q 

14.         Mk(i, j) = k 
 329 

Assuming that the node set of the core is 1 1 1{ , , }n nc c c c cp p p p   , the reconstructed 330 

triangulation is (see Figure 7): 331 
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   332 

The new covering mesh of the shell is: 333 

1

1 2

1

2

{conv( , ) conv( , ) | T }
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opt
i i i

c c

t a t b t

p p a b j n

   

   

  

,           (2) 334 

where tetr( )  refers to the tetrahedral element formed by four specified nodes. 335 

Algorithm 3. A general routine of shell transformation 336 

shellTransformation(a, b, P, Kold) 

Inputs:  

a and b: the support nodes of the shell 

P = {p1, p2, …, pm}: the skirt polygon of the shell 

Kold: the old covering mesh of the shell 

1. fillInMatrices_UpRight(a, b, P, Mq, Mk)  

2. fillInMatrices_LowLeft(a, b, P, Mq, Mk)  

3. G: the triangulation graph with Mq as its matrix representation 

4. Pc: an optimal simple cycle of G    

5. T
opt

: the reconstructed triangulation from Pc, see Figure 6 

6. K: the new covering mesh of the shell, see Equation 2  

7. if K ≠  and K ≠ Kold 

8.   Remesh the shell by replacing Kold with K 
 337 

 338 
Figure 7. Illustration for the triangulation graph of a polygon, where those lines with arrows 339 

are a group of graph edges, forming a simple cycle and thus defining a scheme that 340 

triangulates the polygon partially.  341 

5. RECURSIVE CALLINGS OF SHELL TRANSFORMATIONS 342 

5.1 The basic routine 343 

A single shell transformation calling only involves a small number of elements. It may not be 344 

able to reduce a shell completely because of the constraints on the shell boundaries. Hence, 345 

we develop a routine that calls shell transformations recursively to remove these constraints. 346 

Algorithm 4 details the routine of recursive shell transformations. Given an edge e, the 347 

calling recursiveST(e, , 0, lmax) attempts to remove the edge e, where lmax limits the 348 
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maximally allowed recursive level. Given a face f and one of its boundary edges e, the calling 349 

recursiveST(e, f, 0, lmax) attempts to remove the face f. 350 

Note that Algorithm 4 expands an edge tree, where the input edge e is the root of this tree, 351 

and those link edges (e′) inputted for further recursions are children of the edge e. In this 352 

manner, the tree can be expanded recursively. If a tree node v1 is an ancestor of another tree 353 

node v2, we say the edge corresponding to v1 is an ancestor edge of the edge corresponding to 354 

v2. 355 

5.2 Termination and efficiency 356 

Two routines called by Lines 10 and 3 account for the timing-related performance of 357 

Algorithm 4, namely pickRecursiveLinkEdge and shellTransformation. They determine 358 

how many shell transformations are executed and how fast a single shell transformation can 359 

run, respectively. 360 

Given a supporting face f in the shell of e, the routine pickRecursiveLinkEdge checks 361 

whether or not a further recursion is necessary. If yes, the routine returns a link edge between 362 

two possible candidates. To filter inefficient recursions, the implementation of this routine can 363 

be further improved through the following guidelines: 364 

(1) Do not return a boundary edge. 365 

(2) If a tetrahedra sharing f overlaps with the shells of an ancestor edge of e, return 366 

nothing. 367 

(3) Return a reflex edge only. In Figure 8, two faces ap2p3 and ap3p4 form a reflex angle if 368 

viewed from a point b; correspondingly, ap3 is called a reflex edge of the face abp3. 369 

 370 
Figure 8. Illustrative case of a reflex edge. 371 

  The termination of Algorithm 4 remains an issue because there is no guarantee that a mesh 372 

edge could be removed by flips under the requirement that the quality of the mesh could not 373 

be decreased by these flips. Although the second guideline mentioned above prevents an 374 

infinite execution of the recursive callings, Algorithm 4 could still be very time-consuming 375 

because the number of its shell transformation callings may increase exponentially when the 376 

recursive level increases. Therefore, a user parameter lmax is input to Algorithm 4 to limit the 377 

maximal recursive level. Based on an analysis of many trial and error experimental results, we 378 

choose lmax to be 5 in this study to meet our goal of developing a cost-effective mesh 379 

improver.  380 

The routine shellTransformation (see Algorithm 3) includes two main steps. Firstly, it 381 

employs Algorithms 1 and 2 to obtain the triangulation graph of the skirt polygon. Next, it 382 

searches for a simple cycle in that graph to reconstruct an optimal covering mesh according to 383 

Equation 2. The time consumptions of both steps are at an order of O(m
3
), where m is the 384 

number of skirt nodes. A single calling of this routine may consume little time because m is 385 

very small. However, the number of callings could be very large because of the recursive 386 

nature of Algorithm 4. In our implementation, this routine has been speeded up through three 387 

treatments as follows: 388 
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(1) Introduce the validity conditions (see Section 4.3) in the first step to simplify the 389 

triangulation graph; 390 

(2) Search for the optimal simple cycle first to prevent those unnecessary searches for low-391 

quality cycles; 392 

(3) Record the results of time-consuming mesh validity and quality computations after 393 

they are executed for the first time so that simple queries can replace the repeated 394 

callings of these computations. 395 

Algorithm 4. The routine of recursive shell transformations 396 

recursiveST(e, f, l, lmax) 

Inputs: 

the supporting edge, denoted e 

a face containing e that the routine attempts to remove, denoted f     

the recursive level with an initial value of zero, denoted l 

the maximally allowed recursive level, denoted lmax 

Variables: 

the ending nodes of an edge, denoted a(·) and b(·) 

the skirt polygon of the shell of an edge, denoted P(·) 

the set of elements containing an edge, denoted S(·)  

a set of link faces contained in S(·), denoted F(·) = { f1′, f2′, …, fm′}, where m = |F(·)| 

1. if | S(e)| <= 0 or (f !=  and f  F(S(e)))  

2.   return success 

3. shellTransformation(a(e), b(e), P(e), S(e))  

4. if | S(e)| <= 0 or (f !=  and f  F(S(e)))  

5.   return success 

6. if l >= lmax /* the resursive level is limited under lmax. */ 

7.   return fail 

8. m = |S(e) | /* record the size of the shell S(e) */   

9. for i = 1 to m 

10.   e′ = pickRecursiveLinkEdge(fi′) /* filters are set to avoid inefficient recursions */  

11.   if e′ !=   

12.     recursiveST(e′, fi′, l+1, lmax) /* recursive calling */ 

13.     if |S(e) | < m /* S(e) is reduced as well */ 

14.       retrun recursiveST(e, f, l, lmax) /* recursive calling */ 

15. return fail   
 397 

Another factor that affects the efficiency of Algorithm 4 is the routine that identifies a shell 398 

in the input mesh (referring to the shell-find routine thereafter), which is employed by Lines 4 399 

and 13 of Algorithm 4. The efficiency of this routine depends on the data structure adopted to 400 

represent a tetrahedral mesh. In our scheme, four incident vertices are stored for each 401 

tetrahedron, plus four neighboring elements of this tetrahedron. Meanwhile, for each mesh 402 

vertex, one element incident to this vertex is stored. This data structure requires a small 403 

amount of memories, and the shell-find routine based on it only needs to traverse the elements 404 

locally. Given two ending vertices of an edge (denoted by v1 and v2, respectively), the shell-405 

find routine is separated into two phases. In the first phase, one element that contains the input 406 

edge is searched by the following steps:  407 

(1) Get the stored element incident to v1 and push it into a stack; 408 

(2) If the stack is empty, exit the routine and return NULL; otherwise, remove the top 409 
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element from the stack and go to Step 3; 410 

(3) If the top element contains v2, return the top element and exit the routine; 411 

(4) Flag the top element as visited, and then visit its neighboring elements. For any 412 

unvisited neighbor, if it contains v1 as well, push it into the stack; 413 

(5) Go back to Step 2. 414 

If no valid element is returned by the above procedure, the shell is empty; otherwise, 415 

starting from the returned element, the entire shell can be visited by using the neighboring 416 

indices of elements. In the worst scenarios, the first phase visits all elements surrounding v1, 417 

and the number of such elements is close to 30 on average for real mesh examples. The 418 

second phase visits all elements surrounding the edge, and the number of such elements is 419 

about 5-7 on average
‡
. Therefore, the first phase dominates a general calling of the routine in 420 

terms of computing time. However, in many circumstances, one element surrounding an edge 421 

is stored somewhere before calling the shell-find routine. By using this element as an extra 422 

input, the timing-related performance of the shell-find routine can be improved remarkably by 423 

skipping over the first phase. 424 

5.3 Validity and optimality conditions. 425 

The shell transformation routine presented in Algorithm 3 needs to output an optimal 426 

covering mesh of a shell among all valid ones. Here, the definitions of validity and optimality 427 

depend on specific application purposes. For mesh quality improvement, three types of 428 

validation conditions are set for covering meshes as: 429 

(1) The basic condition, which requires all elements have positive volumes.  430 

(2) The recursive condition, which requires each shell transformation should create no 431 

supporting faces around any ancestor edge of the current supporting edge.  432 

(3) The application specific condition, in the context of mesh improvement, which requires 433 

the quality of the output covering mesh of the shell should be higher than the quality of 434 

the input covering mesh. 435 

It is possible that more than one valid covering mesh exists for a shell. The final output of a 436 

shell transformation calling is the covering mesh with the highest possible quality. See 437 

Section 5.1 for the definition of mesh quality. 438 

5.4 The shell transformation based local reconnection scheme 439 

If one edge or face of a low-quality element is removed, the element will be removed 440 

accordingly. Based on this concept, Algorithm 5 presents a local reconnection scheme that 441 

attempts to remove low-quality elements by removing the edges or faces of these elements. 442 

All of low-quality elements are stored in a heap in an ascending order of the element 443 

quality. Firstly, Algorithm 4 is called on an edge of the first element of the heap. If the 444 

element is removed by Algorithm 4, Algorithm 4 succeeds; otherwise, Algorithm 4 is 445 

repeated on another edge of the element until all edges of the element are attempted. To 446 

protect the mesh boundary, the edges attempted for removal must be interior edges of the 447 

mesh. Next, if Algorithm 4 fails to remove the element, we attempt to remove the faces of this 448 

element individually. To protect the mesh boundary, the faces attempted for removal must be 449 

interior faces of the mesh. The 2-3 flip shown in Figure 1a is the simplest local scheme for 450 

face removal. However, a more effective alternative is multi-face removal (see Figure 1c). 451 

                                                 

‡ It is worth noting that both numbers could vary case by case, depending on mesh topologies. Nevertheless, the meshes 

considered in this study are inputs for numerical simulations, where only a small percentage of elements are badly shaped. 

For different meshes of this type, it is observed that both numbers usually remain within the ranges we mentioned in the text. 

For instance, for the unimproved F16 and Bridge meshes to be presented in Section 7 for tests, the average numbers of 

elements surrounding interior mesh nodes are both 5.50. After mesh improvement, these two numbers are reduced to 5.21 

and 5.20 respectively. The numbers of elements surrounding interior mesh edges are 26.05 and 26.21, respectively. After 

mesh improvement, these two numbers are reduced to 23.82 and 23.80 respectively. 
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Shewchuk [10] suggested an implementation of multi-face removal. In this study, we present 452 

an alternative solution based on the proposed shell transformation routine (i.e., Algorithm 3).  453 

Given an interior face f for removal, the proposed algorithm takes the following steps as: 454 

(1) Find two tetrahedra sharing face f, and denote the apexes of the tetrahedra opposite to f 455 

as a and b, respectively. 456 

(2) Find all of the faces opposite to a and b. As shown in Figure 9a, these faces may form 457 

several connected components. 458 

(3) Select a component that includes the face (or faces) intersected by ab, as shown in 459 

Figure 9b. 460 

(4) Define the boundary of the selected component as a polygon. If a point (such as p7 in 461 

Figure 9c) is contained in the interior of the polygon, remove one face (such as the face 462 

p1p2p7 in Figure 9c) incident on this point from the component. 463 

(5) Now we get a local mesh like the one shown in the left of Figure 1c. With this mesh as 464 

the input, the shell transformation routine (i.e., Algorithm 3) is called to search for a 465 

better covering mesh to fill in the shell region. 466 

To avoid an infinite execution of the loop defined in Lines 2-16 of Algorithm 5, no matter 467 

the element for removal is removed or not, this element must be removed from the heap 468 

before the next iteration. 469 

Algorithm 5. The combinational edge removal based on recursive shell transformation 470 

localReconnection(M, lmax) 

Inputs: 

the mesh to be improved, denoted M 

the maximally allowed recursive level, denoted lmax and the default value is 5 

Variables: 

the heap that stores all of low-quality elements, Tbad 

1. Insert all of low-quality elements into Tbad in the ascending order of the element quality 

2. while Tbad is not empty 

3.   t: the first element of Tbad 

4.   If t has been removed from M 

5.     goto line 16 

6.   E = {e1, e2, …, en}: the set of edges of t qualified for removal (n <= 6) 

7.   for j = 1 to n 

8.     recursiveST(ej, , 0, lmax) 

9.     if t is removed 

10.       goto line 16 

11.   F = {f1, f2, …, fm}: the set of faces of t qualified for removal (m <= 4) 

12.   for j = 1 to m 

13.     Remove fj by a shell transformation based multi-face removal routine 

14.     if t is removed  

15.       break 

16.   Remove t from Tbad    
 471 

 472 
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 473 
(a) 474 

       475 
(b)                                   (c) 476 

Figure 9. The procedure that prepares the inputs for the multi-face removal operation. 477 

6. THE OVERALL MESH IMPROVEMENT ALGORITHM 478 

The application goal of this study is to develop a cost-effective mesh improver. In this 479 

section, we first present some basic considerations that guide this development procedure. 480 

Then, we introduce the set of smoothing, point insertion and point suppression schemes 481 

incorporated in our mesh improver. Finally, the overall mesh improvement scheme is detailed.  482 

6.1. The basic considerations 483 

In this study, the minimum sine of dihedral angles is used as a default quality measure. The 484 

quality measure of a mesh is evaluated by a vector listing the quality of each tetrahedron 485 

contained by the mesh, in an order from the worst to the best. Since the worst tetrahedron in a 486 

mesh has far more influence than those average tetrahedra, the quality vectors of two meshes 487 

are compared lexicographically so that, for instance, an improvement in the second-worst 488 

tetrahedron improves the overall mesh quality even if the worst tetrahedron has not changed. 489 

To ensure the heuristic algorithm never worsens the quality of a mesh, a hill-climbing 490 

method is adopted in all of the developed local schemes, which considers applying a local 491 

operation only if the quality of the changed mesh will be better than that of the original mesh. 492 

Local operations that do not improve the mesh quality are not applied. The method stops 493 

when no operation can achieve further improvement (i.e., the mesh is already locally optimal), 494 

or when a further optimization promises too little gain. 495 

Meanwhile, since the focus is usually on the worst tetrahedron, only bad elements are 496 

treated to save the computing time, which refer to those elements whose minimum sine values 497 

are less than 0.5 in the following discussions, i.e., at least one dihedral angle of the element is 498 

either below 30° or above 150°. 499 

The surface boundary of a volume mesh influences the mesh quality considerably. In the 500 

applications where the boundary can be changed to some extents, it is beneficial to extend the 501 

local schemes for mesh quality improvement from interior mesh entities to boundary entities. 502 
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However, in many applications, the improved mesh need to be consistent with a CAD model 503 

or matched face-to-face with another mesh. To limit the discussions, the presented algorithm 504 

regards the boundary configuration of the mesh as untouchable, i.e., vertices on the boundary 505 

cannot be smoothed, and the connectivity between them cannot be changed. 506 

6.2. Smoothing 507 

To achieve the cost-effectiveness, we combine an optimization-based algorithm [20] with the 508 

Laplacian smoothing to reposition each interior mesh point that is included by at least one bad 509 

element (referred to as a bad point hereafter): 510 

(1) Perform Laplacian smoothing. If the improved ball (referring to all of elements incident 511 

on the point) contains no bad elements, the smoothing succeeds; otherwise, continue. 512 

(2) Perform the optimization-based smoothing. 513 

To save the smoothing time, a mesh point is flagged as smoothed after a successful 514 

smoothing, and this flag is flushed only if the ball of the point is changed. In each smoothing 515 

cycle, all of non-smoothed bad points are treated only once. 516 

In each smoothing pass, the smoothing cycle is repeated until three indicators of the mesh 517 

quality are not improved further: (1) the quality of the worst tetrahedral (qworst); (2) the 518 

number of bad elements (nbad); and (3) the average quality of bad elements (qaver). 519 

6.3. Point insertion and point suppression 520 

We adopt an edge-splitting based point insertion scheme. It attempts to insert a point at the 521 

middle of an interior edge and then to split those elements that meet at this edge; see Figure 522 

10a. Finally, the new point is smoothed, and if the resulting mesh is better than the old one, 523 

the mesh will be changed; otherwise, the old mesh is restored. 524 

Besides, our mesh improver relies on an edge contraction operation to remove bad points 525 

of the mesh. Figure 10b illustrates this operation using a 2D example. Each edge ended with 526 

the point to be suppressed is contracted to the other endpoint, and the resulting mesh 527 

configuration with the best quality is selected for further smoothing. To save computing time, 528 

only the point that replaces the contracted edge is smoothed. The point suppression operation 529 

fails if edge contraction (plus point smoothing) cannot produce a better mesh than the old one. 530 

Since only bad elements are targeted, those edges included by bad elements are attempted 531 

only once in each point suppression or insertion pass. 532 

  533 
(a)                                               (b)  534 

Figure 10. Illustration for the (a) edge splitting and (b) edge contraction operations. 535 

6.4. The mesh improvement schedule 536 

Algorithm 6 presents the proposed mesh improvement schedule, which combines different 537 

local schemes to improve the mesh quality. This schedule begins with a smoothing pass, and 538 

then executes the main loop of mesh improvement. In the main loop, a smoothing pass is 539 

followed after the pass of each type of topological transformations to improve the mesh 540 

quality further. The main loop is ended when three subsequent combinational passes fail to 541 

make sufficient progress or the number of iteration steps exceeds a predefined threshold (in 542 

Edge splitting 
Edge contraction 
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the present study, the default value of this threshold is 30). We gauge progress using three 543 

quality indicators mentioned in Section 5.4, i.e., qworst, nbad and qaver.  544 

Algorithm 6. The proposed mesh improvement schedule 545 

improveAMesh(M) 

Input: 

M, the mesh to be improved 

Variables: 

    qworst, q′worst, the quality of the worst tetrahedral 

 nbad, n′bad, the number of bad elements 

 qaver, q′aver, the average quality of bad elements 

1. failed = 0; itcount = 0 

2. Smooth M 

3. Query the mesh quality and store the indicators in qworst, nbad and qaver, respectively   

4. while failed < 3 && ++itcount <= 30  

5.   localReconnection(M, 5) 

6.   Smooth M 

7.   Improve M by the point suppression scheme 

8.   Smooth M 

9.   Improve M by the point insertion scheme 

10.   Smooth M 

11.   Query the mesh quality and store the indicators in q′worst, n′bad and q′aver, respectively 

12.   if (q′worst < qworst || n′bad < nbad || q′aver < qaver) failed = failed + 1 

13.   else failed = 0 

14.   qworst = q′worst; nbad = n′bad; qaver = q′aver 
 546 

7. RESULTS 547 

The numerical tests are conducted on a PC workstation (CPU: 3.5GHz, Memory: 24GB). 548 

Results obtained from the developed mesh improver are compared with those obtained by 549 

Grummp (Version 0.3.4) and Stellar (Version 1.0), respectively. To our knowledge, Grummp 550 

[20, 32] and Stellar [12, 13] are among the best open-source improvers for tetrahedral meshes. 551 

Although many common features exist between two codes, their differences are also evident 552 

due to different start points of their development. The goal of Grummp is to improve the 553 

worst tetrahedra cost-effectively, while the goal of Stellar is to improve the worst tetrahedra 554 

aggressively with speed as a secondary consideration.  555 

In default, Grummp code takes four steps to improve a given mesh: 556 

(1) Perform three passes of local reconnections for all elements. 557 

(2) Perform two smoothing passes for elements containing angles below θ degrees or above 558 

180-θ degrees. Here, θ is a threshold initially set as 25° and then adaptively reduced 559 

after each pass of smoothing operations. 560 

(3) Repair a small fraction of the worst tetrahedra by a full range of swapping techniques. 561 

(4) Repeat Step 2. 562 

The default schedule of Stellar code begins with one smoothing pass, one local 563 

reconnection pass and one edge contraction pass for all elements, and then combines these 564 

local schemes and a point insertion scheme in a loop to improve the quality of a mesh 565 

iteratively. Inside this loop, the smoothing and local reconnection routines target at all 566 
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elements, but the most passes of edge contraction and point insertion routines target at 567 

elements with angles below 40° or above 140° except for a so-called desperation pass, which 568 

targets at the worst 3.5% of tetrahedra.  569 

       570 
(a)                           (b)                               (c) 571 

   572 
(d)                                          (e)   573 

Figure 11. The selected meshes: (a) Tire; (b) Patient-organs02; (c) The F6 aircraft; (d) The 574 

F16 aircraft; (e) The London Tower bridge. Surface meshes and grid sources for mesh sizing 575 

control are displayed in both graph (c) and graph (d), and the surface mesh and inviscid flow 576 

simulation results induced by a crosswind are displayed in graph (e), respectively. 577 

As shown in Figure 11, five meshes are selected. The first two meshes are accessible from 578 

the internet: the initial mesh of tire was ever analysed in literatures [20] and [32], and 579 

included in the package of Grummp [32] and Stellar [13], and the initial mesh of patient-580 

organs02 is obtained from the AIM@SHAPE repository [33]. The last three meshes are 581 

generated by our in-house codes following the same schedule as: 582 

(1)  Input a geometry model. 583 

(2)  Triangulate the surface by an advancing front technique. 584 

(3)  Tetrahedralize the volume by a Delaunay mesher [4]. 585 

The original geometry models of the last three examples are all accessible from the internet. 586 

The London Tower Bridge model (referred to as bridge hereafter) and the DLR-F6 wing-587 

body-nacelle-pylon aircraft model (referred to as F6 hereafter) are the selected test case 588 

geometries for the meshing contest session of the 23rd International Meshing Roundtable 589 

(IMR) and the 2nd AIAA CFD Drag Prediction Workshop, respectively. The F16 aircraft 590 

model (referred to as F16 hereafter) is obtained from GrabCAD [34]. 591 

Table 1 lists the initial mesh size statistics and the mesh quality data of those selected 592 

examples, where θmin and θmax refer to the minimum and maximum dihedral angles, and λ 593 

refers to the percentage of bad dihedral angles, i.e., angles within the range of [0, 30°] or 594 

[150°, 180°], respectively. Meanwhile, λi (i=1-5) is used to evaluate the distributions of bad 595 

angles, which refers to the percentage of dihedral angles within the range of [6(i-1), 6i) or 596 

(180-6i, 180-6(i-1)] degrees. For instance, λ2 refers to the percentage of dihedral angles within 597 

the range of 6° to 12° or 168° to 174°. 598 
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Table 1. The initial mesh size statistics and mesh quality data. 599 

Examples #tetra. #points 
θmin 

(°) 

θmax 

(°) 

% of bad  

angles (λ) 

Distribution of bad angles (%) 

λ1 λ2 λ3 λ4 λ5 

Tire 11,098 2,570 0.66 178.88 4.58 0.12 0.46 0.77 1.28 1.96 

Patient-organs02 280,911 51,124 2.89 175.23 7.65 0.0072 0.21 1.20 2.45 3.78 

F6 1,023,532 172,664 2.6e-13 ≈180 6.65 0.23 0.68 1.19 1.82 2.73 

F16 18,065,336 2,906,056 2.6e-14 ≈180 6.63 0.23 0.67 1.18 1.82 2.74 

Bridge 37,772,656 6,205,571 2.1e-13 ≈180 6.72 0.23 0.68 1.19 1.85 2.77 

In the first test, the performance data of different local reconnection schemes are compared 600 

with each other. Stellar code executes edge removal and multi-face removal routines 601 

repeatedly to improve mesh topology, while Grummp code executes 2-3 flips and edge 602 

removal routines repeatedly. We improve the five initial meshes by performing one pass of 603 

the three local reconnection schemes, respectively. Instead of improving all elements, only 604 

bad elements are treated in this test. Table 2 presents the mesh quality and the computing time 605 

data comparison. 606 

For patient-organs02, F6 and F16 cases, our scheme not only achieves the lowest 607 

percentage of bad angles (λ), but also narrows the ranges of dihedral angles to the largest 608 

extent. For bridge case, our scheme also achieves the lowest λ; however, all of the three local 609 

reconnection schemes fail to improve both the smallest and the largest angles to an acceptable 610 

level, although the values achieved by our scheme are slightly better. For tire case, Grummp 611 

code improves θmin and θmax at the same level as our scheme. Meanwhile, Grummp code 612 

achieves a slightly better value of λ than our scheme, while our scheme achieves smaller 613 

values of λ1 and λ2. We believe that, for this mesh, more angles between 12° and 30° (or 614 

between 150° and 168°) are generated when our scheme attempts to remove small angles 615 

between 0° and 12° or large angles between 168° and 180°, because the cost of improving the 616 

worst angle is possibly increased considerably due to the generation of more undesirable 617 

small/large angles.  618 

In this test, Stellar code achieves the best performance with respect to the computational 619 

time, while Grummp code performs rather well for small meshes but very poor for big 620 

meshes. For our scheme, one pass of the proposed local reconnection scheme consumes more 621 

time than its counterpart in Stellar code, because of its recursive nature. Nevertheless, since 622 

the proposed scheme produces a much better mesh, this marginally more time consumption is 623 

acceptable. 624 

Table 2. The mesh quality and computational time data for different local reconnection 625 

schemes. 626 

Examples #tetra. 
θmin 

(°) 

θmax 

(°) 
λ 

Distribution of bad angles (%) 

Time (s)  
λ1 λ2 λ3 λ4 λ5 

Tire 

Grummp 11,019 3.36 172.38 4.21 0.069 0.30 0.57 1.18 2.09 0.09 

Stellar 10,936 3.00 172.38 4.23 0.056 0.31 0.59 1.23 2.05 0.07 

Present 10,906 3.36 172.38 4.42 0.047 0.27 0.61 1.30 2.19 0.21 

Patient- 

organs02 

Grummp 265,086 5.68 165.38 3.46 6.3e-5 3.3e-3 0.12 0.96 2.37 2.6 

Stellar 261,485 6.55 167.70 2.98 0 2.4e-3 0.089 0.79 2.09 2.6 
Present 259,959 11.21 162.59 2.81 0 6.4e-5 0.034 0.67 2.10 5.9 

F6 

Grummp 955,584 0.78 178.4 0.75 3.0e-4 2.0e-3 0.016 0.10 0.63 9.8 

Stellar 951,623 0.73 178.7 0.58 3.7e-4 4.3e-3 0.022 0.094 0.46 4.6 
Present 946,534 3.69 174.85 0.31 7.0e-5 4.8e-4 2.5e-3 0.018 0.29 5.7 

F16 

Grummp 16,854,123 2.4e-4 ≈180 0.74 3.9e-4 2.3e-3 0.018 0.11 0.61 258.0 

Stellar 16,791,528 1.3e-4 ≈180 0.57 9.5e-4 4.7e-3 0.024 0.097 0.45 72.6 

Present 16,682,773 3.80 174.20 0.31 1.9e-5 4.1e-4 4.1e-3 0.025 0.28 85.3 

Bridge 

Grummp 35,233,789 3.0e-5 ≈180 0.81 2.5e-4 2.0e-3 0.017 0.11 0.67 542 

Stellar 35,081,252 9.2e-5 ≈180 0.62 4.0e-4 3.8e-4 0.022 0.10 0.50 160.8 

Present 34,853,521 8.6e-4 ≈180 0.36 1.5e-5 1.6e-4 1.9e-3 0.025 0.33 192.2 

In the second test, we compare the default schedules of Grummp code, Stellar code and the 627 
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proposed algorithm (i.e., Algorithm 6). In this test, the option that prohibits the change on the 628 

mesh surface is enabled for both Grummp and Stellar codes. In addition, because the first pass 629 

of edge contraction in Stellar code can coarsen the input mesh dramatically, this pass is thus 630 

disabled in this test. 631 

Table 3 presents the mesh quality and computational time data from the second test. In all 632 

of the cases, Grummp code outputs the worst quality meshes. For F16 and bridge cases, the 633 

meshes output by Grummp code contain extremely small and/or large angles, while Stellar 634 

code and our algorithm can improve them to an acceptable level for further numerical 635 

simulations. We believe that the following facts might account for the relatively poor 636 

performance of Grummp code. Firstly, Grummp code does not incorporate any point 637 

suppression and point insertion schemes. In practice, these two schemes are useful for 638 

eliminating extreme small and/or large angles of a mesh. Secondly, Grummp code only 639 

executes a fixed number of passes of swapping and smoothing operations. In both Stellar code 640 

and our algorithm, the adopted scheduling strategies that combine local mesh improvement 641 

schemes are far more aggressive. 642 

Table 3. The mesh quality and computational time data of the default schedules of Grummp, 643 

Stellar and our improved method. 644 

Examples #tetra. #points 
θmin 

(°) 
θmax 

(°) 
λ 

Distribution of bad angles (%) 
Time 

(s) λ1 λ2 λ3 λ4 λ5 

Tire 

Grummp 11,039 2,570 13.67 158.55 1.7 0 0 0.030 0.21 1.47 0.5 

Stellar  10,973 2654 23.4 148.1 0.15 0 0 0 0.017 0.13 106 
Present 11,840 2,751 20.67 157.45 0.26 0 0 0 0.018 0.24 1.0 

Patient 

-organs02 

Grummp 264,954 51,124 8.93 160.40 2.91 0 1.3e-4 1.6e-3 0.06 2.85 21 

Stellar 227,775 46,237 31.7 141.58 0 0 0 0 0 0 3,220 
Present 266,631 52,392 20.52 149.93 8.3e-3 0 0 0 3.8e-4 7.9e-3 16 

F6 

Grummp 955,512 172,664 0.78 178.4 0.65 1.7e-4 3.0e-4 1.1e-3 3.5e-3 0.65 43 

Stellar 918,434 171,912 18.2 158.7 5.9e-3 0 0 0 4.7e-4 5.4e-3 1,193 

Present 935,608 172,167 10.64 159.79 0.017 0 5.3e-5 3.2e-4 1.4e-3 0.015 26 

F16 

Grummp 16,854,105 2,906,056 2.4e-4 179.99 0.63 1.5e-4 3.2e-4 2.6e-3 0.010 0.62 884 

Stellar 16,360,678 2,910,076 3.8 174.2 0.027 6.1e-6 3.1e-6 1.1e-4 9.1e-4 0.026 9,882 

Present 16,666,517 2,923,840 3.8 174.2 0.013 6.0e-6 1.3e-5 7.7e-5 1.2e-3 0.012 522 

Bridge 
Grummp 35,233,695 6,205,571 3.0e-5 179.99 0.71 1.1e-4 2.0e-4 8.6e-4 6.8e-3 0.70 1,521 
Stellar 34,188,981 6,211,120 7.5 171.5 0.13 0 1.0e-4 4.2e-4 9.5e-4 0.13 21,779 

Present 33,698,234 6,091,180 5.79 172.55 0.13 9.9e-7 7.0e-5 4.0e-4 1.9e-3 0.13 1,412 

In the second test, Stellar code outputs the best quality meshes in most occasions, and it not 645 

only narrows the range of dihedral angles at most, but also reduces the percentage of bad 646 

angles as well. For instance, for patient-organs02, Stellar code improves the smallest and the 647 

largest angles to be 31.7° and 141.6°, respectively. In other words, the improved mesh does 648 

not contain any bad angles. The mesh improved by our algorithm is slightly worse, which 649 

contains 132 angles below 30° (of which 6 angles below 24°), but no angles above 150°. For 650 

F16 and bridge cases, the quality levels of the improved meshes by Stellar code and our 651 

algorithm are very close.  652 

With respect to the computational time performance, the proposed algorithm performs the 653 

best in most cases, apart from the improvement of the mesh tire. For this smallest mesh, 654 

Grummp code performs the best in terms of the timing performance. Here, we define a 655 

velocity index to evaluate the timing performance as: 656 

v = the number of elements contained in the input mesh / the total computing time. 657 

For those three inputs produced by the Delaunay mesher, i.e., F6, F16 and bridge, Stellar 658 

code runs at a speed of 45.9, 18.9 and 15.4 times slower than that of the proposed algorithm, 659 

respectively. It is worth noting that the adopted Delaunay mesher runs very fast. For instance, 660 

the generation of the initial mesh of bridge consumes only 174 seconds, while the proposed 661 

algorithm can improve it to an acceptable mesh quality level for simulations in about 1,412 662 

seconds. However, if replacing the proposed algorithm by Stellar code, it will take about 6 663 
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hours to achieve only marginal improvement (compared with our results) in terms of the mesh 664 

quality. In this respect, the proposed algorithm is undoubtedly a more cost-effective choice 665 

than the current default schedule of Stellar code.  666 

To demonstrate the performance difference between three mesh improvers more clearly, 667 

Figure 12a compares the distributions of bad angles of three F16 meshes produced by 668 

Grummp code, Stellar code and our mesh improver. By default, each curve contains 10 data 669 

points, and the λ value of the ith point refers to the percentage of bad dihedral angles within 670 

the range of [3(i-1), 3i) or (180-3i, 180-3(i-1)] degrees (i=1-10). Nevertheless, because the 671 

meshes produced by Stellar code and our mesh improver contains no angles below 3° or 672 

above 177°, their corresponding curves contains no data points referring to angles within this 673 

range. Besides, Figure 12b compares the timing performance of three mesh improvers for five 674 

test meshes of various sizes, evaluated by the velocity indices of these improvers mentioned 675 

previously.  676 

The λ value of each data point of the curve for Grummp code is found larger than its 677 

counterparts from Stellar code and our mesh improver by nearly one or two orders of 678 

magnitude, while the λ values of data points of the curves for Stellar code and our mesh 679 

improver are comparable in general. However, the velocity indices of Stellar code are lower 680 

than their counterparts of Grummp code and our mesh improver by one or two orders of 681 

magnitude, while the velocity indices of Grummp code and our improver is at the same order. 682 

From the above analysis, we can conclude that our mesh improver presented in this study can 683 

achieve an overall better balanced performance between the mesh quality and computational 684 

time than other two state-of-the-art algorithms, and it is therefore more suitable for the quality 685 

improvement tasks involving large-scale meshes. 686 

It needs to be pointed out that the initial mesh of patient-organs02 actually contains interior 687 

constraints. However, because the current versions of Grummp and Stellar codes provide no 688 

options to input a mesh with interior constraints, all of the tests presented above choose not to 689 

respect interior constraints. In fact, the proposed algorithm can respect interior constraints 690 

very well. To demonstrate this, Figure 13 compares the meshes improved by the proposed 691 

algorithm with or without interior constraints. Not surprisingly, the quality of the improved 692 

mesh that respects interior constraints is slightly worse. 693 

 694 
(a)                                    (b) 695 

Figure 12. A comparison of Grummp, Stellar and our improver in terms of mesh quality and 696 

timing performance. (a) The distributions of bad angles of the F16 meshes produced by three 697 

improvers. (b) The velocity indices of three improvers for five test meshes. 698 
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   699 

Figure 13. A comparison of the improved meshes of patient-organs02 by the proposed 700 

algorithm with interior constraints respected or not. In graphs (a) and (b), the blue triangles 701 

are boundary triangles, and the red tetrahedra are elements containing dihedral angles below 702 

30° or above 150°. Graph (c) compares the distributions of dihedral angles of both meshes. 703 

Finally, the applicability of the developed mesh improver for real aerodynamics 704 

simulations is demonstrated by a store separation simulation of a fully-loaded F16 aircraft. In 705 

this test, four stores are separated from the aircraft to verify the robustness of our in-house 706 

CFD system for complex flow simulations [35]. The main loop of this simulation includes 707 

four main steps:  708 

(1) Compute the unsteady flow by a finite volume solver.  709 

(2) Compute aerodynamic forces and moments based on flow simulation results, with 710 

which as inputs, the positions of moving bodies in the next time step are determined 711 

using the six degrees-of-freedom equations of motion. 712 

(3) Move the mesh points to adapt the movement of mesh boundaries.  713 

(4) If mesh movement yields elements with unacceptable quality, the holes are formed by 714 

deleting these elements. Next, a new mesh is formed by merging undeleted elements 715 

and new elements filled in the holes. Finally, the solution is reconstructed by 716 

interpolation. 717 

The initial volume mesh is composed of about 3.69 million tetrahedral elements (see Figure 718 

14a). Figures 14b and 14c compare the meshes before and after local remeshing at ts = 0.147s 719 

(ts refers to a physical time of separation). Figures 14d presents the mesh at ts = 0.3s, instantly 720 

after another local remeshing step is accomplished. Because the simulation involves very 721 

complicated boundary movements, the proposed remeshing algorithm is employed very 722 

frequently. Considering the simulation process until ts = 0.5s, the remeshing algorithm is 723 

employed for a total of 44 times. On average, each local remeshing step needs to generate and 724 

improve a local mesh size composed of about 350K elements. Stellar code is obviously 725 

inappropriate for this kind of application because of its huge time consumption. Before this 726 

study, Grummp code was ever employed for a local mesh improvement. It was observed that 727 

Grummp code occasionally failed to provide a qualified mesh for simulations. One possible 728 

reason could be that mesh faces are largely stretched during the mesh deformation process 729 

and some of them may even appear on the boundaries of the holes to be remeshed. Grummp 730 

code sometimes failed to remove those low-quality elements attaching to these stretched 731 

faces. After replacing Grummp code with the present mesh improver, no failing case has been 732 

reported as far as this simulation is concerned.  733 

Note that only the steps of the CFD solution and mesh deformation were executed in 734 

parallel on 32 computer cores in this test, while other steps, including local remeshing, are 735 

executed sequentially. Not surprisingly, the CFD solution step is most time-consuming, which 736 

used 91.9% of the total computing time. The mesh deformation step only used 3.9% of the 737 

total computing time because a simple spring-analogy approach was adopted [35]. Although 738 

local remeshing calling is executed sequentially, its total time cost is very low (using only 739 

2.9% of the total computing time).  740 
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    741 
(a)                                      (b) 742 

    743 
(c)                                      (d) 744 

Figure 14 Cut views of the volume meshes for the store separation problem of a full-loaded 745 

F16 aircraft at different physical time of separation (ts): (a) ts= 0s; (b) ts = 0.147s, before local 746 

remeshing; (c) ts = 0.147s, after local remeshing; (d) ts= 0.3s, after local remeshing. 747 

8. CONCLUSIONS 748 

A new flip named shell transformation is proposed for mesh quality improvement. Its single 749 

calling could be considered as an enhanced version of the edge removal transformation, while 750 

its recursive scheme acts like “composite edge removal transformations”. In practice, this 751 

recursive scheme provides an elaborate pattern to combine multiple flips and perform these 752 

flips on hundreds of elements for a single goal, for instance, removing a low-quality element 753 

by removing one of its boundary edges. Accordingly, the possibility to achieve such a goal by 754 

the proposed recursive scheme is much higher than those based on performing single flips 755 

individually.  756 

Furthermore, a new mesh improvement algorithm is developed by combining the proposed 757 

local reconnection scheme with smoothing and other topological transformation schemes. 758 

Numerical experiments have revealed that the proposed algorithm is capable of balancing the 759 

requirements for a high-quality mesh and a low computational time costs spent on the mesh 760 

improvement for large-scale engineering flow problems. 761 
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