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Summary statement 27 

Within social systems, we often see ‘key’ individuals that are disproportionately active in various tasks. Here 28 

however, we show that the contribution of such individuals may be far from decisive. 29 

Abstract 30 

Behavioural responses enable animals to react rapidly to fluctuating environments. In eusocial organisms, such 31 

changes are often enacted at the group level, but may be organised in a decentralised fashion by the actions of 32 

individuals. However, the contributions of different group members are rarely homogenous, and there is 33 

evidence to suggest that certain ‘keystone’ individuals are important in shaping collective responses. 34 

Accordingly, investigations of the dynamics and structuring of behavioural changes at both the group and 35 

individual level, are crucial for evaluating the relative influence of different individuals. Here, we examine the 36 

composition of tandem running behaviour during colony emigrations in the ant species Temnothorax albipennis. 37 

Tandem running is modulated in response to emigration distance, with more runs being conducted when a more 38 

distant nest site must be reached. We show that certain individuals are highly active in the tandem running 39 

process, attempting significantly more work in the task. Contrary to expectations, however, such individuals are 40 

in fact no more successful at conducting tandem runs than their less active nest mates. Instead, it seems that 41 

when more tandem runs are required, colonies rely on greater recruitment of workers into the process. The 42 

implications of our study are that in some cases, even when apparently ‘key’ individuals exist within a group, 43 

their relative contribution to task performance may be far from decisive. 44 

Introduction 45 

Spanning a broad range of species and genera, behavioural modification constitutes an essential component of 46 

the adaptive repertoires of animals. Examples range from simple Pavlovian responses in mammals (Jenkins et 47 

al. 1978), to complex, multi-generational cultural changes in human societies (Kirk 1996; Inglehart 1997) and 48 

inter-species mutualisms in the social insects (Way 1963). Common to all of these strategies, is the advantage of 49 

rapid benefits when compared to the more gradual changes elicited by natural selection alone. Considerable 50 

effort has been invested into studying behavioural changes at both the group (Barsade 2002; Langridge et al. 51 

2004) and the individual level (Shettleworth 2001). However, the interplay between the two, especially in 52 

complex networks, is less well understood (Bornstein & Yaniv 1998; Franklin & Franks 2012; Anderson & 53 

McShea 2001; Hunt et al. 2016). 54 

Social insects display complex life history characteristics, underpinned by efficient colony organisation, and 55 

thus provide excellent models for studying how group level behavioural changes are structured through the 56 

actions of individuals. This is in no small part due to their propensity for self-organisation, whereby complex 57 

processes may emerge without the need for centralised control, an ability that many human systems lack 58 

(Camazine et al. 2003). Self-organisation can lead to the formation of adaptive, but flexible group behaviours, 59 

which often confer additional benefits to colony functioning (Goss et al. 1989). Hence, such behaviours are of 60 

interest when attempting to elucidate how multi-level behavioural change is structured. Colony relocation 61 

represents one process that is regulated at both the group and individual level in social insects, and indeed, wide 62 
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variation exists among species in relation to how migration effort is assigned. Examples range from varying 63 

distributions of worker effort within colonies, as seen in the ant Myrmecina nipponica (Cronin 2015), to extreme 64 

cases where a single individual is key to overall collective organisation, such as in the queenless Ponerine, 65 

Diacamma indicum (Sumana and Sona 2013). 66 

In the ant Temnothorax albipennis, emigration behaviour is regulated at the group level to best suit 67 

environmental conditions, but relies on individual contributions and information sharing (Franks & Richardson 68 

2006). Colonies of this species reside within rock cavities in a moderately heterogeneous and unstable 69 

environment, and as such, they frequently have to emigrate to potential new nest sites in order to maintain their 70 

protection from external threats (Dornhaus et al. 2004). Before an emigration can occur, however, scouting 71 

workers must accumulate within a new nest site until a ‘quorum threshold’ is reached (Pratt 2004). A key 72 

behaviour in this process is tandem running, in which workers lead their nest mates to the location of a potential 73 

nest site or food source (Franklin & Franks 2012). During a tandem run, the leading worker will maintain 74 

intermittent tactile contact between its gaster and a follower’s antennae, leading it to the desired resource via an 75 

often-tortuous journey, and thus informing it of the route (Franks & Richardson 2006). Previous work has 76 

shown that colonies of T. albipennis increase their rate of tandem running; defined as the total number of 77 

tandem runs in relation to colony size, during emigrations where the target nest site is further away (O’Shea-78 

Wheller et al. 2016). This may be explained by the need to reduce emigration time and thus colony exposure 79 

during more distant emigrations (Traniello 1989), and it is elicited by a reduction in the rate of nest discovery 80 

(Pratt 2004). Despite being colony wide phenomena, tandem running responses are necessarily achieved by 81 

perception at the individual level, whereby workers determine that a quorum has not yet been met in a new nest 82 

site (Pratt 2004). As a consequence, the individual propensities of ants to engage in tandem running are likely to 83 

influence the overall structuring of the process, yet the dynamics of this remain unexplored. 84 

Several potential hypotheses may explain how individuals contribute to an increase in tandem running over 85 

longer emigration distances. First, workers that would not usually be involved begin to assist in leading or 86 

following tandem runs. Second, a ‘core’ of the same highly active workers simply lead more tandem runs 87 

themselves, or third, a combination of both may occur. The relative likelihood and significance of such options 88 

is uncertain, as previous studies have shown complex and differing structures of work distribution within 89 

colonies. Much of the work conducted to date supports the concept that T. albipennis colonies have some 90 

‘specialist’ workers in relation to certain task groups (Dornhaus 2008; Dornhaus et al. 2008). It has been noted 91 

that task propensities are positively correlated within groups of related tasks e.g. ‘foraging’ and ‘emigration’. 92 

Moreover, workers highly active in one task group may be less so in others (Pinter-Wollman et al. 2012), 93 

suggesting ‘situational specialisation’. Nevertheless, some workers may still be persistently active across all task 94 

groups (termed elites), though they constitute only a small proportion of individuals (Pinter-Wollman et al. 95 

2012). In addition, the extent of specialisation may vary depending on colony characteristics, for example, it has 96 

been shown that during brood carrying, smaller colonies will employ some specialist workers that are more 97 

active than others, while in larger colonies, each active individual contributes more evenly to the process 98 

(Dornhaus et al. 2008). Consequently, a greater understanding of how increased tandem running and other 99 

behavioural changes occur during more distant emigrations, should help to shed light upon the underlying 100 

processes that govern group and individual behaviour in a decentralised system. 101 
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In this study, we examined several key stages in both short and long distance emigrations at the group and 102 

individual level, in an effort to determine how behavioural changes were structured across individuals. Chiefly, 103 

we wished to determine if increases in the rate of tandem running were due to key individuals up-regulating 104 

their activity, more workers becoming involved, or indeed a mix of these two. We also tested the hypothesis that 105 

workers would alter their average tandem running return speed across emigration distances, as faster return rates 106 

would allow ants to recruit other colony members to a new nest more rapidly. Additionally, we attempted to 107 

determine if there was a link between initial scouting behaviour and a worker’s subsequent propensity to 108 

become actively engaged in emigrations. 109 

We addressed these questions by quantifying colony level changes, including those associated with tandem 110 

running, scouting, average return speed, and workforce mobilisation. Then, in order to dissect the processes 111 

underlying such changes, we measured distributions of individual scouting, tandem running, and movement 112 

speed, having uniquely marked all workers within each of the 10 experimental colonies. Furthermore, we 113 

identified behavioural sub-groups of workers by categorising individuals in relation to their engagement in only 114 

one, or both emigration distances. We then assessed differences in attempted and successful per capita tandem 115 

running workloads between these groups, to quantify their relative importance to the system as a whole. 116 

Materials and methods 117 

a) Colonies 118 

We collected ten colonies of Temnothorax albipennis (Curtis, 1854) from the isle of Portland, Dorset on 29
th

 of 119 

September 2015. Colonies contained between 47 and 187 workers, between 19 and 130 brood items and each 120 

had a single queen. No specific permission was required for collection, with ants being taken from a disturbed 121 

quarry area open to the public. Additionally, no collection permit was required, as T. albipennis is not a 122 

protected species. In order to minimise the impact of colony removal on the local population and ecology, we 123 

used an established rota to vary collection location, based on date. 124 

Colonies were migrated into initial laboratory nests and allowed to acclimatise for a period of 7 days after 125 

collection. We maintained them in the laboratory under established conditions (Dornhaus et al. 2004; Franks et 126 

al. 2003), with all nests being housed in plastic Petri dishes featuring Fluon coated sides. Ants were fed weekly 127 

with Drosophila melanogaster (Meigen, 1830), and allowed to forage for water and honey solution ad libitum. 128 

b) Marking 129 

The ten colonies were randomly numbered in order to determine a marking sequence. For each colony in turn, 130 

we anaesthetised all workers with CO2 and painted them with a unique permutation of three colours, one on the 131 

thorax and two on the gaster (fig. 1A). A mounted single-hair and microscope were used in order to apply the 132 

paint with precision. Markings corresponded to an identification key, allowing rapid determination of individual 133 

identity, in addition to total colony populations (S1, Tab1). Care was taken to ensure that CO2 exposure was 134 

kept to a minimum, and there was at least a 48h interval between marking and experimental trials, as studies 135 

have shown that insect behaviour may be affected after anoxia (Poissonnier et al. 2015). Further precautions 136 
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were taken to ensure that paint did not cover the gaster tips of workers, as this may impair the use of chemical 137 

signalling (Stuttard et al. 2015). 138 

c) Nest design 139 

We utilised two different nest qualities in our experiment; ‘poor’ and ‘excellent’. Colonies were initially housed 140 

in ‘poor’ quality nests, and allowed to emigrate into the ‘excellent’ nests during trials. Both designs were 141 

composed of microscope-slide lids and bases with a cardboard perimeter sandwiched between the two to create 142 

an internal cavity. The area of this cavity was constant across both nest qualities, measuring 65x35mm. ‘Poor’ 143 

quality nests had 1 mm high walls, a 6 mm wide entrance and a clear cover, while ‘excellent’ quality nests had 2 144 

mm high walls, a 1 mm wide entrance and a red filter cover. These differences combined to make excellent 145 

nests more spacious, more secure, and darker than ‘poor’ quality nests, and thus far superior in the ants’ 146 

assessment (Franks et al. 2003). 147 

d) Emigration trials 148 

All colonies underwent emigration trials under ‘move-to-improve’ conditions, in which their original nests were 149 

left intact, allowing them to emigrate of their own accord to the superior ‘excellent’ quality nests (Dornhaus et 150 

al. 2004), at distances of 100 mm and 300 mm (fig. 1B,C). Twenty emigrations were conducted in total, over a 151 

period of 35 days, with each colony performing two emigrations in turn. In order to account for the potential 152 

experience effects of multiple emigrations (Langridge, Sendova-Franks, & Franks, 2008), using random 153 

assignation, five of the colonies underwent the 100 mm trial first, and five the 300 mm trial first. 154 

Prior to the initiation of each trial, we cleaned 1000x1000 mm arenas with 70% ethanol solution, and 155 

illuminated them evenly using the laboratory lighting system (4100 Lumens, Colour rendering index: 85). 156 

Colonies housed in their original 'poor' nests were then transferred into the arenas and empty ‘excellent’ quality 157 

nests were placed at either 100 mm or 300 mm from them. At the initiation of experiments, the emigration 158 

process was observed and we began monitoring scout identities and numbers, tandem leader and follower 159 

identities and tandem durations, tandem run success rate at the two different distances, average ant return speed, 160 

and the total numbers of ants in the arena and nests (at 10min intervals). Additionally, HD video recording 161 

equipment (Panasonic HC-X900 series) was set up over both nest sites for the duration of emigrations, in order 162 

to facilitate further data analysis (fig. 1B, C). 163 

e) Range of assessment factors 164 

Analyses were broadly divided into investigations of the distribution of tandem running among workers, average 165 

return speeds, and the effect of scouting propensity on emigration engagement. Within these groups, we 166 

examined both colony level behaviour, and that of individual ants (via marking).  167 

To quantify behavioural changes in tandem running distribution, we compared the total number of tandem runs 168 

per colony; percentage colony engagement in tandem leading or following, and the total number of tandem runs 169 

per ant. By measuring the total number of tandem runs per individual, we were able to compare the activity of 170 

ants that were involved at a single emigration distance, to those involved across both emigration distances. This 171 

division method was important for testing the hypothesis that the same key individuals would conduct 172 

significantly more tandem runs at a longer distance (i.e. those individuals comprising the ‘both’ group). 173 
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To achieve this, workers were divided into two groups; those actively engaged in only one emigration distance 174 

(the ‘either’ group), and those actively engaged in both emigration distances (the ‘both’ group). Engagement in 175 

an emigration was defined as workers conducting scouting, tandem running, or both. 176 

We then compared the attempted and successful per capita tandem running workload of ants using the same 177 

division method, in order to account for the different sizes of these groups. Per capita tandem-running workload 178 

constituted the average amount of tandem running work (leading or following) done by each tandem-running 179 

worker, as a proportion of the total tandem running work conducted by all workers in a given emigration, and 180 

thus was a measure of individual contributions. In concert with the total absolute numbers of tandem runs 181 

conducted by workers, the use of this proportional measure allowed us to determine the relative importance of 182 

worker groups in the tandem running process at different distances. Additionally, we tested the effect of 183 

numbers of attempted tandem runs on an individual’s tandem running success. 184 

We quantified average worker return speed across the two emigration distances, pooled by colony. When 185 

returning to their old nest, workers take a direct route between sites (Franks & Richardson 2006), and thus speed 186 

was calculated as a function of distance over time. To assess the effect of prior scouting on an individual’s 187 

propensity to engage in emigrations, we measured scouting effort (defined as the numbers of ants exploring 188 

outside the nest over time) across colonies, and the effect of prior scouting experience (defined as leaving the 189 

nest to explore) on a worker’s subsequent involvement in tandem running. New-nest discovery time, percentage 190 

colony involvement in emigrations and quorum attainment time were also analysed. 191 

f) Statistical analysis 192 

For all colony-level data, we used Shapiro-Wilk tests to check for normality, and hence to inform the application 193 

of appropriate statistical tests. Where the data were found to be normally distributed, we conducted either paired 194 

or independent t-tests. For measures in which the data were not normally distributed, we used a combination of 195 

Wilcoxon signed-ranks tests and Independent Sample Mann-Whitney U tests. As non-parametric tests are less 196 

powerful than parametric ones, when the significance level was between 0.05 and 0.1, we double-checked 197 

results by applying parametric methods to transformed data. In all such cases, the significance of the tests was 198 

unaltered. 199 

When individual data were used, we employed Generalised Linear Mixed Models to account for the effect of 200 

colony and worker ID. All GLMMs included at most, two fixed predictor variables. Model selection was based 201 

on AIC and always began with the full model, involving interaction. The fit of all GLMMs was validated via 202 

analyses of Pearson residuals. All statistical analyses were performed in SPSS (Release versions 21.0.0.0, 203 

23.0.0.0, IBM Corporation and other(s) 1989, 2012, 2016). 204 

Tandem running at colony level 205 

We used a combination of paired-sample t-tests for measures with normally distributed data, and Wilcoxon 206 

signed-ranks tests for measures where the data were not normally distributed. 207 

 208 

 209 
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Individual tandem running distribution 210 

GLMMs assessing the effect of the number of leading and following attempts on successes of leading and 211 

following, used leading or following success/failure as the binomial response variables with a logit link, distance 212 

(100 mm or 300 mm) as a fixed factor predictor, number of attempted leads or follows as a covariate, and 213 

colony ID as a random factor. Worker ID was redundant, as no repeated measures were taken for any of the 214 

individuals. The GLMM assessing the number of attempted tandem runs by workers across emigration 215 

involvement groups used the total number of attempted tandem runs as a normal response variable with a log 216 

link, distance (100 mm or 300 mm) and involvement in either or both emigrations as fixed factor predictors, the 217 

interaction between the two, and colony ID and worker ID nested within colony ID as random factors. The 218 

GLMM assessing attempted per capita tandem running workload used per capita attempted workload as a 219 

normal response variable with a log link, distance (100 mm or 300 mm) and involvement in either or both 220 

emigrations as fixed factor predictors, the interaction between the two, and colony ID as a random factor. The 221 

GLMM assessing per capita successful tandem running workload used successful workload per capita as the 222 

normal response variable with a log link, distance (100 mm or 300 mm) and involvement in either or both 223 

emigrations as fixed factor predictors, the interaction between the two, and colony ID and worker ID nested 224 

within colony ID as random factors. 225 

We used paired t-tests to compare the percentage of individuals involved at both emigration distances to those 226 

involved at only one distance for each colony. 227 

Average worker return speeds 228 

A Wilcoxon signed-ranks test was employed to determine differences in the average return speed of workers 229 

between the two distances. 230 

Scouting propensity and emigration engagement 231 

The difference in the number of active scouts between distances was tested using a Wilcoxon signed-ranks test. 232 

To calculate the tandem running propensity of workers based on previous scouting activity, we measured the 233 

numbers of ants engaging in tandem runs as a proportion of the total population in each scouting category (the 234 

two scouting categories were individuals previously involved in scouting, and individuals not previously 235 

involved in scouting), within colonies. This was assessed using a combination of Mann-Whitney U tests 236 

(leading) and independent sample t-tests (following). Differences between the two distances were quantified 237 

with a Mann-Whitney U test. 238 

Discovery times and quorum attainment 239 

Distance-based differences in the time of quorum attainment were tested with a paired-sample t-test, while 240 

differences in new nest discovery time were assessed with a Wilcoxon signed-ranks test. 241 

 242 

 243 



8 
 

 244 

Results 245 

a) Tandem running at colony level 246 

Under the longer-distance emigration treatment, colonies on average employed a higher number of tandem runs 247 

(Wilcoxon signed-ranks tests, U=2.194, n=10, median100=8.5, median300= 14, P=0.028, fig. 2A). By contrast, the 248 

percentage of successful tandem runs was reduced, on average, at the longer emigration distance, although this 249 

was not statistically significant (Paired-sample t-test, t=1.032, df=9, P=0.329, fig. 2B). Additionally, at the 250 

longer emigration distance, colonies utilised a greater percentage of their potential workforce in both tandem 251 

running (Paired-sample t-test, t=48.00, df=9, P=0.037), and the emigration process in toto (scouting and tandem 252 

running) (Paired-sample t-test, t=-3.214, df=9, P<0.001) (fig. 2C,D). 253 

b) Individual tandem running distribution 254 

Across both emigration distances, an individual’s probability of leading a tandem run successfully, significantly 255 

increased with the number of leading attempts made (GLMM, odds ratio=1.422, df=140, P=0.017), independent 256 

of colony ID (Colony random effect: Z=0.918, P=0.359). Furthermore, in agreement with the colony-level data, 257 

tandem leaders had a higher probability of success when leading at the shorter distance (GLMM, odds 258 

ratio=2.100, P=0.030). However, the number of following attempts had no significant impact on the probability 259 

of following success (GLMM, odds ratio=0.216, df=189, P=0.735), independent of the random factor (Colony 260 

random effect: Z=0.775, P=0.439). The probability of following success was higher, but not statistically 261 

significantly so, at the shorter distance (GLMM, odds ratio=1.284, P=0.427). 262 

Across colonies, the percentage of individuals involved (scouting or tandem running) in emigrations at both 263 

distances was smaller than the percentage involved at just one distance (Paired-sample t-test, t=-4.039, df=9, 264 

P=0.001, fig. 3). The interaction between distance and involvement group was significant in its effect on the 265 

total number of tandem runs attempted per individual (GLMM, effect of interaction: F1,262=4.455, P=0.036, fig. 266 

4), indicating that worker group was important within distances. Specifically, the ‘both’ engagement group 267 

attempted more tandem runs per individual than the ‘either’ group at 300 mm (GLMM, Bonferroni post-hoc 268 

test: t=5.098, df=262, P<0.001, meaneither=1.281, meanboth=2.000), but not at 100 mm (GLMM, Bonferroni post-269 

hoc test: t=1.143, df=262, P=0.254, meaneither=1.145, meanboth=1.316), suggesting a greater role for this group at 270 

the longer distance. 271 

Following on from this, the per capita attempted tandem running workload of ants in the ‘both’ group was 272 

significantly higher than that in the ‘either’ group across both emigration distances (GLMM, effect of group: 273 

F1,292=18.327, P<0.001; meaneither= 0.579, meanboth=0.750). The attempted per capita tandem running workload 274 

of the ants was lower at 300 mm than at 100mm, regardless of their involvement in either or both emigrations 275 

(GLMM, effect of distance: F1,292=15.149, P<0.001, mean100=0.741, mean300=0.586, fig. 5A). However, the 276 

interaction between distance and involvement group was very close to the threshold of significance (GLMM, 277 

effect of interaction: F1,292=3.817, P=0.052). This may be explained by the per capita workload performed by the 278 

‘both’ group being significantly higher than for the ‘either’ group at 300 mm (GLMM, Bonferroni post-hoc test: 279 



9 
 

t=4.026, df=292, P<0.001, meaneither=0.486, meanboth=0.708), but not at 100 mm (GLMM, Bonferroni post-hoc 280 

test: t=1.762, df=292, P=0.079, meaneither=0.691, meanboth=0.795). 281 

Interestingly, when only successful tandem running workload was examined, these differences were somewhat 282 

diminished; per capita tandem running workload was still lower at 300 mm than at 100 mm across both 283 

involvement groups, (GLMM, effect of distance: F1,292=4.831, P=0.029, mean100=0.737, mean300=0.591, fig. 284 

5B). Ants in the ‘both’ group also still had a significantly higher successful per capita tandem running workload 285 

than those involved in the ‘either’ group across both distances (GLMM, effect of group: F1,292=6.037, P=0.015, 286 

meaneither=0.582, meanboth=0.748, fig. 5B), however, the interaction between distance and whether ants were 287 

involved in either or both emigrations was not significant (GLMM, effect of interaction: F1,292=0.012, P=0.915). 288 

This was due to a lack of difference within distances at both 100mm (GLMM, Bonferroni post-hoc test: t=1.774, 289 

df=292, P=0.077, meaneither=0.654, meanboth=0.831) and 300mm (GLMM, Bonferroni post-hoc test: t=1.677, 290 

df=292, P=0.097, meaneither=0.519, meanboth=0.673). 291 

c) Average worker return speeds 292 

The average return speed of workers across colonies was significantly higher for longer emigration distances 293 

(Wilcoxon signed-ranks test, U=-3.92, n=10, P<0.001, fig. 6). 294 

d) Scouting propensity and emigration engagement 295 

Before emigrating over the longer distance, on average, colonies employed significantly greater numbers of 296 

scouts (Wilcoxon signed-ranks test, U=2.253, n=10, P=0.024, mean100=16, mean300=25). In any given 297 

emigration, previously scouting significantly increased a worker’s propensity both to lead (Mann-Whitney, U 298 

test, U=3.250, nscouted=10, nnot-scouted=10, P<0.001, medianscouted=0.176, mediannot-scouted=0.040), and to follow 299 

(Independent-sample t-test, t=-3.680, df=9, P=0.002, meanscouted=0.172, meannot-scouted=0.084), tandem runs, and 300 

this trend was not significantly different between emigration distances (Mann-Whitney U test, leading: 301 

U=0.338, n100=10, n300=10, p=0.738, median100=0.071, median300=0.084; following: U=1.826, n100=10, n300=10, 302 

p=0.068, median100=0.073, median300=0.137), however, it should still be noted that the median for following 303 

was much higher at 300mm. 304 

e) Discovery times and quorum attainment 305 

The time of quorum attainment was significantly later in emigrations over longer distances (Paired-sample t-test, 306 

t=-3.565, df=9, P=0.006, mean100=39.41min, mean300=94.22min). However, though later in the distant 307 

treatment, nest discovery time was not significantly affected (Wilcoxon signed-ranks test, U=9.811, n=10, 308 

P=0.114, median100=13.37min, median300=31.54min, checked with a paired t-test after log10 transformation, 309 

P=0.087), likely in part due to the increased rate of scouting. 310 

Discussion 311 

Our results show that in T. albipennis colonies, tandem running activity is redistributed across individuals in 312 

response to differing emigration distances. In agreement with previous work (Pratt et al. 2002; Pratt 2004; 313 

O'Shea-Wheller et al. 2016), we found that the incidence of tandem running rose significantly with longer 314 

emigration distances (fig. 2A,C, 4). Tandem success tended to decrease with distance, although this result was 315 
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statistically significant only for leaders. It was not significant either for followers, or colonies as a whole (fig. 316 

2B). Furthermore, a significantly larger proportion of each colony was engaged in emigrations and tandem 317 

running at 300mm, and average worker return speeds were higher (fig. 2C,D, fig. 6). Crucially, we observed that 318 

a small minority of individuals attempted a greater workload (leading or following tandem runs) at the longer 319 

emigration distance in comparison to their nest mates (fig. 5A). However, the relative importance of these ants 320 

dwindled when only successful workload was considered (fig. 5B). In concert, our data show that while colonies 321 

use multiple processes to adjust emigration dynamics over longer distances, an increase in the number of active 322 

individuals is likely the key driver behind increased tandem running (fig. 2C,D). 323 

The upregulated investment in tandem running over longer emigration distances may be explained by the lower 324 

independent discovery rate of more distant nests (O'Shea-Wheller et al. 2016; Pratt, 2004). This is because to 325 

commit to a new nest colonies must achieve a quorum threshold, which may be attained by ants individually 326 

discovering a new nest, or being recruited to it via tandem running (Pratt, 2004). Consequently, a decrease in 327 

individual discovery rate seems to require an increase in tandem running to reach such a quorum (fig. 2A). 328 

Interestingly, average worker return speed also increased, and the explanation for this likely arises from the 329 

properties of ant locomotion; it has been shown that for any given movement, the longer the duration, the higher 330 

the average speed (fig. 6) (Christensen et al. 2015). However, while every movement is bracketed by an 331 

initiation and termination phase, these phases comprise a constant percentage of the overall movement, 332 

suggesting that ants determine movement duration before initiating a journey (Christensen et al. 2015). 333 

Consequently, this indicates that ants up-regulate their speed when planning to move over longer distances 334 

(Hunt et al. 2016). Previous studies have found that this speed-distance rule applies to short discrete movements, 335 

yet the majority of journeys are made up of many such movements. Here, to our knowledge for the first time, we 336 

show that it is also applicable to longer, compound movements, indicative of a consistent overarching 337 

mechanism. 338 

Differences at the colony level were underpinned by variation in individual behaviour between emigration 339 

distances. The finding that individual tandem running workload (leading and following tandem runs) decreased 340 

with the number of ants actively engaged (fig. 5A,B, fig. 2D) is consistent with observations in analogous 341 

systems, and constitutes a commonly observed phenomenon in insect societies (Karsai & Wenzel 1998; 342 

Dornhaus et al. 2008). Principally, the decrease in individual contributions when more ants are engaged may be 343 

explained by the reduced need for workers to be involved in a task, and the concomitant reduction in task 344 

stimuli (Pinter-Wollman et al. 2012). Furthermore, for longer emigrations, although more tandem runs may be 345 

required due to a reduced encounter rate (O’Shea-Wheller et al. 2016, Pratt 2004), colonies of T. albipennis use 346 

quorum thresholds relative to their total population (Dornhaus & Franks 2006). As such, the quorum threshold 347 

required by a colony of any given size should remain constant, and thus the task of attaining it would potentially 348 

be distributed over more workers at longer emigration distances, creating a dilution of individual effort 349 

(Dornhaus & Franks 2006). 350 

The changes in numbers of tandem runs between distance treatments might largely be attributed to the greater 351 

numbers of workers engaging in more distant emigrations. However, in concert with this, some ants that were 352 

involved in multiple emigrations conducted many more tandem runs at 300 mm than the rest of the actively 353 

engaged worker population (fig. 4). This suggested that there were certain individuals specialising in the task, as 354 
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is the case for other task groups in this species (Robinson et al. 2009; Pinter-Wollman et al. 2012). As such, 355 

there was the potential for these individuals to contribute significantly to the tandem running process, via task 356 

threshold differences and reinforcement processes (Sendova-Franks et al. 2002; Sendova-Franks & Franks 357 

1995). The idea of task reinforcement was supported further by the finding that more leading attempts did 358 

correlate with a higher success rate, and so we investigated the relative contributions of worker groups actively 359 

engaged in emigrations, in an effort to isolate a specialist faction. 360 

We defined actively engaged workers as those conducting scouting, leading or following of tandem runs, or 361 

both. This definition was adopted as previous scouting activity significantly increased an individual’s propensity 362 

to either lead or follow tandem runs, a trend that remained constant across both distances, although was more 363 

probable at 300mm. We separated actively engaged workers into two groups; workers actively engaged across 364 

both distances, and workers actively engaged at only one distance. This division method allowed us to 365 

determine how individuals recurrently involved in emigrations contributed to the process. This latter group 366 

formed a minority of the total population of actively engaged workers (fig. 3), but interestingly, attempted a 367 

significantly greater number of tandem runs per individual (fig. 4). Furthermore, ants in this group attempted a 368 

significantly greater workload per individual than those in the ‘either’ group, when migrating over the longer 369 

distance (fig. 5A). However, the data for successful workload performed per individual did not differ 370 

significantly between the two groups, at any distance (fig. 5B). 371 

Our data suggest that some individuals are indeed disproportionately active in the tandem running process, 372 

specifically attempting more tandem runs per ant overall (fig. 4), and a greater per capita workload when the 373 

new nest is further away (fig. 5A). However, they do not perform a greater successful workload per capita 374 

within distances (fig. 5B), and as such, the relative importance of these ‘elite’ workers (Hölldobler & Wilson 375 

1990) in shaping emigration dynamics is debatable. Instead, it appears that the majority of changes in tandem 376 

running at the colony level are achieved via increased recruitment of workers into the process, rather than by 377 

reliance on key individuals (fig 2C,D, 5B). Such findings are also supported by previous work, showing that the 378 

ability to utilise a larger workforce negates the need for specialists (Dornhaus et al. 2009). This highlights an 379 

interesting contradiction; it suggests that although some workers are highly active and conform to the definition 380 

of ‘elites’, they may not actually be that effective at their task, despite investing more effort than their nest 381 

mates. Hence, in this case at least, the usefulness of the term ‘elite’ is debatable. Indeed, a recent study, also in 382 

the Temnothorax genus, found that reliance on specialists in the face of dynamic environments may be 383 

disadvantageous (Jongepier & Foitzik 2016), highlighting another case in which the contribution of ‘elites’ is far 384 

from decisive. 385 

The presence of inactive or ‘lazy’ workers has received some attention in social insects (Dornhaus et al. 2008; 386 

Beshers & Fewell 2001) and may be accounted for proximately by task thresholds, as inactive individuals are 387 

likely to be those that require a higher level of stimulus before they engage in a given task (Robinson et al. 388 

2009). However, here we see a case of active but ineffective workers in a task that is moderately difficult to 389 

complete (only 65% of all tandem runs were successful). While the exact mechanisms underlying this are as yet 390 

unknown, there are several potential causes. One possibility, is that workers attempting a greater number of 391 

tandem runs were doing so as a compensatory reaction to failing more often. This is plausible, as interruptions 392 

to tandem runs were common in our experiment, as in others (Franks et al. 2009). It is also likely that highly 393 
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active individuals made a significant contribution by leading only partially successful tandem runs. This is 394 

because, as demonstrated in previous experiments (Franks et al. 2010), even when tandem runs end prematurely, 395 

they may still be effective in directing naive workers to a new nest (Franks et al. 2010; Pratt 2008). However, 396 

while both of these factors provide viable explanations, their relative importance will likely require further 397 

investigation. 398 

In conclusion, we find that several factors contribute to the acceleration of emigrations over longer distances, 399 

and that both highly active individuals, and the regulation of total worker involvement play a role. Crucially, we 400 

show that the greater number of active workers employed over longer emigrations is the strongest factor linked 401 

to increased tandem running, having a greater influence than the utilisation of ‘elite’ workers. Overall, our 402 

results indicate that although key individuals have their place in the tandem running process, it is the 403 

mobilisation of the masses that likely makes the real difference when emigrating over greater distances. 404 
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 501 

Figure legends 502 

Figure 1. Marked Temnothorax albipennis workers, though some are missing paint marks, the numbering 503 

system was robust to this (A), experimental arena setup for 100 mm trial (B), and 300 mm trial (C). Dimensions 504 

indicate actual arena sizes, figure is for illustrative purposes only, and is not to scale. 505 

Figure 2. Total number of tandem runs at colony level n100=10, n300=10, P=0.028, (A), and percentage of 506 

successful tandem runs out of those attempted n100=10, n300=10, p=0.329 (B), percentage of colony engaged in 507 

tandem running n100=10, n300=10, p=0.037 (C), and percentage of colony engaged in the emigration process as a 508 

whole (scouting, tandem leading or following) n100=10, n300=10, P<0.001 (D), for the two emigration distances. 509 

Coloured lines indicate individual colony changes in tandem running over distance, palette is chosen for clarity. 510 

Outliers (further than 1.5 times the interquartile range from the median) are indicated with circles. 511 

Figure 3. Number of workers involved in tandem running at one, or both, emigration distances, as a percentage 512 

of the total number of workers actively engaged for both groups. Actively engaged workers are those involved 513 

in scouting, tandem leading or following n100=10, n300=10. 514 

Figure 4. Total number of attempted tandem runs per ant. Boxplots are divided by emigration distance, and 515 

within each distance, by individuals actively engaged at only that distance; the ‘either’ group (flat boxes), or 516 

both emigration distances; the ‘both group’ (grey boxes), n=296, (n100either=76, n100both=53, n300either=114, 517 

n300both=53). Asterisked lines highlight significant differences within distances (Bonferroni post-hoc test, 518 

P<0.05). Outliers (further than 1.5 times the interquartile range from the median) are indicated with circles. 519 

Figure 5. Per capita attempted (A), and successful (B), workload per ant. Boxplots are divided by emigration 520 

distance, and within each distance, by individuals actively engaged at only that distance; the ‘either’ group 521 

(white boxes), or both emigration distances; the ‘both group’ (grey boxes), n=296, (n100either=76, n100both=53, 522 

n300either=114, n300both=53). Asterisked lines highlight significant differences within distances (Bonferroni post-523 

hoc test, P<0.05), outliers (further than 1.5 times the interquartile range from the median) are indicated with 524 

circles. 525 

Figure 6. Mean return speed of workers within colonies for the two distances n100=101, n300=114, p<0.001, 526 

inlay displays changes in mean return speed of individuals tracked across both emigration distances, coloured 527 
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lines indicate each individual’s change in mean return speed n100=20, n300=20. Outliers (further than 1.5 times 528 

the interquartile range from the median) are indicated with circles. 529 
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