
Mathematical Modelling: Analysis and Simulations

In these supplementary notes we provide a rigorous mathematical justification for some of the
statements, results and diagrams presented in the main body of the paper. They consist essentially
of a stability and bifurcation analysis of the steady-states of our mathematical model, together with
some numerical computations and simulations.

1 The Mathematical Model

Our mathematical model comprises five ordinary differential equations (ODEs):

B′
c(t) = rcP (t)Bc(t)− dcBc(t)− acA(t)Bc(t)− EA(t)Bc(t), (1)

B′
e(t) = EA(t)Bc(t)− deBe(t)− aeA(t)Be(t), (2)

R′(t) = reP (t)Be(t) + rRP (t)R(t)− dRR(t)− aRA(t)R(t), (3)

P ′(t) = rPP (t)

(
1− P (t)

K

)
− P (t) (δcBc(t) + δeBe(t) + δRR(t))− aPA(t)P (t), (4)

A′(t) = αP (t)(Bc(t) +Be(t))− dAA(t). (5)

This model was described less mathematically in the main body of the paper (see Experimental
Procedures) via a set of growth rate equations. There, as in these supplementary notes,

• Bc(t) denotes the population density at time t of bacterial cells having the genomic island
(GI) on their chromosomes;

• Be(t) denotes the population density of bacterial cells which have excised the GI from their
chromosomes but for which the GI still remains within the cell;

• R(t) denotes the population density of bacterial cells which have lost the GI completely;

• P (t) denotes the population density of host plant cells;

• A(t) denotes the concentration of the antimicrobial field generated by the plant host’s resis-
tance mechanisms.

The parameters in (1-5) are all assumed to be positive and have the following biological interpre-
tations (recall Figure 2 in the main document):

• rc, re and rR denote per capita growth rates of Bc, Be and R respectively in the presence of
nutrients (assumed proportional to P );
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• dc, de and dR denote the per capita death rates of Bc, Be and R respectively in the absence
of nutrients;

• δc, δe and δR denote the per capita death rates of plant cells due to ‘predation’ by Bc, Be and
R respectively;

• ac, ae, aR and aP denote the per capita death rates of Bc, Be, R and P respectively, caused
by the toxic antimicrobial field A;

• K denotes the carrying capacity of the plant cells (i.e. the maximum sustainable density
of plant cells in the absence of bacteria); rP is the intrinsic (Malthusian) growth rate of the
plant cells;

• E denotes the per capita excision rate of the GI in the presence of the antimicrobial field A;

• α is a rate constant for the production of the antimicrobial field due to the interaction of Bc

and Be with P (via the gene-for-gene interaction between avrPphB and R3); dA denotes the
(metabolised) degradation rate of the antimicrobial field A.

2 Existence and Stability of Steady-States

Let us first recall some basics of dynamical systems theory. Consider a system of n ODEs

x′
i = fi(x1, x2, . . . , xn), i = 1, . . . , n, (6)

or in vector form
x′ = f(x). (7)

We say that a point x∗ = (x∗
1, x

∗
2, . . . , x

∗
n) is a steady-state of (6) (equivalently (7)) if and only if

fi(x
∗) = 0 for all i = 1, . . . , n (equivalently f(x∗) = 0); i.e. x∗ is a time-independent solution of

(6) (equivalently (7)). The terms ‘equilibrium point’, ‘fixed point’, ‘stationary point’ and ‘critical
point’ are also used synonymously in the mathematics literature but we prefer to use the term
‘steady-state’ here. A steady-state x∗ is said to be locally asymptotically stable if the solution
x(t) of (7) satisfies x(t) → x∗ as t → ∞ for all initial conditions x0 sufficiently close to x∗; i.e.
if the system is perturbed slightly from the steady-state at time t = 0 then it eventually settles
back to that steady-state. In all that follows we will abuse terminology slightly by simply writing
‘stable’ instead of the more cumbersome (but technically correct) ‘locally asymptotically stable’.
We emphasize that stable states are of particular relevance since only the stable ones are physically
(biologically) realizable.
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There is a simple criterion to determine whether a given steady-state x∗ is stable or unstable.
Let J(x∗) denote the Jacobian of f at x∗, i.e. J(x∗) is the n× n matrix with entries Jij given by

Jij =
∂fi
∂xj

(x∗).

The eigenvalues of J(x∗) are then the roots of the characteristic equation

det(J(x∗)− λI) = 0.

If all of these eigenvalues have negative real parts then x∗ is stable. Conversely, if there exists at
least one eigenvalue with positive real part then x∗ is unstable.

In the notation of our model, n = 5, (x1, x2, x3, x4, x5) = (Bc, Be, R, P, A) and the fi (1 ≤
i ≤ 5) are the right-hand sides of the five ODEs (1-5). One can verify easily that there are at least
three steady-states of (1-5), namely

S0 : x∗
0 = (0, 0, 0, 0, 0), (8)

S1 : x∗
1 = (0, 0, 0, K, 0), (9)

S2 : x∗
2 = (0, 0, R∗, P ∗, 0), (10)

where

R∗ =
rP
δR

(
1− dR

rRK

)
, P ∗ =

dR
rR

. (11)

S0 is called the trivial steady-state (all components of x∗
0 are zero), whilst S1 and S2 are called

semi-trivial steady-states (some, but not all, components of x∗
1 and x∗

2 are zero). Biologically, S1

corresponds to the situation where no bacteria are present (and hence no antimicrobial field) and the
plant cell density is at its carrying capacity K. The steady-state S2 is only biologically meaningful
when R∗ > 0, i.e. when rR/dR > 1/K. In such a case S2 represents co-existence of plant cells
(P ∗) and RJ3 cells (R∗), and an absence of bacterial cells carrying the GI (Bc = Be = 0), and
consequently no antimicrobial field (A = 0) due to the absence of R3 genes. As we will see, there
can exist other non-trivial steady-states in which both Bc, Be and R all co-exist; this is particularly
significant since our experimental data suggests that the GI is retained at a low (but non-zero)
density in planta.

We now determine the stability of S0, S1, and S2. Firstly, let us introduce the following nota-
tion:

ρc := rc/dc, ρe := re/de, ρR := rR/dR. (12)

The quantities ‘r/d’ are commonly referred to as the ‘reproductive ratio’ of an organism and repre-
sents the expected number of ‘offspring’ produced via a Malthusian growth rate r during its natural
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lifespan 1/d [1]. The Jacobian matrix of f is given by

J =

⎛
⎜⎜⎜⎜⎜⎝

J11 0 0 rcBc −Bc(ac + E)

EA J22 0 0 EBc − aeBe

0 reP J33 rRR + reBe −aRR

−δcP −δeP −δRP J44 −aPP

αP αP 0 α(Bc +Be) −dA

⎞
⎟⎟⎟⎟⎟⎠

(13)

where

J11 = rcP − dc − acA−EA,

J22 = −de − aeA,

J33 = rRP − dR − aRA,

J44 = rP (1− 2P/K)− δcBc − δeBe − δRR− aPA.

At S0 (recall (8)) we obtain

J(x∗
0) =

⎛
⎜⎜⎜⎜⎜⎝

−dc 0 0 0 0

0 −de 0 0 0

0 0 −dR 0 0

0 0 0 rP 0

0 0 0 0 −dA

⎞
⎟⎟⎟⎟⎟⎠

with eigenvalues given by

λ1 = −dc, λ2 = −de, λ3 = −dR, λ4 = rP , λ5 = −dA.

Since λ4 > 0 it follows that S0 is always unstable. This is as expected, for in the absence of
bacterial cells (Bc = Be = R = 0), and hence of an antimicrobial field (A = 0), the plant cell
density is assumed to satisfy the logistic equation

P ′ = rPP (1− P/K) ,

for which P = 0 is unstable (and P (t) → K as t → ∞).
At S1 (recall (9)) we obtain

J(x∗
1) =

⎛
⎜⎜⎜⎜⎜⎝

rcK − dc 0 0 0 0

0 −de 0 0 0

0 reK rRK − dR 0 0

−δcK −δeK −δRK −rP −aPK

αP αP 0 0 −dA

⎞
⎟⎟⎟⎟⎟⎠
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with eigenvalues given by

λ1 = rcK − dc, λ2 = −de, λ3 = rRK − dR, λ4 = −rP , λ5 = −dA. (14)

Recalling (12) it follows that S1 is stable if and only if

K < 1/ρc and ρR < 1/K. (15)

Finally, consider S2 (recall (10-11)) for ρR > 1/K, so that R∗ > 0. We have that

J(x∗
2) =

⎛
⎜⎜⎜⎜⎜⎝

rcP
∗ − dc 0 0 0 0

0 −de 0 0 0

0 reP
∗ 0 rRR

∗ −aRR
∗

−δcP
∗ −δeP

∗ −δRP
∗ rP (1− 2P ∗/K)− δRR

∗ −aPP
∗

αP ∗ αP ∗ 0 0 −dA

⎞
⎟⎟⎟⎟⎟⎠

,

recalling (11). Three of the eigenvalues are given by

λ1 = rcP
∗ − dc = dc

(
ρc
ρR

− 1

)
, λ2 = −de, λ5 = −dA, (16)

with the remaining two (λ3 and λ4) being the roots of the quadratic equation

λ2 + pλ+ q = 0, (17)

where
p = δRR

∗ − rP (1− 2P ∗/K) = rP/ρR > 0 and q = rRδRP
∗R∗ > 0. (18)

Since p, q > 0 the Routh-Hurwitz Criterion ensures that λ3 and λ4 have negative real parts. Hence
we see that S2 is both positive and stable if and only if

ρR > max

{
1

K
, ρc

}
. (19)

It can be seen from this simple linear analysis that the stability of S1 and S2 depends only
upon the bacterial reproductive ratios ρc and ρR (of Bc and R respectively) and the plant host’s
carrying capacity K. In what follows we will consider all other parameters as fixed (but arbitrary)
and allow ρR to vary. For mathematical convenience (to ensure the steady-states are hyperbolic)
we will assume that

K �= 1/ρc. (20)

This is an entirely reasonable assumption biologically, since the growth rate rc and death rate
dc of Bc are defined independently from the carrying capacity K of the plant, hence it is highly
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improbable that rc/dc = 1/K by chance. Natural, stochastic fluctuations would also prevent
equality from occurring in any real biological environment.

In order to fully describe the stability properties of S1 and S2 using (15) and (19) we must
consider the two possible cases K < 1/ρc and K > 1/ρc separately. We summarize the two
cases below. Recall also that S0 is always unstable and that S2 is only biologically relevant (non-
negative) when ρR > 1/K.

Case 1: K > 1/ρc. S1 is unstable for all ρR > 0; S2 is unstable (and positive) for 1/K < ρR < ρc
and stable (and positive) for all ρR > ρc.

Case 2: K < 1/ρc. S1 is stable for 0 < ρR < 1/K and unstable for ρR > 1/K; S2 is stable (and
positive) for all ρR > 1/K.

For fixed ρc and K it is clear that there are at least two critical values of ρR (namely ρR = 1/K

and ρR = ρc) where bifurcations may occur at a simple zero eigenvalue, from which new families
of steady-states may emerge.

3 Bifurcation of steady-states

We now fix ρc and K (and all other parameter values) and allow rR to vary, i.e. we take rR
as bifurcation parameter. Note that since ρR = rR/dR, this is equivalent to varying ρR for dR
fixed, modulo rescaling. Despite Cases 1-2 being written in terms of ρR, we choose to take rR as
bifurcation parameter in order to avoid having to rescale (1-5), which we think would hinder the
exposition below. To emphasize the dependence of (1-5) upon rR we henceforth write f(x, rR)

instead of f(x) in the ODE (7).
We introduce the set Σ of steady-states of (7) for any given rR, defined by

Σ =
{
(rR,x) ∈ R× R

5 | f(x, rR) = 0
}
. (21)

Clearly, Σ contains the following three branches corresponding to the three steady-states S0, S1

and S2 found earlier:

Σ0 =
{
(rR,x) ∈ R× R

5 | x = x∗
0

}
, (22)

Σ1 =
{
(rR,x) ∈ R× R

5 | x = x∗
1

}
, (23)

Σ2 =
{
(rR,x) ∈ R× R

5 | x = x∗
2

}
. (24)

(recalling (8-11)). Note that x∗
0 and x∗

1 do not depend on rR, but x∗
2 does. We also observe that

R∗ = 0 and P ∗ = K when rR/dR = 1/K, so that the branches Σ1 and Σ2 intersect where rR =

dR/K and x∗
1 = x∗

2. This is a consequence of the bifurcation of S1 at a simple zero eigenvalue,
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namely that of λ3 in (14). Equivalently, one may view this as a bifurcation of S2 at a simple zero
eigenvalue, recalling (17-18) and the fact that R∗ = 0. For reasons that will become clear below,
we take the latter view and consider Σ1 to bifurcate from Σ2 and label this bifurcation point as Z21

(‘Z’ for ‘zero’ eigenvalue with the second digit in the subscript denoting the branch number in Σ

which bifurcates from Σ2), i.e.

Z21 = (rR,x) = (dR/K, 0, 0, 0, K, 0). (25)

The branch Σ2 also undergoes a further (transverse) zero eigenvalue bifurcation at rR = dRρc
(where λ1 = 0 and dλ1/drR �= 0). We now perform a weakly nonlinear analysis at this bifurcation
point in order to better understand the geometry and stability of the emerging bifurcating branches
of new steady-states.

Let us consider the bifurcation occurring on branch Σ2 at rR = dRρc, considered only for
K > 1/ρc, whereby R∗ > 0. We denote this bifurcation point in Σ2 by Z23, i.e.

Z23 = (rR,x) =

(
dRρc, 0, 0,

rP
δR

(
1− 1

ρcK

)
,
1

ρc
, 0

)
. (26)

By classical bifurcation theory (see e.g. [2, 3, 5, 6]) there exists another branch of steady-states,
Σ3, intersecting Σ2 transversally at Z23. This branch can be parameterized (analytically, since f is
analytic) as

rR = dRρc + γ4ε+O(ε2), x = (0, 0, R∗, P ∗, 0) + εz+O(ε2) (27)

where z spans the one-dimensional null space of the Jacobian J(x∗
2) when rR = dRρc and γ4 is as

yet undetermined. One easily shows that z is of the form

z = (dA, 0, z3, z4, α/ρc), (28)

so that in component form we have the following local parameterization of Σ3:

rR(ε) = dRρc + γ4ε+O(ε2),

Bc(ε) = dAε+O(ε2),

Be(ε) = 0 +O(ε2),

R(ε) = R∗ + z3ε+O(ε2),

P (ε) = P ∗ + z4ε+O(ε2),

A(ε) = (α/ρc)ε+O(ε2).

We see that Bc and A are both positive for ε > 0 sufficiently small (and R and P are positive
since R∗ > 0 and P ∗ > 0 at rR = dRρc). It is easy to show that Be(ε) �≡ 0 on Σ3 since the only
steady-state solutions with Be = 0 necessarily satisfy Bc = A = 0, yielding only S0, S1 or S2.
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We also observe that Bc = O(ε) and Be = O(ε2), so that Be is at least an order of magnitude
smaller than Bc on the scale of ε. We may now define a ‘positive’ part Σ+

3 and a ‘negative part’ Σ−
3

corresponding to ε > 0 and ε < 0 respectively. We are not assured that Be > 0 for ε > 0 via this
linear theory alone but numerical simulations suggest that this is true, at least for the parameter
values considered here.

4 Numerical simulations

Throughout this section the numerical values of the model parameters are taken as follows:

dc = de = dR = 1, dA = 0.4, ac = ae = aR = 10, rP = 10.2, rc = 2, re = 3.6,

δc = 10.1, δe = 10, δR = 10.6, E = 1, aP = 7, α = 10.

These values have been chosen arbitrarily. We have also run simulations for other choices of
parameter values and whilst we have observed that the underlying bifurcation structure can behave
in a slightly different quantitative manner, the qualitative behaviour remains unchanged and the
implications for the biological model are the same.

We consider the Cases 1-2 separately and take rR as the primary bifurcation parameter. We will
see that it is also necessary to consider K as a secondary bifurcation parameter. The bifurcation
diagrams were generated using the numerical continuation software package AUTO-07P, freely
available via the internet [4]. Time plots of the solutions of the ODEs were generated using the
numerical ODE solver ode45 in MATLAB.

4.1 Case 1: K > 1/ρc

Recall that S1 (plant cells only, no bacteria) is unstable for all rR > 0 whilst S2 (plant and RJ3
bacterial cells only) is non-negative and stable if and only if rR > dRρc. As rR increases from zero
the steady-state S2 (or more accurately, the corresponding branch Σ2) undergoes two steady-state
bifurcations: firstly at rR = dR/K and secondly at rR = dRρc (these points being denoted by
Z21 and Z23 respectively), resulting in the branches Σ1 (corresponding to S1) and Σ±

3 . Since S2 is
unstable for all rR < dRρc, it follows (from Crandall-Rabinowitz [3]) that the branch Σ1 is also
unstable, at least locally near Z21. Again by [3], and recalling (27), if γ4 > 0 then Σ3 is locally
stable for ε < 0 (for then rR(ε) < dRρc ) and locally unstable for ε > 0 (for then rR(ε) > dRρc).
That is, if γ4 > 0 then Σ−

3 is locally stable and Σ+
3 is locally unstable. Conversely, if γ4 < 0 then

Σ+
3 is locally stable and Σ−

3 is locally unstable. Of course, within Σ3 it is only Σ+
3 that may contain

biologically meaningful (non-negative) steady-states.
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4.1.1 ‘Intermediate’ Plant Carrying Capacity K

We begin by taking K = 1 (note that K > 1/ρc = 1/2). Figure S4 shows the bifurcation diagrams
thus obtained in AUTO-07P. As is standard in bifurcation theory, stable branches are denoted
by solid lines and unstable ones by dashed lines. The top left plot shows the location of the two
bifurcation points Z21 and Z23 (labelled ‘1’ and ‘3’ respectively) together with the R-components
of the associated bifurcating branches Σ1 (labelled ‘2’), Σ+

2 (labelled ‘4’) and Σ±
3 (labelled ‘5’ and

‘6’). We include this figure to illustrate the complete structure of the bifurcating branches. The
other five plots show only the non-negative (biologically relevant) components of the bifurcating
branches, Σ+

i .
We see in Figure S4 that Σ+

2 is the only stable branch for rR > dRρc whilst Σ+
3 is the only

stable branch for rR < dRρc. We also observe in the middle-right plot that Be > 0 along Σ+
3 (i.e.

γ4 < 0, recalling (27)).
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Figure S4: Bifurcation diagrams for Case 1 with K = 1. Diagram labels: (1) Z21; (2) Σ1 ; (3) Z23

; (4) Σ+
2 ; (5) Σ+

3 ; (6) Σ−
3 .

Let us, for rR < dRρc, denote by x∗
3 the non-negative steady-state on the branch Σ+

3 (branch
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label ‘5’). We can then characterize the number and stability of non-negative steady-states of our
model as follows:

• For rR > dRρc there are three non-negative steady-states {x∗
0,x

∗
1,x

∗
2}. Only x∗

2 is stable.

• For rR ∈ (0, dRρc) there are four non-negative steady-states {x∗
0,x

∗
1,x

∗
2,x

∗
3}. Only x∗

3 is
stable.

One observes that as rR decreases the number of non-negative steady-states increases. However,
since only x∗

2 and x∗
3 may be stable in this case, we anticipate the following simple characterization

of the long-term behaviour (recalling that ρR = rR/dR):

• if ρR > ρc then the GI is not retained (Bc and Be die out and R persists);

• if ρR < ρc then the GI is retained (Bc, Be and R all co-exist).

For these parameter values the mathematical model predicts retention of the GI if and
only if the reproductive ratio of RJ3 (ρR) is smaller than the reproductive ratio of 1302A (ρc).

Figure S5 shows some numerically simulated time plots of the ODE model (1-5) when K = 1

in the three cases ρR > ρc, ρR = ρc and ρR < ρc (using ode45 in MATLAB). As expected we see
(exponential) convergence to the stable steady-state x∗

2 when ρR > ρc and to x∗
3 when ρR < ρc.

We also see convergence to the steady-state x∗
2 when ρR = ρc, but convergence is now slower

(algebraic) due to the presence of a zero eigenvalue (and a centre manifold). The bottom right-
hand figure shows the fraction of RJ3 cells of the entire bacterial population density over time,
namely

RJ3 Fraction =
R(t)

Bc(t) +Be(t) +R(t)
.

These qualitative mathematical results are in agreement with the experimental data shown in Fig-
ures 4a-b of the main document. The bottom right panel of Figure S5 appears as Figure 3 in the
main document.

4.1.2 ‘Large’ Plant Carrying Capacity K

We now consider the same parameter values as above but for larger K, i.e. for K = 15. Figure S6
shows similar features to the K = 1 case (Figure S4), but now with two additional branches Π±

(labelled ‘10’ and ‘11’) consisting of time-periodic (‘cyclic’) solutions c±(t) which arise via sec-
ondary Hopf bifurcations from the branches Σ±

3 (see top-left plot). We denote these secondary
Hopf bifurcation points by H± (labelled ‘8’ and ‘9’) and the corresponding values of rR by and r±
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Figure S5: K = 1, rc = 2, re = 3.6. Time plots of the ODE when: rR = 1.9 (ρR < ρc), rR = 2.1

(ρR > ρc) and rR = 2 (ρR = ρc).

respectively. The branch Π− comprises of periodic solutions which have at least one negative com-
ponent and are thus irrelevant biologically. Conversely, the branche Π+ is comprised of periodic
solutions all of whose components are non-negative and therefore biologically relevant. These,
and the other non-negative branches of steady-states, can be seen more clearly in the remaining
five plots of Figure S6.

We summarize the bifurcation behaviour of non-negative solutions as rR decreases thus:

• for rR > dRρc there are three non-negative steady-states {x∗
0,x

∗
1,x

∗
2}. Only x∗

2 is stable;

• for rR ∈ (r+, dRρc) there are four non-negative steady-states {x∗
0,x

∗
1,x

∗
2,x

∗
3}. Only x∗

3 is
stable;

• for rR ∈ (0, r+) there are four non-negative steady-states {x∗
0,x

∗
1,x

∗
2,x

∗
3} and one non-

negative limit cycle c+. Only c+ is stable.

Again as rR decreases the number of non-negative steady-states increases, but this time with the
appearance of a limit cycle. From stability considerations one therefore expects to see long-time
convergence to x∗

2 when rR > dRρc, convergence to x∗
3 when rR ∈ (r+, dRρc) and convergence to

c+ when rR < r+. Numerical simulations of the ODE model (1-5) in the latter case (rR < r+) are
shown in Figure S7.
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Once again, for the parameter values chosen here, the model predicts retention of the
GI if and only if the reproductive ratio (ρR) of RJ3 is smaller than the reproductive ratio
(ρc) of 1302A. However, for K = 15, it is also possible for the GI to be retained dynamically
(cyclically) rather than at steady-state.

4.1.3 2-Parameter Bifurcation Loci

Evidently K plays some role in the qualitative structure of the bifurcation diagram since (for the
parameter values chosen here) Hopf bifurcation of non-negative solutions occur when K = 15

but not when K = 1. In order to better understand this one may plot numerically the locus of
the Hopf bifurcation point H+ in the (rR, K)-parameter plane, see Figure S8. Also included in
this plot are the loci of Z21 (rR = dR/K), and Z23 (rR = dRρc). These three loci, together with
the line K = 1/ρc, form the four boundaries of the regions depicted in Figure S10 (Figure 1 in
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Figure S6: Bifurcation diagrams for Case 1 with K = 15. Diagram labels: (1) Z21; (2) Σ1; (3) Σ+
2 ;

(4) Σ−
2 ; (5) Z23; (6) Σ+

3 ; (7) Σ−
3 ; (8) H+; (9) H−; (10) Π+; (11) Π−.
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Figure S7: K = 15 and rR = 0.7. Time plots illustrate convergence to a time-periodic co-
existence limit cycle. Biologically this corresponds to the cyclic maintenance of the GI in the
bacterial population within the plant host over time.

the main document). The locus of H+ intersects the vertical K-axis at about K = K∗ = 11.2.
Asymptotically it also appears that K → ∞ as rR ↑ dRρc. Consequently, Hopf bifurcations occur
if and only if K > K∗. We summarize these results for Case 1 as follows:

• (large K) for K > K∗ there exist successive stable bifurcations x∗
2 → x∗

3 → c+ as rR
decreases;

• (‘intermediate’ K) for 1/ρc < K < K∗ no Hopf bifurcation loci exist and the only stable
bifurcation is from x∗

2 → x∗
3 as rR decreases.

4.1.4 Fractional GI Loss

One may represent the loss of the GI in the bacterial population by plotting the eventual (i.e. as
t → ∞) fraction of RJ3 cells as a function of rR. This is possible since for each value of rR there
appears to be a unique stable state, which is either a steady-state (x∗

2 or x∗
3) or a limit cycle (c+).

We compute numerically the value of R/(Bc + Be + R) for each rR, where the maximum value
of R(t), Bc(t) and Be(t) is taken over one periodic cycle in the case of c+. The two distinct cases
considered above (K = 1 and K = 15) are shown in Figure S9 .

13



0.00e+00
7.50e-01

1.50e+00
2.25e+00

3.00e+00

4.50e+01

3.38e+01

2.25e+01

1.12e+01

0.00e+00

K

rR

1

2

3

Bifurcation Loci

Figure S8: Case 1: Bifurcation loci in the (rR, K)-plane. (1) Simple bifurcation locus Z21 (rR =

dR/K) ; (2) Simple bifurcation locus Z23 (rR = dRρc); (3) Hopf bifurcation locus H+.

We remark that a value of rR exists slightly smaller than dRρc (or, equivalently, a value of
ρR slightly smaller ρc) for which the RJ3 fraction is maintained at a stable value of 99.5%, i.e.
for which 0.5% of the bacterial population still retain the GI - the situation we have observed
experimentally (see Figures 4a-b of the main document).
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Figure S9: Case 1: Eventual RJ3 fraction for K = 1 (left) and K = 15 (right).

4.2 Case 2: K < 1/ρc

The situation here is much simpler. The bifurcation point Z23 corresponding to rR = dRρc is no
longer bio-relevant since R∗ < 0 when rR < dR/K. Consequently the Hopf loci H± are also no
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longer bio-relevant. We summarize the bio-relevant results for Case 2 as follows:

• there exists a stable bifurcation x∗
2 → x∗

1 as rR decreases

That is, x∗
1 (plant cells only) is stable for 0 < ρR < 1/K and unstable for all ρR > 1/K whilst x∗

2

(plant and RJ3 cells only) is stable for all ρR > 1/K. Hence GI retention is not possible.

4.3 Summary

Here we summarise the results of our mathematical analysis and numerical simulations more con-
veniently and present the biological implications graphically. It will be expedient to introduce the
notation

r̂ = dRρc. (29)

Our results suggest the following characterisation:

� (Small K) 0 < K < r̂/dR.

For 0 < rR < dR/K, x∗
1 (plant cells only, bacterial extinction) is the only stable state; for

ρR > dR/K, x∗
2 (plant and RJ3 cells only) is the only stable state.

� (Intermediate K) r̂/dR < K < K∗.

For 0 < rR < r̂, x∗
3 (coexistence of 1302A and RJ3 bacterial cells) is the only stable state;

for rR > r̂, x∗
2 (plant and RJ3 cells only) is the only stable state.

� (Large K) K > K∗.

For 0 < rR < r+, c+ (cyclic coexistence of 1302A and RJ3 bacterial cells) is the only stable
state; for r+ < rR < r̂, x∗

3 (coexistence of 1302A and RJ3 bacterial cells) is the only stable
state; for rR > r̂, x∗

2 (plant and RJ3 cells only) is the only stable state.

Figure S10 portrays this characterisation in terms of genomic island loss or retention (Figure 1 of
the main document).

5 Concluding Remarks

In these supplementary notes we have presented our mathematical model (Section 1) and per-
formed a rigorous mathematical analysis for the existence, stability and local bifurcation of its
steady-states (Sections 2 and 3). In Section 4 we presented the results of several numerical simu-
lations performed for particular parameter values. For these chosen parameter values we obtained
numerically the global structure and stability of the bifurcating branches and observed that Hopf
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Figure S10: Characterisation of genomic island (GI) loss or retention in the (rR, K)-parameter
plane.

bifurcations exist when the carrying capacity K of the host plant is sufficiently large (K > K ∗).
In particular is was observed that the genomic island (GI) persisted in the population of bacterial
cells (either at steady-state or time-periodically) if and only if K is sufficiently large (K > 1/ρc)
and the reproductive ratio (ρR) of RJ3 cells is less than (ρc).
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