Mathematical Modelling: Analysis and Simulations

In these supplementary notes we provide a rigorous mathematical justification for some of the statements, results and diagrams presented in the main body of the paper. They consist essentially of a stability and bifurcation analysis of the steady-states of our mathematical model, together with some numerical computations and simulations.

1 The Mathematical Model

Our mathematical model comprises five ordinary differential equations (ODEs):

$$
\begin{align*}
B_{c}^{\prime}(t) & =r_{c} P(t) B_{c}(t)-d_{c} B_{c}(t)-a_{c} A(t) B_{c}(t)-E A(t) B_{c}(t), \tag{1}\\
B_{e}^{\prime}(t) & =E A(t) B_{c}(t)-d_{e} B_{e}(t)-a_{e} A(t) B_{e}(t), \tag{2}\\
R^{\prime}(t) & =r_{e} P(t) B_{e}(t)+r_{R} P(t) R(t)-d_{R} R(t)-a_{R} A(t) R(t), \tag{3}\\
P^{\prime}(t) & =r_{P} P(t)\left(1-\frac{P(t)}{K}\right)-P(t)\left(\delta_{c} B_{c}(t)+\delta_{e} B_{e}(t)+\delta_{R} R(t)\right)-a_{P} A(t) P(t), \tag{4}\\
A^{\prime}(t) & =\alpha P(t)\left(B_{c}(t)+B_{e}(t)\right)-d_{A} A(t) . \tag{5}
\end{align*}
$$

This model was described less mathematically in the main body of the paper (see Experimental Procedures) via a set of growth rate equations. There, as in these supplementary notes,

- $B_{c}(t)$ denotes the population density at time t of bacterial cells having the genomic island (GI) on their chromosomes;
- $B_{e}(t)$ denotes the population density of bacterial cells which have excised the GI from their chromosomes but for which the GI still remains within the cell;
- $R(t)$ denotes the population density of bacterial cells which have lost the GI completely;
- $P(t)$ denotes the population density of host plant cells;
- $A(t)$ denotes the concentration of the antimicrobial field generated by the plant host's resistance mechanisms.

The parameters in (1-5) are all assumed to be positive and have the following biological interpretations (recall Figure 2 in the main document):

- r_{c}, r_{e} and r_{R} denote per capita growth rates of B_{c}, B_{e} and R respectively in the presence of nutrients (assumed proportional to P);
- d_{c}, d_{e} and d_{R} denote the per capita death rates of B_{c}, B_{e} and R respectively in the absence of nutrients;
- δ_{c}, δ_{e} and δ_{R} denote the per capita death rates of plant cells due to 'predation' by B_{c}, B_{e} and R respectively;
- a_{c}, a_{e}, a_{R} and a_{P} denote the per capita death rates of B_{c}, B_{e}, R and P respectively, caused by the toxic antimicrobial field A;
- K denotes the carrying capacity of the plant cells (i.e. the maximum sustainable density of plant cells in the absence of bacteria); r_{P} is the intrinsic (Malthusian) growth rate of the plant cells;
- E denotes the per capita excision rate of the GI in the presence of the antimicrobial field A;
- α is a rate constant for the production of the antimicrobial field due to the interaction of B_{c} and B_{e} with P (via the gene-for-gene interaction between $a v r P p h B$ and $R 3$); d_{A} denotes the (metabolised) degradation rate of the antimicrobial field A.

2 Existence and Stability of Steady-States

Let us first recall some basics of dynamical systems theory. Consider a system of n ODEs

$$
\begin{equation*}
x_{i}^{\prime}=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad i=1, \ldots, n, \tag{6}
\end{equation*}
$$

or in vector form

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}) . \tag{7}
\end{equation*}
$$

We say that a point $\mathbf{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)$ is a steady-state of (6) (equivalently (7)) if and only if $f_{i}\left(\mathbf{x}^{*}\right)=0$ for all $i=1, \ldots, n$ (equivalently $\mathbf{f}\left(\mathbf{x}^{*}\right)=\mathbf{0}$); i.e. \mathbf{x}^{*} is a time-independent solution of (6) (equivalently (7)). The terms 'equilibrium point', 'fixed point', 'stationary point' and 'critical point' are also used synonymously in the mathematics literature but we prefer to use the term 'steady-state' here. A steady-state x^{*} is said to be locally asymptotically stable if the solution $\mathbf{x}(t)$ of (7) satisfies $\mathbf{x}(t) \rightarrow \mathbf{x}^{*}$ as $t \rightarrow \infty$ for all initial conditions \mathbf{x}_{0} sufficiently close to \mathbf{x}^{*}; i.e. if the system is perturbed slightly from the steady-state at time $t=0$ then it eventually settles back to that steady-state. In all that follows we will abuse terminology slightly by simply writing 'stable' instead of the more cumbersome (but technically correct) 'locally asymptotically stable'. We emphasize that stable states are of particular relevance since only the stable ones are physically (biologically) realizable.

There is a simple criterion to determine whether a given steady-state x^{*} is stable or unstable. Let $J\left(\mathbf{x}^{*}\right)$ denote the Jacobian of \mathbf{f} at \mathbf{x}^{*}, i.e. $J\left(\mathbf{x}^{*}\right)$ is the $n \times n$ matrix with entries $J_{i j}$ given by

$$
J_{i j}=\frac{\partial f_{i}}{\partial x_{j}}\left(\mathbf{x}^{*}\right)
$$

The eigenvalues of $J\left(\mathrm{x}^{*}\right)$ are then the roots of the characteristic equation

$$
\operatorname{det}\left(J\left(\mathbf{x}^{*}\right)-\lambda I\right)=0 .
$$

If all of these eigenvalues have negative real parts then x^{*} is stable. Conversely, if there exists at least one eigenvalue with positive real part then x^{*} is unstable.

In the notation of our model, $n=5,\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(B_{c}, B_{e}, R, P, A\right)$ and the $f_{i}(1 \leq$ $i \leq 5)$ are the right-hand sides of the five ODEs (1-5). One can verify easily that there are at least three steady-states of (1-5), namely

$$
\begin{align*}
S_{0}: & \mathbf{x}_{0}^{*}=(0,0,0,0,0) \tag{8}\\
S_{1}: & \mathbf{x}_{1}^{*}=(0,0,0, K, 0) \tag{9}\\
S_{2}: & \mathbf{x}_{2}^{*}=\left(0,0, R^{*}, P^{*}, 0\right), \tag{10}
\end{align*}
$$

where

$$
\begin{equation*}
R^{*}=\frac{r_{P}}{\delta_{R}}\left(1-\frac{d_{R}}{r_{R} K}\right), \quad P^{*}=\frac{d_{R}}{r_{R}} \tag{11}
\end{equation*}
$$

S_{0} is called the trivial steady-state (all components of \mathbf{x}_{0}^{*} are zero), whilst S_{1} and S_{2} are called semi-trivial steady-states (some, but not all, components of \mathbf{x}_{1}^{*} and \mathbf{x}_{2}^{*} are zero). Biologically, S_{1} corresponds to the situation where no bacteria are present (and hence no antimicrobial field) and the plant cell density is at its carrying capacity K. The steady-state S_{2} is only biologically meaningful when $R^{*}>0$, i.e. when $r_{R} / d_{R}>1 / K$. In such a case S_{2} represents co-existence of plant cells $\left(P^{*}\right)$ and RJ3 cells $\left(R^{*}\right)$, and an absence of bacterial cells carrying the GI ($B_{c}=B_{e}=0$), and consequently no antimicrobial field $(A=0)$ due to the absence of $R 3$ genes. As we will see, there can exist other non-trivial steady-states in which both B_{c}, B_{e} and R all co-exist; this is particularly significant since our experimental data suggests that the GI is retained at a low (but non-zero) density in planta.

We now determine the stability of S_{0}, S_{1}, and S_{2}. Firstly, let us introduce the following notation:

$$
\begin{equation*}
\rho_{c}:=r_{c} / d_{c}, \quad \rho_{e}:=r_{e} / d_{e}, \quad \rho_{R}:=r_{R} / d_{R} . \tag{12}
\end{equation*}
$$

The quantities ' r / d ' are commonly referred to as the 'reproductive ratio' of an organism and represents the expected number of 'offspring' produced via a Malthusian growth rate r during its natural
lifespan $1 / d[1]$. The Jacobian matrix of \mathbf{f} is given by

$$
J=\left(\begin{array}{ccccc}
J_{11} & 0 & 0 & r_{c} B_{c} & -B_{c}\left(a_{c}+E\right) \tag{13}\\
E A & J_{22} & 0 & 0 & E B_{c}-a_{e} B_{e} \\
0 & r_{e} P & J_{33} & r_{R} R+r_{e} B_{e} & -a_{R} R \\
-\delta_{c} P & -\delta_{e} P & -\delta_{R} P & J_{44} & -a_{P} P \\
\alpha P & \alpha P & 0 & \alpha\left(B_{c}+B_{e}\right) & -d_{A}
\end{array}\right)
$$

where

$$
\begin{aligned}
J_{11} & =r_{c} P-d_{c}-a_{c} A-E A \\
J_{22} & =-d_{e}-a_{e} A \\
J_{33} & =r_{R} P-d_{R}-a_{R} A \\
J_{44} & =r_{P}(1-2 P / K)-\delta_{c} B_{c}-\delta_{e} B_{e}-\delta_{R} R-a_{P} A
\end{aligned}
$$

At S_{0} (recall (8)) we obtain

$$
J\left(\mathbf{x}_{0}^{*}\right)=\left(\begin{array}{ccccc}
-d_{c} & 0 & 0 & 0 & 0 \\
0 & -d_{e} & 0 & 0 & 0 \\
0 & 0 & -d_{R} & 0 & 0 \\
0 & 0 & 0 & r_{P} & 0 \\
0 & 0 & 0 & 0 & -d_{A}
\end{array}\right)
$$

with eigenvalues given by

$$
\lambda_{1}=-d_{c}, \quad \lambda_{2}=-d_{e}, \quad \lambda_{3}=-d_{R}, \quad \lambda_{4}=r_{P}, \quad \lambda_{5}=-d_{A} .
$$

Since $\lambda_{4}>0$ it follows that S_{0} is always unstable. This is as expected, for in the absence of bacterial cells ($B_{c}=B_{e}=R=0$), and hence of an antimicrobial field ($A=0$), the plant cell density is assumed to satisfy the logistic equation

$$
P^{\prime}=r_{P} P(1-P / K),
$$

for which $P=0$ is unstable (and $P(t) \rightarrow K$ as $t \rightarrow \infty$).
At S_{1} (recall (9)) we obtain

$$
J\left(\mathbf{x}_{1}^{*}\right)=\left(\begin{array}{ccccc}
r_{c} K-d_{c} & 0 & 0 & 0 & 0 \\
0 & -d_{e} & 0 & 0 & 0 \\
0 & r_{e} K & r_{R} K-d_{R} & 0 & 0 \\
-\delta_{c} K & -\delta_{e} K & -\delta_{R} K & -r_{P} & -a_{P} K \\
\alpha P & \alpha P & 0 & 0 & -d_{A}
\end{array}\right)
$$

with eigenvalues given by

$$
\begin{equation*}
\lambda_{1}=r_{c} K-d_{c}, \quad \lambda_{2}=-d_{e}, \quad \lambda_{3}=r_{R} K-d_{R}, \quad \lambda_{4}=-r_{P}, \quad \lambda_{5}=-d_{A} \tag{14}
\end{equation*}
$$

Recalling (12) it follows that S_{1} is stable if and only if

$$
\begin{equation*}
K<1 / \rho_{c} \quad \text { and } \quad \rho_{R}<1 / K \tag{15}
\end{equation*}
$$

Finally, consider S_{2} (recall (10-11)) for $\rho_{R}>1 / K$, so that $R^{*}>0$. We have that

$$
J\left(\mathbf{x}_{2}^{*}\right)=\left(\begin{array}{ccccc}
r_{c} P^{*}-d_{c} & 0 & 0 & 0 & 0 \\
0 & -d_{e} & 0 & 0 & 0 \\
0 & r_{e} P^{*} & 0 & r_{R} R^{*} & -a_{R} R^{*} \\
-\delta_{c} P^{*} & -\delta_{e} P^{*} & -\delta_{R} P^{*} & r_{P}\left(1-2 P^{*} / K\right)-\delta_{R} R^{*} & -a_{P} P^{*} \\
\alpha P^{*} & \alpha P^{*} & 0 & 0 & -d_{A}
\end{array}\right)
$$

recalling (11). Three of the eigenvalues are given by

$$
\begin{equation*}
\lambda_{1}=r_{c} P^{*}-d_{c}=d_{c}\left(\frac{\rho_{c}}{\rho_{R}}-1\right), \quad \lambda_{2}=-d_{e}, \quad \lambda_{5}=-d_{A} \tag{16}
\end{equation*}
$$

with the remaining two (λ_{3} and λ_{4}) being the roots of the quadratic equation

$$
\begin{equation*}
\lambda^{2}+p \lambda+q=0 \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\delta_{R} R^{*}-r_{P}\left(1-2 P^{*} / K\right)=r_{P} / \rho_{R}>0 \quad \text { and } \quad q=r_{R} \delta_{R} P^{*} R^{*}>0 \tag{18}
\end{equation*}
$$

Since $p, q>0$ the Routh-Hurwitz Criterion ensures that λ_{3} and λ_{4} have negative real parts. Hence we see that S_{2} is both positive and stable if and only if

$$
\begin{equation*}
\rho_{R}>\max \left\{\frac{1}{K}, \rho_{c}\right\} . \tag{19}
\end{equation*}
$$

It can be seen from this simple linear analysis that the stability of S_{1} and S_{2} depends only upon the bacterial reproductive ratios ρ_{c} and ρ_{R} (of B_{c} and R respectively) and the plant host's carrying capacity K. In what follows we will consider all other parameters as fixed (but arbitrary) and allow ρ_{R} to vary. For mathematical convenience (to ensure the steady-states are hyperbolic) we will assume that

$$
\begin{equation*}
K \neq 1 / \rho_{c} . \tag{20}
\end{equation*}
$$

This is an entirely reasonable assumption biologically, since the growth rate r_{c} and death rate d_{c} of B_{c} are defined independently from the carrying capacity K of the plant, hence it is highly
improbable that $r_{c} / d_{c}=1 / K$ by chance. Natural, stochastic fluctuations would also prevent equality from occurring in any real biological environment.

In order to fully describe the stability properties of S_{1} and S_{2} using (15) and (19) we must consider the two possible cases $K<1 / \rho_{c}$ and $K>1 / \rho_{c}$ separately. We summarize the two cases below. Recall also that S_{0} is always unstable and that S_{2} is only biologically relevant (nonnegative) when $\rho_{R}>1 / K$.

Case 1: $K>1 / \rho_{c}$. S_{1} is unstable for all $\rho_{R}>0 ; S_{2}$ is unstable (and positive) for $1 / K<\rho_{R}<\rho_{c}$ and stable (and positive) for all $\rho_{R}>\rho_{c}$.

Case 2: $K<1 / \rho_{c} . S_{1}$ is stable for $0<\rho_{R}<1 / K$ and unstable for $\rho_{R}>1 / K$; S_{2} is stable (and positive) for all $\rho_{R}>1 / K$.

For fixed ρ_{c} and K it is clear that there are at least two critical values of ρ_{R} (namely $\rho_{R}=1 / K$ and $\rho_{R}=\rho_{c}$) where bifurcations may occur at a simple zero eigenvalue, from which new families of steady-states may emerge.

3 Bifurcation of steady-states

We now fix ρ_{c} and K (and all other parameter values) and allow r_{R} to vary, i.e. we take r_{R} as bifurcation parameter. Note that since $\rho_{R}=r_{R} / d_{R}$, this is equivalent to varying ρ_{R} for d_{R} fixed, modulo rescaling. Despite Cases 1-2 being written in terms of ρ_{R}, we choose to take r_{R} as bifurcation parameter in order to avoid having to rescale (1-5), which we think would hinder the exposition below. To emphasize the dependence of (1-5) upon r_{R} we henceforth write $\mathbf{f}\left(\mathbf{x}, r_{R}\right)$ instead of $\mathbf{f}(\mathbf{x})$ in the ODE (7).

We introduce the set Σ of steady-states of (7) for any given r_{R}, defined by

$$
\begin{equation*}
\Sigma=\left\{\left(r_{R}, \mathbf{x}\right) \in \mathbb{R} \times \mathbb{R}^{5} \mid \mathbf{f}\left(\mathbf{x}, r_{R}\right)=\mathbf{0}\right\} \tag{21}
\end{equation*}
$$

Clearly, Σ contains the following three branches corresponding to the three steady-states S_{0}, S_{1} and S_{2} found earlier:

$$
\begin{align*}
& \Sigma_{0}=\left\{\left(r_{R}, \mathbf{x}\right) \in \mathbb{R} \times \mathbb{R}^{5} \mid \mathbf{x}=\mathbf{x}_{0}^{*}\right\}, \tag{22}\\
& \Sigma_{1}=\left\{\left(r_{R}, \mathbf{x}\right) \in \mathbb{R} \times \mathbb{R}^{5} \mid \mathbf{x}=\mathbf{x}_{1}^{*}\right\}, \tag{23}\\
& \Sigma_{2}=\left\{\left(r_{R}, \mathbf{x}\right) \in \mathbb{R} \times \mathbb{R}^{5} \mid \mathbf{x}=\mathbf{x}_{2}^{*}\right\} . \tag{24}
\end{align*}
$$

(recalling (8-11)). Note that \mathbf{x}_{0}^{*} and \mathbf{x}_{1}^{*} do not depend on r_{R}, but \mathbf{x}_{2}^{*} does. We also observe that $R^{*}=0$ and $P^{*}=K$ when $r_{R} / d_{R}=1 / K$, so that the branches Σ_{1} and Σ_{2} intersect where $r_{R}=$ d_{R} / K and $\mathbf{x}_{1}^{*}=\mathbf{x}_{2}^{*}$. This is a consequence of the bifurcation of S_{1} at a simple zero eigenvalue,
namely that of λ_{3} in (14). Equivalently, one may view this as a bifurcation of S_{2} at a simple zero eigenvalue, recalling (17-18) and the fact that $R^{*}=0$. For reasons that will become clear below, we take the latter view and consider Σ_{1} to bifurcate from Σ_{2} and label this bifurcation point as Z_{21} (' Z ' for 'zero' eigenvalue with the second digit in the subscript denoting the branch number in Σ which bifurcates from Σ_{2}), i.e.

$$
\begin{equation*}
Z_{21}=\left(r_{R}, \mathbf{x}\right)=\left(d_{R} / K, 0,0,0, K, 0\right) \tag{25}
\end{equation*}
$$

The branch Σ_{2} also undergoes a further (transverse) zero eigenvalue bifurcation at $r_{R}=d_{R} \rho_{c}$ (where $\lambda_{1}=0$ and $d \lambda_{1} / d r_{R} \neq 0$). We now perform a weakly nonlinear analysis at this bifurcation point in order to better understand the geometry and stability of the emerging bifurcating branches of new steady-states.

Let us consider the bifurcation occurring on branch Σ_{2} at $r_{R}=d_{R} \rho_{c}$, considered only for $K>1 / \rho_{c}$, whereby $R^{*}>0$. We denote this bifurcation point in Σ_{2} by Z_{23}, i.e.

$$
\begin{equation*}
Z_{23}=\left(r_{R}, \mathbf{x}\right)=\left(d_{R} \rho_{c}, 0,0, \frac{r_{P}}{\delta_{R}}\left(1-\frac{1}{\rho_{c} K}\right), \frac{1}{\rho_{c}}, 0\right) . \tag{26}
\end{equation*}
$$

By classical bifurcation theory (see e.g. [2, 3, 5, 6]) there exists another branch of steady-states, Σ_{3}, intersecting Σ_{2} transversally at Z_{23}. This branch can be parameterized (analytically, since f is analytic) as

$$
\begin{equation*}
r_{R}=d_{R} \rho_{c}+\gamma_{4} \varepsilon+O\left(\varepsilon^{2}\right), \quad \mathbf{x}=\left(0,0, R^{*}, P^{*}, 0\right)+\varepsilon \mathbf{z}+O\left(\varepsilon^{2}\right) \tag{27}
\end{equation*}
$$

where \mathbf{z} spans the one-dimensional null space of the Jacobian $J\left(\mathbf{x}_{2}^{*}\right)$ when $r_{R}=d_{R} \rho_{c}$ and γ_{4} is as yet undetermined. One easily shows that \mathbf{z} is of the form

$$
\begin{equation*}
\mathbf{z}=\left(d_{A}, 0, z_{3}, z_{4}, \alpha / \rho_{c}\right) \tag{28}
\end{equation*}
$$

so that in component form we have the following local parameterization of Σ_{3} :

$$
\begin{aligned}
r_{R}(\varepsilon) & =d_{R} \rho_{c}+\gamma_{4} \varepsilon+O\left(\varepsilon^{2}\right), \\
B_{c}(\varepsilon) & =d_{A} \varepsilon+O\left(\varepsilon^{2}\right), \\
B_{e}(\varepsilon) & =0+O\left(\varepsilon^{2}\right), \\
R(\varepsilon) & =R^{*}+z_{3} \varepsilon+O\left(\varepsilon^{2}\right), \\
P(\varepsilon) & =P^{*}+z_{4} \varepsilon+O\left(\varepsilon^{2}\right), \\
A(\varepsilon) & =\left(\alpha / \rho_{c}\right) \varepsilon+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

We see that B_{c} and A are both positive for $\varepsilon>0$ sufficiently small (and R and P are positive since $R^{*}>0$ and $P^{*}>0$ at $\left.r_{R}=d_{R} \rho_{c}\right)$. It is easy to show that $B_{e}(\varepsilon) \not \equiv 0$ on Σ_{3} since the only steady-state solutions with $B_{e}=0$ necessarily satisfy $B_{c}=A=0$, yielding only S_{0}, S_{1} or S_{2}.

We also observe that $B_{c}=O(\varepsilon)$ and $B_{e}=O\left(\varepsilon^{2}\right)$, so that B_{e} is at least an order of magnitude smaller than B_{c} on the scale of ε. We may now define a 'positive' part Σ_{3}^{+}and a 'negative part' Σ_{3}^{-} corresponding to $\varepsilon>0$ and $\varepsilon<0$ respectively. We are not assured that $B_{e}>0$ for $\varepsilon>0$ via this linear theory alone but numerical simulations suggest that this is true, at least for the parameter values considered here.

4 Numerical simulations

Throughout this section the numerical values of the model parameters are taken as follows:

$$
\begin{aligned}
d_{c} & =d_{e}=d_{R}=1, d_{A}=0.4, a_{c}=a_{e}=a_{R}=10, r_{P}=10.2, r_{c}=2, r_{e}=3.6 \\
\delta_{c} & =10.1, \delta_{e}=10, \delta_{R}=10.6, E=1, a_{P}=7, \alpha=10
\end{aligned}
$$

These values have been chosen arbitrarily. We have also run simulations for other choices of parameter values and whilst we have observed that the underlying bifurcation structure can behave in a slightly different quantitative manner, the qualitative behaviour remains unchanged and the implications for the biological model are the same.

We consider the Cases 1-2 separately and take r_{R} as the primary bifurcation parameter. We will see that it is also necessary to consider K as a secondary bifurcation parameter. The bifurcation diagrams were generated using the numerical continuation software package AUTO-07P, freely available via the internet [4]. Time plots of the solutions of the ODEs were generated using the numerical ODE solver ode 45 in MATLAB.

4.1 Case 1: $K>1 / \rho_{c}$

Recall that S_{1} (plant cells only, no bacteria) is unstable for all $r_{R}>0$ whilst S_{2} (plant and RJ3 bacterial cells only) is non-negative and stable if and only if $r_{R}>d_{R} \rho_{c}$. As r_{R} increases from zero the steady-state S_{2} (or more accurately, the corresponding branch Σ_{2}) undergoes two steady-state bifurcations: firstly at $r_{R}=d_{R} / K$ and secondly at $r_{R}=d_{R} \rho_{c}$ (these points being denoted by Z_{21} and Z_{23} respectively), resulting in the branches Σ_{1} (corresponding to S_{1}) and $\Sigma_{3}^{ \pm}$. Since S_{2} is unstable for all $r_{R}<d_{R} \rho_{c}$, it follows (from Crandall-Rabinowitz [3]) that the branch Σ_{1} is also unstable, at least locally near Z_{21}. Again by [3], and recalling (27), if $\gamma_{4}>0$ then Σ_{3} is locally stable for $\varepsilon<0$ (for then $r_{R}(\varepsilon)<d_{R} \rho_{c}$) and locally unstable for $\varepsilon>0$ (for then $r_{R}(\varepsilon)>d_{R} \rho_{c}$). That is, if $\gamma_{4}>0$ then Σ_{3}^{-}is locally stable and Σ_{3}^{+}is locally unstable. Conversely, if $\gamma_{4}<0$ then Σ_{3}^{+}is locally stable and Σ_{3}^{-}is locally unstable. Of course, within Σ_{3} it is only Σ_{3}^{+}that may contain biologically meaningful (non-negative) steady-states.

4.1.1 'Intermediate' Plant Carrying Capacity K

We begin by taking $K=1$ (note that $K>1 / \rho_{c}=1 / 2$). Figure S 4 shows the bifurcation diagrams thus obtained in AUTO-07P. As is standard in bifurcation theory, stable branches are denoted by solid lines and unstable ones by dashed lines. The top left plot shows the location of the two bifurcation points Z_{21} and Z_{23} (labelled ' 1 ' and ' 3 ' respectively) together with the R-components of the associated bifurcating branches Σ_{1} (labelled '2'), Σ_{2}^{+}(labelled '4') and $\Sigma_{3}^{ \pm}$(labelled '5' and ' 6 '). We include this figure to illustrate the complete structure of the bifurcating branches. The other five plots show only the non-negative (biologically relevant) components of the bifurcating branches, Σ_{i}^{+}.

We see in Figure S 4 that Σ_{2}^{+}is the only stable branch for $r_{R}>d_{R} \rho_{c}$ whilst Σ_{3}^{+}is the only stable branch for $r_{R}<d_{R} \rho_{c}$. We also observe in the middle-right plot that $B_{e}>0$ along Σ_{3}^{+}(i.e. $\gamma_{4}<0$, recalling (27)).

Figure S4: Bifurcation diagrams for Case 1 with $K=1$. Diagram labels: (1) Z_{21}; (2) Σ_{1}; (3) Z_{23} ; (4) Σ_{2}^{+}; (5) Σ_{3}^{+}; (6) Σ_{3}^{-}.

Let us, for $r_{R}<d_{R} \rho_{c}$, denote by \mathbf{x}_{3}^{*} the non-negative steady-state on the branch Σ_{3}^{+}(branch
label ' 5 '). We can then characterize the number and stability of non-negative steady-states of our model as follows:

- For $r_{R}>d_{R} \rho_{c}$ there are three non-negative steady-states $\left\{\mathbf{x}_{0}^{*}, \mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}\right\}$. Only \mathbf{x}_{2}^{*} is stable.
- For $r_{R} \in\left(0, d_{R} \rho_{c}\right)$ there are four non-negative steady-states $\left\{\mathbf{x}_{0}^{*}, \mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \mathbf{x}_{3}^{*}\right\}$. Only \mathbf{x}_{3}^{*} is stable.

One observes that as r_{R} decreases the number of non-negative steady-states increases. However, since only \mathbf{x}_{2}^{*} and \mathbf{x}_{3}^{*} may be stable in this case, we anticipate the following simple characterization of the long-term behaviour (recalling that $\rho_{R}=r_{R} / d_{R}$):

- if $\rho_{R}>\rho_{c}$ then the GI is not retained (B_{c} and B_{e} die out and R persists);
- if $\rho_{R}<\rho_{c}$ then the GI is retained (B_{c}, B_{e} and R all co-exist).

For these parameter values the mathematical model predicts retention of the GI if and only if the reproductive ratio of $\mathbf{R J 3}\left(\rho_{R}\right)$ is smaller than the reproductive ratio of $1302 \mathrm{~A}\left(\rho_{c}\right)$.

Figure S 5 shows some numerically simulated time plots of the ODE model (1-5) when $K=1$ in the three cases $\rho_{R}>\rho_{c}, \rho_{R}=\rho_{c}$ and $\rho_{R}<\rho_{c}$ (using ode45 in MATLAB). As expected we see (exponential) convergence to the stable steady-state \mathbf{x}_{2}^{*} when $\rho_{R}>\rho_{c}$ and to \mathbf{x}_{3}^{*} when $\rho_{R}<\rho_{c}$. We also see convergence to the steady-state \mathbf{x}_{2}^{*} when $\rho_{R}=\rho_{c}$, but convergence is now slower (algebraic) due to the presence of a zero eigenvalue (and a centre manifold). The bottom righthand figure shows the fraction of RJ3 cells of the entire bacterial population density over time, namely

$$
\text { RJ3 Fraction }=\frac{R(t)}{B_{c}(t)+B_{e}(t)+R(t)}
$$

These qualitative mathematical results are in agreement with the experimental data shown in Figures $4 \mathrm{a}-\mathrm{b}$ of the main document. The bottom right panel of Figure S 5 appears as Figure 3 in the main document.

4.1.2 'Large' Plant Carrying Capacity K

We now consider the same parameter values as above but for larger K, i.e. for $K=15$. Figure S6 shows similar features to the $K=1$ case (Figure S4), but now with two additional branches $\Pi^{ \pm}$ (labelled ' 10 ' and ' 11 ') consisting of time-periodic ('cyclic') solutions $\mathbf{c}^{ \pm}(t)$ which arise via secondary Hopf bifurcations from the branches $\Sigma_{3}^{ \pm}$(see top-left plot). We denote these secondary Hopf bifurcation points by $H^{ \pm}$(labelled ' 8 ' and ' 9 ') and the corresponding values of r_{R} by and $r^{ \pm}$

Figure S5: $K=1, r_{c}=2, r_{e}=3.6$. Time plots of the ODE when: $r_{R}=1.9\left(\rho_{R}<\rho_{c}\right), r_{R}=2.1$ $\left(\rho_{R}>\rho_{c}\right)$ and $r_{R}=2\left(\rho_{R}=\rho_{c}\right)$.
respectively. The branch Π^{-}comprises of periodic solutions which have at least one negative component and are thus irrelevant biologically. Conversely, the branche Π^{+}is comprised of periodic solutions all of whose components are non-negative and therefore biologically relevant. These, and the other non-negative branches of steady-states, can be seen more clearly in the remaining five plots of Figure S6.

We summarize the bifurcation behaviour of non-negative solutions as r_{R} decreases thus:

- for $r_{R}>d_{R} \rho_{c}$ there are three non-negative steady-states $\left\{\mathbf{x}_{0}^{*}, \mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}\right\}$. Only \mathbf{x}_{2}^{*} is stable;
- for $r_{R} \in\left(r^{+}, d_{R} \rho_{c}\right)$ there are four non-negative steady-states $\left\{\mathbf{x}_{0}^{*}, \mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \mathbf{x}_{3}^{*}\right\}$. Only \mathbf{x}_{3}^{*} is stable;
- for $r_{R} \in\left(0, r^{+}\right)$there are four non-negative steady-states $\left\{\mathbf{x}_{0}^{*}, \mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \mathbf{x}_{3}^{*}\right\}$ and one nonnegative limit cycle \mathbf{c}^{+}. Only \mathbf{c}^{+}is stable.

Again as r_{R} decreases the number of non-negative steady-states increases, but this time with the appearance of a limit cycle. From stability considerations one therefore expects to see long-time convergence to \mathbf{x}_{2}^{*} when $r_{R}>d_{R} \rho_{c}$, convergence to \mathbf{x}_{3}^{*} when $r_{R} \in\left(r^{+}, d_{R} \rho_{c}\right)$ and convergence to \mathbf{c}^{+}when $r_{R}<r^{+}$. Numerical simulations of the ODE model (1-5) in the latter case ($r_{R}<r^{+}$) are shown in Figure S7.

Once again, for the parameter values chosen here, the model predicts retention of the GI if and only if the reproductive ratio (ρ_{R}) of RJ3 is smaller than the reproductive ratio $\left(\rho_{c}\right)$ of 1302 A . However, for $K=15$, it is also possible for the GI to be retained dynamically (cyclically) rather than at steady-state.

4.1.3 2-Parameter Bifurcation Loci

Evidently K plays some role in the qualitative structure of the bifurcation diagram since (for the parameter values chosen here) Hopf bifurcation of non-negative solutions occur when $K=15$ but not when $K=1$. In order to better understand this one may plot numerically the locus of the Hopf bifurcation point H^{+}in the $\left(r_{R}, K\right)$-parameter plane, see Figure S8. Also included in this plot are the loci of $Z_{21}\left(r_{R}=d_{R} / K\right)$, and $Z_{23}\left(r_{R}=d_{R} \rho_{c}\right)$. These three loci, together with the line $K=1 / \rho_{c}$, form the four boundaries of the regions depicted in Figure S 10 (Figure 1 in

Figure S6: Bifurcation diagrams for Case 1 with $K=15$. Diagram labels: (1) Z_{21}; (2) Σ_{1}; (3) Σ_{2}^{+}; (4) Σ_{2}^{-}; (5) Z_{23}; (6) Σ_{3}^{+}; (7) Σ_{3}^{-}; (8) H^{+}; (9) H^{-}; (10) Π^{+}; (11) Π^{-}.

Figure S7: $K=15$ and $r_{R}=0.7$. Time plots illustrate convergence to a time-periodic coexistence limit cycle. Biologically this corresponds to the cyclic maintenance of the GI in the bacterial population within the plant host over time.
the main document). The locus of H^{+}intersects the vertical K-axis at about $K=K^{*}=11.2$. Asymptotically it also appears that $K \rightarrow \infty$ as $r_{R} \uparrow d_{R} \rho_{c}$. Consequently, Hopf bifurcations occur if and only if $K>K^{*}$. We summarize these results for Case 1 as follows:

- (large K) for $K>K^{*}$ there exist successive stable bifurcations $\mathbf{x}_{2}^{*} \rightarrow \mathbf{x}_{3}^{*} \rightarrow \mathbf{c}^{+}$as r_{R} decreases;
- ('intermediate' K) for $1 / \rho_{c}<K<K^{*}$ no Hopf bifurcation loci exist and the only stable bifurcation is from $\mathbf{x}_{2}^{*} \rightarrow \mathbf{x}_{3}^{*}$ as r_{R} decreases.

4.1.4 Fractional GI Loss

One may represent the loss of the GI in the bacterial population by plotting the eventual (i.e. as $t \rightarrow \infty)$ fraction of RJ3 cells as a function of r_{R}. This is possible since for each value of r_{R} there appears to be a unique stable state, which is either a steady-state (x_{2}^{*} or x_{3}^{*}) or a limit cycle (c^{+}). We compute numerically the value of $R /\left(B_{c}+B_{e}+R\right)$ for each r_{R}, where the maximum value of $R(t), B_{c}(t)$ and $B_{e}(t)$ is taken over one periodic cycle in the case of \mathbf{c}^{+}. The two distinct cases considered above ($K=1$ and $K=15$) are shown in Figure S9.

Figure S8: Case 1: Bifurcation loci in the $\left(r_{R}, K\right)$-plane. (1) Simple bifurcation locus Z_{21} ($r_{R}=$ $\left.d_{R} / K\right)$; (2) Simple bifurcation locus $Z_{23}\left(r_{R}=d_{R} \rho_{c}\right)$; (3) Hopf bifurcation locus H^{+}.

We remark that a value of r_{R} exists slightly smaller than $d_{R} \rho_{c}$ (or, equivalently, a value of ρ_{R} slightly smaller ρ_{c}) for which the RJ3 fraction is maintained at a stable value of 99.5%, i.e. for which 0.5% of the bacterial population still retain the GI - the situation we have observed experimentally (see Figures 4a-b of the main document).

Figure S9: Case 1: Eventual RJ3 fraction for $K=1$ (left) and $K=15$ (right).

4.2 Case 2: $K<1 / \rho_{c}$

The situation here is much simpler. The bifurcation point Z_{23} corresponding to $r_{R}=d_{R} \rho_{c}$ is no longer bio-relevant since $R^{*}<0$ when $r_{R}<d_{R} / K$. Consequently the Hopf loci $H^{ \pm}$are also no
longer bio-relevant. We summarize the bio-relevant results for Case 2 as follows:

- there exists a stable bifurcation $\mathbf{x}_{2}^{*} \rightarrow \mathbf{x}_{1}^{*}$ as r_{R} decreases

That is, \mathbf{x}_{1}^{*} (plant cells only) is stable for $0<\rho_{R}<1 / K$ and unstable for all $\rho_{R}>1 / K$ whilst \mathbf{x}_{2}^{*} (plant and RJ3 cells only) is stable for all $\rho_{R}>1 / K$. Hence GI retention is not possible.

4.3 Summary

Here we summarise the results of our mathematical analysis and numerical simulations more conveniently and present the biological implications graphically. It will be expedient to introduce the notation

$$
\begin{equation*}
\hat{r}=d_{R} \rho_{c} . \tag{29}
\end{equation*}
$$

Our results suggest the following characterisation:

- (Small K) $0<K<\hat{r} / d_{R}$.

For $0<r_{R}<d_{R} / K, \mathbf{x}_{1}^{*}$ (plant cells only, bacterial extinction) is the only stable state; for $\rho_{R}>d_{R} / K, \mathbf{x}_{2}^{*}$ (plant and RJ3 cells only) is the only stable state.

- (Intermediate $K) \hat{r} / d_{R}<K<K^{*}$.

For $0<r_{R}<\hat{r}, \mathbf{x}_{3}^{*}$ (coexistence of 1302A and RJ3 bacterial cells) is the only stable state; for $r_{R}>\hat{r}, \mathbf{x}_{2}^{*}$ (plant and RJ3 cells only) is the only stable state.

- (Large K) $K>K^{*}$.

For $0<r_{R}<r^{+}, \mathbf{c}^{+}$(cyclic coexistence of 1302A and RJ3 bacterial cells) is the only stable state; for $r^{+}<r_{R}<\hat{r}, \mathbf{x}_{3}^{*}$ (coexistence of 1302A and RJ3 bacterial cells) is the only stable state; for $r_{R}>\hat{r}, \mathbf{x}_{2}^{*}$ (plant and RJ3 cells only) is the only stable state.

Figure S10 portrays this characterisation in terms of genomic island loss or retention (Figure 1 of the main document).

5 Concluding Remarks

In these supplementary notes we have presented our mathematical model (Section 1) and performed a rigorous mathematical analysis for the existence, stability and local bifurcation of its steady-states (Sections 2 and 3). In Section 4 we presented the results of several numerical simulations performed for particular parameter values. For these chosen parameter values we obtained numerically the global structure and stability of the bifurcating branches and observed that Hopf

Figure S10: Characterisation of genomic island (GI) loss or retention in the $\left(r_{R}, K\right)$-parameter plane.
bifurcations exist when the carrying capacity K of the host plant is sufficiently large ($K>K^{*}$). In particular is was observed that the genomic island (GI) persisted in the population of bacterial cells (either at steady-state or time-periodically) if and only if K is sufficiently large ($K>1 / \rho_{c}$) and the reproductive ratio $\left(\rho_{R}\right)$ of RJ 3 cells is less than $\left(\rho_{c}\right)$.

References

[1] N.F. Britton, Essential Mathematical Biology, Springer, (2003).
[2] M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (2), 321-340 (1971).
[3] M.G. Crandall and P.H. Rabinowitz, Bifurcation Perturbation of Simple Eigenvalues and Linearized Stability, Arch. Rat. Mech. Anal. 52 (2), 161-180 (1973).
[4] E.J. Doedel and B.E. Oldeman, AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, Concordia University, Montreal, Quebec, Canada, 2009.
[5] G. Iooss and D.D. Joseph, Elementary Stability and Bifurcation Theory, Springer, (1997).
[6] Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, (2004).

