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A B S T R A C T

In silico evolutionary optimization of cancer treatment based on multiple nano-particle (NP)

assisted drug delivery systems was investigated in this study. The use of multiple types of

NPs is expected to increase the robustness of the treatment, due to imposing higher com-

plexity on the solution tackling a problem of high complexity, namely the physiology of a

tumor. Thus, the utilization of metameric representations in the evolutionary optimization

method was examined, along with suitable crossover and mutation operators. An open-

source physics-based simulator was utilized, namely PhysiCell, after appropriate modifica-

tions, to test the fitness of possible treatments with multiple types of NPs. The possible

treatments could be comprised of up to ten types of NPs, simultaneously injected in an area

close to the cancerous tumour. Initial results seem to suffer from bloat, namely the best

solutions discovered are converging towards the maximum amount of different types of

NPs, however, without providing a significant return in fitness when compared with solu-

tions of fewer types of NPs. As the large diversity of NPs will most probably prove to be quite

toxic in lab experiments, we opted for methods to reduce the bloat, thus, resolve to thera-

pies with fewer types of NPs. Namely, the bloat control methods studied here were remov-

ing types of NPs from the optimization genome as part of the mutation operator and

applying parsimony pressure in the replacement operator. By utilizing these techniques,

the treatments discovered are composed of fewer types of NPs, while their fitness is not sig-

nificantly smaller.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Nalecz Institute of Biocyber-

netics and Biomedical Engineering of the Polish Academy of Sciences. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer treatment based on chemotherapy have made great

progress during the past decades. Despite that, there is still
room for improvement, given that cancer remains as one of

the most challenging and complicated problems that scien-

tists have faced. As nanotechnology is more broadly studied

and fabrication processes more approachable, the use of
ineering of
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Fig. 1 – Metameric representation of two different

treatments, one with 4 types of NPs and one with 6 types of

NPs. All types of NPs are defined by a group of 5 parameters

(different values for every type of NP).
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nanocarriers has been brought into the fight against cancer

[1,2]. A characteristic example is the functionalization of

nano-particles (NPs) with a therapeutic compound that have

proved to enhance the biodistribution, tumour penetration

and cellular uptake in targeted tissues [3–6]. The fact that

functionalized NPs improve the efficacy of the conventional

treatment have been proved in several cases by studies

in vivo, in vitro and both [7–9].

The physiology of a cancer tumor can be characterised as

complicated and constantly changing [10,11]. The existence of

multiple types of cancerous cells in a tumor, like Cancer Stem

Cells (CSCs) [12,13], can be associated with its ability to

relapse and essentially withstand conventional treatments.

Moreover, when CSCs are further stressed with the applica-

tion of a treatment, they seem to become more aggressive,

mutate and render the applied treatment obsolete [14–16].

As a consequence, to produce more robust future cancer ther-

apies, they will have to be more complex or adaptable to the

evolution of their target. For instance, NP based therapies

have been proposed able to combine photothermal and

immune strategies [17], able to transfer tumor antigens and

adjuvants to the same immune cells in order to effectively

promote immune responses [18] or able to combine the func-

tionality of radiation dose enhancer and anticancer drug

delivery [19].

A further step towards this direction would be to incorpo-

rate more than one types of NPs in NP-based drug delivery

systems [20–22]. Thus, different types of NPs will give rise to

diverse behaviours of the therapy, targeting multiple aspects

of the tumor and even enable the emerging of more compli-

cated behaviours than a simple accumulation of isolated ones

[23,24]. Note that rather than combining multiple drugs in one

NP [25], each drug will have a different type of NP as a carrier

to achieve different accumulation, retention, and penetration

characteristics.

In order to study the effects of multiple types of NPs in

drug delivery, the simulation of the growth of a cancerous

tumour and its reaction to a multiple NP therapy was investi-

gated in silico. There are several attempts to simulate the

effects of nanomedicine on tumors and their micro-

environment [26–28] or the mechanism that determine the

cell-particle interaction and uptake [29], but here PhysiCell

[30] was utilized. PhysiCell is an open-source, physics-based

cell simulator. Appropriate alternations in the source code

were made to accommodate the inclusion of multiple types

on NPs in the therapy. The optimization problem is then for-

mulated, with an objective function defined as the minimiza-

tion of the remaining cancer cells in the tumor after 3 days of

simulated treatment and a search space outlined by the

parameters of the simulator that dictate the behaviour of

the different types of NPs.

The fact that more than one types of NPs can be tested,

without knowing a priori the optimum amount of different

types, requires a variable length representation of the genome

of each solution. As a result, the metameric representation

[31,32] was adopted with the relevant variations on the oper-

ators of the evolutionary methodology.

Several optimization methodologies were previously

investigated by utilizing PhysiCell to obtain a fitness function,

either by testing NP-based therapies [33–36] or exploring the
space of immunotherapies [37]. However, here the search

space is more complicated than in the previous works on

optimization of NP-based therapies, as more than one NPs

are investigated. A previous study [38] has tested the problem

of multiple NPs, nevertheless, the optimization evolution was

implemented only by a modified mutation operator, which

can be a slow way of exploring the search space. In this study,

not only the mutation, but also the crossover operator were

adapted to comply with a variable length genome in the evo-

lutionary process. Moreover, another work [39] presents the

investigation of multiple NPs in a single treatment, however,

in that study the time that the different types of NPs are

applied is not the same. Thus, the additional time variation

of NPs increases the complexity of the cancer treatment.

The results clearly suffered from bloat, namely the

amount of types of NPs of the evolved solutions was increas-

ing and reaching the maximum, without a significant benefit

in terms of fitness [40]. Consequently, appropriate alterna-

tions in the optimization methodology were implemented to

control the bloat phenomena. Namely, the mutation operator

was not only adding, but also removing types of NPs, with the

same probability between the two moves. Additionally, the

replacement operator was amended to apply parsimony pres-

sure [41], specifically, to favor treatment solutions with fewer

types of NPs. By utilizing these changes the treatments found

were clearly less complex than the previous ones.

2. Metameric representation in genetic
algorithms

Given that the amount of types on NPs that will provide the

most efficient treatment is not known a priori, a variable

length genome optimization method is required. Due to the

specifics of this problem, each solution can be described as

a group of parameters that are repeated, resulting in a gen-

ome composed of similar compartments. Namely, two differ-

ent solutions/treatments are illustrated in Fig. 1, where one

solution is comprised by 4 types of NPs and the other by 6

types of NPs. Note that each type of NPs is defined by five

parameters, each one has different values for the different

types of NPs. Every genome compartment is defining one type



Fig. 3 – Two types of alternations by mutation operator. Type

one changes one parameter on one types of NP, while type

two adds a random type of NPs to the treatment.
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of NPs in the simulated treatment. This representation is

known as metameric representation [31,32] and each com-

partment as a metavariable. Similar techniques have been

applied to problems from other fields, like designing wind

farms [42] or positioning nodes in a coverage network [43].

Note that by altering the representation of the possible

solutions, the conventional fixed-length operators can not

be applied without appropriate alternations. Specifically, the

updated crossover and mutation operators could change the

number of types on NPs in a solution (or the length of the gen-

ome). As the crossover operators in evolutionary algorithms

need to maintain the building blocks of the fit individuals of

previous generations, and the fact that these blocks can be

considered here as a combination of some types of NPs, the

operator is designed accordingly. The ‘‘cut and splice cross-

over” operator was adopted, as it is a simple variation of the

conventional n-point crossover, but the cut points are allowed

only between separate metavariables. In essence, the individ-

uals under the crossover operator exchange some types of

NPs between them, but not necessarily the same amount

each. An example of this crossover operator is depicted in

Fig. 2.

Moreover, the mutation operator in the metameric repre-

sentations is slightly altered. It is capable of altering one

parameter of one type of NPs (mutation type 1 in Fig. 3) or

add an additional type of NPs (with random parameters) in

the mutated individual/solution (mutation type 2 in Fig. 3).

Both alternatives have the same probability of happening.

Thus, the mutation operator is the only way to modify the

individual parameters of any type of NPs from their initial val-

ues, given that the crossover operator applies cut points only

between metavariables.

As these operators, usually tend to increase the genome

length uncontrollably, but without significant advances in

the relative fitness (bloat), techniques to control this can be

utilized. Here, in addition to adding a type of NPs, the muta-

tion operator can also remove it. Moreover, parsimony pres-

sure was applied to the replacement operator. More

specifically, during the replacement procedure of the algo-

rithm, if the offspring that is tested to replace a parent is of

higher genome length, it also needs to be fitter at least 10%,
Fig. 2 – The cut and splice crossover of two treatments. On the

indicated in red dashed lines, while the offspring is on the bott
otherwise the replacement does not happen. On the contrary,

if the offspring has the same or shorter length than a parent,

then their fitnesses are compared without any weighted

effect.

In order to shrink the primary search space and enable the

gradual advancement of complexity in solutions, the initial-

ization of the population was opted for individuals with only

one type of NPs. A similar strategy was successfully adopted

previously [44] to control bloat in early generations and

enhance the convergence to optima.

3. Methods

To simulate the behaviour of complex NP-based cancer treat-

ments, PhysiCell [30], a multicellular, agent-based simulator

was utilized. Namely, the sample project of PhysiCell v.1.7.0

[45], termed 2-D ‘‘anti-cancer biorobots” was used. This pro-

ject simulates nanocarriers as mediators of the same

chemotherapeutic compound through three different types

of agents, specifically cancer cell, worker and cargo agents.

Note that the cancer cell agents are encoded with the beha-

viour of cancer cells, while the cargo agents are correspond-

ing to the therapeutic compound in the simulator. The

worker agents are the simulated entities that associate to
top the parent individuals are presented with the cut points

om.



B i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 1 ( 2 0 2 1 ) 3 5 2 –3 6 1 355
the NPs. In detail, cancer agents consume oxygen that stems

an oxygen gradient. This is ‘‘read” by worker agents to inform

them for targeting. Moreover, worker agents adhere to cargo

agents and transport them close to cancer agents. The simu-

lated behaviour of the worker agents is altered during the

optimization process by the following five parameters, that

compose the search space for each type of NPs: the unat-

tached worker migration bias [0,1]; the attached worker

migration bias [0,1]; worker relative repulsion [0,10]; worker

relative adhesion [0,10]; worker motility persistence time

(minutes) [0,10]. For details of the meaning of these parame-

ters refer to [30].

The simulated procedure of this project is as follows. Note

that all the following parameters are maintained the same as

the original version [45]. An initial 200 lm radius tumor (or

around 570 of cancer cell agents) is the starting point of the

simulation, in the center of a simulation area of

1400� 1400lm. The growth of this tumor is simulated for

seven days. At that point, the therapy is introduced close to

the tumor, filling a simulated vein at coordinates

½600 � � � 700;�700 � � �700�. The therapy is comprised by 500

agents, 90% being therapeutic compound (simulated cargo

agents) and 10% being NPs (simulated worker agents). After

that, three days of simulated time are executed for the ther-

apy to work. That is achieved by the functionality that worker

agents have, i.e. to adhere to cargo agents and deposit them

near cancer cell agents, which decay and die due to the prox-

imity to the cargo agents. The fitness of the simulated treat-

ment is considered as the alive remaining cancer cell agents

after the end of the total of 10 days. Thus, the optimization
Algorithm 1.: Injection of multiple NP treatment.
problem can be formulated as the minimization of the fitness

function, namely:

min
x

fðxÞ ¼
X

t¼10days

ðAlive cancer agentsÞ ð1Þ

where x is the set of parameters defining the NP design,

within bounds:

0 6 migration biasattached worker 6 1

0 6 migration biasunattached worker 6 1

0 6 relative adhesionworker 6 10

0 6 relative repulsionworker 6 10

0 6 motility persistence timeworker 6 10ðminÞ

8>>>>>><
>>>>>>:

As this is an open-source tool, appropriate alternations were

introduced to accelerate the computations and enable the

injection of multiple types on NPs rather than one. Initially,

instead of simulating the cancer tumor growth for seven days

and then introducing the therapy, an already grown tumor is

loaded as the initial state and at t ¼ 0 the therapy is intro-

duced [36]. This results in a 70% acceleration of each simula-

tion. A maximum of ten different types of NPs can be now

introduced simultaneously as part of the therapy. Note here

that the amount of worker agents (the simulated NPs) is not

altered. Still a total of 50 worker agents were introduced,

equally divided among the different types of NPs tested. For

instance, if one type of NPs is tested, all 50 worker agents

have the same parameters, if two types of NPs are tested, 25

worker agents have the same parameters and the rest 25

worker agents have different parameters, and so on. The

pseudocode of the treatment injection procedure is given in

Algorithm 1.



Fig. 6 – Results from one run of GA-MR. (a) Evolution of

average fitFig. 6 – Results from one run of GA-MR. (a)

Evolution of average fitness of the population; (b) evolution

of the best individual in the population (where numbers

indicate the number of types NPs); (c) composition of

(a)

(b)

Fig. 4 – Average and confidence levels (95%) results from 10

runs of GA with metameric representation: (a) Evolution of

average fitness of the population; (b) evolution of the best

individual in the population.

Fig. 5 – Average and confidence levels (95%) results from 10

runs of GA with metameric representation for the NP types

composition of the best solution.
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Simulating ten days requires c. 5 min. on an Intel� Xeon�
CPU E5-2650 at 2.20 GHz with 64 GB RAM using 8 of the 48

cores, while with the alternation of loading the tumor, it

requires c. 1.5 min. Additionally, as the simulator is based

on stochastic processes, a static sampling approach was

employed by averaging the fitness of five runs for every solu-

tion tested in the optimization process. Note that all the

parameters are fixed (i.e. amount of NPs, distance of injection,

initial tumour size) except the five mentioned previously that

can depict a different design of NPs.

A steady state genetic algorithmwas implemented to opti-

mize the design of the treatment. A randomly initiated popu-

lation of size P ¼ 20 was produced with each

individual/solution having only one type of NPs, as explained

before, to minimize the initial search space and solution com-

plexity. The selection and replacement were executed with

tournaments of size T ¼ 2. The mutation operator is applying,

with probability p ¼ 50%, an alternation in one of the param-

eters (with random step size of s ¼ ½�5;5�%) or an addition of a

random type of NP in the individual. Finally, 200 generations

are executed, meaning a total of 1000 PhysiCell simulations

(due to the static sampling of 5), resulting to c. 25 h of execu-

tion time per evolutionary test.

4. Results

4.1. Results of the metameric representation

The results of ten runs of the evolutionary optimization of the

multiple-NP-based drug delivery system for cancer treatment

with the genetic algorithm with metameric representation
(GA-MR) are depicted in Fig. 4. In Fig. 4(a) the average fitness

of the population and the confidence levels (95%) of the

results for 10 runs are outlined. In Fig. 4(b) the fitness of the

best individuals are presented during the 200 generations of



(a)

(b)

Fig. 8 – Average and confidence levels (95%) results from 10

runs of GA with metameric representation and parsimony

pressure; (a) Evolution of average fitness of the population;

(b) evolution of the best individual in the population.

Fig. 7 – Fitness of individuals in the end of the evolutionary

process in accordance with the number of types of NPs in

each population.

Fig. 9 – Average and confidence levels (95%) results from 10

runs of GA with metameric representation and parsimony

pressure for the NP types composition of the best solution.
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the evolution. Furthermore, the composition of the best solu-

tion of the population, in terms of the amount of different NP

types, throughout the evolution generations is illustrated in

Fig. 5. The average amount of types for the 10 runs is depicted,

as well as the 95% confidence levels.

In Fig. 6(a) and (b) the average fitness of the population and

the fitness of the best individual are depicted for one example

run of GA-MR. Additionally, in Fig. 6(b) the composition of

each best solution per generation is depicted as a number

by the data point in the graph. In Fig. 6(c) the composition

of the population in terms of types of NPs is rendered.

Namely, the matrix shows the number of different types of

NPs of each individual/solution per depicted generation. For

instance the initial population has 20 individuals that each

one has one type of NP, whereas in the last generation the

population has 7 individuals with 7 types of NPs, 4 individuals

with 8 types of NPs and so forth. Fig. 7 shows the resulting fit-

ness of the population of 20 individuals at the end of the evo-

lution, after 200 generations. In x-axis the composition of the

individual solution is sketched, while in y-axis the fitness of

the corresponding solution.

4.2. Results with parsimony pressure

Here the results from an updated methodology are presented.

Namely, parsimony pressure was included in the replacement

operator (genetic algorithm with metameric representation

and parsimony pressure GA-MRPP). As explained in Section 2,

a weight of 10% more effective behaviour needs to be pre-

sented by a new individuals with longer genome lengths, in

order to replace old individuals existing in the population.

Moreover, the mutation operator was updated to remove, as

well as add one random type of NPs, that serves as an addi-

tional measure against bloat.

The results of ten runs of the optimization methodology

with parsimony pressure, are depicted in Fig. 8. Fig. 8(a) pre-

sents the optimization of the average fitness of the population

and Fig. 8(b) illustrates the fitness of the best individuals dur-
ing the 200 generations. Moreover, the composition of the

best solutions in a population, in terms of the amount of dif-

ferent NP type, is illustrated in Fig. 9. The average amount of

types for the 10 runs is depicted, as well as the 95% confi-

dence levels.

In Figs. 10 and 11 the results of two example runs of the

optimization process with parsimony pressure (GA-MRPP)

are presented. Here the same format as Fig. 6 was used.

Namely, the average fitness of the population (Figs. 10(a)



Fig. 10 – Results from one run of GA-MRPP; (a) Evolution of

average fitness of the population; (b) evolution of the best

individual in the population (where numbers indicate the

number of types NPs); (c) composition of population in

terms of types of NPs.

Fig. 11 – Results from one run of GA-MRPP where

minimization of amount of NP types is observed; (a)

Evolution of average fitness of the population; (b) evolution

of the best individual in the population (where numbers

indicate the number of types NPs); (c) composition of

population in terms of types of NPs.

Fig. 12 – Fitness of best individual found by both variations

of the metameric representation algorithms.
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and 11)) and the fitness of the best individual (Figs. 10(b) and

11(b)) are depicted. Also, the composition of each best solu-

tion per generation is depicted as a number by the data point

in the graph (Figs. 10(b) and 11)) and the composition of the

population in terms of types of NPs is provided (Figs. 10(c)

and 11(c)).

The comparison of the fitness achieved by solutions found

by the two variations is illustrated in Fig. 12. Namely, sum-

mary statistics are visualized with a boxplot, for the final best

individuals fitness found from both methods. The median,

the 25th and 75th percentiles, minimum and maximum and

one outlier for GA-MR (i.e. a value that is more than 1.5 times

the interquartile range) are illustrated.

5. Discussion

Utilizing the GA-MR method the optimization of the multi NP

based cancer treatments can be realized, as the average fit-

ness (Fig. 4(a)) of the population of solutions converges to

420 remaining cancer cell agents, while the average fitness

of the initial random population was 950, i.e. a 56% reduction.

An additional metric of the improvement of the in silico opti-

mized designs, can be realized by the fitness of the best indi-

viduals found throughout the simulated evolution (Fig. 4(b)).

Namely, the fitness of the best solution in the initial popula-

tion was 905 remaining cancer cell agents, while in the final

population was 400, an improvement of 56%.

However, investigating closer the composition of the best

solutions in the population, in terms of the amount of differ-

ent NP types (Fig. 5) an unwanted effect of metameric

representations methods is observed. As described previ-

ously, all tests start with a population of solutions with min-

imal complexity (only one type of NPs), while the amount is

steadily increasing and as it can be observed it is finally

reaching the maximum of 10 types. This is an indication of

bloat in the results provided by this methodology (GA-MR).

The results of one of the test runs of GA-MR were closely

inspected in Fig. 6. The average fitness of the population

seems to converge to 420 remaining cancer cell agents
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(Fig. 6(a)), while the fitness of the best individual reaches 390

at the end of the evolution (Fig. 6(a)). Inspecting the composi-

tion of each best solution per generation (Fig. 6(b)) it is obvi-

ous that from the 80th population onward, no significant

improvement of the fitness is achieved, while the amount of

types of NPs keep increasing. Nonetheless, from Fig. 6(c), it

can be derived that the population does not converge to one

amount of NPs, as there are several individuals in the area

between 7 and 10 types of NPs at the final generation.

To further inspect the results at the end of the evolution,

after 200 generations, Fig. 7 is presented. Here the fact that

bloat is introduced by the methodology is clear. Despite the

best fitness individual is of 10 types of NPs (with 390.6

remaining cancer cell agents), other solutions with 8 and 9

types of NPs are not that far behind (with 393 and 392.8

agents, respectively).

To alleviate the bloat phenomena and, thus, discover an

effective treatment with lower complexity, parsimony pres-

sure was included in the replacement operator (GA-MRPP).

As described previously, a weight of 10% more effective beha-

viour needs to be presented by a new individuals with longer

genome lengths, in order to replace old individuals existing in

the population. Moreover, the mutation operator was updated

to remove, as well as add one random type of NPs, that serves

as an additional measure against bloat.

For this method of optimization, the average fitness of the

population (Fig. 8(a)) reaches 470 remaining cancer cell

agents, with an initial value of 950, a 50.5% reduction. More-

over, for the fitness of the best individuals (Fig. 8(b)), the initial

fitness of the best solution was 905 remaining cancer cell

agents, while in the final one 438, a 51.5% reduction.

On the other hand, examining the composition of the best

solutions in a population (illustrated in Fig. 9), the control of

bloat effect is obvious. Comparing these with the results

before parsimony pressure was added (Fig. 5), it can be estab-

lished that the amount of types of NPs per best solution is

increasing in a more manageable way and the range is

broader than previously. Thus, more diverse solutions are

considered and the search does not get stuck in a local opti-

mum, early in the evolution procedure.

Furthermore, exploring further the results of individual

runs of the optimization process with parsimony pressure

(Figs. 10 and 11) the mechanics of GA-MRPP can be realized.

In Fig. 10 (same format as Fig. 6) a more gradual minimization

of the fitness function can be observed, along with the con-

trolled increase in the complexity of the treatment. Namely,

the number of NP types for the best individuals found is con-

verging to 7 (as illustrated Fig. 10(b)), while a diverse popula-

tion is still existing during the last generation of the

evolution (individuals with genome length from 4 to 10 types

of NPs, as depicted in Fig. 10(c)). An advantage of the contin-

uation of more diverse populations can also be realised in the

GA-MRPP run described in Fig. 11. In Fig. 11(b) the fitness of

the best treatment found per generation can be monitored,

where a gradual improvement is apparent. However, after

reaching a best solution of 7 types of NPs by generation 100,

the methodology discovers an equally fit (and slightly better)

treatment that is not as complex, namely it has only 4 types

of NPs. This can be also realized in Fig. 11(c), where there

seem to be only one individual with 4 types of NPs by gener-
ation 100, but due to parsimony pressure, it was not aban-

doned/extinct (because its fitness would be comparable with

the more complex treatments), and it was given time (simu-

lated generations) to mutate and improve its fitness, so as

to become the best in the population by the end of the

evolution.

The comparison of the fitness achieved by solutions found

by the two variations (Fig. 12) reveals that the GA-MRPP vari-

ation provides not as fit solutions. Nonetheless, given that

the difference is relatively small (note that GA-MR achieves

56% improvement as mentioned previously and median value

of 396 agents, while GA-MRPP achieves 51.5% improvement

andmedian value of 437), the benefits of developing less com-

plex treatments may overshadow the small performance

difference.

The trade-off between overly complex and efficient treat-

ments can be inspected by the GA-MRPP methodology via

altering the weight of the parsimony pressure, here set to

10%. This analysis is an aspect of future work. Moreover, a

fabrication cost investigation and an in vitro analysis and

association between the toxicity and the complexity of NP-

based treatments will inform the optimization methodology

to adjust the parsimony pressure threshold. Moreover, the

application of non-parametric parsimony pressure [46] can

be studied. The implementation of more specialized opera-

tors [47] designed for metameric representations, can be a

further possible way towards future work.

The ultimate goal of any work on modelling of cancer

treatments is to become integrated into pre-clinical and clin-

ical practice as a decision support tool. This can be achieved

only when models are tightly integrated with reproducible,

quantitative, and dynamic biological measurements [48].

However, for that, we need a paradigm shift in howwe collect,

standardize and report patient data [49] and the entire field of

mathematical oncology is just taking its first steps towards

that goal [50]. With the application of nanomedicine, the com-

plexity of the problem is even higher. Biodistribution and effi-

cacy of applied drugs are significantly influenced by the

nanocarrier parameters such as size, physicochemical prop-

erties and in vivo stability (for a comprehensive review of uti-

lization of different biomimetic, organic, and inorganic

nanocarriers see [51]). Fine-tuning of nanocarrier properties

is especially important since nanomedicines should over-

come numerous transport barriers in the body, starting from

the circulation in the bloodstream all the way down to the

release of their active cargo [28]. Because of these additional

factors, the state space of possible treatment configurations

is enormous. To more efficiently explore it, we need a novel

set of tools. Depending on the size of the parameter space,

these tools can be based either on high-throughput testing

[52] or machine learning [39,53,54].

As previously stated, in contrast to existing body of work,

here we focused on developing the method for automated

optimization of nanocarrier properties. To the best of the

authors’ knowledge, at the time of writing, there are no com-

putational models nor pre-clinical or clinical studies that

compare the efficacy of utilization of multiple differentiated

nanocarriers as mediators of the same chemical compound

as a chemotherapeutic agent, as done in this paper. Nonethe-

less, because of the increasing popularity of the higher com-
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plexity of cancer therapies (i.e. binding multiple drugs and

functionalities in a single NP) and in specific in the area of

cancer immunotherapy [51,18], diagnostics [2] and combina-

torial therapies (i.e. NPs delivering chemotherapeutics and

at the same time acting as a radiosensitizer [19] or photother-

mal and immune co-therapy [17]), the consideration of an

implementation of differentiated NP-based anti-cancer

chemotherapy is highly anticipated.
6. Conclusion

This study introduces an in silico evolutionary optimization of

a multi-NP-based drug delivery system in targeted cancer

treatment with a modified version of simulator PhysiCell. As

PhysiCell is an open-source tool, appropriate alternations in

the source code were made to simultaneously introduce mul-

tiple types of NPs in the simulated treatment. Given that the

amount of different types of NPs that will provide the best

treatment is not known a priori, a variable length evolutionary

methodology is utilized, namely metameric representation.

The appropriately designed crossover and mutation opera-

tors to access the variable length genome of the individuals,

required by the metameric representation, were imple-

mented. A crossover operator with a simple alternation was

utilized, known as ‘‘cut and splice” crossover, while the func-

tionality of adding or removing a type of NP was supple-

mented to the mutation operator. The initial results

uncontrollably increased the complexity of the solutions

(comprising of the maximum amount of NPs, namely 10)

and achieved increased effectiveness. However, bloat was

detected in the results, meaning that the maximum of solu-

tion length was reached, without a significant improvement

in the fitness.

In order to control bloat, parsimony pressure (GA-MRPP)

was applied as an alternation to the optimization process.

The results provided after enforcing these measures provided

slightly less fit, but comparable treatments. Namely, an aver-

age of 56% improvement of the fitness of best individuals

found with GA-MR was realised, while an average of 51.5%

was realised with GA-MRPP. Despite that, while GA-MR discov-

ers overly complex treatments that include the maximum of

10 types of NPs simultaneously applied, the GA-MRPP discov-

ers less complex treatments with an average of 8 types of NPs.

Nonetheless, the GA-MRPPmethodology manages to converge

to treatments comprised by a minimum of 4 types of NPs that

are possible to secure clinical approval easier, due to limited

consequences of mutual interaction.
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