
Upper Limb Motion Intent Recognition Using Tactile Sensing
In Stroke Patients

Thekla Stefanou1 Dr Ailie Turton2 Dr Alexander Lenz3 and Dr Sanja Dogramadzi4

Abstract—Focusing on upper limb rehabilitation of
weak stroke patients, this pilot study explores how
motion intent can be detected using force sensitive
resistors (FSR). This is part of a bigger project which
will see the actuation and control of an intent-driven
exoskeleton. The limited time stroke survivors have
with their therapists means that they do not get
enough training. Aiming to replicate therapist prac-
tices of recognising a patient’s intention to move, a
pilot study of a tactile detection system is presented.
The goal is a system that will perform consistently
even with patients who cannot initiate any movement,
due to low muscle strength and control ability. Cur-
rently available devices do not offer the robustness
and performance necessary; whereas Electromyogra-
phy (EMG) sensors, a well-established method, is af-
fected by factors like skin moisture, BCI (Brain Com-
puter Interface) has a slow response time. A different
approach is taken in this study which uses tactile
sensing to recognise motion intent. The experiments
are performed with a healthy subject emulating low
muscle activation conditions. An overall accuracy of
80.45% is achieved when detecting forearm and upper
arm muscle contractions and hence motion intent.

I. INTRODUCTION
A. Background

Rehabilitation aids stroke survivors learn new ways of
movement with the potential to help them regain use of
their affected limb. Recovery is influenced by quantity of
training and the specific tasks practised[23]. Physician’s
guidelines suggest a combination of repetitive task
training (RTT), including constraint-induced movement
(CIMT), depending on the individual’s ability[31].
During active-assisted exercises the therapists wait for
the initiation of the movement by the patient; these cues
are either visual or haptic. They then support and guide
the limb through the completion of the exercise. The
visual feedback, of the movement of the limb that occurs
following muscle contraction, and proprioception of the
patient improves the rebuilding of neural pathways[1]..
Discussions with the therapists in the field indicated
that where there is a lack of mobility they usually feel
the soft tissue in the proximity of the actuation muscle
to detect the onset of motion. As the muscle contracts
it shortens, resulting in a shape change that can be
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felt when one lightly rests their hand on it. Therefore,
the force felt by the therapist is used as the onset of
intention of motion.

B. Rehabilitation Devices
Given the actual ratio of occupational therapists to

patients in the NHS, compared to the ideal[21], the
therapy time for each patient is lower than that required.
That is where rehabilitation devices come in. Robotic
devices have great potential in assisting therapists with
rehabilitation[20] and that is why the medical sector
does not shy away from their use[31]. The aim of the
system proposed is to mimic the recognition of movement
intention in this human-human interaction. Recognising
intention, using the same cues as therapists do, the arm
can then be guided through a motion without the need
of a therapist.

Within the last two decades, multiple upper-limb re-
habilitative devices/exoskeletons have been developed.
They can support all degrees of freedom of the shoulder,
elbow, forearm and wrist through the full range of mo-
tion[26][2]. Commercially available devices are being used
in conjunction with traditional therapy[34]. Intention-
driven ones[29] are very but also lack robustness[9].

A variety of sensors have been used in detecting move-
ment intent; these include sEMG, torque and EEG (Elec-
troencephalography) sensors, recording brain activity for
BCI (Brain Computer Interface) systems. EMG signals,
which have been the subject of studies for decades, sense
motor-neuron train spikes. They are being used exten-
sively in assisted living, rehabilitation and prosthetic
systems; nonetheless, EMG controlled systems have still
not reached acceptable consistency of performance re-
quired[9]. There are limitation on the conditions under
which they are being used[7]. For example, it has been
shown that adipose tissue (fat) can affect amplitude and
create crosstalk between signal recordings[18] while skin
moisture also affects signal acquisition[30]. Hence, they
are usually not the only intent detection sensors used in
a user driven system.

Kiguchi[14][16] has used EMG signals to detect the
intent of motion in the upper limbs. Together with
Gopura they developed a EMG signal based control
methods for a 7DOF upper-limb exoskeleton[10][15].
EMG sensing here was complemented by torque sensors,
on the exoskeleton, creating a more robust system. The
limitations her arise from the fact that the system relies



on the user’s ability to produce detectable torques.

Steering away from EMG triggered con-
trollers,developments by Barsotti et al[3] included
a Motor Imagery (MI) based BCI to control the BRAVO
(Brain computer interfaces for Robotic enhanced
Action in Visuo-motOr tasks) exoskeleton[4]. Tests
with stroke patients demonstrated an classification
accuracy of 82.5% during reaching-grasping exercises.
The limitations in this approach are seen in the response
time of the system; it takes about (3.45 ± 1.60)s to
initiate a movement. This would cause issues if the
patient needs to urgently terminate the movement as
even greater delays would occur taking into account the
actuation stopping time.

In prosthetics, force Myography (FMG), also referred
to as tactile imaging, has shown promising results when
used in intent recognition. The idea that the volumetric
and shape changes that take place within the muscle
can be monitored and used as an indication of motion
intent was first captured by Moromugi et al[22]. Push
buttons, indented in the skin, with load sensors were
used to capture "muscle stiffness" for the purpose of
actuating a prosthetic hand. Wininger,Nam-Hun Kim et
al performed one of the first studies implementing tactile
sensing to predict grip force in hand prostheses[35].
Creating a grip dynamometer, Wininger mapped the
readings measured during gripping and the pressure
exerted by the forearm on the FMG cuff. Testing the
concept on healthy young adults, they concluded that
FMG is a useful alternative to EMG. Furthermore,
a high resolution tactile sensor system developed by
Schürmann was used in a proof of concept study carried
out by Castellini et al to create tactile images of the
anterior forearm[5], followed by feasibility study that
indicated tactile sensing offers more stability than
sEMG[28]. Later, the same sensory technology was
embedded and tested in a tactile sensor bracelet[17].
Lastly, a feasibility study performed by Cho with
amputated subjects indicated that FMG resulted
in classification accuracies of over 70% in all grip
classifications attempted[6].

In this paper we investigate how tactile sensing can
be used to detect motion intent in stroke patients with
upper limb paralysis in order to actuate an exoskeleton
that will help them perform rehabilitative exercises.
The challenges are different to prosthetics as the user’s
strength that needs to be detected could be as low
as 5%[8] of their nominal strength. To start with, we
describe the set up used for this tactile motion intent
recognition system and the proof-of-concept experimen-
tal observations are summarised. Following that, the
motion intent recognition system is tested using hand
and elbow motions.

II. METHODOLOGY

The FMG approach is adopted, aiming to find
a robust solution that offers a fast, consistent and
accurate motion intent detection system for stroke
patients. The rehabilitative system developed aims
to sense this intention of movement and help the
patient through certain rehabilitation exercises. The
aim of the system is to mimic the way therapists use
their sense of touch to detect the intention of motion.
The experiments that follow try to emulate the low
activation which would be the result of a weak muscle
response, as would be the case with some stroke patient,
and determine the feasibility of such an approach.
Three different experimentation stages were completed;
starting off with a proof-of-concept experiment followed
by testing of the motion intent detection system on
gripping and elbow motions. Indications as to whether a
particular movement is being attempted will be acquired
by monitoring the activity in the identified muscle
areas. Muscle contraction or relaxation will alter the
shape of the proximal tissue area, causing contact force
changes between the arm (forearm or upper arm) and
the support. It is expected that these changes will be
detectable regardless of muscle depth level.

Gripping was the first movement the concept was
tested against. The muscles providing the main forces
during gripping are the three extrinsic ones[19] located
in the forearm; flexor digitorum superficialis (FDS),
flexor digitorum profundus (FDP) and flexor pollicis
longus (FPL), Fig. 1.

Fig. 1: The flexor digitorum profundus (FDP), flexor
digitorum superficialis (FDS) and flexor pollicis longus
muscles (FPL) - in all three diagrams the posterior
compartment of the forearm is shown[36].

These are, therefore, the muscles targeted. The
sensors will be located in the upper central half on
the anterior and posterior parts of the forearm for the
gripping motion; in proximity to the muscle belly, where
all muscle fibres come together, Fig. 1.



A. Stage1
For the first stage of experiments we determined that

the sensor system sensitivity is good enough to detect
contact force changes in the forearm during low grip
strength motions; as would be expected in a weak stroke
patient. To perform these experiments a measurement
device was required to measure the grip forces exerted.
1) Grip Holder: An analog grip strength meter, a

Saehan hydraulic hand dynamometer[27], was utilised
to monitor the grip strength used by the subject. Such
devices are mainly used to evaluate grip strength after
hand surgery or during a rehabilitation program. Also,
the minimum strength requirement the sensors needed
to detect was evaluated.

Fig. 2: Sehan hydraulic hand dynamometer used to
measure grip strength[27].

Stroke survivors are at their weakest right after the
stroke incident That is when their affected limb has
on average 18% of the unaffected side’s nominal grip
strength[32]; this can be as low as 5-10%. According
to a study performed in Britain[8], the peak optimum
median grip is 51kg and 31kg for male and female
respectively. Thus, 5-10% of the latter calculates to
1.55-3.10kg (15.21-30.41N). Seeing as the resolution
of the device is only 2kg (19.62N), the indicator was
kept just below that. Therefore, the goal was to detect
the contact force changes that take place between the
forearm and its ‘enclosure’, during gripping motions
with what is determined to be as <6.45% of the average
nominal strength of females.

2) Sensing: The next step was to choose the sen-
sors. Piezoresistive tactile sensors were preferred over
capacitive sensor as the latter are very susceptible to
noise[33]. The Interlink Electronics flexible FSRs were
chosen as they provide the largest active surface area for
the cheapest price[11].

The FSRs have a conductor substrate with a printed
interdigitated circuit pattern and another one coated
with carbon-based ink; when a force is applied, the
conductive substrate deforms and contact is made with
the printed circuit line varying the resistance across it
and, as a result, proportionally the voltage. They require
a simple interface and their size (thickness of 0.46mm)
allows for easy integration.

These sensors have a minimum force detection of 1N
and a maximum repeatability error of ±2%. The sensor

sensitivity exhibited an exponential behaviour, Fig. 3.
Experiments were ran to determine its sensitivity by
recording the readings as 100g weights were added on
the sensor, making contact only with its ’active’ area.
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Fig. 3: Sensor sensitivity, force-to-voltage conversion de-
termined by experimentation.

Placement of the sensors on the support, with respect
to the monitored muscles, was done as discussed earlier;
centrally where it makes contact with the posterior and
anterior forearm. Two sensors were used, sensor1 was
placed at the top, anterior part of the forearm (palm
facing upwards), and sensor2 at the bottom of the inner
lining of the support, posterior forearm.

3) Forearm Support: Finally a forearm brace was
built. To ensure good contact of the forearm with the
sensors a tight fit was essential hence there was a need
for adjustability. Avoiding obstruction of movement and
minimising the weight and cost were also important
factors.

Although a cheap adjustable strap would have offered
good comfort levels and a tight fit, the sensors would
not function as well on a flexible surface[12] as on a fixed
one. The forearm brace was designed to have adjustable
height and separately adjustable width, to accommodate
different arm sizes. Aluminium rods inserted inside the
brace allowed the sliding of its parts to secure them at
the desired position using grab screws.
4) Integration: The sensors were fixed on the brace

and their circuit outputs were fed into the Arduino
analog inputs which provide 10bits of resolution. The
data broadcast on the serial port was recorded using a
MATLAB script; the acquisition frequency used in these
experiments was about 100Hz, the frequency frequently
used in body movement monitoring or human movement
classification implementations[13][24].

B. Stage2
Having shown that the contact force changes between

the arm and the brace can be detected when forces
up to 6.45% of the nominal were used, the grip meter
was replaced. For the second stage of experiments a
gripper with a microswitch[25] was used. It was built
such that the switch would close the two gripper levers
came together during gripping. As soon as it was let
go, the torsion spring integrated in the system would



Fig. 4: Adjustable brace
and FSR sensors.

Fig. 5: Gripper with an
ON-OFF switch.

Fig. 6: Stage2 experiments: gripping motions wearing the
support.

push the gripper open. Hence its ON state indicated
contraction of the muscles, and its OFF state indicated
relaxation. This provided a ground truth during the
following experiments. It was attempted to keep the grip
force used as low as possible, just about exceeding the
resistive torque of the spring, 2.10 ∗ 10−5Nm, with stiff-
ness 0.6582Nmm/rad and the switch whose maximum
operating force is 0.25N. With regards to elbow flexion,
monitoring of the bicep/tricep muscles will be required;
therefore, the brace will be worn on the upper arm with
the sensors positioned as during gripping experiments.

Interface of both the sensors and the microswitch was
done using the Arduino UNO board and the data was
transmitted through serial connection to MATLAB.

C. Stage3

Finally, the third stage of experiments involved test-
ing the concept on elbow flexion. The brace was po-
sitioned on the upper arm to detect muscle activity
in the bicep/tricep area. The gripper with the switch
was attached on the underside of a table with the arm
supported just underneath. As the elbow flexes and the
forearm is raised the switch closes, Fig. 7. The two
gripper handles were constrained at about 10mm apart,
just enough to keep the switch open. To close the switch
an average weight person would have to surpass the
0.113Nm torque needed to raise their 1.149kg forearm,
as well as the 0.25N required to close the switch.

The sensors were in proximity to the bicep (sensor1)
and tricep muscles (sensor2). The forearm was resting on
an arm-rest at about a 90◦ angle, just below the bottom
of the gripper. Precautions had to be taken such the bicep
was the one working to close the switch and not the flexor
carpi radialis/ulnaris (wrist flexing muscles).

Fig. 7: Upper arm experiments, supported forearm closes
switch during elbow flexion.

III. EXPERIMENTS
A. Proof of Concept

In this first stage, experiments were performed with
the forearm muscles relaxed or contracted at certain
pre-determined points in time. The forearm, rested on
a table, placed inside the brace to which the sensors
were attached with the palm facing upwards. With the
conclusion of each experiment the forearm was removed
from the support, therefore varying the sensor contact
points with it. The upper arm and shoulder were kept
relaxed throughout. Body position/posture changes were
also performed without actively tensing the arm to find
out whether the FSR signal patterns emerge could in-
terfere with state recognition, whether the muscles were
contracted or not. Visual inspection of the full data signal
indicates certain patterns at the instances where there
is a change in tension, Fig. 8. The forearm placement,
its shape and weight and exerted force, would affect the
contact forces between the sensors and the forearm; the
higher the grip strength the contact force variations and
hence the voltage reading changes.
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Fig. 8: Proof-of-concept experiment; sensor2 readings
during muscle contraction/relaxation in the forearm.

The forearm has good contact with sensor2 at all
times, as its weight is resting on it. As it can be observed
in Fig. 8 there are distinct voltage variations when the
state of the forearm switches. This indicates that the sen-
sitivity of the sensor is good enough to detect the contact
force changes that take place between the forearm and
the arm brace when a grip strength of 2kg(19.6N) is used.
A grip strength of 19.6N produces a potential difference
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Fig. 9: Plot of sensor2 detected forces and microswitch
data indicating the state of the arm.
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Fig. 10: Force derivatives of sensor1 and sensor2. The
former barely records any changes.

rise of 1.15V (from 1.35 to 2.5V) which corresponds to
contact force change of 0.52N (from 1.48N to 2N).

As the hand grips the dynamometer the flexor dig-
itorum contracts while extensor digitorum (posterior
forearm compartment) relaxes completely; this causes
a decrease in the contact force between the posterior
part of the arm and sensor2. With the chosen forearm
orientation, contact with sensor1 was minimal and hence
not detectable.

B. Intent Recognition: Forearm
With the conclusion of these proof-of-concept exper-

iments, it was clear that the sensor system was sensi-
tive enough to detect changes between the arm and its
brace when grip strength was limited to 19.6N. Hence,
the second stage experiments commenced where sensor
readings and switch state, providing a ground truth,
were recorded. State prediction was performed and the
accuracy of the results was determined using unit testing.

By inspection there were no discernible contact force
changes on sensor1, Fig. 10. This was expected, as its
contact with the forearm was weak, hence sensor2 read-
ings were the ones analysed, Fig 9. As seen in Fig. 10,
where force changes are presented, large gradient changes
hint towards a change of state. Negative gradients in-
dicate muscle contraction of the gripping muscles, Fig
1, which causes the posterior part of the forearm and
the sensor to loose contact. Following that, increasing
contact forces indicate return to the initial state.

An algorithm was developed to classify the state of
the forearm, whether it is ‘at rest’(muscle relaxation)
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Fig. 11: Examples of predicted state, during gripping,
when the algorithm is run against sensor readings along
with the actual state.

or tensing (muscle contraction). The binary classification
algorithm developed determines the state by looking at
the emerging signal features, such as large step changes in
gradient and their direction with respect to the baseline
as well as previous tendencies. The accuracy is then
determined by comparing the algorithm output to the
microswitch state recorded. The algorithm focuses on the
patterns that emerge with every new, incoming data set;
aiming for state change detection within 1s. The initial
state is always assumed to be ‘at rest’and a baseline value
is thus determined. The algorithm parameters were hard-
coded and so calibration was necessary, ??. Calibration
was also performed during the preprocessing of the data;
this included the use of a moving average filter to reduce
noise which also introduced a time delay of 0.12s.

The algorithm’s classification accuracy, averaged over
all Stage2 experiments, was found to be 77%, with
a standard deviation of 11%. This was calculated by
comparing the state of the switch that represents the
actual state with the predicted state output by the
algorithm. It was aimed to avoid false positives, false
prediction of rest-to-tension state change. As long as it
is not a consistent occurrence, non detection is not as
problematic. Overall the results are satisfactory. During
most experiments the algorithm is able to detect the
state changes correctly within 1s.



input : sensor reading
output: State
while serialConnection == true do

state(i)=state(i-1);
if dV(i) > dVThr AND DistFromBaseln=>increases AND return==0 then

if V(i) > V(i-1) then
incr++; UpTend = true;

else
decr++; DownTend = true;

end
if DistFromBaseln > maxDistBaseln then maxDistBaseln = DistFromBaseln;

else if dV > dVThr AND DistFromBaseln=>decreases AND state==1 then /* tension-to-rest */
return++;
if return > rThr AND (DistFromBaseln/maxDistBaseln) < ReturnThr then

returningTend = true; state = 0; maxDistBln = 0; incr = 0; decr = 0;
else

incr = 0; decr = 0;
end
if ((incr > UpperThr) AND (decr < LowerThr)) OR ((decr > UpperThr) AND incr < (LowerThr)) then
/* contraction prediction */

state = 1;
end
if UpTend==false AND DownTend==false AND state(i-1)==1 then state = 1; incr = 0; decr = 0;
/* during tension */

if returnTendancy==true AND dV(i) < dVThr then
returnEnd++;
if returnEnd > rThre then

returnTendancy = false; return = 0; state = 0;
end

end
if dV(i) < dVThr AND state==0 then /* baseline value update */

b++;
if b > BaseLnThr then Baseln = V(i);

end
Algorithm 1: Algorithm overview

During the experiments the gripper had to move quasi-
statically but that increased the delay between muscle
contraction and movement reaction detection. This was
evident in certain cases where the detection of tension
happened prior to the switch indication. An occurrence
of this can be seen in Fig. 11a where the first tension
period is detected 0.10s before there is any indication of
it from the switch state. By observation and looking at
the signal turning points, the maximum delay that arises
is estimated to be at 0.455s. This could be addressed by
using a continuous gripping force measurement device;
this would enable detection the instant there was move-
ment in the hand.

When the algorithm successfully detected the state
change, the maximum delay, over all experiments the
algorithm was tested against, was 0.6s. At the absence
of key patterns from the waveform?? the algorithm will
delay making a decision until it is certain of such change.

In about a fifth of the data points the forearm intention

to move was wrongly classified due to delays in detecting
muscle relaxation and early detections of tension when
the switch state change is delayed compared to the onset
of tension in the arm. One cause of false positives though
that could cause issues would be the complete failure to
detect the arm has gone back to rest; such as in Fig. 11b,
at t=23.24s.
C. Intent Recognition: Upper Arm

Stage3 involved testing the motion intent detection
system performance during elbow flexion. As mentioned
earlier, II-C, to experiment with elbow movement the
arm brace was fitted on the upper arm. Similar contact
force patterns emerged here 12, during elbow flexion,
as previously in the lower arm when gripping was per-
formed.

As the bicep contracts to raise the forearm, muscle
flexion causes an increase in contact forces. The arm
brace fitted tightly around the upper arm and that is
why the contact forces at the two points monitoring the
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Fig. 12: Sensor1 and sensor2 recorded contact forces in
the upper arm during elbow flexion.
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Fig. 13: Elbow flexion state prediction using the adapted
algorithm.

bicep and the tricep vary in a similar manner; with the
sensor in proximity to the bicep recording changes of
slightly higher magnitudes, by an average of 20%.

The classification algorithm parameters were tuned
accordingly for use on the forearm and the results with
an average accuracy of 83.9%. As Fig. 13 illustrates, the
adapted algorithm was successful at correct state predic-
tion with higher confidence levels than gripping. During
this set of experiments, there was slight movement of the
support, and sometimes even a small rotation, as the bi-
cep contracted. This affected the accuracy of data acqui-
sition as the point of contact of the sensor with the upper
arm was shifting, influencing classification. Nonetheless,
the state classification accuracy was improved compared
to gripping which is a more complex movement involving
a greater number but smaller muscles.

IV. DISCUSSION
In this pilot study on the use of tactile sensing for

motion intent recognition in stroke patients the results
were promising for the development of a reliable, quick
detection system, as part of an actuated device. Evidence
suggests that by using two FSR sensors we are able
to detect low activations of muscles, when using no
more than 6.45% of average nominal strength. Detection
occurs within 1s in both the upper and lower arm. The
accuracies of this pilot study system when classifying the
state of the arm/hand averaged at 80%. Mimicking re-
habilitation therapist practices we are identifying muscle
contraction changes to guide the limb through a motion.

A. Limitations
There were some limitations and shortcomings in

these first experiments. Firstly, there was a visible
delay between the initiation of the movement and and
the change in the microswitch state in some cases;
this created an uncertainty in the results as it is not
possible to know the exact time a state change took
place. Hence, instead of a binary gripper, we will
introduce a continuous gripping force measurement
device. Furthermore, this system has not yet been
tested on stroke survivors. Nonetheless, an attempt
was made at setting some force limitations during
experimentation based on the minimal strength data
for stroke patients. Whether these could be sensed
as well with a thicker forearm and weaker muscles
is yet to be seen. Furthermore, the slight movement
of the ‘enclosure’during Stage3 experiments affects
the trustworthiness of the results; thus while keeping
the sensors attached on solid surfaces they will be held
together on the arm using a tight fitting arm band. With
a hard-coded feature algorithm there are limitation when
it comes to generalisation. Alternatively, a supervised
learning, classification algorithm will be trained on the
features using the experimental data.

V. CONCLUSIONS AND FUTURE WORK
Despite the aforementioned limitations the results in

this pilot study were promising. Following the improve-
ment of the sensing technology, future work will see the
actuation of an upper limb brace and its use to support
the elbow flexion/extension motion using a tactile sens-
ing driven controller. The potential in the use of more
than two FSR sensors will be studied and integration
with EMG will be looked into as well.
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