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Commentary
It is clear that cells are constantly bombarded by multiple signals,

often initiating similar, or even conflicting, responses. Important
players in this suite of signals are the reactive oxygen species (ROS),
such as hydrogen peroxide (H2O2), the reactive nitrogen species
(RNS), such as nitric oxide (NO) and sulfur-based molecules, such as
hydrogen sulfide (H2S). These compounds are often involved in stress
responses and dysfunction of these signaling systems is often involved
in disease [1-3]. This commentary discusses the interactions of such
signals, which was discussed in a previous paper [3]. It was argued that
all these molecules are not acting in the same manner, and that H2S
was acting in a role which moderated the effects of ROS and NO.

Although many studies look at these compounds separately it is
now apparent that these reactive compounds should be considered to
be part of the same system [3,4]. There are several levels at which these
molecules can interact. They may potentially react directly together,
they may alter each other’s accumulation, or they may compete for the
same targets. Unless all this is considered the full extent and influence
of such signals will not be understood.

It is clear that certain direct reactions are known [3]. For example,
the ROS superoxide will react with NO to form peroxynitrite, which is
itself a signaling molecule [5], and can react with potential signals such
as H2S [6]. H2S and NO will react together to form nitrosothiols [7],
again with potential signaling. Cells contain a high concentration of
glutathione which helps to maintain a very reducing intracellular
environment [8]. However, glutathione and NO can react together,
forming S-nitrosoglutathione (GSNO) [9], which may act as a signal
but also be a method of making NO more mobile through an
organism. It always has to be appreciated that such reactions remove
the molecule from the cell, so if NO reacts its bio-capacity to act as a
signal goes down. The same argument applies to H2O2, H2S and others.
By reacting they are scavenging each other away from what is often
thought of as their primary role: signaling.

Other reactive signals not considered in the original paper include
hydrogen gas (H2) [10]. Although direct reactions with reactive
compounds has been ruled out in some cases, it is known to affect
antioxidants levels in cells, so indirectly impinging on ROS and NO
signaling, as well as having a role in the regulation of gene expression
[11]. Other compounds worth considering here would include
methane and ammonia [12]. Further consideration should also be
given to the role of lipids in this system, for example NO can generate
nitro-lipids which may be involved in signaling [13]. This is especially
important when it has to be considered that for many of these reactive
molecules their movement between cells will involve passage through
membranes.

As well as direct interactions, it is known that some reactive
compounds have an effect on each other’s generation or removal. For

example, H2S modulates antioxidant levels, which is proposed to be
important for post-harvest storage of fruit [14]. H2S has also been
shown to decrease the expression of Nox4, an NADPH oxidase
responsible for increased ROS accumulation [15]. Therefore, as argued
previously [3], H2S seems to reduce the generation of ROS and at the
same time increases its removal. In a similar manner, H2S has been
reported to inhibit nitric oxide synthase, so altering NO metabolism
[16]. On the other hand NO and ROS sometimes need to work
together in signaling pathways [17]. It can be seen therefore that
numerous reactive molecules in signaling have complex and as yet not
understood interactions.

Of critical importance is the effect any of these compounds have on
proteins. Although various post-modifications can be considered here,
such as NO reaction with tyrosine [18], the focus here is the reaction
with thiol groups [3]. It is well recognized that H2O2 will react with
thiol groups to form the sulphenic acid, sulphinic acid and sulfonic
acid groups respectively as the H2O2 concentration increases. Lower
oxidation states may be reversible and so such a change to the protein
may be considered to be akin to phosphorylation. However, higher
oxidation states (sulphonic acid) are thought to be irreversible
modifications. Of importance here, NO (S-nitrosylation) [19] will react
with thiols as will glutathione (S-glutathionylation) [20] and H2S (S-
sulfhydration) [21]. Therefore a competition is set up between the
signaling molecules, with modified thiols being the target. It is almost
certain that each of the modifications will have a different outcome,
perhaps changing the activity or function of the protein in subtle ways.
Which modification wins out at the end is dependent on the relative
local concentration of the reactive signaling molecules present, as well
as the local environment of the thiol being attacked. The latter will
depend on the three dimensional locality of local amino acid groups,
either from the same polypeptide or one closely associated with it, but
it may also depend on the intracellular redox poise of the location of
the protein [8].

One of the most important proteins to be a target in this way is
tyrosine phosphatase, PTP [22]. This protein is instrumental in
phosphorylation signaling and is inhibited by H2O2, but can also be
regulated by NO and H2S [23]. Therefore, inhibition of phosphatases is
likely to increase phosphorylation levels of multiple proteins in the cell,
highlighting the importance of the signaling by these reactive
molecules.

Another enzyme which is also worth highlighting is glyceraldehyde
3-phosphate dehydrogenase (GAPDH). Although originally thought to
be only involved in glycolysis it is now apparent that GAPDH can be
post-translationally modified resulting in its movement to the nucleus
and the control of transcription [24]. GAPDH is targeted by a range of
reactive molecules including ROS, NO and H2S [21]. Here is a clear
target for several modifications, which will profoundly alter the activity
and function of this protein. Clearly, if one reactive molecule reacts, it
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prevents the reaction with other such signals, for example if a cysteine
on GAPDH is oxidized it is less likely to be S-nitrosylated. Using
techniques to look for such modifications reveals a large number of
proteins for which such a competitive reaction is relevant [19,25], and
no doubt more will be discovered in the future.

Furthermore, there are other possible modifications of thiol groups
in proteins which were not discussed in the original paper [3]. This
includes S-palmitoylation (or protein S-acylation) [26]. Here the post-
translational addition involves a fatty acyl chain, often palmitate
(C16:0). This modification appears to be reversible. Originally the roles
of these modifications were thought to be primarily involved in the
subcellular localization of the protein, which would be important for
its functionality. However, more recently it has been realized that such
modifications can also alter the activity of the protein more directly, so
should be thought of as a cell signaling event, especially as they are
reversible and again akin to phosphorylation. A key example of such
an event is the increase in surface expression of AMPA receptors on
the post-synaptic membranes of neurons during long-term
potentiation, the major cellular model for the formation of memories
[27]. Other important, and similar, modifications include
SUMOylation [28] and ubiquitination [29]. The former is known to be
involved in signaling, particularly involving control of the activity of
transcription factors [30], and the response of cells, including
neurones, to ischaemic insults [31]. Recently, a role for protein
SUMOylation has been demonstrated in the regulation of secretion
from neuroendocrine cells. Specifically, SUMOylation of several key
proteins has been shown to be a regulator in stimulus-secretion
coupling in insulin secretion in pancreatic beta-cells and
neurotransmitter release in neurones. In the latter cell type,
SUMOylation has been demonstrated to be involved in calcium influx
in response to depolarization [32], maintenance of the secretory vesicle
pool [33] and endocytosis of synaptic vesicles following release of
neurotransmitter [34]. Interestingly, defects in SUMOylation have
been linked to neurodegenerative diseases, including Alzheimer’s
disease and Huntington’s disease [35] and also disorders of
neurological development, including Autism Spectrum Disorder [33],
thus demonstrating a key signaling role for this modification in normal
brain function. Ubiquitination on the other hand was mainly thought
to be involved in protein degradation and removal from the cell, but
besides removing proteins involved in signaling, the direct
modification of polypeptides may trigger signaling responses more
directly [36].

Therefore the tenet of the original paper [3] was that H2S was
having an opposing effect on signaling compared to ROS and NO,
acting as a “referee” in ROS and NO signaling. It is clear that H2S may
have an effect on the levels of other reactive compounds, may influence
their accumulation and be in competition with ROS and NO for the
modification of thiol groups on proteins. However, other compounds
do need to be thrown into the mix too, and this will include other
reactive molecules such as H2, as well as lipid-based processes such as
palmitoylation and SUMOylation.
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