
  

     

 

Abstract— Robots that can assist in activities of daily living 

(ADL) such as dressing assistance, need to be capable of 

intuitive and safe interaction. Vision systems are often used to 

provide information on the position and movement of the robot 

and user.  However, in a dressing context, technical complexity, 

occlusion and concerns over user privacy pushes research to 

investigate other approaches for human-robot interaction 

(HRI). We analysed verbal, proprioceptive and force feedback 

from 18 participants during a human-human dressing 

experiment where users received dressing assistance from a 

researcher mimicking robot behaviour. This paper investigates 

the occurrence of deictic speech in an assisted-dressing task and 

how any ambiguity could be resolved to ensure safe and 

reliable HRI.  We focus on one of the most frequently occurring 

deictic words “up”, which was captured over 300 times during 

the experiments and is used as an example of an ambiguous 

command.  We attempt to resolve the ambiguity of these 

commands through predictive models. These models were used 

to predict end effector choice and the direction in which the 

garment should move. The model for predicting end effector 

choice resulted in 70.4% accuracy based on the user’s head 

orientation. For predicting garment direction, the model used 

the angle of the user’s arm and resulted in 87.8% accuracy. We 

also found that additional categories such as the starting 

position of the user’s arms and end-effector height may 

improve the accuracy of a predictive model. We present 

suggestions on how these inputs may be attained through non-

visual means, for example through haptic perception of end-

effector position, proximity sensors and acoustic source 

localisation.  

I. INTRODUCTION 

It is predicted that by 2050 many countries could have 
around 30 or 40% of their population aged over 65 years 
resulting in a huge social and economic impact, especially 
with regard to healthcare provision [1], [2]. This is likely to 
result in shortage of care workers [3], posing significant 
challenges to healthcare provision and additional pressure on 
informal carers [4]. To address these needs, promotion of 
wellbeing and independence for older people [5]  is required, 
such as the long term care revolution [6]. Independence for 
older adults requires assistance with the ADL of which 
assistance with dressing is in the top 4 but has the lowest 
technological maturity and commercial development [7], 
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possibly due to the inherent difficulties of close human-robot 
interaction in this area. The majority of older adults would 
prefer to stay at home for as long as possible and avoid the 
traumatic and costly procedure of moving to a care home [8]. 
General acceptance of this type of assistive technology must 
be specific to the user’s need and expectations for a specific 
situation [9]. The expected interaction may use many 
modalities, of which speech may be preferred. However, one 
of the problematic issues is the semantic ambiguity of the 
vocabulary used, especially deictic words whose meaning is 
dependent on the context in which they are used. This paper 
investigates the occurrence of deictic speech in an assisted 
dressing task, the level of variability, and how any ambiguity 
could be resolved to ensure safe and reliable We construct 
decision tree models to evaluate accuracy of correct 
interpretation of ‘up’ when other, non-visual cues are used as 
inputs.  

II. BACKGROUND 

Previous studies on robotic dressing have mainly focused 
on vision systems as the primary modality of interaction. A 2-
arm robot has been used to dress a t-shirt onto a mannequin 
using reflection markers and MAC3D motion capture system 
[10]. Similarly, stereo cameras used in combination with 
garment markers have been used for dressing a mannequin 
with a t-shirt [11] and the group have also achieved similar 
results using depth (RGB-D) cameras [12]. Using a Baxter 
robot to put a hat on whilst compensating for variations in the 
user’s position was achieved using a Kinect sensor and open 
source code [13]. The Asus Xtion depth sensor has also been 
used to estimate garment [14] and user pose [15] for dressing 
assistance by humanoid robots.  

Reliance on a single modality is clearly possible but the 
use of multiple modalities is more conductive to natural 
human-robot interaction. Initial work along these lines has 
made some progress in the area of robotic assisted dressing. 
For a trouser dressing task, one group integrated both vision 
and force feedback with a focus on dressing errors [14] where 
the force feedback was used to trigger failure identification. 
Gao et al. also used RGB-D data to estimate user pose and 
initial robot trajectory for dressing a sleeveless jacket using 
the Baxter robot [16]. The initial robot trajectory was 
optimized based on feedback from the limb endpoint force 
estimation. 

Predictive models for dressing a hospital gown have been 
proposed by [20], based on just the force feedback without 
the use of vision in a simple single arm experiment. Outside 
of dressing assistance the use of multimodal robot interaction 
has been well researched to include speech [17], gesture [18] 
and gaze [19] and their combination [20]. Other more subtle 
cues have been used to understand the user such as emotional 
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state through facial expressions [21] or through physiological 
inputs such as heart rate and perspiration [22]. User attention 
[23] and user intention [24] may also be rich sources of 
information about the interaction scenario whilst also being 
some of the more difficult to capture.  

In our previous work, we focused on trajectory planning 
for error handling using IMU sensors [25] and differentiating 
garments using force sensors [26] using the Baxter robot. In 
this work successful detection of dressing errors was obtained 
using gyroscope data and Support Vector Machines were 
found to give the highest garment prediction accuracy. 

In many areas of robotics research the need for visual 
detection and tracking of the real world is needed, for 
example in the fields of robotic surgery and industrial 
processing. In our current work we look at the possibility to 
remove the vision modality in human-robot interaction due to 
concerns of user privacy. In addition, vision systems can be 
either very large installations suitable for laboratory settings 
only (e.g. Vicon) or single point devices which may suffer 
from occlusions. When using an RGB-D sensor mounted on 
the robot, occlusion may occur due to either the garment or 
the robot arm blocking the view of the user. Moreover, the 
processing of such data can be computationally expensive 
resulting in a loss of natural interaction and also be sensitive 
to lighting conditions. However, this may be alleviated to 
some extent with the advancement of computing technology 
and availability of greater computational power. Although 
vision has been removed from this work to focus on the robot 
proprioception, reintegrating vision into a multimodal system 
is planned for the final prototype. The work presented in this 
paper forms part of a larger research and development effort 
under the I-DRESS project1, with the ultimate aim to provide 
dressing assistance through multimodal interaction. 

A. Scope of Work 

We have undertaken a human-human interaction (HHI) 
study at the Bristol Robotics Laboratory to investigate the 
modalities that are used in an assisted dressing task. We 
examine video footage from 18 participants (over 200 
interactions) to identify interactions in the dressing scenario 
and cues that people use to indicate their intention.  Our aim 
is to show that robot-assisted dressing could be achieved 
without the need for a visual input. 

Section III explains the details of the HHI experiments, 
definition of the terms used, captured interaction data and 
their interpretation.  We highlight potential ambiguity when 
using the utterance ‘up’ as an example of a deictic command 
due to its varied interpretation based on the context of the 
dressing situation. In section IV we demonstrate the results of 
using  decision trees to analyze and interpret the use of ‘up’ 
in different dressing sequences. The results have shown high 
percentage of accuracy in predicting correct robot actions 
based on the non-visual inputs. 

III. HUMAN-HUMAN INTERACTION STUDY 

Staff and students from the University of the West of 
England and Bristol Robotics Laboratory were invited to 
participate in the HHI study where they would receive 

 
1 https://www.i-dress-project.eu/ 

assistance to put on a jacket. The participants were 
introduced to the research and submitted their consent to 
being video and audio recorded for the purposes of the 
experiment. The testing took place in a quiet location 
screened-off from external observers and interruptions, see 
Figure 1. The webcams had integrated microphones and one 
of these was used to monitor the utterances of the participant. 
Other data about the interaction was captured but not used in 
this analysis, e.g. user pose from the Xsens suit shown in 
Figure 1, force and torque data from a hand-held device. 

During the experiment the researcher “acting” as the 
robot had their eyes closed. This was done to promote verbal 
responses from the user and to simulate no visual input to the 
‘robot’. The participant was told to use speech to give 
commands to the researcher acting as “the robot” in order to 
get the jacket on. In the first part of the experiment the 
participant was allowed full mobility, able to move about as 
much as they found helpful to get the jacket on. The jacket 
was put on three times with the participant seated on a stool 
and three times whilst standing. The experiment was then 
repeated, but with an imagined restricted mobility issue: the 
participant was told not to bend either elbow. Again, the 
dressing task was repeated three times, for both seated and 
standing conditions. 

    

 (a) (b)     

Figure 1. Participant receiving assistance in putting on a jacket while sitting 

(a) and standing (b). 
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Figure 2. Jacket dressing task is segmented by the position of the jacket 
sleeve opening relative to the user which is shown by the green ring 

travelling up the arm. J1= approach to hand, J2=hand to elbow, J3=elbow to 

shoulder, J4=finish. In this example the Jacket is said to be in segment J2. 



  

A. Definitions 

Within this paper the following definitions are used to 
refer to people or objects. The participant is the experimental 
subject and this is used interchangeably with user to refer 
more specifically to the end-user of the system. No robot was 
used in this testing but a researcher was posing as a robot for 
the dressing testing, is referred to here as the robot. The terms 
word, utterance or phrase are all associated with the spoken 
words from the user whilst receiving dressing assistance from 
the robot. The term end-effector is used here to mean the 
hand of the researcher. As the researcher is trying to mimic a 
robot, this terminology is suitable. The term dressing segment 
refers to the progress of one arm of the jacket up the arm of 
the user (J1, J2, J3) which are defined in Figure 2. The 
participant in Figure 1 is in J1 for (a) and J2 for (b). The arm 
angle is defined as the angle that a straight arm makes with 
the normal to the floor. The term sitting is referring to the 
participant when they were seated on a stool during the 
dressing test. The term mobility constraint indicates when the 
participant was not allowed to bend either arm at the elbow. 
The term head orientation refers to the general direction that 
the participant was looking in, for example this would be left 
in Figure 1 (a) and right in (b). The head orientation straight 
ahead was also captured. The dressing strategy is the 
sequence of actions taken by the user to get the jacket on: 
strategy a) one arm at a time or strategy b) both arms into the 
jacket at the same time. 

B. User Utterances 

Several user utterances were observed that may be 
ambiguous in isolation or without contextual information. 
These are known as deictic phrases and are researched within 
the field of speech recognition [27]. The words “left” and 
“right” have an explicit meaning but depend on the frame of 
reference in which they are used. Interestingly, in most cases 
the participant would phrase the command to suit the ‘robot’. 
The phrase “pull” usually infers an action of drawing an 
object towards oneself, but in these tests the phrase has a 
myriad of interpretations relating to movement in all 
directions, some of which were directly away from the robot. 
Also phrases such as “move down a little” or “left a bit” 
require some tacit knowledge of the situation in order to 
interpret exactly the distance implied by ‘a little’ and ‘a bit’. 
The phrase “ok” was also used to mean “ok, let’s start” and 
equally “ok stop, I’m finished” and when used in isolation, 
which was observed in many instances, would need 
contextual information for a correct interpretation.  

For this analysis we have chosen the word “up” due to its 
ambiguity and proliferation throughout the experiment. The 
word “up” was the 2nd most used word throughout the test 
(7.4% of all words) after “stop” (9.7%) and for comparison 
“ok” was used 2.7% of the time. In TABLE I we define 
different ways that the phrase “up” could be interpreted by 
the robot. These definitions can be partitioned along the lines 
of i) direction and ii) end effector selection. The identifier is 
prefixed with the end effector selection (L=left, R=right, 

B=both) and is suffixed with the direction the end effector 
should move: up the arm2 (A) or, up the z-axis (Z)3. 

C. Data Capture 

Video footage of the experiments was reviewed for every 
instance of the utterance “up” using the Nvivo platform. At 
each instance of the utterance some basic information was 
captured pertaining to the user at that time or within a 1s 
window, see TABLE II. X1 defines the arm angle of the user 
which is estimated at the time of the utterance and is 
categorized into 4 groups. X2 is the dressing segment as 
defined in Figure 2 categorized into 3 groups. X3 is true if the 
participant was sitting at the time of the utterance and false 
for standing. X4 is true if the participant was imitating the 
mobility constraint (locked elbows) and false for normal 
mobility. The general head orientation of the participant, X5, 
is put into three categories: looking left, right and straight 
ahead (forward). This table also shows the classification 
definition for moving the end effector either up the z-axis, 
outcome Y0, or moving up the arm, outcome Y1. Additionally, 
when the arm is perpendicular to the floor (angle=0o) then 
both outcomes are true. In this case we set Y0=1 and Y1=0 to 
maintain a binary outcome.  

TABLE I  INTERPRETATIONS OF “UP” 

Identifier  

LZ Move the left end effector up in the z-axis. 

RZ Move the right end effector up in the z-axis. 

BZ Move both end effectors up in the z-axis. 

LA Move the left end effector up the arm. 

RA Move the right end effector up the arm. 

BA Move both end effectors up the arm. 

Z Up z-axis / towards the ceiling 

A Up the arm / towards the shoulder 

TABLE II ATTRIBUTES & CLASS DEFINITIONS 

 Attribute Values 

X1 Arm angle 0, 20, 45, 90 (degrees) 

X2 Dressing segment J1, J2, J3 

X3 Sitting True/false (binary) 

X4 Mobility constraint True/false (binary) 

X5 Head orientation Left=1, right=2 or forward=0 

 Classifier Values 

Y Move end effector Y0 = Up the z-axis / Y1 = up the arm 
Z End effector choice Z0 = Left / Z1 = Right / Z2 = Both 

D. Capturing Interaction Attributes from Video 

The research pertaining to feature extraction and behavior 
recognition in the field of robotics is expansive. Automatic 
proxemic feature extraction has been implemented in a social 
robotic interaction study [28]. By exploiting proxemic cues 
combined with motion data, some authors have gained 
information about interactions including the intentionality of 
a specific interaction [29]. Efficient robot-human interaction 
has been achieved through implementation of RGB-D 
cameras and a feature detector by applying separated filters to 
the 3D spatial dimensions [30]. Lourens et al. propose the 
analysis of interaction should include information beyond 

 
2 This can also be thought of as moving towards the shoulder if the arm 

is straight. If the arm is not straight the movement will comprise two 
vectors, the second of which will terminate at the shoulder. 

3 The XY plane is taken as the plane of the floor and the positive z 

direction is taken as towards the ceiling. 



  

conscious expression which might include emotions, 
intentions and mental states [31]. 

In this study we use video footage and manually review 
the interactions to extract the features required, automatic 
detection was not required. Many of the required features are 
simple to interpret from the video footage, such as sitting, 
dressing segment and head orientation. The mobility 
constraint tests were separated from the other parts of the test 
so easily determined and codified within the video. The angle 
of the arm is estimated based on the arm position relative to 
the shoulder of the user, see Figure 3.  

E. Utterance Interpretation  

This section deals with the important issue of how the 
outcome classifier was determined, i.e. which of the 
commands in TABLE I should be used when the user said 
“up”. This is split into two parts, the first is how the 
command was interpreted based on human perceptions 
during the experiment. The second part is how a robot could 
arrive at the same interpretation based on the same inputs.  

   

 (a) (b) (c) 

Figure 3. Arm angle of participant at approximately a) 0, b) 45, and c) 90 

degrees. 

1) Human Interpretation 
During the HHI experiment the researcher had to interpret the 
spoken command from the participant and move the jacket 
with their eyes closed. We focus here only on the word “up” 
and what cues were available to interpret this word into an 
action. This interpretation was based on the information 
available at the time of testing. As the researcher had their 
eyes closed they had no visual cues about the situation and 
therefore used other non-visual information available, see 
TABLE III. 

Speech: The user may give additional utterances which gives 
more context to the command or state explicitly the intention, 
for example “move your right hand up to my right shoulder”.  

Proprioception & Prior Knowledge: The researcher will 
have knowledge about dressing and what the participant is 
likely to say and which movements are unlikely to help in 
completing the task. The researcher also had their eyes closed 
for the test but prior to this they will have subconsciously 
noted the height of the user relative to themselves. This gives 
the researcher information about the approximate height of 
the shoulder relative to themselves which would infer where 
the trajectory path should terminate, i.e. the jacket should not 
be moved above the shoulder.  

Force: The researcher also experienced a resistive force 
when moving the garment depending on the position and 

movement of the user giving information about the position 
of the arm. For example, if the jacket is half way up the arm 
but cannot be moved ‘up’ the z-axis then the command was 
interpreted as going ‘up’ the arm. 

End Effector Position: In combination with proprioception 
and voice intensity, the position of the end effectors with 
reference to the perceived position of the user gives an 
indication of the dressing segment and the arm position and 
angle. In addition, if one end effector was higher than the 
other, i.e. one at the shoulder and the other near the waist, 
then interpretation of “up” would more likely be related to 
the end effector that is lower down.  

Voice: The strength or intensity of the user’s voice was used 
to gauge distance to the user. Also the direction of the user’s 
head while talking can give an indication of the direction they 
are looking in (head orientation). 

TABLE III INTERPRETATION CUES 

 Interpretation Cues and Information 

Speech 
The user gives other explicit commands that clearly 
identify the outcome. 

Prior 
knowledge 

The researcher already knows how to put on the 
garment and which movements are likely to be asked 
for. 

Proprioception 
Approximate height of user and the general position of 
the user are known and subconsciously remembered 
prior to closing eyes. 

Touch / Force 

Experiencing resistance through the hands when 
moving the garment gives an indication of task 
segment, i.e. more resistance as jacket approaches the 
shoulder. 

End effector / 
hands position 

If the position of the hands relative to the user are close 
to the height of the shoulder then the task is nearly 
completed. This also gave an indication of the user arm 
angle knowing the user was in a fixed position. When 
the hands are at different heights (z-axis) this may 
indicate moving one end effector over the other. 

Direction & 
loudness of 
voice   

The head orientation of the user could be recognised by 
the direction the voice was coming from. Also the 
voice intensity could be used to judge distance to the 
user. 

Dressing 
strategy 

Force feedback and prior movement actions gives 
information about the dressing strategy (see below). 

Dressing Strategy: The types of dressing strategy could be 
but are not limited to: a) both arms into the jacket at the same 
time and b) one arm at a time. The strategy can be inferred 
from the first few commands given by the user, usually 
indicated by the jacket being brought around to one side of 
the user (strategy b) or directly behind and at waist height 
(strategy a). Knowing the strategy gives information about 
the likely subsequent commands. 

These cues gave the researcher a good indication of how 
to interpret the commands from the participant and dress the 
user without use of vision. The decision processes that were 
used to interpret the utterance “up” can be described by a 
series of flow charts, see TABLE IV.  

2) Robot Interpretation 
We have shown how a human can use non-visual cues 

during a dressing interaction to determine the user’s 
intentions if the situation is ambiguous. Now we propose how 
these attributes could be attained in the robotic system 
without vision. We recognise from the human interpretation 
that there are 7 cues used to determine the 5 attributes. We 



  

propose how the robot may learn about each attribute using 
these cues or an alternative where it is not available. 

Dressing Segment: It may be possible to determine when the 
dressing task is in segment J2 by sensing when the user is 
within reach of the robot, possibly using proximity sensors, 
and combining this with force feedback from load cells 
mounted at the end effectors. This could be used to determine 
when the hand (or hands) are first detected entering the 
garment.  

Sitting: This information could be pre-defined to the robot 
prior to dressing along with the user’s height and other fixed 
variables such as arm span. Furthermore, if the user has a 
preference on dressing strategy this can be added to a 
personal profile of the user. This data will give the robot a 
starting point for the trajectory.  

Mobility Constraint: Mobility constraint may dictate the 
dressing strategy, i.e. if the user has difficulty moving their 
arms they may always adopt a dressing strategy where they 
put the garment onto both arms at the same time. This 
information could also be pre-defined to the robot. 

TABLE IV HUMAN DECISION FLOW CHARTS 

J>1

Angle>0 +Z

+A +Z
 

Is the hand in the jacket 
already? If not then move +Z. 

If hand is already in jacket, is 
the angle greater than 0? If 
yes then go up arm, if no then 
+Z. 

Strategy

B L or R
 

What strategy is the user 
adopting for putting the jacket 
on? These are: a) both hands 
in at once b) one arm at a 
time. For a) move both end 
effectors at the same time, for 
b) use independently. 

EE same 
height?

B L or R
 

Is one end effector higher in 
the z-axis than the other? If 
no, then use independent 
control, if yes move both end 
effectors simultaneously. 

  

Voice 
direction

B L or R
 

How to choose which end 
effector to move? If the 
command is not explicitly 
stated then both is usually 
assumed especially in J1. 
However for segment >J1 the 
user may wish to manipulate a 
single EE and this also 
depends on dressing strategy. 

Head orientation: The user head orientation could be 
determined using acoustic source localisation [32], [33] 

through implementation of multiple microphones (assuming 
that the user makes a vocal request).  

Arm Angle: Detecting the angle of the arm may be possible 
based on the position of the end effectors, the height of the 
user, knowing if they are sitting and their dressing strategy. 
Feedback from a force sensor would also be necessary to 
make real-time adjustments based on the user movement. 
This combination of inputs maybe akin to the proprioception 
that the researcher used when dressing the participant with 
their eyes closed. This leads a potential solution towards a 
form of haptic perception from the robot’s end effector as 
suggested by Kapusta et al. [34]. 

A. Data Capture Cost 

It is also interesting at this point to discuss the cost of 
obtaining each of these attributes based on the above 
proposal. This may be defined as hardware or software costs 
and complexity of implementation. This can be used to rank 
the attributes on the approximate cost of obtaining them. A 
lower cost is associated with data that is simple to obtain, see 
TABLE V. Sitting and mobility constraints have the lowest 
costs as these can be simply obtained from the user prior to 
dressing. Implementing acoustic source localisation to 
determine the head orientation may have moderate hardware 
and implementation costs. Dressing segment would use 
proximity sensors and load cell technology with medium to 
high implementation complexity. Determining arm angle 
would have to be the largest of these costs as this relies on all 
the other attributes. The rank of cost low-to-high for each 
attribute is: 3, 4, 5, 2, 1. 

TABLE V ESTIMATED DATA CAPTURE COSTS 

Attribute Hard/Software Implementation 

X1 Arm angle Med-High Med - High 

X2 Dressing segment Med Med - High 

X3 Sitting – ask user n/a Low 

X4 
Mobility constraint 
– ask user 

n/a 
Low 

X5 
Head orientation – 

acoustic source 
Low – Med 

Med 

IV. DATA ANALYSIS & DISCUSSION 

The number of times the utterance “up” was observed 
during the jacket dressing task is shown in TABLE VI. This 
has been divided into the dressing segments showing that J2 
(jacket between hand and elbow) and J3 (jacket between 
elbow and shoulder) are where the utterance is observed the 
most. In total 325 observations were made. 

TABLE VI OBSERVATIONS OF UTTERANCE “UP” 

Dressing Segment Y0 Y1 Sub-Total 

J1 20 (6%) 12 (4%) 32 (10%) 

J2 53 (16%) 84 (26%) 137 (42%) 

J3 22 (7%) 134 (41%) 156 (48%) 

  n = 325 

A. Regression Analysis 

Using a univariate logit regression, the outcome of Y (up 
in z direction or up the arm) is analysed separately against 
each of the attribute values X, see TABLE VII. Attributes 
with a higher positive coefficient give a higher probability of 



  

being related to the outcome Y1 = up the arm and negative 
coefficient to Y0 = up in z-axis. The 95% confidence interval 
of the coefficient is also shown in parentheses along with the 
p-value showing the result of the null hypothesis test. The r-
squared value represents a measure of the variance in Y that is 
explained by the variable X.  

Arm angle was treated as a continuous variable and 
showed statistical significance (P<0.001) and good model fit 
(R2=0.24). The coefficient predicts that for every increase in 
arm angle by 1 degree there is an increased probability of 
outcome Y1 of 0.078. Dressing segment J2 and J3 were 
analysed with respect to reference category J1. Of these only 
J3 was significant with p<0.001 indicating that Y1 (up the 
arm) was 2.7x more likely in J3 compared to J1. This also has 
a reasonable R2 value meaning it has a moderate fit to the 
regression model. Mobility constraint is also statistically 
significance and indicates that when the user imitates the 
mobility constraint they were 3.1x more likely to want the 
jacket to go up the arm. Information about head orientation 
and sitting are not statistically significant. 

TABLE VII OUTCOME Y REGRESSION RESULTS 

Attribute Coefficient / 95%CI range p-value R2 

Angle (cont.) 0.078 (0.057,0.10) <0.001 0.24 

J2 (ref. to J1) 0.617 (-0.159,1.392) 0.119 
0.16 

J3 (ref. to J1) 2.704 (1.778,3.630) <0.001 

Sitting -0.229 (-0.751, 0.293) 0.390 0.0020 

MobCon 3.139 (1.959, 4.319) <0.001 0.17 

Look left (ref. fwd) -0.091 (-0.778, 0.596) 0.794 0.0003 

Look right  -0.008 (-0.700, 0.684) 0.981  

B. Decision Trees  

A categorical decision tree was trained using Matlab (2016b), 
using the Y outcome variable and the attributes X1-X5. 
Categorical trees were chosen over regression trees as the 
variables are non-continuous. Matlab uses the CART method 
for splitting prediction of the data, [35]. We quote two 
metrics for an indication of the classification error based on 
re-substitution and validation. The weighted average 
classification loss, L, is shown in equation (1), where n is the 
sample size, Yj is the observed class, wj is the weight of 
observation j, and I{Y} is the indicator function. The 
generalisation error based on validation testing, V, is 
calculated from the percentage of incorrectly predicted 
outcomes from a validation set. The data is split 70:30% for 
training and validation and the error is based on the 30% of 
data used in the model. Errors were calculated from 5 sets of 
70:30 splits and averaged using different seed values for a 
random selector to split the data. 

1) Classifier Y 
A decision tree was trained using a random 70% of the 

experimental data for outcome Y (up z-axis or up arm) using 
attributes X1-X5, see Figure 4. This decision tree has 25 nodes 
and is up to 7 levels deep. The resubstitution error L=0.071 

and the validation error is a little higher at V=0.138. This 
difference is expected given resubstitution errors tend to be 
more optimistic about the model than actual validation 
testing, see TABLE VIII. 

  

Figure 4. Decision tree for the outcome Y where the leaf node terminates in 

the outcome with the highest probability. Tree shown is pruned to 7 nodes 

for one of the five training sets. 

 

Figure 5. Confusion matrix for outcome Y showing the binary output either 
up the arm or up in the z-axis direction based on the decision tree. In 14 

cases ‘up arm’ was incorrectly interpreted as ‘up z’ and in 18 cases ‘up z’ 

was incorrectly interpreted as ‘up arm’. 

 The first branch uses the attribute X1 (arm angle) and 
branches left with angle=0, giving probabilities of 
P(Y0)=0.789 and P(Y1)=0.211. Branching right for angles 20, 
45 and 90 degrees gives probabilities of P(Y0)=0.076 and 
P(Y1)=0.924. The first level of the tree indicates quite high 
probabilities for predicting the correct outcome based on arm 
angle alone. The next branch splits with the X2 attribute 
(dressing segment). For subsequent splits the number of 
nodes is reduced to less than 10% of n and over-fitting 
becomes a possible issue. A confusion matrix for this model 
shows where the going up the “arm” is mistaken for going up 
in “z”, see Figure 5. 

To determine the model error as a function of the number 
of nodes, 5 trees were produced with limits on the maximum 
number of branches. The results show that arm angle and 
dressing segment alone can be used to create an fairly 
accurate model (87.80%) and that adding in additional 
attributes will not improve the model accuracy by more than 
around 1%. 

TABLE VIII MODEL ERROR FOR OUTCOME Y 

Max. Nodes Attributes Used L V 

25 1-5 0.071 0.138 

15 1-5 0.098 0.122 

9 1-5 0.105 0.127 

7 1,2 0.117 0.135 

5 1,2 0.117 0.129 

 

 

(1) 



  

Referring back to the attribute cost analysis, the arm angle 
and dressing segment were estimated as the most difficult or 
costly inputs to the system. In this case, a choice for a lower 
cost attribute cannot be made as most of the variance in the 
model is accounted for by variables X1 and X2. 

2) Classifier Z 
A second model was trained using a decision tree based 

on the Z outcome classifier to determine which end effector 
to move. The possible outcomes are: left end effector only, 
right end effector only or both simultaneously. A random 
sample of 70% of the data was used to train the model. The 
errors are L=0.175 and V=0.245 indicating that this model 
has only a 75% accuracy. This may signify that there is only 
a limited association between outcome Z and the attributes 
chosen or that the categorisation of the data does not have 
sufficient resolution. There is also the fact that the sample 
size is smaller when distributed over more outcomes. 

 

Figure 6. Decision tree for determining which end effector to move 

(outcome Z). The leaf node indicates which end effector to move: left = 0, 

right = 1 or both = 2. Tree shown is pruned to 13 nodes. 

A confusion matrix for this decision tree is shown in 
Figure 7. This shows that needing just the left or right end 
effector is rarely confused with the individual end effector on 
the wrong side (left = 0, right =2) but is often confused with 
selecting both end effectors. 

 

Figure 7. Confusion matrix for outcome Z showing which end effector to 

move based on the 37 node decision tree. 

The ideal model would be able to predict which end 
effector to move based on the fewest attributes that are the 
easiest and most reliable to detect. TABLE IX shows the 
error rates for the model with increasing levels of pruning. 
The resubstitution error increases with a reduction in nodes 
whereas the validation error is minimised between 15 and 30 
nodes (shown in bold). Approaching the minimum number of 
nodes indicates attributes 5, 1 and 2 (head orientation, arm 
angle and segment) give the highest model gains with 
70.41% model accuracy. Referring to the attribute cost, head 
orientation was ranked moderately but by itself would only 

give 58.16% accuracy. Including arm angle (highest cost) 
improves the accuracy to 70.41%. 

C. Human vs. Machine 

Referring back to the decision flow charts in TABLE IV 
we can compare the initial human decision logic to the 
predictive models. We see similarities in the decision making 
process for the choice of direction, although the human flow 
chart begins with the proximity to the user (J>1) whereas the 
model used the arm angle to initially branch the decisions. 
However, in both cases arm angle and dressing segment were 
the most significant attributes.  

TABLE IX MODEL ERROR FOR OUTCOME Z 

Number Nodes Attributes Used L V 

37 1-5 0.1754 0.2449 

29 1-5 0.2000 0.2347 

23 1-5 0.2062 0.2347 

15 1-5 0.2185 0.2347 

13 1,2,4,5 0.2277 0.2499 

11 1,2,4,5 0.2646 0.2959 

9 1,2,5 0.2769 0.2959 

5 1,5 0.3015 0.2959 

3 5 0.3692 0.4184 

Dressing strategy and dissimilar end effector heights (EE 
height bias) were not captured in this data and so can’t be 
used for comparison to the predictive models. However, head 
orientation (X5) based on voice localisation was a key 
attribute along with arm angle which wasn’t considered. 
Models for the end effector selection may be improved by 
including dressing strategy, dissimilar end effector height 
categories and also knowing the dressing history (in this case, 
if one arm is in the jacket already). 

D. Generalisation 

The proposed scenario is very specific to one particular 
aspect of robot-assisted dressing namely the phrase “up” 
whilst receiving assistance with putting on a jacket. However, 
the proposed disambiguation method is not limited to this 
phrase. As highlighted in section III-B, the experiments have 
produced various examples of ambiguous statements, so this 
method can be adapted to resolve all other instances of 
ambiguous utterances. In a possible future implementation of 
a robotic dressing assistant that has multimodal capability, 
redundant inputs coming from different modalities can have 
independently assigned probabilities with which they 
contribute to the disambiguation of user intentions. In other 
words, in such a system the interpretation of a potentially 
ambiguous input in one modality may be resolved by 
observing a redundant input in a different modality.  

V. CONCLUSIONS 

We attempted to show the possibility of providing 
dressing assistance based on inputs excluding vision. The 
data used for the assessment was based on 18 participants in a 
Human-Human Interaction study. The phrase “up” was used 
very frequently and found to have ambiguous meaning 
without contextual information, referring to direction and end 
effector selection. Determining these contextual factors from 
the other modalities was the focus of a categorical decision 
tree analysis. A model for determining the direction indicated 
an 87.8% accuracy based on 2 contextual factors, user arm 
angle and dressing task segment. A model for determining 



  

the correct end effector had 70.41% accuracy based on the 
head orientation of the user and the angle of the arm. We 
present ideas on how these inputs may be attained through 
non-visual means, possibly through haptic perception of end 
effector position, proximity sensors and acoustic source 
localisation. We have built predictive models from the HHI 
data and the accuracy of these models indicate consistency of 
the decisions based on measurable inputs. We propose that 
additional inputs such as dressing strategy, end effector 
height bias and dressing history may improve the predictive 
model for end effector selection. The next phase of this work 
is to implement these models on a robotic platform and repeat 
the tests reported here. 
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