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Abstract: To study the micromechanics of semi-solid deformation, a modified experimental set-up 

is employed in Gleeble 3800 thermomechamical testing unit to achieve a uniform temperature 

distribution in partially remelted aluminum samples. The temperature variation in the vicinity of the 

target temperature was markedly reduced to one degree for a length of 4-5 mm in the middle of the 

tensile samples. Semi-solid tensile tests of Al-Cu 206 alloys were performed at different 

temperatures near solidus with a strain rate of 10-3 s-1, corresponding to the solid fractions between 

1 and 0.95. The stress-displacement curves with different solid fractions were measured and 

analyzed.  The microstructure and fracture surface of samples were examined by optical and 

scanning electron microscopes. The relation between the microstructural characteristics and tensile 

properties and fracture behavior of semi-solid 206 samples at high solid fraction were explored. 

Mush deformation mechanisms were discussed in terms of defect nucleation and propagation at the 

latest stage of solidification. 

Introduction 

Casting defects such as hot tearing and porosity are closely related to the tensile stresses arisen 

from thermal gradient and solidification contraction during casting process [1][2][3][4]. Indeed, 

when the solidifying microstructure (mush structure) is exposed to the tensile stresses, its response 

will control the formation of the casting defects. On the other hand, the response of mush structure 

greatly depends on the volume fraction of liquid within the mush structure [5]. For solid fractions 

less than 0.85, the interdendritic region is fairly open and the liquid phase within the mush structure 

will flow without difficulty and accommodate the exposed tensile stresses. For the solid fraction 

toward 0.95-0.98, the mush will be in its most critical region that the liquid phase cannot flow and 

feed within the mush structure spelling the formation of casting defects [5]. 

It has been generally reported that the semisolid tensile test can generate stress-strain conditions 

similar to the states caused during an actual solidification of aluminum alloys [4][6]. Several 

experimental set-ups have been recently developed [6][7][8]. However, a uniform temperature 

distribution profile within 5-6 mm along the specimen length should be obtained to ensure that the 

test is conducted with a minimum variation in liquid/solid contents. The tensile behavior of the 

mush as a function of solid fraction has been the subject of a number of studies [9][10]. However, 

there is limited information on the effect of the constitutive phases such as Fe-rich intermetallics on 

the semisolid tensile properties of aluminum alloys during the last stage of solidification. The 

morphology, size and distribution of intermetallics are crucial to the resulting casting defects such 

as hot tearing [11]. 

In the present study, a modified experimental set-up and a heating regime to achieve a uniform 

temperature distribution for the semisolid tensile tests was proposed. A sensitivity analysis was 

conducted. Subsequently, for the liquid fractions less than 0.1 (near the solidus), the semisolid 

tensile tests were conducted on two Al-Cu 206 alloys with different Fe-rich intermetallics. The 

effects of different iron-rich intermetallics on the tensile properties of the mush were thoroughly 

examined. The crack propagation mechanisms within the mush structure at different liquid fractions 

have been examined and discussed.  
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Experimental Procedures 

Two Al-4.5Cu alloys with different Fe-rich intermetallic phases [12][13] were investigated. 

Alloy 311 with 0.1% Si and 0.1% Mn has prodominant plate-like β-Fe (Al7CuFe) intermetallics in 

the microstructure, while Alloy 333 containing 0.3% Si and 0.3% Mn possesses mainly Chinese 

script α-Fe (Al15(FeMn)3(SiCu)2) intermetallics. The chemical compositions of the alloys analyzed 

by optical emission spectroscopy are shown in Table 1. 

 

Table 1. Chemical compositions of Al-Cu 206 alloys. 

 Elements [wt Pct]  

Alloys Cu Mg Fe Si Mn Al Solidus [°C] 

311 4.69 0.31 0.32 0.11 0.12 Bal. 530 

333 4.64 0.33 0.34 0.32 0.33 Bal. 517 

   

The melting was conducted using an electric resistance furnace. The temperature of melt was 

held at 750 ˚C and the argon degassing was performed for 20 minutes. A standard ASTM B108 

permanent mold, preheated at 350 ˚C, was used to cast the as-cast samples. For semisolid tensile 

testing, cylindrical specimens with a total length of 120 mm and a diameter of 10 mm were 

machined from the ASTM B108 cast samples.  

The Gleeble 3800 thermomechamical testing unit was used for semisolid tensile testing. Each 

specimen was fixed in a horizontal orientation between two grips and covered by a free movable 

ceramic tube (Fig. 1(a)). The specimen was rapidly heated via electro-resistance heating. Due to the 

heat loss at the end of specimen through the water-chilled grips, there is an asymmetric parabolic 

temperature profile along the specimen length that the hottest area occurs in the middle of the 

specimen [7]. The temperature was monitored by three K-type thermocouples spot-welled at the 

middle and at two sides with a distance of ±8 mm from the middle (Fig. 1(a)). A two-step heating 

was conducted with the first step heated to 450 ˚C with a heating rate of 2˚C/s and held for 45 s. 

The second step of heating was continued up to 5-7 ˚C below the target temperature and fine 

adjustment in a small increment to the target temperature held for 30 s. 

During the heating of the specimen, one grip is free to move to tolerate thermal expansion while 

another grip is always fixed. The full contact between coupler and the ram is secured immediately 

after the heating process was terminated. Subsequently, the force and displacement were set at zero 

and the tensile testing was commenced at a strain rate of ~10-3. The tensile tests were first 

conducted for fully solid state of the alloys at a temperature just below the solidus. Subsequently, 

with 2 degree increments in the test temperatures, the semisolid tensile tests were conducted. The 

increment in the temperature continued to a maximum temperature that a negligible value of 

fracture stress was obtained, which corresponded to a fraction solid fs of ~0.9. A minimum of 3 

tests were conducted at each temperature. Differential scanning calorimeter (DSC) analysis was 

performed to determine the solid fraction vs temperature curves of two experimental alloys.  

Results and Discussion  

Temperature Distribution Sensitivity Analysis  

The sensitivity analyses were conducted for a target temperature of 524 °C at the middle point of 

the specimens. For each test, the temperatures were monitored through thermocouples located at 

three points: one at middle (for the target temperature) and two at both sides with same distances 

from the middle, as shown in Fig. 1(a).  

Typical temperature profiles along the length of specimens are shown in Fig. 1(b).  Asymmetric 

parabolic temperature profile is clearly evident along the sample. Through different measures in 

adjusting the set-up, the maximum temperature drop in the vicinity of the target temperature is 

reduced to one degree in the hot middle region of 4-5 mm. The measurements closer to the middle 

point of the specimen at ±5 mm demonstrated to the results (Fig. 1(b)), to ensure a uniform 

temperature distribution in the hottest middle zone of the specimen during the tensile deformation. 



The achieved uniform temperature distribution in the hot middle zone of the specimen is due to the 

unique test set-up designed in this study. The main set-up feature is the application of the ceramic 

tube. It is suggested that the ceramic tube isolates the hot zone of the specimen and reduce the heat 

transfer, particularly trough the radiation. In addition, the second step heating plays a critical role 

that a slow heating rate at the final stage reduces the temperature differences along the hot zone. 

    

(a)  
(b) 

Fig. 1  (a) Image for specimen configuration and the position of thermocouples and (b) temperature 

distribution profiles along the length of specimens. 

 

As-cast Microstructure  

As-cast microstructures of 311 and 333 alloys are shown in Fig. 2. For 311 alloy, the 

microstructure consists of mainly needle-like β-Fe (Al7CuFe) intermetallics while for 333 alloy, 

their predominant Fe-rich intermetallics are the Chinese script α-Fe (Al15(FeMn)3(SiCu)2). 

Furthermore, in the microstructure of 311 alloy, β-Fe is markedly interlocked with low melting 

Al2Cu phase. On the contrary, for 333 alloy, Al2Cu and Al2Cu+Mg2Si phases are freely distributed 

within the interdendritic regions. It is of importance to mention that the transformation of plate-like 

β-Fe to Chinese script α-Fe is due to the increase of Mn and Si levels in the 333 alloys compared to 

the 311 alloy. The detailed mechanism for this transformation is explained in Ref [12]. 

 

 
(a) 

 
(b) 

Fig. 2 As-cast microstructures of samples (a) 311 and (b) 333 alloys. 

 

Stress-Displacement Analysis 

Typical stress-displacement curves for 311 and 333 alloys at the selected liquid fractions of the 

mush structure are shown in Fig. 3. Independent from the type of the alloy, at the temperature very 

close to solidus temperatures as the mush contains very low amount liquid content of ~0.02% 

(Error! Reference source not found.(a)), the structure accommodates plastic deformation before 

the fracture. The plastic deformation is due to the presence of large fraction of solid grain skeletons 

[5]. Further increase in the liquid content results in a brittle fracture of the mush without any plastic 

deformation (Figs. 3(b) and (c)). This type of fracture can be attributed to decohesion between 

grains and the fracture occurred as a result of intergranular openings. By increasing the liquid 

content, the fracture stresses and displacements consciously reduce for both alloys up to liquid 

contents of ~3%. Above 3% liquid content, both alloys show the similar tensile properties although 
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the fracture displacements are slightly different. It could be proposed that above this critical liquid 

content of ~3%, the fracture is ruled by liquid phase exhibiting similar characteristics for both 

alloys [8]. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 Stress-displacement curves for 311 and 333 alloys at different liquid fractions. 

 

As shown in Error! Reference source not found. (a, b and c), for liquid contents less than ~3%, 

311 alloy exhibits lower tensile properties compared to 333 alloy. The lower fracture stress could be 

explained by considering the needle-like β-Fe acting as stress concentration points within the 

semisolid microstructure. On the other hand, it has been generally suggested in the literature that the 

displacement to the fracture of a mush is a function of liquid feeding within the structure [5][8][10]. 

When the liquid easily flows within the mush and feeds the regions being deformed, the structure 

will accommodate further resulting in larger displacement to the fracture. Therefore, it could be 

suggested that the liquid feeding within the mush structure of 311 alloy is more limited compared to 

333 alloy.  

Fig. 4 shows the stress and displacement as a function of time in tensile test for both alloys. It is 

clear that the maximum displacement occurs earlier for 311 alloy compared with 333 alloy. More 

importantly, compared to 333 alloy, the increase in stress is considerably sharper in 311 alloy. 

Specifically, for 333 alloy, the stress reached its maximum of 10.3 MPa in 1.67 Sec while the 

maximum stress of 8.6 MPa occurred after 0.78 Sec for 311 alloy. By considering that the 

maximum stress is reached when the damage within the much structure is fully expanded, it is 

expected that the damage expands faster in the microstructure of 311 alloy.  

 

Crack Propagation 

To study crack propagation within the semisolid microstructures of the alloys, a new set up of 

experiments has been conducted that the applied tension was stopped at the displacement of 

0.06mm for the semisolid specimens with liquid content of 3%, avoiding full fracture of the 

specimens. Subsequently, the unfractured specimens were dismounted from the Gleeble machine 

and sectioned for microstructural observations. Fig. 5 shows the longitudinal observations of crack 
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path within the semisolid microstructure of the unfractured samples. An intergranular opening 

within the semisolid microstructure is apparent for both alloys (Fig. 5(a)). It appears that for both 

alloys, the crack propagates through the low melting Al2Cu phase located along the grain 

boundaries.   

       

 
(a)  

(b) 

Fig. 4 stress and displacement variation as a function of time in the semisolid tensile test for the 

alloys at the liquid contents of ~0.4%. 

 

 The morphologies of iron-rich intermetallic phases are of critical importance on the crack 

propagation. For 333 alloy, Chinese script α-Fe is the last phase to be fractured (Fig. 5(b)) while for 

311 alloy, the crack paths are dominantly along β-Fe (Fig. 5(c)). Clearly, as shown in Fig. 5(c), the 

plate-like β-Fe provides the easier path for the cracks to propagate. The effect of different Fe-rich 

intermetallics on the semisolid tensile properties is also reflected in stress-time curve shown in Fig. 

4. As β-Fe appears to accelerate the crack growth within the semisolid microstructure, the damage 

expansion is faster for the semisolid 311 alloy. 

   

 
(a) 

 
(b) 

 
(c) 

Fig. 5 The longitudinal observations of crack path (a) typical intergranular opening, (b) 333 alloy 

and (c) 311 alloy at liquid content of 3% and 0.06mm displacement.    

  

The propagation of the cracks may occur due to either flow or rupture of the low melting Al2Cu 

liquid [3]. In Error! Reference source not found.(a), as the liquid phase is very thin ~1µm (a 

fairly low amount of interdendritic liquid phase is present), the crack appears to progress through 

the rupturing of liquid phase. However, for the grain boundary with a larger pool of liquid, the 

liquid phase will flow (Error! Reference source not found.). During the semisolid tensile test, 

since there is no external liquid feeding, the liquid flows to compensate the deformation within the 

semisolid microstructure. In other words, the liquid is sucked into the region being deformed [14]. 

This will result in the formation of pores and consequently, the propagation of the cracks [15]. The 

liquid phase between two grains (interdendritic liquid phase) is being stretched during the 

application of the tension and formed meniscuses. Therefore, the pores are nucleated because the 
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volume of the liquid remains constant. Upon further stretching during semisolid tensile, the 

meniscuses will break and move due the loss of surface tension equilibrium in the breakage. 

 

 
(a) 

 
(b) 

Fig. 6 (a) SEM image of a progressive crack and composition at the tip of the crack (311 alloy at fl 

~3%) and (b)SEM image for the stretched interdendritic liquid phase and pores (333 alloy at fl 

~3%).  

 

Figure  demonstrates the longitudinal observations of mush structure containing very small 

liquid content of <0.1% after the tensile displacements of 0.06 and 0.08 mm. Unlikely to the high 

liquid contents that the liquid flow may occur, it appears that the crack initiation and propagation 

mechanisms are different at very low liquid fractions. It can be clearly seen that the pores nucleate 

from incipient melting of Al2Cu phase at grain boundaries and triple points (Figure ). However, 

there is very rear evidence for the opening of pores after the tensile displacement of 0.06 mm, 

contrasting with the mush containing ~3% liquid content that a full intergranular opening occurred 

(Fig. 5(a)). Further increase in the tensile displacement of 0.08 mm results in the progress of cracks 

through the initial pores at incipient melting (Figure ). It is observed that a considerable amount of 

solid phase plastic deformation occurs during crack propagation, confirmed in the stress-

displacement curve shown in Error! Reference source not found.(a).   

 

Displacement of 0.06mm Displacement of 0.08mm 

 
(a) 

 
(b) 

Figure 7 The longitudinal observations of crack nucleation and propagation for 333 alloy at low 

liquid content of <0.1%. 

      

Conclusions  

1.  For the liquid contents less than ~3%, the semisolid tensile properties of the mush 

containing needle-like β-Fe (311 alloy) were considerably lower compared to the mush with less 

harmful Chinese-script α-Fe (333 alloy) intermetallics. For the liquid contents higher than ~3%, the 

semisolid tensile properties were ruled by the liquid phase, resulting in similar tensile properties for 

both alloys.  

2.  The damage expanded faster in the mush structure of 311 alloy compared to 333 alloy. The 

rate of stress increase as a function of time was higher for 311 alloy than 333 alloy as the stress 

reached its maximum stress (fracture) in considerably shorter time. 

3.  Under semisolid tensile condition, the crack propagation was through low melting liquid 

along grain boundaries, resulting in an intergranular opening within the semisolid microstructure for 

Element Wt% At% 
Al K 53.08 72.71 
Cu K 46.92 27.29 

Totals 100.00  
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both alloys. The liquid phase located at grain boundaries and triple points either was stretched or 

ruptured depending on the amount of liquid phase present.  

4.  For mush containing very low amount of liquid phase (less than 0.1% fl), the cracks initiated 

from the incipient melting points. In addition, the localized plastic deformation occurred within the 

mush.  
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