
IET Collaborative Intelligent Manufacturing

Research Article

Secure and communications-efficient
collaborative prognosis

eISSN 2516-8398
Received on 27th April 2020
Accepted on 22nd June 2020
E-First on 30th September 2020
doi: 10.1049/iet-cim.2020.0035
www.ietdl.org

Maharshi Dhada1 , Amit Kumar Jain1, Manuel Herrera1, Marco Perez Hernandez1, Ajith Kumar Parlikad1

1Department of Engineering, University of Cambridge, Institute for Manufacturing, Cambridge, CB3 0FS, UK
 E-mail: mhd37@cam.ac.uk

Abstract: Collaborative prognosis is a technique that is used to enable assets to improve their ability to predict failures by
learning from the failures of similar other assets. This is typically made possible by enabling the assets to communicate with
each other. The key enabler of current collaborative prognosis techniques is that they require assets to share their sensor data
and failure information between each other, which might be a major constraint due to commercial sensitivities, especially when
the assets belong to different companies. This study uses federated learning to address this issue and examines whether this
technique will enable collaborative prognosis while ensuring sensitive operational data is not shared between organisational
boundaries. An example implementation is demonstrated for the prognosis of a simulated turbofan fleet, where federated
averaging algorithm is used as an alternative for the data exchange step. Its performance is compared with a conventional
collaborative prognosis that involves failure data exchange. The results confirm that federated averaging retains the
performance of conventional collaborative prognosis while eliminating the exchange of failure data within assets. This removes
a critical hindrance in industrial adoption of collaborative prognosis, thus enhancing the potential of predictive maintenance.

1௑Introduction
Advances in sensor, communication, and computing technologies
over the past few decades have propelled extensive automation of
the industrial systems [1]. Manufacturing industries have also
moved towards servitisation, where the customers pay for the
services rather than the assets. The original equipment
manufacturers, therefore, need to bear the associated costs for asset
upkeep and maintenance [2].

Industrial automation has been amongst the key enablers for
servitisation. As a result of the technological advances, the
industries are capable of monitoring their assets in real-time via
embedded sensors [1]. The sensor data enables the operators to
closely monitor an asset's health and implement state-of-the-art
predictive maintenance strategies, based on the asset's predicted
remaining useful life (RUL). An asset's RUL refers to the
remaining time before an impending failure, after which the asset
would be deemed not capable of operating satisfactorily [3].

Prognosis, or prediction of impending failures, particularly has
moved from traditional physics-based formulations to data-driven
techniques [3, 4]. As a critical precursor to the modern
maintenance planning strategies, the accurate prognosis can
significantly boost the efficiency of an industrial system [5, 6].
Data-driven prognosis involves machine learning (ML) techniques
to learn a failure prediction model using historical failure data. This
model is then expected to predict similar impending failures in
real-time. Data-driven prognosis is advantageous for those failure
types whose mathematical formulations based on the physical
failure laws are not straightforward [3].

Primary sources of failure data are the sensors embedded at
various internal locations across an industrial asset. Measurements
recorded by these sensors over a period constitute time series data
indicating the asset health at corresponding instances. Time series
data ranging from an asset's healthy condition until its failure is
called a failure trajectory. ML algorithms rely heavily on historical
failure trajectories to train a prediction model for that failure type
[3]. The analytics pipeline for data-driven prognosis involves (i)
identifying a failure type for given operating conditions of assets,
(ii) training prediction model using historical trajectories of that
failure, and (iii) implementing the trained prediction model in real-
time [3, 5].

However, assets, especially those with high reliability, might
not possess sufficient failure trajectories necessary for training a
prediction model [7].

In this context, the collaborative prognosis is a technique that
enables a network of assets, comprising a fleet, to learn from one
another [7–11]. It involves identifying clusters of assets that
operate in similar conditions and have encountered the same
failures, followed by sharing failure trajectories within these asset
clusters. As a result, any given asset's data repository is enriched
with failure trajectories originating from other assets. Prediction
models are then trained using the enriched dataset [9]. Other such
similarity-based prognoses have also been proposed by researchers
[12–14].

Furthermore, the internet of things and the increasing power of
edge computing resources in the recent decade have enabled
localising data analytics at the asset level. The advantages of such
distributed computing frameworks for industrial systems can be
found in [15, 16]. Several distributed system architectures and
protocols have also been postulated for various industrial systems
[16–18]. As such, the authors believe that the infrastructural
support and benefits of distributed data-driven prognosis
techniques, such as collaborative prognosis, are sufficiently
present. However, certain practical challenges hinder their practical
implementation.

This paper targets challenges caused specifically due to sharing
failure trajectories across assets. While the collaborative prognosis
is lucrative for the original equipment manufacturers, it is risky
from the operators’ perspective. This is because many real-world
operators would not want their asset data to be shared with their
competitors [19, 20]. Exchanging failure trajectories also increase
avoidable network communication costs [11]. Such practical
challenges hinder the practical implementation of collaborative
prognosis in industry.

The application of federated learning (FL) [21] is proposed in
this paper as a solution to address the above-described challenges.
FL methods aim at shifting model training to nodes of a networked
system. It has gained immense popularity across various
applications in recent years due to increasing awareness about data
privacy [22, 23]. Though primitive, federated averaging (FedAvg)
is a widely studied FL algorithm across domains such as
healthcare, mobile devices, home security systems etc. [23]. This
paper describes the application of FedAvg for training recurrent

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

164

neural networks for the prognosis of failures in a fleet of industrial
assets.

The outline for the rest of the paper is as follows: Section 2
discusses collaborative prognosis, state-of-the-art literature in FL,
and FedAvg in the context of asset prognosis. To demonstrate an
example application of FedAvg for asset prognosis, simulated
failure trajectories were used to replicate the real world fleets with
failures distributed across several assets. The simulated dataset and
underlying computational framework used for experiments are
explained in Section 3. Section 4 describes the experiment cases
that were conducted as a part of the analysis. Experimental results
are presented and discussed in Section 5. Lastly, important
conclusions and future research directions are summarised in
Sections 6 and 7, respectively.

2௑Background
This section discusses the state-of-the-art research in collaborative
prognosis techniques, FL, and also describes the FedAvg algorithm
in the context of prognosis.

2.1 Collaborative prognosis techniques

The performance of data-driven prognosis relies heavily on the
historical failure data used for training the prediction models [24].
For prognosis, just like other ML applications, the prediction
models tend to learn faster and be more accurate if its training data
is statistically homogeneous, i.e. independent and identically
distributed (IID). IID data refers to those cases where the
individual data points can be considered independently sampled
from a common underlying probability distribution. In the context
of prognosis, IID data refers to the same failures occurring in
machines operating under similar conditions [3, 7]. However, an
industrial system of assets is often characterised by widespread
heterogeneity, due to assets operating in varied conditions, model
types, and the presence of multiple failure modes. It has been
shown that in such settings, it is beneficial to have separate
prediction models catering to subsets of asset populations,
identified based on some sense of homogeneity [7, 9].

It has also been shown that the failure predictions are most
accurate if the model learns from a single asset only [7]. Recently
popularised distributed computing architectures for industrial
systems enable every asset in the fleet to have its own
corresponding prediction model [8, 9, 11, 16]. However, the
individualised models would require assets to fail a certain number
of times so that necessary training data is available [17, 24]. The
collaborative prognosis technique aims at reducing these asset
failures by enabling assets to identify other similar assets in the
fleet and learn from their failures as well [7]. This is made possible
by identifying clusters of similar assets and exchanging failure data
within assets comprising these clusters [7, 9]. Collaborative
prognosis is most suitable for assets with high reliability, such as
flight engines, where individual assets would not experience
enough failures to generate sufficient training data [10].

Identifying clusters of similar assets/failures has also been the
basis of many data-driven prognosis techniques presented in the
literature. Wang et al. [12] showed that in a system comprising of
multiple assets and historical failures, prediction of a given asset is
improved by identifying similar historical behaviours from a
library of past failure data, and evaluating the best fit for the
current failure's degradation curve. [14] used a genetic algorithm to
identify clusters of the most similar historical failure trajectories,
which in turn improved the prediction accuracy of models
corresponding to each of those identified clusters. An example
implementation of this was shown for fatigue crack growth,
drilling bit degradation, and degradation of turnout system
applications. Lin et al. [13] relied on collaborative learning to
tackle the lack of sensing resources for the overall cohort of units,
for the cases of both medical patients and industrial assets.
Collaborative learning, in this case, was based on Markov models
and selective sensing to address the problem of incomplete data per
individual units.

The most recent collaborative prognosis implementation
involves distributed deployment of all constituting steps, ranging

from identification of similar assets, training the models, and real-
time failure prediction. It has been shown that distributed
collaborative prognosis is more adaptable, scalable, resilient,
flexible, and lean than the former techniques, which were deployed
on centralised cloud servers [9].

This paper focuses on distributed collaborative prognosis
presented in [9], which involves exchanging failure trajectories
across assets comprising the clusters. A failure data exchange step
of distributed collaborative prognosis is identified as a major
impediment for realising distributed collaborative prognosis in the
industries.

2.2 Federated learning (FL)

As their computing capabilities improved, it is now possible for the
user devices such as mobile phones to participate in data analytics
and therefore reduce the computational burden on a central cloud
server. Shifting computation to devices is referred to as edge, or
fog computing across diverse applications [23]. For physical
industrial assets, embedded microprocessors enhance their digital
capabilities and make them ‘smart’ by enabling local data analytics
[15].

However, distributed systems pose different algorithmic
requirements than cloud computing. In contrast to cloud
computing, computing on end-user devices involves increased
communications. Communication is key to analytic performance
because data are stored at distant nodes across the system. Ideally
computing on a network of nodes is equivalent to computing on
multiple processors housed in a single server. However,
inefficiencies of the network connections, differences in the
technical capabilities of individual nodes, and statistical
heterogeneity of data across nodes cause synchronisation issues,
presence of straggler and dropout nodes, and several other data
handling related issues [25]. Distributed optimisation challenges
can be summarised as (i) expensive communication, (ii) systems
heterogeneity, (iii) statistical heterogeneity, and (iv) data security
[23]. The majority of research in distributed ML is focused on
achieving improved model performance in the presence of these
challenges.

FL refers to those learning techniques which focus their
application specifically for distributed systems where the
communication costs and the data security hold prime importance.
It is called ‘federated’ because only a federation of network nodes
participate in the learning process at a given instance. Target
applications of FL are characterised by local computations being
orders of magnitudes faster than communications due to network
size, or where data must not leave the nodes [21]. Both these
constraints hold for asset prognosis [11, 19].

FL involves storing and processing the data at its origin and
sharing only certain updates with a central server. FL methods have
been deployed by major service providers and proposed as a
critical enabler of several data-sensitive applications including [26–
28].

Basic FL problem formulation involves learning a single global
statistical model representing data stored across the nodes. This
model is learnt by optimising a global objective function for the
entire network, which in turn involves jointly optimising local
objective functions at the nodes [21]. The local objective functions
might as well be different from the global objective function. The
global objective function F w for a network of m nodes is
mathematically represented in (1). Here, the local objective
functions are denoted by Fk for the kth node, with w being their
corresponding model parameters. pk is the weight associated with
the kth node. Choice of pk varies across applications but popular
choices are pk = nk /n or pk = 1/m, where nk is the data at the kth
node and n is the total data across the entire network

min
w

F w , where F w := ∑
k = 1

m

pkFk w (1)

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

165

While (1) is the generic mathematical formulation, FL literature
has instances where multiple objective functions have been
proposed for catering to underlying statistical heterogeneities [29].

FedAvg is an FL technique that enables learning a single
artificial neural network (ANN) model for data distributed across
network nodes. The reader must not be confused with two usages
of ‘network’, which in its former instance in the previous statement
refers to the network of neurons constituting the ANN, while in the
later usage it refers to the physical network of computing nodes.
ANNs are a family of ML techniques, which are based on the
underlying principle similar to biological brains. More information
about ANNs can be found in [30].

2.3 FedAvg in the context of asset prognosis

FedAvg is primitive, and amongst widely analysed FL methods,
especially suited for training ANNs for data distributed across
nodes. FedAvg enables the network nodes to train a global ANN
model using their individual data, and share only the parameters of
the trained model with the server. The server accumulates
parameters from all participating nodes and updates the global
model which, after complete training, represents the general
statistical behaviour of data across nodes [21].

The loss surfaces of sufficiently over-parameterised artificial
ANNs are well behaved and escape bad local minima. Therefore,
when two ANN models with the same parameter initialisations are
trained independently on different subsets of IID data, naive
averaging of their updated parameters can be used to obtain a
single model describing combined data. This is the underlying
principle of FedAvg [31]. The performance for the averaged model
in some cases can also be better than either of the two models [31].
However, over-parameterising the ANNs also leads to an increased
need for training data and overfitting hazards. Therefore, the ANN
architecture must be carefully analysed by the users, and the
number of parameters must be kept at the bare minimum necessary
for FedAvg. Further information about the effect of ANN
parameters on its training can be found in [30].

FedAvg is applicable where the ANN models are trained using
gradient descent methods and for statistically homogeneous (IID)
datasets only [29]. In FedAvg, a random subset of network nodes
parallelly updates global model parameters based on their data and
using a gradient descent method. The updated model parameters
from these nodes are averaged by the server to obtain a new,
updated, global model. Often, if the data are non-uniformly
distributed across nodes, weighted averaging is used to aggregate
parameter updates at the server. After this, the updated global
model is again shared with a new randomly selected subset of

nodes, and the same process repeats. A single communication
round comprises local updates at the nodes followed by parameter
aggregation at the server. After several such communication
rounds, the global model converges and describes cumulative data
across all nodes [21]. A schematic representation of the above-
described steps is shown in Fig. 1.

For the case of asset prognosis, the training data comprises
historical failure trajectories, which are distributed across several
assets. Assets lie at the nodes of the network that could have
varying instances of failure occurrences. Since FedAvg requires
data to be IID, each failure type has a prediction model specifically
trained for its prediction. The clustering step in collaborative
prognosis helps identifying such clusters comprising IID failure
trajectories, as discussed in Section 2.1. FedAvg is proposed in this
paper as the step following the clustering step in collaborative
prognosis, to train prediction models for each of these identified
homogeneous clusters. The parameters involved and mathematical
description of FedAvg for asset prognosis are presented in the
following subsection.

2.4 Mathematical description

The standard mathematical description of FedAvg is presented
here, and its application for asset fleet prognosis is explained based
on this description.

Let us consider a distributed system comprising m nodes, total
data across all nodes be n, and nk be the amount of data at node k.
Of these m nodes, consider a subset of nodes having size St be
selected at the tth communication round. This subset of nodes is
called a federation, which is generally expressed as a fraction C of
nodes selected from the total m nodes, such that
St = max int C × m , 1 . Where int C × m means the highest
integer less than or equal to C × m . Parameter C influences the
model performance and also the overall learning process, and
therefore must be carefully selected depending on the application.
The effects of the parameters governing the FedAvg learning
process are discussed in Section 5.

Fraction C is constant for every communication round. Each
node in St computes average gradient of local objective function
Fk(), for current parameters of the global model and using its data.
This gradient is given by gk = ∇Fk wt , where wt are global model
parameters at the tth communication round. The server then
generates the global model for the next round as

wt + 1 ← wt − ∑
k ∈ St

nk

f St

× gk , (2)

Fig. 1௒ Schematic representation of steps involved in a single communication round of FedAvg

166 IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

since ∑
k ∈ St

nk

f St

× gk = ∇F wt (3)

where f St
 are total failures in St subset of assets. Local updates are

further governed by their corresponding ANN parameters including
epochs per node (E), the optimiser, and the learning rate (λ) of the
optimiser used for training [31]. Overall, FedAvg algorithm is
governed by three main parameters: C, E, λ . Batch size
corresponding to the local training of ANNs can also be varied, but
it is considered for prognosis applications that a single asset does
not fail often and therefore the batch size for local updates would
not substantially affect the learning process.

Several distributed computing architectures exist that enable
collaborative prognosis in physical assets with computing
capabilities, and therefore also make them capable for FedAvg.
One such an architecture used for experiments discussed in this
paper is explained in Section 3. FedAvg steps are summarised in
Algorithm 1 (see Fig. 2), which is adapted from [31].

While applying for asset prognosis, the parameter m introduced
above corresponds to total assets included in a given cluster, n to
the total number of instances of that failure across all comprising
assets, and nk to its number of instances at asset k.

Conventional collaborative prognosis involves exchanging
failure trajectories amongst all participating assets. For a cluster
comprising total n failures, m assets, and btrajec being the size of
single failure trajectory data, m ⋅ m − 1 ⋅ n ⋅ btrajec amount
of data would need to be transmitted across the network during the
training process. On the other hand, FedAvg involves only sharing
model parameters between assets and the server. Therefore, a total
of m ⋅ C ⋅ bmodel ⋅ r data would be transmitted across the
network, where bmodel is the size of model parameters data and r are
total communication rounds. For most prognosis applications,
failure trajectory data is significantly higher than model parameters
data [11]. Moreover, transmitted data exponentially increases with
an increasing number of assets for the case of conventional
collaborative prognosis. Data transmission for FedAvg on the other
hand linearly increases with increasing number of assets, and is
independent of total number of failures in the fleet.

3௑Implementing FedAvg for prognosis
This section describes the dataset and enabling architecture for
collaborative prognosis that were used for the experiments.

3.1 Dataset description

The dataset used for the experiments discussed here was the
publicly available turbofan engine degradation simulation data set
[32]. This dataset was generated using a Matlab-based simulator
called commercial modular aero-propulsion system simulation (C-
MAPSS) software, and therefore will subsequently be referred here
as the C-MAPSS dataset. A detailed description of its simulator
can be found in [33].

The C-MAPSS software is capable of simulating turbofan
engines operating under various user-defined operating conditions.
These conditions include the altitude at which the engine is
operating, its Mach number, and the temperature at sea-level
conditions. Thermodynamic equations are used to calculate fluid
flow parameters, and the health conditions of engines are reflected
in sensor measurements from various internal locations. A single
simulated turbofan is monitored using 21 sensors [33].

Turbofans also comprise independent sub-systems including
regulators, limiters, and control systems. The limiters resemble
warning-trip mechanisms typically present in industrial turbo-
machinery that prevent machines from exceeding pre-set
tolerances. In C-MAPSS, there are limiters for the core speed, the
engine-pressure ratio, for the high-pressure turbine exit
temperature, and the static temperature at the high-pressure
compressor. An engine is deemed inoperable/failed when any of
the limiters are exceeded [33].

The C-MAPSS dataset represented several simulated turbofans
with continuously degrading health, until they eventually failed. A

turbofan's degradation was manifested in the simulations as
percentage reduction in a constituting component's efficiency (e(t))
and flow (f(t)) values at time step (t) compared to those at its
healthy state (at time step t = 0). The overall health index of a
machine at time t was a combined function of flow and efficiency
of the overall engine: H t = g f t , e t .

The e t and f t values of a given component were simulated
to degrade with time according to an inverse exponentially
decreasing function. However, no two simulated turbofans were
identical because the parameters governing the inverse exponential
function were randomly chosen from their corresponding
permissible ranges of values. Turbofans also commenced operation
with a slight but random initial deterioration to replicate real-world
manufacturing inefficiencies, and noise was added to the sensor
measurements to replicate real world errors [33].

As a result of a turbofan's health degradation, the fluid flow
parameters recorded by sensors across various components
deviated and trended away from their normal operation values.
Time series of sensor measurements ranging from a given
turbofan's healthy state until its failure were saved with their
corresponding timestamps and operating conditions. These failure
trajectories were analogous to real-world trajectories used to train
prediction models. A sample of C-MAPSS data is shown in
Table 1, where the columns indicate unit id, cycles (or timestamp
of measurement), operating conditions, and sensor measurements
with their corresponding sensor tags. The data shown in Table 1 is
sampled from the FD_001 file, which is explained in the following
paragraphs.

The C-MAPSS dataset was divided into four files, each of them
comprising failure trajectories for simulated turbofans operating in
various conditions and incipient failure modes. Files FD_001 and
FD_003 specifically comprised data corresponding to simulated
degrading turbofans operating at sea-level conditions only and
were used for conducting experiments. All turbofans represented in
FD_001 were simulated to fail because of their high-pressure
compressor degradation, and turbofans in FD_003 could fail either
due to high-pressure compressor degradation or fan degradation.

As explained in Section 2.3, FedAvg is applicable for IID data
only [29]. To conform with this requirement, only files FD_001
and FD_003, where the turbofans operate in the same conditions
throughout, were used for experiments. All trajectories in FD_001
were used for experiments, but only those trajectories in FD_003
corresponding to failures caused by high-pressure compressor
degradation were identified and merged with the FD_001 dataset.
By visually observing the trends in sensor measurements, it was
possible to identify the corresponding failure modes for turbofans
in FD_003 with 100% accuracy. This classification for a sample of
data from FD_003 is shown in Fig. 3, where high-pressure
compressor degradations amongst concatenated failure trajectories

Fig. 2௒ Algorithm 1: steps followed while implementing FedAvg for a fleet
containing n failure instances across m assets

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

167

are indicated using pink background colour, and fan degradations
with green.

Finally, a single file containing 148 failure trajectories
corresponding to simulated turbofan failures, operating at sea level
conditions, and incipient high-pressure compressor failure, was
obtained and used for the experiments. However, this data was
further preprocessed before being used for analysis.

Sensors recording consistent measurements were removed for
better training. Concretely, sensors corresponding to measurements
with a standard deviation of <0.003 were removed from the data
file. The cycles column of every trajectory was inverted to obtain
RUL for the corresponding feature values. The RUL column
served as the output/target variable. Furthermore, values of
remaining sensors, operating condition indicators, and RULs were
scaled using MinMax scaler, so that their values across the entire
file ranged from 0 to 1. RULs were scaled because the range of the
output neuron in the recurrent neural network (RNN), used as the
prediction model and explained in Section 4.1, was from 0 to 1.
After preprocessing, the trajectories comprised unit ids, scaled
cycle numbers, scaled operating condition values, and scaled
measurements from 15 sensors. Out of 148 trajectories, ten
trajectories were set aside for testing.

3.2 System architecture

The multi-agent system architecture presented in [8–10] was used
as the underlying architecture for the experiments here. This
architecture has been shown to be well suited for implementation
in real-world industries and is analogous to the nodes-server (or
more formally, hub and spoke) network type suitable for deploying
FL algorithms [9].

Similar to a nodes-server network, where several computing
nodes representing user devices are connected to a central server,
the architecture used for experiments discussed here involves a
network of connected industrial computing agents. It is formally a
modified hierarchical architecture type, where every asset in the
fleet is monitored and controlled by its corresponding agent. Asset
agents analyse data and make decisions for their corresponding
assets. They are all connected to a central agent, which is
responsible for higher-level decision making. Concretely, the
architecture comprises three levels: virtual assets, digital twins, and

a social platform. The digital twins and the social platform are
implemented for experiments discussed here and are therefore
briefly described in the following paragraphs. A detailed
description of the overall architecture and industrial multi-agent
systems, in general, can be found in [8, 16, 34, 35], respectively.
The notion of agents’ in this paper refers to a collection of
computational entities, that cooperate or compete to achieve a
certain objective [36].

Digital twins: Digital twin is an asset's local data analyser. It is
responsible for monitoring data and extracting operationally useful
information. Apart from analysing the data, digital twins can also
serve as local decision-makers. However, digital twins in the
experiments discussed here only act as data analysers for
prognosis. Operational decisions for mitigating impending failures
are governed by operator policies and asset criticality and are
therefore not discussed here.

A digital twin is segmented into a data repository, analytics
engine, and output manager. The data repository stores data
streaming in from other agents, the analytics engine analyses data
stored in the repository and the output manager manages
communications between the digital twin and agents it is connected
with (such as the social platform and the virtual asset).

Social platform: The social platform is a central agent to which
all digital twins are connected, and therefore serves as the overall
network enabler. It enables communications within the network
and is also responsible for conducting higher-level analysis for the
overall asset fleet such as identifying clusters of similar assets or
registering queries from newly introduced assets. The social
platform is also segmented into a data repository, an analytics
engine, and a communications manager. The functions served by
these are similar to those for digital twins, but the only difference
being that the analytics engine of the social platform conducts
higher-level analysis.

This paper and experiments discussed herewith, focus only on
the model training step of collaborative prognosis pipeline.
Therefore, we assume that the participating assets have already
been deemed similar by the clustering step, and shown here is the
model training step for a given cluster. Moreover, since only
historical failures are used to train the prognosis algorithm,
implementing virtual assets to standardise online data is deemed

Table 1 Sample of FD_001 dataset
AssetID Cycles OC1 OC2 OC3 s1 ...  s21
1 1 −0.0007 −0.0004 100 519 ...  23.419
1 2 0.0019 −0.0003 100 519 ...  23.424
...  ...  ...  ...  ...  ...  ...  ... 
2 1 −0.0018 0.0006 100 519 ...  23.458
...  ...  ...  ...  ...  ...  ...  ... 
2 287 −0.0005 0.0006 100 519 ...  23.084
...  ...  ...  ...  ...  ...  ...  ... 
100 200 −0.0032 −0.0005 100 519 ...  23.052

Fig. 3௒ Sample rolling mean averages of normalised sensor 7 measurements that trend differently for high-pressure compressor degradation and fan
degradation failure modes in FD_003 turbofans. Identification of failure modes is similar to [9]

168 IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

not necessary for experiments discussed here. Trajectories selected
from the preprocessed dataset explained in Section 3.1 for various
experiment cases are stored directly in data repositories of the
digital twins to replicate failures distributed across assets
constituting a fleet. The only task performed by the analytics
engines of the digital twins is to evaluate local updates using
trajectories stored in their corresponding repositories. Similarly,
tasks performed by the analytics engine of the social platform are
to aggregate updates from the participating digital twins, and to
select the subset of digital twins for the following communication
round. A schematic diagram indicating the computations (red
underlined text) involved at corresponding levels of the
architecture is shown in Fig. 4. Further implementation details
about the experiments are explained in Section 4.

3.3 Developmental specification

Python 3.6 and its standard libraries including Pandas and Numpy
were used to pre-process the dataset. While the TensorFlow
Federated framework could be directly used to implement FedAvg,
owing to the nature of its beta release, TensorFlow Federated
framework is extremely slow and does not enable straightforward
modifications of the hyperparameters involved. Therefore, Python's
Socket library was used to develop a network of digital twins and
the social platform. To enable parallel computation, digital twins
were run on separate processor threads using Python's
multithreading library. Keras library with TensorFlow backend was
used to develop and train RNNs, and NVIDIA Tesla P100 server

processor with 3584 CUDA cores GPU was used to perform the
experiments discussed here.

4௑Experiments
This section explains the various experimental cases that were
performed to analyse FedAvg for a collaborative prognosis.
Experiment cases were designed to study the effect of various
FedAvg parameters on the training process, and also to serve as an
example application.

4.1 Experiment cases

A RNN, specifically consisting of one long–short-term memory
(LSTM) layer, was used in the experiments as a prediction model.
RNN is a special type of ANN, where the outputs of certain
neurons are included with their inputs. This feature enables the
RNNs to understand the time dependency of trending features, and
therefore make them well suited for time-series prediction
applications such as prognosis.

The RNN used for experiments here comprised three
intermediate layers, containing 12 × 25 × 10 neurons, respectively,
where the layer containing 12 neurons was the LSTM layer, and
the rest were standard feed-forward neurons. The tanh activation
functions were used at every neuron. Owing to the tanh activation
function, the range of the output neuron was constrained between 0
and 1. Therefore, the same MinMax scaler used to downscale the
training data was used to upscale the output of the RNN.

The effects of the hyperparameters including the participating
fraction of assets (C), epochs per asset participating in the update
step (E), learning rate (λ) of the RNN during local updates, total
failures in the fleet (n), and the optimiser of the RNN were studied
by varying them across different values. Moreover, decaying the
learning rate with subsequent communication rounds was also
experimented and compared with a constant learning rate. Table 2
summarises the values of the above parameters studied across the
experiment cases. Global and local objective functions were both
aiming to minimise the mean absolute difference between real and
predicted RUL values for trajectories in training dataset.

For each set of hyperparameter values, the RNN was trained for
600 communication rounds, and its mean absolute error of
predictions for test failure trajectories was evaluated at the end of
each round.

4.2 Fleet simulation

From the remaining 138 trajectories obtained after preprocessing
explained in Section 3.1, the initial n trajectories were used for the
corresponding experiment cases described in Section 4.1. However,
to replicate failures distributed across multiple assets, these n
trajectories were further segmented into smaller groups of
trajectories and stored in data repositories of separate digital twins.

Let these digital twins be indexed using k ∈ 1, 2, …, therefore
k = m, where m is the number of assets in the cluster. Each of the
digital twins holds nk trajectories, where the integer nk is randomly
selected as nk ∈ 1, int n/10 . Concretely, this resembles a cluster
where m assets have failed due to a given failure mode, with a
varying number of failure occurrences. The goal was to train the
RNN using this dataset of total n failures, distributed across m
assets. The assets (m) and number of failures of individual assets
nk corresponding to different values of total failures (n) are

presented in Table 3.
All possible permutations of parameter values listed in Table 2

were analysed for FedAvg training. The analysis included
recording the global model's mean of the absolute prediction error
for the test data after every communication round. Rate and extent
error reduction in the end model performance were studied for all
sets of parameter values.

5௑Discussion
This section discusses the effect of parameters deduced from the
experimental results and presents the corresponding performance

Fig. 4௒ Schematic description of computations and data stored at
architectural levels. Only three digital twins are shown for ease of
presentation, but the actual number of digital twins equals the number of
assets comprising the cluster

Table 2 Values of hyperparameters across various
experiment cases
Hyperparameter Value
C 0.1, 0.25, 0.5, 1

E 1, 5, 10, 20

λ 0.01, 0.05, 0.1

n 10, 35, 70, 138

Table 3 Total assets and number of failures at individual
assets corresponding to a various number of total failures
Total
failures (n)

Total
assets (m)

Failures per individual Assets (nk)

10 10 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
35 16 [1, 1, 2, 3, 3, 1, 2, 3, 3, 2, 1, 3, 3, 1, 3]
70 17 [4, 7, 4, 7, 5, 5, 5, 7, 3, 3, 7, 1, 3, 3, 1, 2]
138 15 [6, 12, 3, 13, 7, 12, 13, 6, 9, 5, 13, 8, 6]

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

169

plots explaining those effects. While plots for only certain
parameter values are included for ease of presentation, the
corresponding conclusions hold true across all permutations.
Parameter values associated with the plots in the following
subsections are all mentioned in their figure captions.

Corresponding model performances achieved with conventional
collaborative prognosis, which involved sharing failure data across
assets, for the same values of total failures n and the optimisers are
also shown on those plots. RNN with the same architecture as the
one used for FedAvg was used for conventional collaborative
prognosis. It was trained using an optimal set of hyperparameters,
and was trained until its error for test data did not decrease any
further. The same test data and mean absolute error of predictions
were used to evaluate the performance of a model trained using
conventional collaborative prognosis as well. The horizontal cyan
lines in Fig. 5–9 indicate test errors while using conventional
collaborative prognosis for training the same prediction models and
with the same failure trajectories as FedAvg.

5.1 Effect of decaying learning rate (λ)

Shown in Fig. 5 are performances of models trained using a
decaying learning rate, alongside the same models trained using a
constant learning rate. It is observed that allowing λ to decay after
every communication round stabilises the model's test error while
training. A constant decay of 0.99 was implemented during the

experiments. Model training was found to be comparatively stable
for decaying learning rates than constant learning rate across all
parameter combinations, similar to that shown in Fig. 5.

However, if the initial λ is not sufficiently high enough, end
model performances tend to a higher test error than the one trained
using non-decaying learning rate. This is observed in the
performance plots shown in Fig. 5, where for lower initial λ,
models converge to substandard performance compared to the non-
decaying learning rate.

Plots for non-decaying λ are shown using a blue dotted line and
for decaying λ using a red solid line in Fig. 5. Their initial learning
rates are also mentioned on the same plots, and the corresponding

Fig. 5௒ Effect of learning rate on model performance. Parameters C, E, n

 =  0.5, 5, 70 with SGD optimiser. LR = learning rate

Fig. 6௒ Effect of epochs per asset on model performance. Parameters
C, λ, n  =  0.25, 0.1, 138 with SGD optimiser. LR = learning rate

170 IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

parameter values, which were constant for all three plots, are
mentioned in the caption.

5.2 Effect of epochs per asset (E)

It can be observed from the plots presented in Fig. 6 that the test
errors during the training process decrease and become more stable
as E increases. The test error was found to stabilise with increasing
E value, with other parameters kept constant. Moreover, as the
number of epochs per asset is increased, models converge to much
lower test errors, compared to the same ones stabilised using
learning rate decay. In Fig. 6, constant learning rate while training
is shown using a blue dotted line, and decaying rate with a red
solid line.

The marginal improvement in end model performance, as it was
expected and also observed in Fig. 6, however decreases with
increasing E. Therefore, the optimal E value corresponds to its
minimum value which stabilises model training and results in an
acceptable end model performance.

5.3 Effect of participating fraction of assets (C)

Experiments showed that increasing C had no substantial effect on
the end model performances. However, test errors stabilised with
increasing C value. This is presented in Fig. 7.

5.4 Effect of total failures (n)

The experiments showed that similar to conventional collaborative
prognosis (see [9], pp. 600–601), a minimum number of failure
trajectories were necessary for prediction models to achieve
acceptable accuracies. The test error for n = 10 is comparatively
erratic and higher than other values of n, which decreases with
increasing n. However, unlike conventional prognosis where model
performance continuously increases with increasing number of
failure trajectories, FedAvg's end model performance saturates
after a certain value of n, which for experiments discussed here is
35. Fig. 8 illustrates the effect of n on model training.

Fig. 7௒ Effect of participating fraction of assets on model performance.
Parameters n, λ, E  =  10, 0.01, 5 with SGD optimiser

Fig. 8௒ Effect of total failures on model performance. Parameters C, λ, E

 =  0.25, 0.1, 5 with Adam optimiser

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

171

5.5 Effect of the optimiser

Two popular optimisers—Adam and SGD—were implemented for
the experiments discussed here. SGD is a classic optimiser for
ANNs, and pioneering applications of FedAvg involved using
SGD. Adam is a comparatively newer optimiser than SGD, which
is in fact a modification of SGD that uses adaptive learning rate
based on training data and error [37].

A comparison between Adam and SGD optimisers for FedAvg
is shown in Fig. 9 for various E values, where SGD optimiser is
represented by a red solid line and Adam optimiser by a blue
dotted line. It was found in the experiments that Adam performed
better than SGD in most experiment cases. However, for either
optimisers, models trained using FedAvg could attain their
corresponding performances attained by conventional collaborative
prognosis. This confirms that FedAvg is applicable to collaborative
prognosis.

6௑Conclusions
This paper highlights those challenges which hinder the
implementation of distributed data-driven prognosis techniques,
specifically collaborative prognosis, in real-world industries. Of the
general challenges faced by distributed optimisation problems, the
conventional collaborative prognosis is incapable of addressing

problems of data security and communication efficiency. It is
identified that specifically, the failure data exchange step of
collaborative prognosis hinders its application for real-world
industries.

Also proposed in this paper is the application of FedAvg to
replace the failure data exchange part of a collaborative prognosis.
Authors have demonstrated that FedAvg is applicable for asset
prognosis and that it is capable of realising collaborative prognosis.
This follows from the observation in Figs. 5–9 that performances
of models trained using FedAvg have improved during the training
process using FedAvg, and for many cases in fact surpassed those
of model strained using conventional collaborative prognosis. By
avoiding failure data exchange within assets, FedAvg also has
added benefits of securing asset data and of reducing network
communication costs. Addressing the problem of localised training
without the need for failure data to leave assets is also deemed
beneficial for data-driven prognosis techniques in general that rely
on failure trajectories distributed across several assets.

As shown in Figs. 5–9, values of parameters including C, E, λ ,
just like any other ML technique, must however be carefully tuned
to achieve optimal model performance. While Section 5 discusses
the effect each parameter is expected to have on FedAvg training,
an optimal permutation of parameters is dependent on the
application and best deduced by its corresponding operators.

While the challenges faced by the conventional collaborative
prognosis techniques were mentioned in [38], this paper discusses
them in more detail, proposes FedAvg as a solution to address
those challenges, and presents the results from extensive
experiments performed to analyse model performances for the
proposed application.

7௑Future research directions
The proposed application and experiments also make way for
exciting possibilities related to both general FL, and asset
prognosis research:

(i) As discussed in Section 2.3, FedAvg is applicable for IID data
only. While IID failure trajectories are identified by the clustering
step, it does not make the collaborative prognosis pipeline truly
localised. This is because the server performs clustering by
analysing failure trajectories across all assets. Therefore, asset data
must be shared with the server. Future research can improve upon
the current FedAvg implementation to make it capable of training
prediction models for IID data, without the need for data to leave
assets at all. Some inspiration for this can arise from FL literature
[23, 29].
(ii) Another challenge is to implement the trained models in real
time. When an asset is found to deviate from its normal behaviour,
it is seldom possible to identify the impending failure and its
prediction model. Collaborative prognosis requires an asset to
operate in a given condition for a certain period before it can be
clustered with similar assets. This makes it incapable of predicting
the failures of a newly introduced asset. Future research can
involve automated real-time identification of the most suitable
prediction model for failing assets. Neural network ensembles,
where their prediction is also associated with confidence, can
possibly address this challenge [39, 40].
(iii) It is theoretically shown in Section 2.4 that FL reduces the data
transferred within the asset network, and therefore reduces the
communication costs to the operator. Future work can investigate
the extent of this reduction for various industrial applications to
identify important trade-offs between model performance and
overall data transfer.
(iv) Lastly, an important follow-up task is to implement FedAvg for
real-world asset data. Maximum 148 IID failure trajectories could
be obtained from the C-MAPSS dataset. This is because the C-
MAPSS dataset has only 148 instances where assets operating in
similar operating conditions incur the same failure type. Real-
world data could comprise a higher number of failure trajectories
for more failure types. This could enable analysing FedAvg
performance for different failure types.

Fig. 9௒ Effect of the optimiser on model performance. Parameters C, λ, n

 =  0.25, 0.1, 35 . Performances of models trained using conventional
collaborative prognosis, having Adam and SGD optimisers are marked with
cyan and magenta horizontal lines, respectively

172 IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

8௑Acknowledgments
This research was funded by the EPSRC and BT Prosperity
Partnership project: Next Generation Converged Digital
Infrastructure, grant number EP/R004935/1. This research was also
funded by Siemens Industrial Turbomachinery, Lincoln LN5 7FD,
UK.

9௑References
[1] Goyal, D., Pabla, B.S.: ‘Condition based maintenance of machine tools – a

review’, CIRP J. Manuf. Sci. Technol., 2015, 10, pp. 24–35
[2] Neely, A.: ‘Exploring the financial consequences of the servitization of

manufacturing’, Oper. Manage. Res., 2008, 1, pp. 103–118
[3] Schwabacher, M., Goebel, K.: ‘A survey of artificial intelligence for

prognostics’. AAAI Fall Symp.: Artificial Intelligence for Prognostics,
Virginia, USA, 2007

[4] Jain, A.K., Lad, B.K.: ‘Data driven models for prognostics of high speed
milling cutters’, Int. J. Performability Eng., 2016, 12, (1), pp. 3–11

[5] Lee, J., Jin, C., Liu, Z., et al.: ‘Introduction to data-driven methodologies for
prognostics and health management’ In Ekwaro Osire, S., Carlos Gonçalves,
A., Alemayehu, F., et al. (Eds.): ‘Probabilistic prognostics and health
management of energy systems’ (Springer, Switzerland, 2017), pp. 9–32

[6] Jain, A.K., Lad, B.K.: ‘Dynamic optimization of process quality control and
maintenance planning’, IEEE Trans. Reliab., 2017, 66, pp. 502–517

[7] Salvador Palau, A., Liang, Z., Lütgehetmann, D., et al.: ‘Collaborative
prognostics in social asset networks’, Future Gener. Comput. Syst., 2019, 92,
pp. 987–995

[8] Bakliwal, K., Dhada, M.H., Palau, A.S., et al.: ‘A multi agent system
architecture to implement collaborative learning for social industrial assets’,
IFAC-PapersOnLine, 2018, 51, pp. 1237–1242

[9] Salvador Palau, A., Dhada, M.H., Bakliwal, K., et al.: ‘An industrial multi
agent system for real-time distributed collaborative prognostics’, Eng. Appl.
Artif. Intell., 2019, 85, pp. 590–606

[10] Palau, A.S., Bakliwal, K., Dhada, M.H., et al.: ‘Recurrent neural networks for
real-time distributed collaborative prognostics’. 2018 IEEE Int. Conf. on
Prognostics and Health Management, ICPHM 2018, Institute of Electrical and
Electronics Engineers Inc., August 2018

[11] Salvador Palau, A., Dhada, M.H., Parlikad, A.K.: ‘Multi-agent system
architectures for collaborative prognostics’, J. Intell. Manuf., 2019, 30, pp.
2999–3013

[12] Wang, T., Yu, J., Siegel, D., et al.: ‘A similarity-based prognostics approach
for remaining useful life estimation of engineered systems’. 2008 Int. Conf.
on Prognostics and Health Management, PHM 2008, Denver, USA, 2008

[13] Lin, Y., Liu, S., Huang, S.: ‘Selective sensing of a heterogeneous population
of units with dynamic health conditions’, IISE Trans., 2018, 50, pp. 1076–
1088

[14] Eker, O.F., Camci, F., Jennions, I.K.: ‘A similarity-based prognostics
approach for remaining useful life prediction’. Second European Conf. of the
Prognostics and Health Management Society, Nantes, France, May 2014

[15] Mcfarlane, D.: ‘Industrial internet of things applying IoT in the industrial
context’, Tech. Rep., Institute for Manufacturing, University of Cambridge,
2019

[16] Leitão, P., Karnouskos, S.: ‘Industrial agents: emerging applications of
software agents in industry’ (Elsevier Inc., Netherlands, 2015)

[17] Saha, B., Saha, S., Goebel, K.: ‘A distributed prognostic health management
architecture’. Sixth Int. Conf. on Condition Monitoring and Machinery
Failure Prevention Technologies – CM/MFPT, Dublin, Ireland, 2009

[18] Gilchrist, A., Gilchrist, A.: ‘IIoT reference architecture’ in Gilchrist, A. (Ed.):
‘Industry 4.0’ (Apress, United States, 2016), pp. 65–86

[19] Sadeghi, A.R., Wachsmann, C., Waidner, M.: ‘Security and privacy
challenges in industrial internet of things’. Proc. – Design Automation Conf.,

vol. 2015-July, Institute of Electrical and Electronics Engineers Inc., San
Francisco, USA, July 2015

[20] Siemieniuch, C.E., Sinclair, M.A.: ‘On complexity, process ownership and
organisational learning in manufacturing organisations, from an ergonomics
perspective’, Appl. Ergon., 2002, 33, pp. 449–462

[21] Konečný, J., McMahan, H.B., Yu, F.X., et al.: ‘Federated learning: strategies
for improving communication efficiency’, arXiv preprint arXiv:1610.05492,
October 2016

[22] Yang, Q., Liu, Y., Chen, T., et al.: ‘Federated machine learning: concept and
applications’, ACM Trans. Intell. Syst. Technol., 2019, 10, pp. 1–19

[23] Li, T., Sahu, A.K., Talwalkar, A., et al.: ‘Federated learning: challenges,
methods, and future directions’, arXiv preprint arXiv:1908.07873, August
2019

[24] Ranasinghe, G.D., Lindgren, T., Girolami, M., et al.: ‘A methodology for
prognostics under the conditions of limited failure data availability’, IEEE
Access, 2019, 7, pp. 183996–184007

[25] Bekkerman, R., Bilenko, M., Langford, J.: ‘Scaling up machine learning:
parallel and distributed approaches’ (Cambridge University Press, United
Kingdom, 2011)

[26] Bonawitz, K., Eichner, H., Grieskamp, W., et al.: ‘Towards federated learning
at scale: system design’, arXiv preprint arXiv:1902.01046, February 2019

[27] Huang, L., Yin, Y., Fu, Z., et al.: ‘Loadaboost:loss-based AdaBoost federated
machine learning on medical data’, arXiv preprint arXiv:1811.12629,
November 2018

[28] Hard, A., Rao, K., Mathews, R., et al.: ‘Federated learning for Mobile
keyboard prediction’, arXiv preprint arXiv:1811.03604, November 2018

[29] Li, T., Sahu, A.K., Zaheer, M., et al.: ‘Federated optimization in
heterogeneous networks’, arXiv preprint arXiv:1812.06127, December 2018

[30] Lecun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, pp.
436–444

[31] McMahan, H.B., Moore, E., Ramage, D., et al.: ‘Communication-efficient
learning of deep networks from decentralized data’. Proc. 20th Int. Conf. on
Artificial Intelligence and Statistics, AISTATS 2017, Florida, USA, February
2016

[32] Saxena, A., Goebel, K.: ‘Turbofan engine degradation simulation data set’,
Tech. Rep., NASA Ames Research Center, Moffett Field, CA, 2008

[33] Saxena, A., Goebel, K., Simon, D., et al.: ‘Damage propagation modeling for
aircraft engine run-to-failure simulation’. 2008 Int. Conf. on Prognostics and
Health Management, PHM 2008, Denver, USA, 2008

[34] Herrera, M., Pérez-Hernández, M., Kumar Parlikad, A., et al.: ‘Multi-agent
systems and complex networks: review and applications in systems
engineering’, Processes, 2020, 8, p.312

[35] Yong, B.X., Brintrup, A.: ‘Multi agent system for machine learning under
uncertainty in cyber physical manufacturing system’. Int. Workshop on
Service Orientation in Holonic and Multi-agent Manufacturing, Germany,
2019, pp. 244–257

[36] Wooldridge, M.: ‘An introduction to multiagent systems’ (John Wiley & Sons,
Ltd, 2009)

[37] Kingma, D.P., Ba, J.L.: ‘Adam: A method for stochastic optimization’. 3rd
Int. Conf. on Learning Representations, ICLR 2015 – Conf. Track Proc., Int.
Conf. on Learning Representations, ICLR, San Diego, USA, December 2015

[38] Dhada, M.H., Palau, A.S., Parlikad, A.K.: ‘Federated learning for
collaborative prognosis’. Int. Conf. on Precision, Meso, Micro, and Nano
Engineering, IIT Indore, India, 2019

[39] Pearce, T., Zaki, M., Brintrup, A., et al.: ‘High-quality prediction intervals for
deep learning: a distribution-free, ensembled approach’. 35th Int. Conf. on
Machine Learning, ICML 2018, Int. Machine Learning Society (IMLS),
Stockholm, Sweden, February 2018, vol. 9, pp. 6473–6482

[40] Ambrosio, J.K., Brentan, B.M., Herrera, M., et al.: ‘Committee machines for
hourly water demand forecasting in water supply systems’, Math. Probl. Eng.,
2019, 2019, p. 9765468

IET Collab. Intell. Manuf., 2020, Vol. 2 Iss. 4, pp. 164-173
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

173

