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Abstract 

This paper develops and tests an efficient mixed integer programming model for capacitated lot 

sizing and scheduling with non-triangular and sequence-dependent setup times and costs 

incorporating all necessary features of setup carryover and overlapping on different machine 

configurations. The model’s formulation is based on the Asymmetric Travelling Salesman 

Problem (ATSP) and allows multiple lots of a product within a period. The model conserves the 

setup state when no product is being processed over successive periods, allows starting a setup in 

a period and ending it in the next period, permits ending a setup in a period and starting production 

in the next period(s), and enforces a minimum lot size over multiple periods. This new 

comprehensive model thus relaxes all limitations of physical separation between the periods. The 

model is first developed for a single machine and then extended to other machine configurations, 

including parallel machines and flexible flow lines. Computational tests demonstrate the flexibility 

and comprehensiveness of the proposed models. 

Keywords: Lot sizing; Scheduling; Period Overlapping; Carryover Setups; Machine 

Configurations 

1. Introduction 

The classic Capacitated Lot Sizing Problem (CLSP) does not sequence or schedule 

products within a period (Bitran and Yanasse 1982; Haase 1996; Karimi et al. 2003). In 

addition, it does not allow a setup to be carried over from one period to the next, even when 

the last product in a period is the same as the first product in the next period. Gopalakrishnan 

et al. (1995) developed a modelling framework for formulating the CLSP with setup carry over 

by introducing additional binary variables, and later incorporated sequence-independent and 

product-dependent setup times and costs (Gopalakrishnan 2000). Different studies have 

demonstrated that considering the setup carry-over significantly saves costs by decreasing the 

number of setups and releasing production capacity (Gopalakrishnan et al. 2001; Gupta and 

Magnusson 2005; Porkka et al. 2003; Sox and Gao 1999). This problem also called the 

capacitated lot sizing problem with linked lot sizes (Suerie and Stadtler 2003). 

A further issue for capacitated lot sizing is to determine a sequence for all products within 

a time period if setup times or costs are sequence-dependent. The CLSP is called large bucket 

problem since several item can be produced per period (Eppen and Martin 1987). Subdividing 

the (macro-) periods of CLSP into several (micro-) periods leads to discrete lotsizing and 

scheduling problem (DLSP) which is called a small bucket problem (Fleischmann 1990; 

Salomon 1991; Salomon et al. 1991; Salomon et al. 1997). 

The main serious restriction of the DLSP as a small-bucket formulation is not allowing 

both setup time and production time within a period. Thus this article focuses on the CLSP as 

a big-bucket formulation which is more flexible for integrating lot sizing and sequencing 

decisions. The CLSP partitions the planning horizon into a number of lengthy time periods, 

allowing setups of several products within the same period (a “big bucket”). Gupta and 

Magnusson (2005) classified the CLSP literature according to extensions on sequence 

dependency of setup costs and times. They extended the framework proposed by 

Gopalakrishnan (2000) to include sequence-dependent setup times and costs. Haase (1996) 

modelled the Capacitated Lot sizing problem with Sequence-Dependent setup costs (CLSD) 

and included setup times (Haase and Kimms 2000) by assuming predetermined efficient 

production sequences and null inventory for the production of an item in a period. The General 



Lot sizing and Scheduling Problem (GLSP) (Fleischmann and Meyr 1997) is very close to the 

CLSD but is more flexible since it eliminates the restrictions of the CLSD. Meyr (2000) 

included sequence-dependent setup times, resulting in the GLSPST and extended it to become 

the GLSPPL for parallel machines (Meyr 2002).  

In their recent well-structured review paper, Copil et al. (2016) presented the historical 

development of the body of knowledge for simultaneous lotsizing and scheduling problem and 

discussed the recent trends. The GLSP has been known as the most flexible lotsizing and 

scheduling formulation in large buckets for representing different environments under slight 

modifications (Koçlar 2005; Koçlar and Süral 2005). Moreover, the need for only triangular 

setups is relaxed in the GLSP as it allows multiple lots of a product in a period as long as the 

lots of all products do not exceed the number of micro-periods in a period. Non-triangular setup 

times can happen in many industries such chemicals, food, beverages and oil. For example, in 

the animal-feed industry, some product families can cause contamination of other families so 

mixing equipment must be cleaned in order to avoid it. Cleaning can result in substantial setups 

that consuming scarce production time. The amount of cleaning can often be minimised by 

producing an intermediate cleansing or shortcut product which can give rise to non-triangular 

setup times. In an alternative approach to the GLSP, Clark and Clark (2000) designed a mixed 

integer programming (MIP) model for the simultaneous sequencing and sizing of production 

lots on a set of parallel machines. They assumed non-triangular sequence-dependent setup 

times, no setup costs and the possibility of backlogging demand.  

The problem of sequencing a set of lots with sequence dependent setups is related to the 

travelling salesman problem (TSP) and the vehicle routing problem (VRP) (Laporte 1992a; 

Laporte 1992b). Almada-Lobo et al. (2007) presented two models for the CLSP with sequence-

dependent and triangular setup times and costs using the Miller-Tucker-Zemlin (MTZ) subtour 

prohibition constraints (Desrochers and Laporte 1991). The main restriction of conventional 

TSP based models is permitting the production of only one lot per product per period which 

may well not be optimal when non-triangular setups exist. Clark et al. (2010) formulated a 

sequencing and lotsizing model with non-triangular setup times based on the Asymmetric 

Travelling Salesman Problem (ATSP) at an animal-feed plant. To solve the model, optimal 

solution methods based on iterative subtour elimination and patching were developed. In the 

ATSP-based models (Almada-lobo et al. 2007; Clark et al. 2010), at most one lot per product 

can be produced in a period (and no subtour is permitted), so in the case of non-triangular setup, 

any optimal multiple production of a shortcut product is not allowed.  Menezes et al. (2011) 

relaxed this restriction and allowed production of multiple lots per period (and correctly 

including connected subtours) by using an iterative model and method based on a potentially 

exponentially number of subtour elimination constraints (to exclude disconnected subtours).  

Clark et al. (2014) presented a stronger formulation than Menezes et al. (2011) for 

modelling the production of multiple lots of a product per period by using a polynomial number 

of multi-commodity-flow-type constraints (Claus 1984) to exclude disconnected subtours 

while allowing ones connected to the main sequence. Guimaraes et al. (2014) proposed a two-

dimensional framework to classify the discrete time modeling approaches for lotsizing and 

scheduling problem. They also present a new formulation using commodity flow based subtour 

elimination constraints for the problem.   



Setup overlapping has been studied by Suerie (2006) for small-bucket and by Sung and 

Maravelias (2008) for big-bucket formulations, but with sequence-independent setup times and 

costs. Belo-Filho et al. (2013) extended the model by Suerie (2006) for small-bucket and 

proposed two models for the capacitated lot-sizing problem with backlogging and setup 

carryover and crossover. Almada-Lobo et al. (2007) incorporated setup carryover features for 

a capacitated lot sizing and scheduling problem that allows a product to be set up at the end of 

one period and the actual production to start in the next period. Menezes et al. (2011) modelled 

setup cross-overs that allows a setup to start in one period and to end in the next period.  

In this article, the first mixed integer linear programming formulation is presented for lot 

sizing and scheduling with non-triangular sequence-dependent setup times and costs that 

allows not only multiple lots of a product in a period using just a polynomial number of 

constraints and incorporating all the necessary features of setup carryover, as in Clark et al 

(2014), but also overlapping of setups over period boundaries. The inclusion of overlapping 

setups is the original contribution of this article and permits modelling the production system 

more realistically by relaxing all the limitations of physical separation between the periods.   

Moving towards more flexible and realistic modeling in production planning systems has 

been already attracted many researchers.  To alleviate the problem of physical separation in 

discrete time scale, an alternative approach called block planning is proposed based on 

continuous representation of time (Günther 2014; Günther et al. 2006). However, the degree of 

flexibility of proposed approach is limited to necessity of the the grouping of product into setup 

families and the production of product within a family in a pre-defined sequence. 

For the first time, in this paper not only all the limitations of discrete time scale modeling 

are relaxed but also practical assumptions are researched.Thus, a setup can start at the end of a 

period and finish at the beginning of the next period, or a setup can finish at the end of a period 

and production start in the next period. Furthermore, an imposed minimum lot size can cross 

over periods, and the setup state is conserved when no product is being processed over multiple 

periods. All these features increase the model flexibility and lead to better solutions, 

particularly under tight capacity conditions or whenever setup times are significant. The 

extension of the model to parallel machines or a flexible flow line is presented and discussed 

via computational tests.  

The new model for single machine is developed in section 2, allowing the production of 

multiple lots while incorporating all the features of setup carryover and overlapping. Moreover 

the effectiveness of multi-lot over single-lot production by taking advantage of shortcut 

products and the usefulness of modelling the setup overlapping under tight production capacity 

are both illustrated in some examples in section 2 and then computationally tested in section 3. 

The model is extended to parallel machines and flexible flow lines in section 4 where the 

efficiency of each model is discussed in detail with an example. The paper concludes in section 

5 with a discussion of the model’s value and identifies remaining challenges and opportunities 

for future research. 

2. Modelling multiple lots and overlapping setups on a single machine 

The model is initially based on Clark et al (2014).  The parameters and indices of the model 

are:  



Number of total products i,j,k 𝐽 

Number of periods t in the planning horizon 𝑇 

The input data required by the model are: 

Demand for product i realised at the end of period t 𝑑𝑖𝑡 

Available capacity (time) in each period t 𝐶𝑡 

Time needed to setup from product i to product j 𝑠𝑡𝑖𝑗 

Cost of setting up from product i to product j 𝑠𝑐𝑖𝑗 

Time needed to produce a unit of product i 𝑏𝑖 

Cost of holding a unit of product i in inventory from period t to t+1 ℎ𝑖𝑡 

Backlog cost per period for product i from period t to t+1 𝑔𝑖𝑡 

Upper bound 𝐶𝑡 𝑏𝑖⁄  on the quantity of product i produced in period t 𝑈𝐵𝑖𝑡 

The product that is already setup at the end of period 0, i.e., the starting 

setup configuration in period 1. 

𝑖0 

Minimum lot size imposed on product j. 𝑚𝑙𝑗 

The decisions made by the model are represented by following variables: 

Inventory level of product i at the end of period t. 𝐼𝑖𝑡 

Backordered amount of product i at the end of period t. 𝐵𝑖𝑡 

Production quantity of product i in period t. 𝑥𝑖𝑡 

Number of units of slack capacity in period t. 𝑆𝑙𝑘𝑡 

The quantity produced in period t of the first (crossover) lot of product 

i in period t if it was setup in period t-1, otherwise 0.  

𝑥𝑖𝑡
𝐹  

The quantity produced in period t of the last (crossover) lot of product 

i in period t if its production continues into period t+1, otherwise 0. 

𝑥𝑖𝑡
𝐿  

Number of times that production is to be changed over from product i 

to product j in period t. Integer non-negative.  

𝑦𝑖𝑗𝑡 

 

Number of times that product i is in a setup state in period t, Integer 

non-negative. 

𝑧𝑖𝑡 

 

= 1 either because j-to-i is the last setup in previous periods to t or 

because j-to-i is the setup operation that overlaps from t-1 to t. 

𝛼𝑖𝑡 

 

For all the products, the initial inventory (𝐼𝑖0) and the backlogs (𝐵𝑖0) are set to be zero at 

the start of the planning horizon. 



2.1 The objective function and main  constraints 

The objective function minimises a weighted sum of backorders, inventory and setup 

costs:  

 

(1) 

 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ 𝑠𝑐𝑖𝑗𝑦𝑖𝑗𝑡

𝑖𝑗𝑡

+ ∑ ℎ𝑖𝑡𝐼𝑖𝑡

𝑖𝑡

+ ∑ 𝑔𝑖𝑡𝐵𝑖𝑡

𝑖𝑡

 

Constraint (2) balances inventory, backlogs, production and demand over consecutive 

periods: 

 

∀ 𝑗, 𝑡 (2) 

 

𝐼𝑗𝑡−1 − 𝐵𝑗𝑡−1 + 𝑥𝑗𝑡 − 𝐼𝑗𝑡 + 𝐵𝑗𝑡 = 𝑑𝑗𝑡 

Constraint (3) represents the limited capacity and calculates any slack capacity: 

 

∀ 𝑡 (3) ∑ 𝑏𝑖𝑥𝑖𝑡

𝑖

+ ∑ 𝑠𝑡𝑖𝑗𝑦𝑖𝑗𝑡

𝑖𝑗

+ 𝑠𝑙𝑘𝑡 =  𝐶𝑡 

 

Constraint (4) enforces the appropriate setup before production: 

 

∀ 𝑗, 𝑡 (4) 𝑥𝑗𝑡  ≤  𝑈𝐵𝑗𝑡 × 𝑧𝑗𝑡 

 

Constraint (5) prohibits setup between the same products: 

∀ 𝑗, 𝑡(5) 𝑦𝑗𝑗𝑡 = 0 

 

Constraint (6) ensures that the machine is set up for exactly one product at the beginning 

of each period. The initial setup configuration at first period is expressed by constraint (7). 

 

∀  𝑡 = 1, . . , 𝑇 + 1(6) ∑ 𝛼𝑖𝑡

𝑖

= 1 

∀ 𝑡 = 1(7) 𝛼𝑖𝑜𝑡 = 1 

2.2 Imposing a minimum lot size 

Some cleansing products k require a minimum lot size  𝑚𝑙𝑘 to eliminate the previous 

product’s contaminants, and also prohibits that a setup from i to j passes through cleansing 

products k without any production. Constraints (8) to (11) achieve this and also allow a 

minimum lot size to cross over the periods.  

Recall that 𝑥𝑗𝑡
𝐹  is the quantity produced in period t of the first (crossover) lot of product j 

in period t if it was setup in period t-1, but is otherwise 0, as imposed by Constraints (8): 

∀ 𝑗, 𝑡 (8) 𝑥𝑗𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑡𝛼𝑗𝑡 

Similarly 𝑥𝑗𝑡
𝐿  is the quantity produced in period t of the last (crossover) lot of product j in 

period t if its production continues into period t+1, otherwise 0, as imposed by constraints (9).   

∀ 𝑗, 𝑡 (9) 𝑥𝑗𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑡𝛼𝑗,𝑡+1 



Then 𝑥𝑗𝑡
𝐿 +  𝑥𝑗,𝑡+1

𝐹 is the size of a crossover lot of a product j that has been started in period 

t and completed in period t+1. Constraints (10) oblige this crossover lot to be of size at least 

 𝑚𝑙𝑗: 

∀ 𝑗, 𝑡(10) 𝑥𝑗𝑡
𝐿 +  𝑥𝑗,𝑡+1

𝐹  ≥  𝑚𝑙𝑗𝛼𝑗,𝑡+1 

Lastly constraint (11) imposes minimum lot sizes for both crossover and non-crossover 

lots using auxiliary variables 𝑥𝑗𝑡
𝐿  , 𝑥𝑗𝑡

𝐹 . 

∀ 𝑗, 𝑡 (11) 𝑥𝑗𝑡 − 𝑥𝑗𝑡
𝐹 −  𝑥𝑗𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑡 − 𝛼𝑗𝑡 − 𝛼𝑗,𝑡+1)   

Constraints (11) force a lot to be of size at least 𝑧𝑗𝑡𝑚𝑙𝑗in period t. If the machine begins or 

ends the period in setup state j (or both) then 𝛼𝑗𝑡 + 𝛼𝑗,𝑡+1 = 1 (𝑜𝑟 2) then constraints (11) 

impose the (𝑧𝑗𝑡 − 𝛼𝑗𝑡 − 𝛼𝑗,𝑡+1) lots to be at least of size 𝑧𝑗𝑡𝑚𝑙𝑗, splittable into smaller separate 

lots of at least size 𝑚𝑙𝑗 units in size. 

Clark et al. (2014) imposed a minimum lot size with the condition that there exists at least 

one setup in each period, i.e., result a carryover lot could not span over whole periods. Letting 

a carryover lot span over 3 or more periods while forcing the minimum lot size for the whole 

crossover lot was left as a challenge for future research. In this paper, this limitation is removed. 

The following example shows how the new minimum lot constraints can span the lot over the 

periods with no demand and impose the minimum lot size (𝑚𝑙𝑗) for the whole crossover lot. 

Example 1: Consider a demand for product A in period 1, for product B in period 3 and 

no demand in period 2. A minimum lot size is imposed on the use of shortcut product C. In this 

case there are two possibilities as now detailed below: 

In the first possibility, setup A to C and C to B can both happen either in period two or, 

one setup can happen in period two and the other setup in period 1 or 3.  So the minimum lot 

size will be enforced by constraint (11). In the second possibility, setup A to C happens in 

period 1 and setup C to B in period 3 while there is no setup in period 2 as shown in Figure 1.   

 

Product A Product C Product B
Setup

A to C

Setup

C to B

Period 1 Period 2 Period 3

 
Figure 1: Example (1) lot crossover 

 

So according to constraint (10):  

𝑥𝐶1
𝐿 +  𝑥𝐶2

𝐹  ≥  𝑚𝑙𝐶                  (C1) 

𝑥𝐶2
𝐿 +  𝑥𝐶3

𝐹  ≥  𝑚𝑙𝐶                  (C2)  

and according to constraint (11): 

𝑥𝐶2 − 𝑥𝐶2
𝐹 −   𝑥𝐶2

𝐿 ≥  −𝑚𝑙𝐶     (C3)   

𝑥𝐶1 −   𝑥𝐶1
𝐿 ≥  0                      (C4) 

𝑥𝐶3 − 𝑥𝐶3
𝐹 ≥  0                         (C5) 

In order to impose the minimum lot size for C, it is necessary to justify that the total production 

of product C (at the end of period 1, in period 2 and at the beginning of period 3) is at least 𝑚𝑙𝐶: 

𝑥𝐶1 + 𝑥𝐶2 + 𝑥𝐶3 ≥   𝑚𝑙𝐶 



To justify this, first constraints C1 and C2 are summed: 

𝑥𝐶1
𝐿 +  𝑥𝐶2

𝐹 + 𝑥𝐶2
𝐿 +  𝑥𝐶3

𝐹  ≥  2𝑚𝑙𝐶           (C6)  

Then constraints C3, C4 and C5 are summed: 

𝑥𝐶1 + 𝑥𝐶2 + 𝑥𝐶3 ≥ 𝑥𝐶1
𝐿 + 𝑥𝐶2

𝐹 + 𝑥𝐶2
𝐿 + 𝑥𝐶3

𝐹  − 𝑚𝑙𝐶            (C7) 

Finally combining constraints C6 and C7 concludes that the crossover lot of product C (𝑥𝐶1 +

𝑥𝐶2 + 𝑥𝐶3) is at least mlC and constraint (10) imposes mlC (not 2𝑚𝑙𝐶) for the whole crossover 

lot. Moreover this conclusion can be extended for more than one period with having no 

demand. 

𝑥𝐶1 + 𝑥𝐶2 + 𝑥𝐶3 ≥ 𝑥𝐶1
𝐿 +  𝑥𝐶2

𝐹 + 𝑥𝐶2
𝐿 +  𝑥𝐶3

𝐹 − 𝑚𝑙𝐶  ≥  2𝑚𝑙𝐶 − 𝑚𝑙𝐶 ≥  𝑚𝑙𝐶 

 

Note that constraints (8) to (11) are more efficient than the conventional constraint: 𝑥𝑗𝑡 ≥

 𝑚𝑙𝑗 ∑ 𝑦𝑖𝑗𝑡𝑖 , ∀ 𝑗, 𝑡, as used in other lot sizing and scheduling models (Clark and Clark 2000; 

Fleischmann and Meyr 1997) to impose minimum lot size. The reason is that in the 

conventional constraint, the whole setup and the production of the minimum lot size should be 

carried out in a single period so the minimum lot size neither can crossover to the next period(s) 

nor can be produced in a period when the setup is ending at the end of previous period(s). All 

these restrictions are relaxed in the new constraints (8) to (11). Examples 2 and 3 in the section 

2.4 show explicitly the difference of two types of constraints for imposing minimum lot size. 

2.3 Lot sequencing constraints 

Here, the ATSP-related constraints are demonstrated for sequencing product lots. 

Conventional ATSP-based models restrict production to at most one lot per product per period, 

which may not be optimal when non-triangular setups exist. Non-triangular setups occur in 

industries such as food, animal feed, beverages and oil where there are intermediate “cleaning” 

or “shortcut” products. For example in the animal feed industry, some products can 

contaminate other products and lead to serious effects on animal’s health. To avoid this, 

machines must be cleaned, sometimes resulting in substantial setups that consume scarce 

production time. Alternatively, the production of a sufficient amount of an intermediate or 

cleaning product can clean the machines and reduce overall setup times (costs). In this 

situation, the setup to and from the cleaning or shortcut product (𝑘) is less costly and time 

consuming than a direct setup between two products (𝑖, 𝑗) means that  𝑠𝑡𝑖,𝑗 ≥  𝑠𝑡𝑖,𝑘 +  𝑠𝑡𝑘,𝑗. 

Therefore the shortcut product may need to be produced more than once within a period. 

A sequence with multiple lots per period for some products could look like that illustrated 

in Figure 2. Subtours connected to the main sequence S by shortcut products are possible (such 

as subtours B and C). Thus an exact formulation must allow connected subtours but exclude 

disconnected subtours (such as subtours A and D). To model the sequencing of product lots, 

the multi-commodity-flow (MCF) formulations by Claus (1984) are adapted to exclude 

disconnected subtours while allowing ones connected to the main sequence. Clark et al. (2014) 

applied the Claus (1984) ATSP subtour elimination method to allow multiple productions of 

shortcut products for a single machine and computationally demonstrated the effectiveness of 

the Multiple-Lot (ML) model in comparison with the equivalent One-Lot (1L) models. In this 

work, the same method is applied and the constraints are as follows. 
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Figure 2: A main sequence (S) and different types of subtours (A, B, C, D) 

 

Constraints (12) and (13) are flow conservation constraints relating the 𝛼𝑖𝑡 and 𝑧𝑖𝑡 setup 

state variables to the 𝑦𝑖𝑗𝑡 changeover variables as shown in Figure 3. 

∀ 𝑖, 𝑡 (12) 𝛼𝑖𝑡 + ∑ 𝑦𝑗𝑖𝑡

𝑗

=  𝑧𝑖𝑡 

∀ 𝑖, 𝑡 (13) ∑ 𝑦𝑖𝑗𝑡

𝑗

+ 𝛼𝑖,𝑡+1 =  𝑧𝑖𝑡 

αit

i

αi,t+1
zit


j

ijty
j

jity

 

Figure 1: Node flow modelled by constraints (12) and (13) 

 

To make constraints (13) work for last period 𝑡 = 𝑇 either set 𝑡 = {1, . . , 𝑇 + 1} is considered 

for 𝛼𝑖𝑡 or new constraints (13a) are added as follows: 

∀ 𝑖, 𝑡 = 𝑇 (13a) ∑ 𝑦𝑗𝑖𝑇

𝑗

+ 𝛼𝑖,𝑇 ≥ ∑ 𝑦𝑖𝑗𝑇

𝑗

 

The optimal solution to the model specified so far is a sequence from product 𝑖|{𝛼𝑖𝑡 = 1} 

to 𝑘|{𝛼𝑘,𝑡+1 = 1} plus any disconnected subtours. The latter are excluded by imposing in every 

period t that there is so-called k-walk from (𝑖|{𝛼𝑖𝑡 = 1}) to all products k in the period’s 

sequence. From now on, 𝑝𝑡
𝛼 denotes product 𝑖|{𝛼𝑖𝑡 = 1}. 

Define additional binary variable 𝑎𝑖𝑗𝑡
𝑘  as follows:  

=1 if the arc 𝑖 → 𝑗 is on a k-walk from crossover product 𝑝𝑡
𝛼 to product 

k within period t’s sequence of lots, otherwise 0. 

𝑎𝑖𝑗𝑡
𝑘  

The arc 𝑖 → 𝑗 has to exist, hence: 

∀ 𝑖, 𝑗, 𝑘, 𝑡 (14) 𝑎𝑖𝑗𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑡 

Further binary decision variables 𝑧𝑖𝑡
𝑏𝑖𝑛are needed. Define:  



=1 if product i is ever in setup state in period t, otherwise 0. 𝑧𝑖𝑡
𝑏𝑖𝑛 

The required relationships 𝑧𝑖𝑡
𝑏𝑖𝑛 = 1 ⇔  𝑧𝑖𝑡 ≥ 1 and 𝑧𝑖𝑡

𝑏𝑖𝑛 = 0 ⇔  𝑧𝑖𝑡 = 0 are enforced by:  

∀ 𝑖, 𝑡 (15) 𝑧𝑖𝑡 ≥ 𝑧𝑖𝑡
𝑏𝑖𝑛 

∀ 𝑖, 𝑡(16) 𝑧𝑖𝑡 ≤ 𝑍𝑈𝐵𝑖𝑧𝑖𝑡
𝑏𝑖𝑛 

Where 𝑍𝑈𝐵𝑖 is a fixed upper bound (UB) on 𝑧𝑖𝑡and greater than one. 𝑍𝑈𝐵𝑖 can be 

estimated as the smaller of J (the number of products) and the size of the ordered set 

{(𝑖, 𝑗)|𝑠𝑡𝑖𝑗 ≥ 𝑠𝑡𝑖𝑘 + 𝑠𝑡𝑘𝑗}, which is 1 for many non-shortcut products. 

Constraints (17-19) below exclude disconnected subtours. Constraints (17) force the k-

walk to reach product k and are enforced only when the setup state k exists for a time in the 

period (i.e, when 𝑧𝑘𝑡
𝑏𝑖𝑛 = 1), but not when this is never the case (when 𝑧𝑘𝑡

𝑏𝑖𝑛 = 0): 

∀ k, t (17) 𝛼𝑘𝑡 + ∑ 𝑎𝑖𝑘𝑡
𝑘

𝑖

= 𝑧𝑘𝑡
𝑏𝑖𝑛 

If there is no production of product k in a period, then 𝑧𝑘𝑡
𝑏𝑖𝑛 = 0, and by (17), 𝑎𝑖𝑘𝑡

𝑘 = 0 ∀𝑖 

(constraint (14) also forces this via 𝑎𝑖𝑘𝑡
𝑘 ≤ 𝑦𝑖𝑘𝑡 = 0). 

The k-walk corresponding to the variables {𝑎𝑖𝑗𝑡
𝑘 |∀ 𝑖, 𝑗 } has to begin at 𝑝𝑡

𝛼 and then pass 

through other products to reach product k.  

If 𝛼𝑘𝑡 = 1 then there is no need for a k-walk. If 𝛼𝑘𝑡 = 0, then by (17) ∑ 𝑎𝑖𝑘𝑡
𝑘

𝑖 = 1, i.e., 

𝑎𝑖𝑘𝑡
𝑘 = 1 for precisely one product i,  the penultimate on the k-walk. Then, by (18), 𝑎𝑗𝑖𝑡

𝑘 = 1 for 

precisely one product j that is the 3rd last product on the k-walk, and so on, reversing along the 

k-walk, requiring 𝑎𝑖𝑗𝑡
𝑘 = 1 along the k-walk, finishing at the initially-setup product 𝑖 = 𝑝𝑡

𝛼 (for 

which 𝛼𝑖𝑡 = 1). 

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑡(18) 𝛼𝑖𝑡 + ∑ 𝑎𝑗𝑖𝑡
𝑘

𝑗

≥  ∑ 𝑎𝑖𝑗𝑡
𝑘

𝑗

 

Constraint (19) forces the k-walk from 𝑝𝑡
𝛼 to terminate at product k: 

∀ 𝑘, 𝑗, 𝑡 (19) 𝑎𝑘𝑗𝑡
𝑘 = 0  

If there is no production of k in period t, then (19) requires 𝑎𝑘𝑗𝑡
𝑘 = 0 which is not 

constraining as 𝑎𝑖𝑗𝑡
𝑘 = 0 by (17). 

The ML-SM model (Multiple Lot for Single Machine) is specified by expressions (1-19).  

It allows multiple production lots of shortcut products for a single machine while still not 

relaxing the limitations of a period’s physical separation.  

2.4 Period overlapping setup constraints  

The last step is allowing setup operations to overlap periods, i.e., to permit a setup to begin 

in a period and end in the next period. The model is called MLOV-SM and relaxes all 

limitations of physical separation between the periods. The MLOV-SM is advantageous when 

capacity is tight and so lot sizing and sequencing decisions need more flexibility to reduce 

backlogs. 

Consider the following additional decision variables:  

=1 if the overlapping setup operation i to j begins in period t and 

finishes in period t+1, otherwise 0. 

𝑂𝐿𝑆𝑖𝑗𝑡 



The amount of setup time that overlaps into period t+1, having begun 

at the end of period t. 

𝑆𝑡 

The value of 𝑆𝑡 must be zero if there is no overlapping last setup at the end of period t: 

∀ 𝑡 (20)  𝑆𝑡  ≤    ∑ 𝑠𝑡𝑖𝑗𝑂𝐿𝑆𝑖𝑗𝑡

𝑖𝑗

 

The last setup and at most one setup in period t can overlap from period t to t+1: 

∀ 𝑖, 𝑡 (21) ∑ 𝑂𝐿𝑆𝑗𝑖𝑡

𝑗

≤  𝛼𝑖,𝑡+1 

The value of 𝑂𝐿𝑆𝑖𝑗𝑡 must be zero if i to j is not a setup initiated in period t: 

∀ 𝑖, 𝑗, 𝑡 (22) 𝑂𝐿𝑆𝑖𝑗𝑡  ≤    𝑦𝑖𝑗𝑡 

The capacity constraint (3) now becomes: 

∀ 𝑡 (23) ∑ 𝑏𝑖𝑥𝑖𝑡

𝑖

+ ∑ 𝑠𝑡𝑖𝑗𝑦𝑖𝑗𝑡

𝑖𝑗

+ 𝑆𝑡−1 − 𝑆𝑡 + 𝑠𝑙𝑘𝑡 =  𝐶𝑡 

When the last setup is overlapping, 𝑂𝐿𝑆𝑖𝑗𝑡 = 1, then product j cannot be produced as it is 

the last (crossover) lot in period t. Thus constraints (4) and (9) now become (24) and (25).  

∀ 𝑗, 𝑡 (24) 𝑥𝑗𝑡  ≤  𝑈𝐵𝑗𝑡 × (𝑧𝑗𝑡 − ∑ 𝑂𝐿𝑆𝑖𝑗𝑡

𝑖

)  

∀ 𝑗, 𝑡 (25) 𝑥𝑗𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑡 (𝛼𝑗,𝑡+1 − ∑ 𝑂𝐿𝑆𝑖𝑗𝑡

𝑖

) 

Thus model MLOV-SM is specified by expressions (1-2), (5-8) and (10-25) and restated 

completely in the Appendix A. 

 

2.5 Examples 

Two examples now show the effectiveness of the new minimum lot constraints (8) to (11), 

in comparison with the conventional constraint (26) and also the solution’s improvement 

obtained by modelling setup overlapping features. The following examples are solved by three 

models, consisting of MLOV-SM (stated in Appendix A), ML-SM (Multiple Lot for Single 

Machine) which is specified by expressions (1-19), and the Conventional Model which has the 

same constraints as ML-SM but imposes minimum lot sizes by conventional constraint (26) 

rather than new imposing minimum lot sizes constraints (8) to (11).  

∀ 𝑗, 𝑡 (26) 𝑥𝑗𝑡 ≥  𝑚𝑙𝑗 ∑ 𝑦𝑖𝑗𝑡

𝑖

 

Note that in the ML-SM model, constraints (4) are valid but loose: the value of 𝑧𝑗𝑡 need 

only be 1, and not ≥ 2. Thus constraints (4) can be tightened by replacing 𝑧𝑗𝑡 by 𝑧𝑗𝑡
𝑏𝑖𝑛  (𝑥𝑗𝑡  ≤

 𝑈𝐵𝑗𝑡 × 𝑧𝑗𝑡
𝑏𝑖𝑛). 

Examples 2 and 3: The following data are used for both examples: 𝐶𝑡 = 100,  𝑚𝑙𝑗 =

10, 𝑇 = 3, 𝐽 = 2,  𝑖0 = 1, 𝑠𝑡𝑖𝑗 = 20,  𝑏𝑗 = 1,  ℎ𝑗𝑡 = 15, 𝑠𝑐𝑖𝑗 = 600,  𝑔𝑖𝑡 = 1000; and the 

demands are shown in Table 1. The models are implemented in the optimisation modelling 

software GAMS build 24.7.1 (Brooke et al. 1988) and solved using the industrial-strength 



CPLEX 12.6 solver (CPLEX. 2014) on a computer with a 2.1 GHZ CPU and 2 GB of RAM. 

All models were solved in less than a second for both examples. 
Table 1: Demand data for example 2 and 3. 

Demand 

𝑑𝒊𝒕 

Example(2) Example(3) 

t=1 t=2 t=3 t=1 t=2 t=3 

i=1 75 0 90 75 0 90 

i=2 0 90 0 0 95 0 

 

The production diagram and the results of Example 2 are shown in Figure 4 and Table 2 

respectively. Note how modelling of all necessary features of production improves the solution 

remarkably.  As shown in Figure 4, the Conventional model cannot use the machine’s capacity 

efficiently and there are 5 units of idle or slack time in period 1 as the setup and minimum lot 

production has to be done totally in a single period (constraint (26)). This restriction is relaxed 

in the ML-SM model so the setup ends in period 1 and the minimum-sized lot is produced in 

period 2 that significantly results in a reduction of the number of inventory and backlogs as 

shown in Table 2. However there are still 10 units of slack time in period 2 as, in the ML-SM 

model, a setup cannot overlap, i.e., the setup begins in period 2 and ends in period 3. In the 

new lot sizing and scheduling model, MLOV-SM, all the limitations caused by previous models 

are relaxed and the production system is modelled realistically. Thus the scarce production 

capacity is used more efficiently.  
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Figure 4: Production diagram of Example 2 obtained by Conventional, ML-SM and MLOV-SM models 

 

 

Table 2: Results of Example 2 obtained by Conventional, ML-SM and MLOV-SM models 

Example 2  Conventional  ML-SM MLOV-SM 

Slack capacity 5 10 0 

Total Inventory  40 10 0 

Backlogs 10 5 0 

Total cost = Cost of 

(Backlogs + Inventory +Setup) 
11800 

(10000+600+1200) 

6350 

(5000+150+1200) 

1200 

(0+0+1200) 

 



In Example 2 the optimal solution is obtained by the MLOV-SM model with no shortages 

or inventory. In order to tighten capacity even more, the demand of product 2 is increased to 

95 in Example 3. The production diagram and the results of Example 3 are shown in Figure 5 

and Table 3 respectively. Note that the Conventional model found a solution with high total 

inventories (50) and backlogs (15) while the optimal solution found by MLOV-SM has no 

backlogs and only 5 inventories. 

Product 1

100

Product 2

80
Setup

1 to 2

Setup

2 to 1

Period 1 Period 2 Period 3

Product 1

80

Product 2

95

Product 1

80

Setup

1 to 2

Setup

2 to 1

Product 2

15
Product 1

65

Idle

time

Product 1

75

Product 2

90

Product 1

90

Setup

1 to 2

Setup

2 to 1

Conventional 

ML-SM

MLOV-SM

Setup-overlapping

New ml constraints

New ml constraints

P
ro

d
u

c
t2

=
5

min

lot

 
Figure 5: Production diagram of Example 3 obtained by Conventional, ML-SM and MLOV-SM models 

Furthermore, as shown in MLOV-SM’s production diagram in Figure 5, the minimum lot 

crosses over from period 1 to 2. Lot crossover is another feature which is modelled via the new 

minimum lot size (ml) constraints (8) to (11), improving the solutions and giving more 

flexibility to the lot sizing model.  
Table 3: Results of Example 3 obtained by Conventional, ML-SM and MLOV-SM models 

 

Example 3  Conventional  ML-SM MLOV-SM 

Slack capacity 0 5 0 

Total Inventory  50 10 5 

Backlogs 15 5 0 

Total cost = Cost of 

(Backlogs + Inventory +Setup) 
16950 

(15000+750+1200) 

6350 

(5000+150+1200) 

1275 

(0+75+1200) 

 

Examples 2 and 3 showed how the new comprehensive mathematical formulation, 

MLOV-SM, relaxes all limitations of physical separation between the periods. The MLOV-

SM modelled the new features consisting of starting a setup in one period and ending it in the 

next period, ending a setup in a period and starting production in the next period(s), and 

crossing a minimum lot size over multiple periods.  

3. Computational tests 

The aim of the tests is to assess how effectively the Multiple Lot model took advantage of 

shortcut products to reduce the total time spent on setups, compared to the equivalent One Lot 

(1L) model. In the latter case, the formulation (ML-SM) can be simplified to a model that 

assumes At Most One Lot per product per period (denoted 1L-SM) by merging 𝑧𝑗𝑡 and 𝑧𝑗𝑡
𝑏𝑖𝑛 to 



be a binary variable 𝑧𝑗𝑡 for a single machine. Thus constraints (15) and (16) disappear. The 

tests also evaluated the impact of model MLOV-SM, on reducing demand backlogs, total 

inventory and cost in the case of tight production capacity. The models were implemented in 

the optimisation modelling software GAMS build 24.7.1 (Brooke et al. 1988) and solved using 

the CPLEX 12.6 solver (CPLEX. 2014) on a computer with a 2.1 GHZ CPU and 2 GB of RAM.  

To obtain initial insights, the performance of the three models (1L-SM, ML-SM and 

MLOV-SM) was compared on two problem sizes: a small size with 10 products including 1 

shortcut product, and a big size with 20 products including 2 shortcut products, whose lot sizes 

and sequences were to be scheduled over two horizons of T = 4 and T=8 demand periods.  

The following data were used: 𝐶𝑡 = 100, 𝑚𝑙𝑗 = 5, 𝑖0 = 1, 𝑏𝑗 = 0.5, ℎ𝑗𝑡 = 10, 𝑔𝑗𝑡 =

10000, ∀𝑗, 𝑡 for all instances. In (Clark et al. 2014) the setup times were initially set to be 

𝑠𝑡𝑖𝑗 = (𝑗 − 𝑖) 𝑖𝑓 𝑗 ≥ 𝑖 otherwise (10 + 𝑗 − 𝑖), so the product 2 would normally be setup 

immediately after product 1. However, product 5 was then made an extreme shortcut with zero 

setup times: 𝑠𝑡5𝑗 = 𝑠𝑡𝑖5 = 0. In this paper, to make setup times more tangible, particularly in 

case of an overlapping setup, all setup times were increased by 3 so that 𝑠𝑡5𝑗 = 𝑠𝑡𝑖5 = 3 and 

𝑠𝑡𝑖𝑗 = (3 + 𝑗 − 𝑖) 𝑖𝑓 𝑗 ≥ 𝑖 otherwise (13 + 𝑗 − 𝑖). Setup costs are proportional to setup times, 

i.e.𝑠𝑐𝑖𝑗 = 50 × (𝑗 − 𝑖) 𝑖𝑓 𝑗 ≥ 𝑖, otherwise 50 × (10 + 𝑗 − 𝑖), and for shortcut products are: 

𝑠𝑐5𝑗 = 𝑠𝑐𝑖5 = 50. 

The periodic demand forecasts 𝑑𝑖𝑡 varied randomly over product i and period t to provoke 

non-uniform lot-sizes and avoid lot-for-lot production. To show the effectiveness of model 

MLOV-SM, the demands in two consecutive periods are set to be non-zero for different 

products for time horizon T=4. For example, if there are 10 products, then for period t, 5 

random products have non-zero demand, with the other 5 having demand zero, while in period 

t+1, those products with zero-demand in period t now have non-zero demand, with other 5 

having zero demand. We also used another TBO-profile (time between orders) with different 

lengths 1, 2 and 3 for time horizon T=8. In this case, for each product a random TBO length 

(from 1 to 3) is chosen and then demands are generated for a product over 8 periods according 

to the TBO.  

When capacity is loose, then there is much more flexibility about when setups can occur 

in an optimal solution, so we expect that period-overlapping setups will not make a 

difference.  However, under tight capacity, there will be little such flexibility, so it is important 

to use scarce production capacity efficiently via relaxing all restrictions of physical separation 

between the periods. To simulate tight capacity the overall demand was adjusted so that setup 

times could take up to 20-25% of capacity. For loose capacity this was adjusted to 15%.   

A similar procedure was applied for big size problems with 20 products. The machine 

capacity per period was doubled and setup times for products P11 to P20 simply replicate those 

for P1 to P10, with the two extreme shortcut products being P5 and P15.  

Considering the two types of capacity (loose and tight) and planning horizons (T=4 and 

8), 4 combinations were generated for each problem size. For each combination, 20 test 

problems were generated, totalling 160 problem instances for big and small sizes, which were 

solved by the 1L-SM, ML-SM and MLOV-SM models. The CPLEX optimizer was allowed to 

run for a maximum of 1 hour for big size problems, at which point the incumbent solution (i.e., 

the best found up to then) was used. 



Table 4: A mean results of 1L-SM, ML-SM and MLOV-SM for single machine problems 

Single Machine 10 products with one shortcut 

Mean 

20 products with two shortcuts 

Mean 

T Cap Criteria 1L ML MLOV p-value 1L ML MLOV p-value 

 

4 

 

Tight 

Setup time 77.75 78 77.95 0.902 219.1 223.3 214.7 0.170 

Slack time 5.57 5.97 6.72 0.061 9.1 9.5 9.8 0.129 

Inventory 14.45 10.5 6.1 0.000 12.45 10.2 8.4 0.000 

Backlogs 7.55 5.8 4.1 0.000 29.3 27.3 25.8 0.000 

CPU time 5.4 3.95 4.55 0.136 641 867 1287 0.138 

Total cost 76842 59260 42208 0.000 230380 281550 253760 0.000 

T Cap Criteria 1L ML MLOV p-value 1L ML MLOV p-value 

 

4 

 

Loose 

Setup time  78.7 80.05 79.75 0.176 135.8 136.8 137 0.109 

Slack time 20.6 20.1 20.075 0.715 32.67 31.67 31.5 0.109 

Inventory 6 4.1 3.85 0.143 12.16 11.33 10.41 0.402 

Backlogs 0 0 0 Na 0 0 0 Na 

CPU time 3.01 2.4 2.55 0.066 221.8 183.3 285 0.028 

Total cost 1250 1201 1198.5 0.000 1540 1510 1490 0.006 

T Cap Criteria 1L ML MLOV p-value 1L ML MLOV p-value 

 

8 

 

Tight 

Setup time 141.15 142.95 142.4 0.013 293.7 292.9 292.5 0.043 

Slack time 37.95 36.05 36.6 0.007 56.7 57.3 59.60 0.010 

Inventory 59.65 49.95 47.1 0.000 85.28 78 78.14 0.009 

Backlogs 31.25 29.3 27.6 0.000 45 43.37 39.5 0.000 

CPU time 55.8 37.45 61.05 0.313 2260 2534 3560 0.170 

Total cost 315236 295618 278592 0.000 455294 437827 398286 0.000 

T Cap Criteria 1L ML MLOV p-value 1L ML MLOV p-value 

 

8 

 

Loose  

Setup time 138.7 141.15 140.6 0.064 286.5 285.9 284.8 0.034 

Slack time 72.175 69.725 70.225 0.063 65.3 64.2 65.96 0.021 

Inventory 40.5 36.6 36.3 0.069 30.5 26.91 25.73 0.071 

Backlogs 0 0 0 Na 0 0 0 Na 

CPU time 12.3 7.95 11.2 0.406 931.5 763.6 1021.9 0.042 

Total cost 2487.5 2444.5 2440.5 0.027 3340.6 3336.8 3325.4 0.038 

Table 4 compare the performance of three models on 6 criteria calculated over the 

planning horizons 4 and 8: 

Total time spent on setups = ∑ 𝑠𝑡𝑖𝑗𝑦𝑖𝑗𝑡𝑖𝑗  

Amount of unused (slack) capacity = ∑ 𝑠𝑙𝑘𝑡𝑡  

Inventory =∑ 𝐼𝑖𝑡𝑖𝑡  

Backlogs = ∑ 𝐵𝑖𝑡𝑖𝑡  

CPU time  

Total cost = Backlogs + Inventory + Setup = ∑ 𝑔𝑖𝑡𝐵𝑖𝑡𝑖𝑡 + ∑ ℎ𝑖𝑡𝐼𝑖𝑡𝑖𝑡 + ∑ 𝑠𝑐𝑖𝑗𝑦𝑖𝑗𝑡𝑖𝑗𝑡  

For each criterion, the difference between the mean values for the three models was 

statistically tested using a balanced analysis of variance test. The test used the data instance 

(that is the run) as a random blocking factor. The null hypothesis is that the difference between 

the models’ means is zero.  
Table 5: The paired T-test results between 1L-SM, ML-SM and MLOV-SM for single machine problems 



Single Machine  

The  paired T-test 

10 products with one shortcut 

P-Value  

20 products with two shortcuts 

P-Value 

T Capacity Criteria 1L&ML ML&MLOV MLOV&1L 1L&ML ML&MLOV MLOV&1L 

 

4 

 

Tight 

Setup 

time 

0.296 0.467 0.384 0.053 0.324 0.062 

Slack time 0.175 0.076 0.016 0.203 0.034  0.041 

Inventory 0.005 0.049 0.003 0.006 0.038 0.001 

Backlogs 0.000 0.000 0.000 0.028 0.000 0.000 

CPU time 0.020 0.096 0.189 0.128 0.096 0.073 

Total cost 0.000 0.000 0.000 0.000 0.000 0.000 

T Capacity Criteria 1L&ML ML&MLOV MLOV&1L 1L&ML ML&MLOV MLOV&1L 

 

4 

 

Loose 

Setup 

time 

0.067 0.309 0.086 0.087 0.186 0.076 

Slack time  0.291 0.478 0.245 0.087 0.181 0.067 

Inventory 0.104 0.374 0.040 0.134 0.178 0.108 

Backlogs Na Na Na Na Na Na 

CPU time 0.052 0.093 0.048 0.122 0.028 0.015 

Total cost 0.000 0.165 0.000 0.032 0.087 0.024 

T Capacity Criteria 1L&ML ML&MLOV MLOV&1L 1L&ML ML&MLOV MLOV&1L 

 

8 

 

Tight 

Setup 

time 

0.011 0.009 0.046 0.008 0.006 0.012 

Slack time 0.006 0.009 0.034 0.032 0.044 0.014 

Inventory 0.000 0.003 0.000 0.012 0.002 0.000 

Backlogs 0.001 0.000 0.000 0.002 0.000 0.000 

CPU time 0.149 0.064 0.373 0.258 0.420 0.131 

Total cost 0.001 0.000 0.000 0.000 0.000 0.000 

T Capacity Criteria 1L&ML ML&MLOV MLOV&1L 1L&ML ML&MLOV MLOV&1L 

 

8 

 

Loose 

Setup 

time 

0.032 0.022 0.082 0.095 0.047 0.035 

Slack time 0.033 0.032 0.078 0.033 0.016 0.024 

Inventory 0.049 0.369 0.047 0.032 0.109 0.026 

Backlogs Na Na Na Na Na Na 

CPU time 0.135 0.034 0.393 0.183 0.045 0.023 

Total cost 0.037 0.088 0.025 0.024 0.061 0.017 

 

The results in Table 4 and the paired t-test p-values in Table 5 show a highly significant 

decrease in backlogs, inventory and total cost under tight capacity for the model MLOV-SM 

compared to those for the ML-SM and 1L-SM. It highlights how model MLOV-SM uses scarce 

machine capacity and how the relaxing of all restrictions of physical separation between the 

periods plays an important role in minimizing shortage. The ML-SM model is also more 

efficient than 1L-SM as it uses the shortcut product P5 in small size problem and products P5 

and P15 in big size problems, to economise on setups and reduce backlogs and inventory. 



As expected, under loose capacity with no backlogs, due to greater flexibility in setups, 

period overlapping did not make a significant difference in inventory and slack time, although 

it significantly improved the total cost compared to the 1L model.  

Not surprisingly, there were much longer solution times for 20 products than 10 products, 

and also for instances with T=8 periods compared to those with T=4. For 20 products and T=8 

under tight capacity, 17 of the 20 instances of the MLOV model used the full 1 hour allowance 

of computing time (with median optimality gap of 3.7% for these 17), while none did for the 

1L and ML model. 

4. Extensions to Parallel Machines and Flexible Flow Lines 

In this section the Single Machine models are extended to Parallel Machines (PM) and 

Flexible Flow Lines (FFL). The data, variables and constraints of the Single Machine models 

are adapted to parallel machines by including an index m. The Multiple Lot model for Parallel 

Machines, denoted ML-PM, and Multiple Lot model with Setup-Overlapping for Parallel 

Machines, denoted MLOV-PM, are extensions of ML-SM and MLOV-SM respectively.  

4.1 Parallel Machines 

The input data required by the PM models are: 

Demand for product i realised at the end of period t 𝑑𝑖𝑡 

Available capacity time of machine m in each period t 𝐶𝑚𝑡 

Time needed to setup from product i to product j on machine m 𝑠𝑡𝑖𝑗𝑚 

Cost needed to setup from product i to product j on machine m 𝑠𝑐𝑖𝑗𝑚 

Time needed to produce a unit of product i on machine m 𝑏𝑖𝑚 

Cost of holding a unit of product i from period t to t+1 ℎ𝑖𝑡 

Backlog cost per period for product i from period t to t+1 𝑔𝑖𝑡 

Upper bound 𝐶𝑚𝑡 𝑏𝑖𝑚⁄  on the quantity of product i produced in period t 

on machine m 

𝑈𝐵𝑖𝑚𝑡 

The product setup at the end of period 0 on machine m, i.e., the starting 

setup configuration  

𝑖0𝑚 

The decisions variables by the PM model are represented by following variables: 

Inventory level of product i at the end of period t. 𝐼𝑖𝑡 

Backordered amount of product i at the end of period t. 𝐵𝑖𝑡 

Production quantity of product i in period t on machine m. 𝑥𝑖𝑚𝑡 

Number of unites of slack capacity of machine m in period t. 𝑆𝑙𝑘𝑚𝑡 

The quantity produced in period t of the first (crossover) lot of product 

i on machine m in period t if it was setup in period t-1, otherwise 0.  

𝑥𝑖𝑚𝑡
𝐹  



The quantity produced in period t of the last (crossover) lot of product i 

on machine m in period t if its production continues into period t+1, 

otherwise 0. 

𝑥𝑖𝑚𝑡
𝐿  

Number of times that production is to be changed over from product i to 

product j on machine m in period t, Integer non-negative.  

𝑦𝑖𝑗𝑚𝑡 

 

Number of times that product i is in a setup state on machine m in period 

t, Integer non-negative.  

𝑧𝑖𝑚𝑡 

 

= 1 either because j-to-i is the last setup of machine m in previous 

periods to t or because j-to-i is the setup operation that overlaps from t-1 to 

t. 

𝛼𝑖𝑚𝑡 

 

=1 if the arc 𝑖 → 𝑗 is on a walk from crossover product 𝑝𝑡
𝛼 to product k 

within period t’s sequence of lots on machine m, otherwise 0. 

𝑎𝑖𝑗𝑚𝑡
𝑘  

=1 if product i is ever in setup state on machine m in period t, otherwise 

0. 

𝑧𝑖𝑚𝑡
𝑏𝑖𝑛 

=1 if the overlapping setup operation j-to-i on machine m begins in 

period t and finishes in period t+1. 

𝑂𝐿𝑆𝑖𝑚𝑡 

 

The amount of setup time that overlaps into period t+1 on machine m, 

having begun at the end of period t. 

 𝑆𝑚𝑡 

For all the products, the initial inventory (𝐼𝑖0) and the backlogs (𝐵𝑖0) are set to be zero at 

the start of the planning horizon. All the ML-PM and MLOV-PM’s constraints are similar to 

ML-SM and MLOV-SM respectively with the new adapted data and variables. The complete 

ML-PM and MLOV-PM models are presented in Appendix B and C.  

Example 4: Consider 2 machines in parallel. The aim is to satisfy the demand shown in 

Table 6 for 10 products over the 4 planning periods with minimal backorders, inventory and 

setup costs. The capacity of each machine is 𝐶𝑚𝑡 = 50, thus a total capacity of  ∑ 𝐶𝑚𝑡𝑚 = 100 

is available for each period. The remaining PM data is the same as for the SM problem: 𝑚𝑙𝑗 =

5, 𝑖0𝑚 = 1, 𝑏𝑗𝑚 = 0.5, ℎ𝑗𝑡 = 10, 𝑔𝑗𝑡 = 10000, ∀𝑗, 𝑡. Also the setup times and costs of each 

machine replicate those for a single machine.  

The production diagrams and the results obtained by solving the 1L-PM, ML-PM and 

MLOV-PM models are shown in Figure 6 and Table 7 respectively. Note that in Table 7, the 

1L-PM and ML-PM model found the solution with the same amount 7 of inventory, and 

amounts 6 and 2 of backlogs respectively, while the optimal solution found by MLOV-PM has 

no backlogs or inventory.  
Table 6: Demand data for PM and FFL. 

𝒅𝒊𝒕 t = 1 t = 2 t = 3 t = 4 

i = 1 33 0 34 0 

i = 2 33 0 0 0 

i = 3 31 0 33 0 

i = 4 33 0 0 0 

i = 5 30 0 34 0 
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Figure 6: The production diagrams of 1L-PM, ML-PM and MLOV-PM 

The solution is illustrated in Figure 6, where each node or circle shows the product at the 

top and its lot size at the bottom, and each arrow demonstrates a setup and an overlapped setup 

in bold as below:   

product

Lot size

Setup Overlapped Setup

 
Note in Figure 6 how effectively the MLOV-PM model twice took advantage of 

overlapping setups on machine 1 to use machine capacity and reduce inventory, backlogs and 



slack time. Furthermore, both the multiple lot models, ML-PM and MLOV-PM, took 

advantage of shortcut product 5 to reduce the backlogs, compares to the one lot model 1L-PM. 
Table 7: Results of 1L-PM, ML-PM and MLOV-PM 

Parallel machine 1L-PM ML-PM MLOV-PM 

Setup time 76 80 80 

Slack capacity 4 0 0 

Inventory  7 7 0 

Backlogs 6 2 0 

CPU time (seconds) 774 315 451 

Total cost = Cost of 

(Backlogs + Inventory +Setup) 
61220 

(60000+70+1150) 

21270 

(20000+70+1200) 

1200 

(0+0+1200) 

4.2 Flexible Flow Line 

To model different machines at each stage e of an FFL, an index  𝑚𝑒 is used. There are E 

different stages e and 𝑀𝑒 different machines 𝑚𝑒 available for production at stage e. Apart from 

the inventory and backlogs variables, the FFL’s data and variables are similar to PM’s where 

index 𝑚  is replaced by index 𝑚𝑒.  The new inventory and backlogs variables of FFL are as 

follows: 

Inventory level of product i at stage e at the end of period t. 𝐼𝑖𝑒𝑡 

Backordered amount of product i at the last stage E at the end of period t. 𝐵𝑖𝐸𝑡 

 Thus the new inventory balance constraints are:  

∀ 𝑗, 𝑡(27) 𝐼𝑗𝐸,𝑡−1 − 𝐵𝑗𝐸,𝑡−1 + ∑ 𝑥𝑗𝑚𝑒𝑡

𝑚𝐸

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡 

∀ 𝑗, 𝑡, 𝑒 = 1, … , 𝐸 − 1 (28) 𝐼𝑗𝑒,𝑡−1 + ∑ 𝑥𝑗𝑚𝑒𝑡

𝑚𝑒

− 𝐼𝑗𝑒𝑡  = ∑ 𝑥𝑗𝑚𝑒+1,𝑡+1

𝑚𝑒+1

 

∀ 𝑖, 𝑡(29) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡 

Constraints (27) and (28) express the material balance including backorders for end items 

and work in process respectively. Constraint (29) bounds backorders of end items in any period 

to be within a specified proportion of demand. This is the practiced assumptions in flexible 

flow shop manufacturing systems (Özdamar and Barbaroso lu 1999). Moreover the holding 

cost will be different at each stage so ℎ𝑖𝑡 now becomes ℎ𝑖𝑒𝑡 which is the cost of holding a unit 

of product i from period t to t+1 at stage e. The complete models for Multiple Lots for Flexible 

Flow Lines, denoted ML-FFL, and Multiple Lots with Setup-Overlapping for Flexible Flow 

Lines, denoted MLOV-FFL, are presented in Appendices D and E respectively. Apart from the 

inventory balance constraints, the FFL’s constraints are similar to PM’s substituting index 𝑚 

with index 𝑚𝑒.   

Example 5: If the parallel machines production system is duplicated in series, then the 

result is a Flexible Flow Lines (FFL) production system with two stages in series and two 

parallel machines for each stage.  In this case, the FFL data for each stage is exactly the same 

as for PM. The holding costs assume that successive stages add value, so that work-in-process 

holding costs will increase as material progresses along the line. To reflect this, a value-added 

percentage factor VAP is used, whose value is 1.2. The first stage’s unit holding cost ℎ𝑖𝑡1 for 



product i is 10 and for the subsequent stages, hite = VAP ∙ hit,e-1,  𝑒 ≥ 2. Thus the second 

stage’s unit holding cost ℎ𝑖𝑡2 for product i is ℎ𝑖𝑡2 = 1.2 × 10 = 12. 

To analyse the FFL in detail, it was solved by the three models 1L-FFL, ML- FFL and 

MLOV- FFL considering the demand of first and second period in Table 6. The production 

diagrams and the results of FFL for two periods are shown in Figure 7 and Table 8 respectively.  

In order to simplify the FFL production diagram, the one-period-backward shifted demand 

is considered for intermediate stages (𝑒 < 𝐸), meaning that 𝑥𝑗𝑚𝑒+1,𝑡+1 in the right hand of 

equation (28) changes to 𝑥𝑗𝑚𝑒+1𝑡. Thus for first stage, the inventory balance equation would be 

𝐼𝑗1,𝑡−1 + ∑ 𝑥𝑗𝑚1𝑡𝑚1
− 𝐼𝑗1𝑡  = ∑ 𝑥𝑗𝑚2𝑡𝑚2

, ∀𝑗, 𝑡. 
Table 8: Results of 1L-FFL, ML-FFL and MLOV-FFL for FFL problem with two periods 

Flexible Flow Line 1L-FFL ML-FFL MLOV-FFL 

Setup time 78 86 86 

Slack capacity 9 2 0 

Inventory  3 0 0 

Backlogs 6 2 0 

CPU time (seconds)  623 662 656 

Total cost = Cost of 

(Backlogs + Inventory +Setup) 
61236 

(60000+36+1200) 

21300 

(20000+0+1300) 

1300 

(0+0+1300) 

Note that the ML-FFL model took advantage of shortcut products in both stages and 

efficiently used the capacity of all four machines to reduce inventory, backlogs and slack 

capacity, compared to the ML-FFL. As shown in Table 8, the backlogs and inventory fell to 2 

and 0 respectively for the ML-FFL model, and both fell to 0 for the MLOV-FFL. Thus the 

MLOV-FFL used the total scarce production capacity of 4 machines more efficiently by taking 

advantage of overlapping setups three times (Figure 7) and left no inventory, shortage and slack 

capacity.  
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Figure7: The production diagrams of 1L-FFL, ML-FFL and MLOV-FFL with two periods 



4.3  Computational tests 

To obtain some insight into the relative efficiencies of the three models in PM and FFL, a 

variety of problem sizes are solved in a three-hour time limit considering demand over 2 and 4 

periods, similar to Table 6. The objective function and the CPLEX optimality gap of the models 

after every hour are shown in Table 9 for each problem size.   
Table 9: Results of the three models for different problem sizes in PM and FFL systems. 

Stage 

E 

Machine 

𝑴𝒆 

Period 

T 

1L MODEL ML MODEL MLOV MODEL 

1 Hour 2 

Hours 

3 

Hours 

1 Hour 2 

Hours 

3 

Hours 

1 Hour 2 Hours 3 Hours 

1 2 2 Obj 

Gap 

50680 - - 20650 - - 650 - - 

Optimal in 13 seconds Optimal in 20 seconds Optimal in 3 seconds 

1 2 4 Obj 

Gap 

51260 - - 21270 - - 1200 - - 

Optimal in 146 seconds Optimal in 1044 seconds Optimal in 328 seconds 

1 3 2 Obj 

Gap 

180790 - - 154113 - - 154083 - - 

Optimal in 205 seconds Optimal in 222 seconds Optimal in 154 seconds 

1 3 4 Obj 

Gap 

424931 424931 351557 318384 301547 301547 338301 338301 301517 

74.6% 69.2% 49.7% 61.1% 40.9% 27.4% 99.68% 99.66% 99.60% 

2 2 2 Obj 

Gap 

51336 - - 21300 - - 1300 - - 

Optimal in 1134 seconds Optimal in 462 seconds Optimal in 73 seconds 

2 2 4 Obj 

Gap 

122504  - - 22483 - - 2400 2400 2400 

Out of memory in 1576 (s) 

with 98.43%  

Optimal in 1043 seconds 13.56% 10.17% 9.75% 

2 3 2 Obj 

Gap 

181548 - - 154869 154869 - 171616 154833 154833 

Optimal in 2776 seconds 24.2% 0% in 6123 (s) 75.4% 30.9% 5.8% 

2 3 4 Obj 

Gap 

778255 689670 686870 723328 673015 652960 No feasible 770433 526445 

99.79% 99.77% 96.10% 97.77% 92.91% 90.36% No feasible 99.79% 99.69% 

3 2 2 Obj 

Gap 

51992 - - 21949 - - 1950 - - 

Optimal in 2619 seconds Optimal in 622 seconds Optimal in 550 seconds 

3 2 4 Obj 

Gap 

344296 - - 805675 764891 454602 103626 103592 - 

Out of memory in 2379  (s) 

with 99.15% 

99.66% 99.64% 99.40% Out of memory in 5799  (s) with 

97.20% 

3 3 2 Obj 

Gap 

232920 232920 232920 322650 - - 155633 155583 155583 

38.9% 21.93% 21.91% Out of memory in 1601(s) 

with 93.31% 

81.94% 63.39% 48.39% 

3 3 4 Obj 

Gap 

- - - - - - - - - 

No feasible solution No feasible solution  No feasible solution 

The test results in Table 9 show, for all problem sizes, that the MLOV model obtains a 

better solution than the ML and 1L models after three hours and that ML is more efficient than 

1L due to its use of the shortcut product. However in large instances, the models left large 

optimality gaps, particularly MLOV due to its extra binary variables 

𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡  for overlapping setups. 

Note that for both time horizons of 2 and 4 periods, adding a stage or a machine 

significantly increases the optimality gap. Moreover CPLEX could not find a feasible solution 

for any problem with the attributes bigger than 𝐸 = 3, 𝑀 = 3 𝑎𝑛𝑑 𝑇 = 4 within the three-hour 



time limit, emphasizing the need for an efficient heuristic solution procedure for large 

problems. 

5. Final remarks 

This paper presented new mix integer programming formulations for capacitated lot sizing 

and scheduling with non-triangular sequence-dependent setup times and costs, incorporating 

all the necessary features of setup carryover and overlapping on different machine 

configurations. These features relax all limitations of physical separation between the periods 

provide more flexibility to the lot sizing model.  

To assess how effectively the multiple lot model with setup overlapping took advantage 

of shortcut products and setup overlapping features to reduce backlogs and inventory, three 

models 1L, ML and MLOV were compared for three production systems SM, PM and FFL. 

The computational results showed that the multiple-lots and setup overlapping features of the 

model enable more efficient production than when the formulation excludes setup overlapping 

or is restricted to single lot per product per product. 

On a single machine the results showed  highly significant decreases in backlogs, 

inventory and total costs for the MLOV-SM model compared to those for the ML-SM and 1L-

SM models. Furthermore ML-SM is more efficient than 1L-SM due to its use of the shortcut 

product 5 to economise on setups and reduce backlogs and inventory.  

The tests on the PM and FFL models also confirmed the effectiveness of the new 

formulation. However, because of the increased number of binary variables in large instances, 

CPLEX exhausted the available RAM before terminating the branch-&-cut search and leaving 

a large optimality gap.  

To sum up, the test results above, although merely probing, and not conclusive, indicate 

that for all machine configurations the MLOV model obtains a better solution. Due to the 

importance of the number of binary variables in large instances, future research needs to 

develop efficient solution methods fordifferent machine configurations. Future work will also 

computationally compare different demand data patterns with variables sizes on the SM, PM 

and FFL models.  

The High Multiplicity Travelling Salesman Problem (HMATSP) is a special type of the 

classical travelling salesman problem in which each node is visited multiple times. Sarin et al. 

(2011) incorporated the HMATSP model as a substructure to formulate lot-sizing problem 

involving parallel machines and sequence-dependent setup costs, also known as the 

Chesapeake Problem. The HMATSP can also be applied for scheduling family products with 

several identical items to be produced separately on a single machine.  Modelling Multiple-Lot 

production per period based on the HMATSP formulations poses a very interesting challenge 

for future research.  

While the multi-commodity flow (MCF) subtour elimination constraints do provide 

much tighter formulations, it is recognised that their inclusion can be increase computational 

time in larger-sized models.  The challenge of improving computing times is left for future 

research. 

Given that in the case of existing non-triangular setups sufficient production of an 

intermediate or cleaning product can clean the machine more efficiently, the question arises as 



to whether the quantity of cleaning product called minimum lot size is sequence dependent. 

This poses another research challenge about how to model the sequence-dependency of 

minimum lot sizes in lot sizing and scheduling problems.  
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Appendix A: MLOV-SM model 
 

(1) Minimise  ∑ 𝑠𝑐𝑖𝑗𝑦𝑖𝑗𝑡𝑖𝑗𝑡 + ∑ ℎ𝑖𝑡𝐼𝑖𝑡𝑖𝑡 + ∑ 𝑔𝑖𝑡𝐵𝑖𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝑡−1 − 𝐵𝑗𝑡−1 + 𝑥𝑗𝑡 − 𝐼𝑗𝑡 + 𝐵𝑗𝑡 = 𝑑𝑗𝑡 

∀ 𝑡 (3) ∑ 𝑏𝑖𝑥𝑖𝑡

𝑖

+ ∑ 𝑠𝑡𝑖𝑗𝑦𝑖𝑗𝑡

𝑖𝑗

+ 𝑆𝑡−1 − 𝑆𝑡 + 𝑠𝑙𝑘𝑡 =  𝐶𝑡 

∀ 𝑗, 𝑡 (4) 𝑥𝑗𝑡  ≤  𝑈𝐵𝑗𝑡 × (𝑧𝑗𝑡 − ∑ 𝑂𝐿𝑆𝑖𝑗𝑡

𝑖

) 

∀ 𝑗, 𝑡 (5) 𝑦𝑗𝑗𝑡 = 0 

∀  𝑡 = 1, . . , 𝑇 + 1(6) ∑ 𝛼𝑖𝑡

𝑖

= 1 

∀ 𝑡 = 1(7) 𝛼𝑖𝑜𝑡 = 1 

∀ 𝑗, 𝑡 (8) 𝑥𝑗𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑡𝛼𝑗𝑡 

∀ 𝑗, 𝑡 (9) 𝑥𝑗𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑡 (𝛼𝑗,𝑡+1 − ∑ 𝑂𝐿𝑆𝑖𝑗𝑡

𝑖

) 

∀ 𝑗, 𝑡 (10) 𝑥𝑗𝑡
𝐿 +  𝑥𝑗,𝑡+1

𝐹  ≥  𝑚𝑙𝑗𝛼𝑗,𝑡+1 

∀ 𝑗, 𝑡 (11) 𝑥𝑗𝑡 − 𝑥𝑗𝑡
𝐹 −  𝑥𝑗𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑡 − 𝛼𝑗𝑡 − 𝛼𝑗,𝑡+1)   

∀ 𝑖, 𝑡  (12) 𝛼𝑖𝑡 + ∑ 𝑦𝑗𝑖𝑡

𝑗

=  𝑧𝑖𝑡 

∀ 𝑖, 𝑡  (13) ∑ 𝑦𝑖𝑗𝑡

𝑗

+ 𝛼𝑖,𝑡+1 =  𝑧𝑖𝑡 

∀ 𝑖, 𝑗, 𝑘, 𝑡  (14) 𝑎𝑖𝑗𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑡 

∀ 𝑖, 𝑡  (15) 𝑧𝑖𝑡 ≥ 𝑧𝑖𝑡
𝑏𝑖𝑛 

∀ 𝑖, 𝑡  (16) 𝑧𝑖𝑡 ≤ 𝑍𝑈𝐵𝑖𝑧𝑖𝑡
𝑏𝑖𝑛 

∀ 𝑘, 𝑡  (17) 𝛼𝑘𝑡 + ∑ 𝑎𝑖𝑘𝑡
𝑘

𝑖

= 𝑧𝑘𝑡
𝑏𝑖𝑛 

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑡  (18) 𝛼𝑖𝑡 + ∑ 𝑎𝑗𝑖𝑡
𝑘

𝑗

≥  ∑ 𝑎𝑖𝑗𝑡
𝑘

𝑗

 

∀ 𝑘, 𝑗, 𝑡 (19) 𝑎𝑘𝑗𝑡
𝑘 = 0  

∀ 𝑡 (20)  𝑆𝑡  ≤    ∑ 𝑠𝑡𝑖𝑗𝑂𝐿𝑆𝑖𝑗𝑡

𝑖𝑗

 

∀ 𝑖, 𝑡 (21) ∑ 𝑂𝐿𝑆𝑖𝑗𝑡

𝑗

≤  𝛼𝑖,𝑡+1 

∀ 𝑖, 𝑗, 𝑡 (22) 𝑂𝐿𝑆𝑖𝑗𝑡  ≤    𝑦𝑖𝑗𝑡 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑥𝑗𝑡 , 𝐼𝑗𝑡 , 𝐵𝑗𝑡, 𝑆𝑡, 𝑠𝑙𝑘𝑡, 𝑥𝑗𝑡
𝐹 , 𝑥𝑗𝑡

𝐿  

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑧𝑖𝑡, 𝑦𝑖𝑗𝑡 



𝐵𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑖𝑗𝑡
𝑘 , 𝛼𝑖𝑡, 𝑧𝑖𝑡

𝑏𝑖𝑛, 𝑂𝐿𝑆𝑖𝑗𝑡 

Appendix B: ML-PM model 

(1) Minimise  ∑ 𝑠𝑐𝑖𝑗𝑚𝑦𝑖𝑗𝑚𝑡𝑖𝑗𝑚𝑡 + ∑ ℎ𝑖𝑡𝐼𝑖𝑡𝑖𝑡 + ∑ 𝑔𝑖𝑡𝐵𝑖𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝑡−1 − 𝐵𝑗𝑡−1 + ∑ 𝑥𝑗𝑚𝑡

𝑚

− 𝐼𝑗𝑡 + 𝐵𝑗𝑡 = 𝑑𝑗𝑡 

∀ 𝑚, 𝑡 (3) ∑ 𝑏𝑖𝑚𝑥𝑖𝑚𝑡

𝑖

+ ∑ 𝑠𝑡𝑖𝑗𝑚𝑦𝑖𝑗𝑚𝑡

𝑖𝑗

+ 𝑠𝑙𝑘𝑚𝑡 =  𝐶𝑚𝑡 

∀ 𝑗, 𝑚, 𝑡 (4) 𝑥𝑗𝑚𝑡  ≤  𝑈𝐵𝑗𝑚𝑡 × 𝑧𝑗𝑚𝑡
𝑏𝑖𝑛 

∀ 𝑗, 𝑚, 𝑡 (5) 𝑦𝑗𝑗𝑚𝑡 = 0 

∀  𝑚, 𝑡 = 1, . . , 𝑇 + 1(6) ∑ 𝛼𝑖𝑚𝑡

𝑖

= 1 

∀ 𝑚, 𝑡 = 1(7) 𝛼𝑖𝑜𝑚𝑚𝑡 = 1 

∀ 𝑗, 𝑚, 𝑡 (8) 𝑥𝑗𝑚𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑚𝑡𝛼𝑗𝑚𝑡 

∀ 𝑗, 𝑚, 𝑡 (9) 𝑥𝑗𝑚𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑚𝑡𝛼𝑗𝑚,𝑡+1 

∀ 𝑗, 𝑚, 𝑡 (10) 𝑥𝑗𝑚𝑡
𝐿 + 𝑥𝑗𝑚,𝑡+1

𝐹  ≥  𝑚𝑙𝑗𝛼𝑚𝑗,𝑡+1 

∀ 𝑗, 𝑚, 𝑡 (11) 𝑥𝑗𝑚𝑡 − 𝑥𝑗𝑚𝑡
𝐹 −   𝑥𝑗𝑚𝑡

𝐿 ≥  𝑚𝑙𝑗 (𝑧𝑗𝑚𝑡 − 𝛼𝑗𝑚𝑡 − 𝛼𝑗𝑚,𝑡+1)   

∀ 𝑖, 𝑚, 𝑡  (12) 𝛼𝑖𝑚𝑡 + ∑ 𝑦𝑗𝑖𝑚𝑡

𝑗

=  𝑧𝑖𝑚𝑡 

∀ 𝑖, 𝑚, 𝑡  (13) ∑ 𝑦𝑖𝑗𝑚𝑡

𝑗

+ 𝛼𝑖𝑚,𝑡+1 =  𝑧𝑖𝑚𝑡 

∀ 𝑖, 𝑗, 𝑘, 𝑚, 𝑡  (14) 𝑎𝑖𝑗𝑚𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑚𝑡 

∀ 𝑖, 𝑚, 𝑡  (15) 𝑧𝑖𝑚𝑡 ≥ 𝑧𝑖𝑚𝑡
𝑏𝑖𝑛 

∀ 𝑖, 𝑚, 𝑡  (16) 𝑧𝑖𝑚𝑡 ≤ 𝑍𝑈𝐵𝑖𝑚𝑧𝑖𝑚𝑡
𝑏𝑖𝑛 

∀ 𝑘, 𝑚, 𝑡  (17) 𝛼𝑘𝑚𝑡 + ∑ 𝑎𝑖𝑘𝑚𝑡
𝑘

𝑖

= 𝑧𝑘𝑚𝑡
𝑏𝑖𝑛  

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑚, 𝑡  (18) 𝛼𝑖𝑚𝑡 + ∑ 𝑎𝑗𝑖𝑚𝑡
𝑘

𝑗

≥  ∑ 𝑎𝑖𝑗𝑚𝑡
𝑘

𝑗

 

∀ 𝑘, 𝑗, 𝑚, 𝑡 (19) 𝑎𝑘𝑗𝑚𝑡
𝑘 = 0  

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑥𝑗𝑚𝑡 , 𝐼𝑗𝑡 , 𝐵𝑗𝑡, 𝑠𝑙𝑘𝑚𝑡, 𝑥𝑗𝑚𝑡
𝐹 , 𝑥𝑗𝑚𝑡

𝐿  

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑧𝑖𝑚𝑡, 𝑦𝑖𝑗𝑚𝑡  

𝐵𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑖𝑗𝑚𝑡
𝑘 , 𝛼𝑖𝑚𝑡 , 𝑧𝑖𝑚𝑡

𝑏𝑖𝑛  

 

Appendix C: MLOV-PM model 

(1) Minimise  ∑ 𝑠𝑐𝑖𝑗𝑚 𝑦𝑖𝑗𝑚𝑡𝑖𝑗𝑚𝑡 + ∑ ℎ𝑖𝑡  𝐼𝑖𝑡𝑖𝑡 + ∑ 𝑔𝑖𝑡 𝐵𝑖𝑡𝑖𝑡  



∀ 𝑗, 𝑡 (2) 𝐼𝑗𝑡−1 − 𝐵𝑗𝑡−1 + ∑ 𝑥𝑗𝑚𝑡

𝑚

− 𝐼𝑗𝑡 + 𝐵𝑗𝑡 = 𝑑𝑗𝑡 

∀ 𝑚, 𝑡 (3) ∑ 𝑏𝑖𝑚𝑥𝑖𝑚𝑡

𝑖

+ ∑ 𝑠𝑡𝑖𝑗𝑚𝑦𝑖𝑗𝑚𝑡

𝑖𝑗

+ 𝑆𝑚,𝑡−1 − 𝑆𝑚𝑡 + 𝑠𝑙𝑘𝑚𝑡 =  𝐶𝑚𝑡 

∀ 𝑗, 𝑚, 𝑡 

(4) 
𝑥𝑗𝑚𝑡  ≤  𝑈𝐵𝑗𝑚𝑡 × (𝑧𝑗𝑚𝑡 − ∑ 𝑂𝐿𝑆𝑖𝑗𝑚𝑡

𝑖

) 

∀ 𝑗, 𝑚, 𝑡 

(5) 

𝑦𝑗𝑗𝑚𝑡 = 0 

∀   𝑚, 𝑡 = 1, . . , 𝑇 + 1(6) ∑ 𝛼𝑖𝑚𝑡

𝑖

= 1 

∀  𝑚, 𝑡 = 1(7) 𝛼𝑖𝑜𝑚𝑚𝑡 = 1 

∀  𝑗, 𝑚, 𝑡 (8) 𝑥𝑗𝑚𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑚𝑡𝛼𝑗𝑚𝑡 

∀  𝑗, 𝑚, 𝑡 (9) 𝑥𝑗𝑚𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑡 (𝛼𝑗𝑚,𝑡+1 − ∑ 𝑂𝐿𝑆𝑖𝑗𝑚𝑡

𝑖

) 

∀ 𝑗, 𝑚, 𝑡 (10) 𝑥𝑗𝑚𝑡
𝐿 + 𝑥𝑗𝑚,𝑡+1

𝐹  ≥  𝑚𝑙𝑗𝛼𝑗𝑚,𝑡+1 

∀ 𝑗, 𝑚, 𝑡 (11) 𝑥𝑗𝑚𝑡 − 𝑥𝑗𝑚𝑡
𝐹 −   𝑥𝑗𝑚𝑡

𝐿 ≥  𝑚𝑙𝑗 (𝑧𝑗𝑚𝑡 − 𝛼𝑗𝑚𝑡 − 𝛼𝑗𝑚,𝑡+1)   

∀ 𝑖, 𝑚, 𝑡  (12) 𝛼𝑖𝑚𝑡 + ∑ 𝑦𝑗𝑖𝑚𝑡

𝑗

=  𝑧𝑖𝑚𝑡 

∀ 𝑖, 𝑚, 𝑡  (13) ∑ 𝑦𝑖𝑗𝑚𝑡

𝑗

+ 𝛼𝑖𝑚,𝑡+1 =  𝑧𝑖𝑚𝑡 

∀ 𝑖, 𝑗, 𝑘, 𝑚, 𝑡  (14) 𝑎𝑖𝑗𝑚𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑚𝑡 

∀ 𝑖, 𝑚, 𝑡  (15) 𝑧𝑖𝑚𝑡 ≥ 𝑧𝑖𝑚𝑡
𝑏𝑖𝑛 

∀ 𝑖, 𝑚, 𝑡  (16) 𝑧𝑖𝑚𝑡 ≤ 𝑍𝑈𝐵𝑖𝑚𝑧𝑖𝑚𝑡
𝑏𝑖𝑛 

∀ 𝑘, 𝑚, 𝑡  (17) 𝛼𝑘𝑚𝑡 + ∑ 𝑎𝑖𝑘𝑚𝑡
𝑘

𝑖

= 𝑧𝑘𝑚𝑡
𝑏𝑖𝑛  

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑚, 𝑡  (18) 𝛼𝑖𝑚𝑡 + ∑ 𝑎𝑗𝑖𝑚𝑡
𝑘

𝑗

≥  ∑ 𝑎𝑖𝑗𝑚𝑡
𝑘

𝑗

 

∀ 𝑘, 𝑗, 𝑚, 𝑡 (19) 𝑎𝑘𝑗𝑚𝑡
𝑘 = 0  

∀  𝑚, 𝑡 (20)  𝑆𝑚𝑡  ≤    ∑ 𝑠𝑡𝑖𝑗𝑚𝑂𝐿𝑆𝑖𝑗𝑚𝑡

𝑖𝑗

 

∀ 𝑖, 𝑚, 𝑡 (21) ∑ 𝑂𝐿𝑆𝑗𝑖𝑚𝑡

𝑗

≤  𝛼𝑖𝑚,𝑡+1 

∀ 𝑖, 𝑗, 𝑚, 𝑡 (22) 𝑂𝐿𝑆𝑖𝑗𝑚𝑡  ≤    𝑦𝑖𝑗𝑚𝑡 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑥𝑗𝑚𝑡 , 𝐼𝑗𝑡 , 𝐵𝑗𝑡, 𝑆𝑚𝑡, 𝑠𝑙𝑘𝑚𝑡, 𝑥𝑗𝑚𝑡
𝐹 , 𝑥𝑗𝑚𝑡

𝐿  

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑧𝑖𝑚𝑡, 𝑦𝑖𝑗𝑚𝑡  

𝐵𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑖𝑗𝑚𝑡
𝑘 , 𝛼𝑖𝑚𝑡 , 𝑧𝑖𝑚𝑡

𝑏𝑖𝑛 , 𝑂𝐿𝑆𝑖𝑗𝑚𝑡 



Appendix D: ML-FFL model 

(1) Minimise  ∑ 𝑠𝑐𝑖𝑗𝑚𝑒
 𝑦𝑖𝑗𝑚𝑒𝑡𝑖𝑗𝑒𝑚𝑡 + ∑ ℎ𝑖𝑒𝑡 𝐼𝑖𝑒𝑡𝑖𝑡 + ∑ 𝑔𝑖𝑡 𝐵𝑖𝐸𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝐸,𝑡−1 − 𝐵𝑗𝐸,𝑡−1 + ∑ 𝑥𝑗𝑚𝑒𝑡

𝑚𝐸

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡 

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1, … , 𝐸 − 1 (3) 𝐼𝑗𝑒,𝑡−1 + ∑ 𝑥𝑗𝑚𝑒𝑡

𝑚𝑒

− 𝐼𝑗𝑒𝑡  = ∑ 𝑥𝑗𝑚𝑒+1,𝑡+1

𝑚𝑒+1

 

∀ 𝑖, 𝑡 (4) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡 

∀ 𝑒, 𝑚, 𝑡 (5) ∑ 𝑏𝑖𝑚𝑒
𝑥𝑖𝑚𝑒𝑡

𝑖

+ ∑ 𝑠𝑡𝑖𝑗𝑚𝑒
𝑦𝑖𝑗𝑚𝑒𝑡

𝑖𝑗

+ 𝑠𝑙𝑘𝑚𝑒𝑡 =  𝐶𝑚𝑒𝑡 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (6) 𝑥𝑗𝑚𝑒𝑡  ≤  𝑈𝐵𝑗𝑚𝑒𝑡 × 𝑧𝑗𝑚𝑒𝑡
𝑏𝑖𝑛  

∀ 𝑗, 𝑒, 𝑚, 𝑡 (7) 𝑦𝑗𝑗𝑚𝑒𝑡 = 0 

∀  𝑒, 𝑚, 𝑡 = 1, . . , 𝑇 + 1(8) ∑ 𝛼𝑖𝑚𝑒𝑡

𝑖

= 1 

∀ 𝑒, 𝑚, 𝑡 = 1(9) 𝛼𝑖𝑜𝑚𝑒𝑚𝑒𝑡 = 1 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (10) 𝑥𝑗𝑚𝑒𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑚𝑒𝑡𝛼𝑗𝑚𝑒𝑡 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (11) 𝑥𝑗𝑚𝑒𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑚𝑒𝑡𝛼𝑗𝑚𝑒,𝑡+1 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (12) 𝑥𝑗𝑚𝑒𝑡
𝐿 +  𝑥𝑗𝑚𝑒,𝑡+1

𝐹  ≥  𝑚𝑙𝑗𝛼𝑚𝑒𝑗,𝑡+1 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (13) 𝑥𝑗𝑚𝑒𝑡 − 𝑥𝑗𝑚𝑒𝑡
𝐹 −  𝑥𝑗𝑚𝑒𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑚𝑒𝑡 − 𝛼𝑗𝑚𝑒𝑡 − 𝛼𝑗𝑚𝑒,𝑡+1)   

∀ 𝑖, 𝑒, 𝑚, 𝑡  (14) 𝛼𝑖𝑚𝑒𝑡 + ∑ 𝑦𝑗𝑖𝑚𝑒𝑡

𝑗

=  𝑧𝑖𝑚𝑒𝑡 

∀ 𝑖, 𝑒, 𝑚, 𝑡  (15) ∑ 𝑦𝑖𝑗𝑚𝑒𝑡

𝑗

+ 𝛼𝑖𝑚𝑒,𝑡+1 =  𝑧𝑖𝑚𝑒𝑡 

∀ 𝑖, 𝑗, 𝑘, 𝑒, 𝑚, 𝑡  (16) 𝑎𝑖𝑗𝑚𝑒𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑚𝑒𝑡 

∀ 𝑖, 𝑒, 𝑚, 𝑡  (17) 𝑧𝑖𝑚𝑒𝑡 ≥ 𝑧𝑖𝑚𝑒𝑡
𝑏𝑖𝑛  

∀ 𝑖, 𝑒, 𝑚, 𝑡  (18) 𝑧𝑖𝑚𝑒𝑡 ≤ 𝑍𝑈𝐵𝑖𝑚𝑒
𝑧𝑖𝑚𝑒𝑡

𝑏𝑖𝑛  

∀ 𝑘, 𝑒, 𝑚, 𝑡  (19) 𝛼𝑘𝑚𝑒𝑡 + ∑ 𝑎𝑖𝑘𝑚𝑒𝑡
𝑘

𝑖

= 𝑧𝑘𝑚𝑒𝑡
𝑏𝑖𝑛  

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑒, 𝑚, 𝑡  (20) 𝛼𝑖𝑚𝑒𝑡 + ∑ 𝑎𝑗𝑖𝑚𝑒𝑡
𝑘

𝑗

≥  ∑ 𝑎𝑖𝑗𝑚𝑒𝑡
𝑘

𝑗

 

∀ 𝑘, 𝑗, 𝑒, 𝑚, 𝑡 (21) 𝑎𝑘𝑗𝑚𝑒𝑡
𝑘 = 0  

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑥𝑗𝑚𝑒𝑡, 𝐼𝑗𝑒𝑡 , 𝐵𝑗𝑒𝑡, 𝑠𝑙𝑘𝑚𝑒𝑡, 𝑥𝑗𝑚𝑒𝑡
𝐹 , 𝑥𝑗𝑚𝑒𝑡

𝐿  

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑧𝑖𝑚𝑒𝑡, 𝑦𝑖𝑗𝑚𝑒𝑡  

𝐵𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑖𝑗𝑚𝑒𝑡
𝑘 , 𝛼𝑖𝑚𝑒𝑡, 𝑧𝑖𝑚𝑒𝑡

𝑏𝑖𝑛  

 



Appendix E: MLOV-FFL model 

(1) Minimise  ∑ 𝑠𝑐𝑖𝑗𝑚𝑒
 𝑦𝑖𝑗𝑚𝑒𝑡𝑖𝑗𝑒𝑚𝑡 + ∑ ℎ𝑖𝑒𝑡 𝐼𝑖𝑒𝑡𝑖𝑡 + ∑ 𝑔𝑖𝑡 𝐵𝑖𝐸𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝐸,𝑡−1 − 𝐵𝑗𝐸,𝑡−1 + ∑ 𝑥𝑗𝑚𝑒𝑡

𝑚𝐸

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡 

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1, … , 𝐸 − 1 (3) 𝐼𝑗𝑒,𝑡−1 + ∑ 𝑥𝑗𝑚𝑒𝑡

𝑚𝑒

− 𝐼𝑗𝑒𝑡  = ∑ 𝑥𝑗𝑚𝑒+1,𝑡+1

𝑚𝑒+1

 

∀ 𝑖, 𝑡 (4) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡 
∀ 𝑒, 𝑚, 𝑡(5) 

∑ 𝑏𝑖𝑚𝑒
𝑥𝑖𝑚𝑒𝑡

𝑖

+ ∑ 𝑠𝑡𝑖𝑗𝑚𝑒
𝑦𝑖𝑗𝑚𝑒𝑡

𝑖𝑗

+ 𝑆𝑚𝑒,𝑡−1 − 𝑆𝑚𝑒𝑡 + 𝑠𝑙𝑘𝑚𝑒𝑡 =  𝐶𝑚𝑒𝑡 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (6) 𝑥𝑗𝑚𝑒𝑡  ≤  𝑈𝐵𝑗𝑚𝑒𝑡 × (𝑧𝑗𝑚𝑒𝑡 − ∑ 𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡

𝑖

) 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (7) 𝑦𝑗𝑗𝑚𝑒𝑡 = 0 

∀  𝑒, 𝑚, 𝑡 = 1, . . , 𝑇 + 1(8) ∑ 𝛼𝑖𝑚𝑒𝑡

𝑖

= 1 

∀ 𝑒, 𝑚, 𝑡 = 1(9) 𝛼𝑖𝑜𝑚𝑒𝑚𝑒𝑡 = 1 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (10) 𝑥𝑗𝑚𝑒𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑚𝑒𝑡𝛼𝑗𝑚𝑒𝑡 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (11) 𝑥𝑗𝑚𝑒𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑚𝑒𝑡  (𝛼𝑗𝑚𝑒,𝑡+1 − ∑ 𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡

𝑖

) 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (12) 𝑥𝑗𝑚𝑒𝑡
𝐿 +  𝑥𝑗𝑚𝑒,𝑡+1

𝐹  ≥  𝑚𝑙𝑗𝛼𝑚𝑒𝑗,𝑡+1 

∀ 𝑗, 𝑒, 𝑚, 𝑡 (13) 𝑥𝑗𝑚𝑒𝑡 − 𝑥𝑗𝑚𝑒𝑡
𝐹 −  𝑥𝑗𝑚𝑒𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑚𝑒𝑡 − 𝛼𝑗𝑚𝑒𝑡 − 𝛼𝑗𝑚𝑒,𝑡+1)   

∀ 𝑖, 𝑒, 𝑚, 𝑡  (14) 𝛼𝑖𝑚𝑒𝑡 + ∑ 𝑦𝑗𝑖𝑚𝑒𝑡

𝑗

=  𝑧𝑖𝑚𝑒𝑡 

∀ 𝑖, 𝑒, 𝑚, 𝑡  (15) ∑ 𝑦𝑖𝑗𝑚𝑒𝑡

𝑗

+ 𝛼𝑖𝑚𝑒,𝑡+1 =  𝑧𝑖𝑚𝑒𝑡 

∀ 𝑖, 𝑗, 𝑘, 𝑒, 𝑚, 𝑡  (16) 𝑎𝑖𝑗𝑚𝑒𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑚𝑒𝑡 

∀ 𝑖, 𝑒, 𝑚, 𝑡  (17) 𝑧𝑖𝑚𝑒𝑡 ≥ 𝑧𝑖𝑚𝑒𝑡
𝑏𝑖𝑛  

∀ 𝑖, 𝑒, 𝑚, 𝑡  (18) 𝑧𝑖𝑚𝑒𝑡 ≤ 𝑍𝑈𝐵𝑖𝑚𝑒
𝑧𝑖𝑚𝑒𝑡

𝑏𝑖𝑛  

∀ 𝑘, 𝑒, 𝑚, 𝑡  (19) 𝛼𝑘𝑚𝑒𝑡 + ∑ 𝑎𝑖𝑘𝑚𝑒𝑡
𝑘

𝑖

= 𝑧𝑘𝑚𝑒𝑡
𝑏𝑖𝑛  

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑒, 𝑚, 𝑡  (20) 𝛼𝑖𝑚𝑒𝑡 + ∑ 𝑎𝑗𝑖𝑚𝑒𝑡
𝑘

𝑗

≥  ∑ 𝑎𝑖𝑗𝑚𝑒𝑡
𝑘

𝑗

 

∀ 𝑘, 𝑗, 𝑒, 𝑚, 𝑡 (21) 𝑎𝑘𝑗𝑚𝑒𝑡
𝑘 = 0  

∀  𝑒, 𝑚, 𝑡 (22)  𝑆𝑚𝑒𝑡  ≤    ∑ 𝑠𝑡𝑖𝑗𝑚𝑒
𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡

𝑖𝑗

 

∀ 𝑖, 𝑒, 𝑚, 𝑡 (23) ∑ 𝑂𝐿𝑆𝑗𝑖𝑚𝑒𝑡

𝑗

≤  𝛼𝑖𝑚𝑒,𝑡+1 

∀ 𝑖, 𝑗, 𝑒, 𝑚, 𝑡 (24) 𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡  ≤    𝑦𝑖𝑗𝑚𝑒𝑡 



𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑥𝑗𝑚𝑒𝑡, 𝐼𝑗𝑒𝑡 , 𝐵𝑗𝑒𝑡, 𝑆𝑚𝑒𝑡, 𝑠𝑙𝑘𝑚𝑒𝑡, 𝑥𝑗𝑚𝑒𝑡
𝐹 , 𝑥𝑗𝑚𝑒𝑡

𝐿  

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  𝑧𝑖𝑚𝑒𝑡, 𝑦𝑖𝑗𝑚𝑒𝑡  

𝐵𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑖𝑗𝑚𝑒𝑡
𝑘 , 𝛼𝑖𝑚𝑒𝑡, 𝑧𝑖𝑚𝑒𝑡

𝑏𝑖𝑛 , 𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡 

 

 


