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Abstract 

Third-hand smoke (THS) can be defined as the contamination of surfaces by second-hand smoke.  

This residue can form further pollutants which can be re-suspended in dust or be re-emitted into the 

gas phase.  THS is a complex mixture and as a result studies have focused on nicotine as a marker of 

THS, it being the most abundant and indicative organic compound deposited.  In this present study, 

the extraction of dust wipe samples and the subsequent chromatographic conditions required for 

the separation of nicotine by liquid chromatography with electrochemical detection were 

investigated and optimised.  The optimum chromatographic conditions were identified as a 150 mm 

x 4.6 mm, 5 µm C18 column with a mobile phase consisting of 65 % methanol, 35 % pH 8 20 mM 

phosphate buffer.  Hydrodynamic voltammetry was used to optimise the applied potential which 

was identified to be +1.8 V (vs. stainless steel).  Under these conditions, a linear range for nicotine of 

13 to 3240 µg/L (0.26 ng – 65 ng on column) was obtained, with a detection limit of 3.0 µg/L (0.06 ng 

on column) based on a signal-to-noise ratio of three. Dust wipe samples were extracted in methanol 

with the aid of sonication.  Mean recoveries of 98.4 % (% CV = 7.8 %) were found for dust wipe 

samples spiked with 6.50 µg of nicotine.  Musk ketone, urea and stearic acid were found not to 

interfere.  Communal entrance ways were found to be contaminated with THS nicotine levels of 

between 66.8 and 156 µg/m2. 
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Introduction 

Nicotine (i) is a pyridine alkaloid found in several species of fungi and plants.  The most 

common source of nicotine is the plant Nicotiana tabacum which is commercially grown in 

many countries and processed into tobacco which is either chewed or smoke to release the 

nicotine present.  Nicotine acts on the central nervous system causing an elevation of mood 

in the smoker and causing the individual to feel more relaxed.  This effect is one of the 

features desirable to smokers resulting in their continued use of nicotine containing tobacco 

products.  Nicotine is reported to equate to between 6.17 mg and 28.86 mg per cigarette 

and up to 50.89 mg/g in pipe tobacco [1] and it is the most abundant chemical found in 

tobacco smoke [2], making it a useful marker for the analysis of tobacco smoke in 

environmental [3] and biological samples [4,5].   

 

(i) 

Recent research [6-8] has demonstrated that not only are individuals at risk from smoking 

itself or second hand smoke produced, but they are also exposed to what is referred to as 

third hand smoke (THS).  THS is formed from tobacco smoke or vapour and remains 
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deposited after the smoking has ceased.  Studies have found that nicotine and other 

compounds can be found in house dust, cars and hotel rooms and on surfaces [6].  The 

deposited nicotine can react with pollutants, such as nitrous acid and ozone to form toxic 

and potentially mutagenic and cytotoxic compounds known as tobacco-specific 

nitrosamines (TSNAs) [7,8] which can be reemitted back into the environment by degassing 

or through movements of dust [6]. 

A number of different analytical methods have been utilised for the determination of 

nicotine in THS [9-21].  Nicotine has been determined in several different sample matrices 

such as toenails [22] and hair [23-26] utilising the liquid chromatography with 

electrochemical detection (LC-ED) method developed by Mahoney and Al-Delaimy [27], 

however to our knowledge, there have been no other reports on its determination by LC-ED.  

LC-ED offers a number of advantages, as it is both a sensitive and economic approach as has 

been demonstrated in number of previous reviews and monographs focused on its theory 

and application [28-30].  Table 1 describes earlier reported liquid chromatographic and 

electrophoretic approaches using electrochemical detection for the determination of 

nicotine.  Previous reverse phase LC-ED approaches require mobile phase containing ion 

pairing agents and low concentrations of organic modifier; situations which can lead to 

stationary phase de-wetting and long conditioning times resulting in poor separation and 

overall analytical performance.  These approaches have also utilised multiple electrode 

detection systems requiring complex dedicated equipment for their control and application.  

Our present report represents the first report of LC-ED using the much simpler and 

economic approach of single electrode amperometric detection [31].  Our system requires 

only a standard potentiostat and a commercially available thin layer cell for its 
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implementation; notably cheaper and easier to maintain than dedicated electrochemical 

detector systems.  Our approach also allows for overall shorter run times and pre-

conditioning times as we have avoided the use of ion-pairing reagents. 

In the first part of this investigation we examined the electrochemical behaviour of nicotine 

by cyclic voltammetry, examining the effect of both scan rate and pH.  The chromatographic 

conditions were then optimised and we then used hydrodynamic voltammetry to identify 

the optimum applied potential for its determination by LC-ED.  The possibility of extracting 

nicotine from dust wipes was then investigated, and a number of real samples were 

examined using the optimised method. 
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Technique Linear Range 
 

Limit of Detection Comments Ref 

Liquid chromatography with 
dual electrochemical 
detection at a porous 

graphite electrode. 

4 to 640 ng/mg 
of human hair. 

0.05 ng for 2 mg of 
human hair. 

Determination of nicotine in children’s hair using 2-phenylimidazole as an 
internal standard.  The voltage settings for the conditioning cell and 

detectors 1 and 2 were +0.6, +0.6 and +0.9 V respectively.   

[27] 

Liquid chromatography with 
dual electrochemical 
detection at a porous 

graphite electrode. 

0.2 ng to 5 µg  Dual electrode detection.  Guard cell = +1.0 V, detector 1 = -0.5 V and 
detector 2 = +0.75 V.  Reverse-phase C18 stationary phase.  Mobile phase 

primary buffer 92.5 % 2 mM NaH2PO4 containing 0.25 mM Na octyl sulphate; 
secondary buffer 7.5 % methanol-acetonitrile (3:1) adjusted to pH 3.0 with 

H3PO4. 

[32] 

Liquid chromatography with 
dual electrochemical 

detection. 

0.2 to 1.0 ng   Dual glassy carbon electrode, detection potential +0.75 V.  Mobile phase of 2 
mM NaH2PO4, 0.25 mM sodium octyl sulphate, 5 % organic modifier 

(acetonitrile : methanol, 3:1 by volume).  Stationary phase C18.  Samples of 
nicotine in dog plasma analysed after protein precipitation and diluted in 

mobile phase. 

[33] 

Micellar liquid 
chromatography with 

electrochemical detection 

0.03 to 2 µg/mL 4 ng/mL Nicotine in chewing gum, dermal patches, tobacco and serum samples.  
Mobile phase of SDS 0.15 M–6 % (v/v) pentanol–0.01M NaH2PO4 (pH 6)–

0.001 M KCl.  Applied potential +0.8 V. 

[34] 

Capillary electrophoresis. 0.01 to 2.0 
µg/mL 

2 ng/mL Detection at +0.95 V at a pencil carbon disc working electrode.  Separation 
by capillary electrophoresis: fused-silica capillary, 25 µm internal diameter × 
65 cm; working electrode: 0.3 mm diameter carbon disc electrode; running 

buffer: PBS, BB, and Tris-HCl solution with pH of 8.0, 60 mM.  Separation 
voltage: 18 kV. Injection: 10 s/18 kV. 

[35] 

Capillary electrophoresis. 
 

5.0×10
–7

 to 
1.0×10

–4
 M 

5x10
-8

 M Detection potential of +1.20 V at a carbon fibre working electrode (33 μm 
diameter).40 mM phosphate buffer (pH 2.0), a sample injection time of 10 s 

at 10 kV and a separation voltage of 16 kV. 

[36] 

Table 1.  Liquid chromatography and electrophoresis electrochemical detection based methods for the determination of nicotine. 
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2. Experimental 

2.1 Chemicals and Reagents 

All chemicals were obtained from Fisher (Loughborough, UK), unless otherwise stated.  Deionised 

water was obtained from a Purite RO200 - Stillplus HP System, fitted with a Pur-1-te ion-exchanger 

(Purite Oxon., UK).  A 20 mM phosphate pH 8.0 buffer was prepared by titration of a solution of 0.2 

M trisodium phosphate, with 0.2 M phosphoric acid and subsequent dilution.  Primary stock 

solutions of nicotine (Sigma-Aldrich, Dorset, UK), were prepared by dissolving the required mass in 

acetonitrile to give a concentration of 10 mM.  Working standards, for initial voltammetric studies, 

were prepared by dilution of the primary stock in sufficient water, acetonitrile and phosphate buffer, 

to give an overall concentration of 2 mM nicotine in 10 % acetonitrile 0.1 M phosphate buffer.  The 

surface-wipes were fabricated by cutting 10 cm2 squares from a roll of tissue (one ply, Jangro White 

Centrefeed, Pattersons, Bristol, UK).  Standards for LC-ED analysis were made by dilution of the 

primary stock solution in mobile phase. 

2.2.2 High Performance Liquid Chromatography 

HPLC studies were undertaken using an Agilent 1100 HPLC system with a 250 mm x 4.6 mm Hypersil 

Gold C18, 5 μm column connected to a 7125 valve manual injector fitted with a 20 μL sample loop 

(Rheodyne, Cotati, USA).  Sample extracts were determined using a mobile phase of 65 % methanol, 

(Fischer, Far UV, HPLC grade) 35 % 20 mM pH 8.0 phosphate buffer at a flow rate of 1.0 mL/min. 

2.2.3 Electrochemical Detection  

The detector cell consisted of a two piece thin-layer cell, formed from an upper Kel-F block 

containing a GCE working electrode (3 mm diameter) and a bottom steel block serving as the 

pseudo-reference/counter electrode.  Teflon gaskets were purchased from BAS, Congleton, 

Cheshire, UK.  The inlet for the thin layer cell was connected directly to the outlet of the Agilent 

1100 UV detector using a suitable PEEK connector and tubing.  An Ivium CompactStat potentiostat 

(Ivium Technologies, The Netherlands) was used to control the potential at the thin layer cell at +1.8 

V vs. the pseudoreference/counter stainless steel electrode (ss).  Chromatograms were recorded 
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using an Ivium CompactStat potentiostat (Ivium Technologies, The Netherlands) interfaced to a PC 

for instrument control and data acquisition.   

2.3 Cyclic Voltammetric Studies 

Cyclic voltammetry was undertaken using a µAutolab potentiostat interfaced to a PC for data 

acquisition and control using the GPES software version 4.9.  Cyclic voltammograms were initially 

recorded in plain solutions of 10 % acetonitrile, 90 % phosphate buffer and then in the same solution 

containing 2.0 mM nicotine.  A starting potential and an end potential of 0.0 V (vs. Ag/AgCl) was 

used, with a switching potential of +1.5 V (vs. Ag/AgCl).  The effect of scan rate was studied over the 

range 20 mV/s to 200 mV/s. 

2.4 Hydrodynamic Voltammetry 

Hydrodynamic voltammetry (HDV) was undertaken using an EG&G Princeton Applied Research 

(Princeton, NJ) model 362 scanning potentiostat to control the applied potential.  Chromatograms 

were recorded using a Siemens Kompenosograph X-T C1012 chart recorder.  The hydrodynamic 

voltammetric behaviour of nicotine was investigated by injecting fixed volumes of a standard 

solution of nicotine and varying the applied potential between +0.9 V and +2.0 V (vs. ss) in 100 mV 

steps.  The hydrodynamic voltammogram was then constructed by plotting the recorded peak 

current against the applied potential.  The optimum potential was determined from the position of 

the plateau on the hydrodynamic voltammogram. 

2.5 Dust Wipe Sampling 

Dust wipe samples were collected in a similar manner to that described previously [37].  The fronting 

of doors and windows facing onto entranceways were chosen for investigation.  Dust wipe samples 

were obtained by wiping from the upper left corner of the sample area; in “S” shape manner, wiping 

from side-to-side whilst moving down the sample area.  The exposed wipe was then folded in half, 

exposed side to exposed side and another “S” shape was made in the opposite direction wiping up 

and down instead of side-to-side.  The folded wipe was placed in a glass vial, which was also used as 

the extraction vessel and sealed.  A new pair of gloves was also used for each sample.  A procedural 
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blank was obtained by taking a tissue onsite but without sampling the surface.  The area sampled 

was measured so that a comparison of concentration values (μg/m2) between different surfaces 

could be made. 

2.6 Sample Extraction and Analysis 

Five mL of methanol was added to the glass vessel containing the dust wipe sample.  This was then 

sealed and the dust wipe extracted by sonication for 15 minutes at room temperature.  A 200 µL 

aliquot of this was taken and 100 µL of 50 mM pH 8 phosphate buffer added and investigated by 

liquid chromatography electrochemical detection.   

3. Results and Discussion 

3.1 Cyclic Voltammetry 

Initial cyclic voltammetric studies were performed with a 2 mM solution of nicotine, dissolved in 0.1 

M phosphate buffer pH 10, in the presence of 10 % acetonitrile (10 mL).  Figure 1 shows the cyclic 

voltammogram obtained at a GCE using a scan rate (v) of 50 mV/s.  Two oxidation peaks were 

recorded, which we have designated as O1 and O2.  There a number of different theories which have 

been postulated to explain the voltammetric behaviour of nicotine [32,38-42].  The majority of 

reports show nicotine to be oxidised in a single oxidation wave.  However, in our present study, at 

pH values above pH 8 two oxidation peaks are recorded, similar to the cyclic voltammetric behaviour 

reported by Cinková et al [39].  The effect of scan rate was studied at pH 2, 4, 6, 8 and 10, over the 

scan rate 10 to 200 mV/s.  For both oxidation processes peaks current (ip) values were found to be 

proportional to the square of scan rate (v½), demonstrating diffusion controlled processes.  The 

oxidation peak observable at +1.6 V was concluded to results from the oxidation of common alkene 

[43] impurities present in the acetonitrile (i.e. acrylonitrile, acrolein, etc.), it being present in both 

the sample and the blank supporting electrolyte.  Figure 2 shows the effect of pH on the cyclic 

voltammetric ip for both oxidation peaks O1 and O2.  The oxidation process O2 was found to 

independent of pH over the range studied.  However, the more negative peak O1 shows a maximum 

at pH 8 and as a result further investigations were made at this pH.   
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3.2 Hydrodynamic Voltammetry 

Figure 3 shows the HDV obtained over the potential range +1.0 to +1.9 V (vs. ss).  The peak current 

response for nicotine was found to increase with increasing potential from +1.0 V to +1.7 V (vs. ss).  

At potentials more positive than this, between +1.7 V and +1.9 V (vs. ss), the response was found to 

plateau and become constant.  Interestingly, under hydrodynamic conditions a single oxidation 

process is obtained, differing from the two separate electrochemical processes observable by cyclic 

voltammetry in quiescent solution (Figure 1).  The oxidation mechanism would appear to be 

different under hydrodynamic conditions compare to that as obtained under quiescent conditions.  

Consequently, further LC ED studies were undertaken using an applied potential of +1.8 V (vs. ss).   

3.4 Calibration, Limit of Detection, and Precision 

A linear range of 13 μg/L to 3240 μg/L (R2 = 0.999) was obtained with an associated detection limit of 

3.0 µg/L, based on a signal to noise ratio of three.  Dust wipes were spiked with 6.50 µg nicotine (n = 

5) and extracted using the procedure described.  A mean recovery of 98.4 % with a coefficient of 

variation of 7.8 % was calculated.   

3.5 Studies of Possible Interferences 

A wide range of compounds could be potentially present in dust wipe samples resulting from 

cosmetics, soaps and human skin contact which could interfere with the determination of nicotine.  

In this present study we investigated; musk ketone, a nitroaromatic compound present detergents, 

perfumes and cosmetics, stearic acid, also present in cosmetics, soap, etc., the biological metabolite 

of nicotine, cotinine and urea, present in urine and to a lesser extent in sweat.  None of these 

compounds were found to give any chromatographic response under the conditions employed and 

consequently did not interfere. 

4. Analytical Application 

The glass fronting of doors and windows facing onto entranceways were chosen for investigation.  

Figure 4 shows representative chromatograms obtained for extracted dust wipe samples.  A well 
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resolved peak for nicotine was obtained at a retention time of 185 s.  The levels found at the 

different sample locations are summarised in table 2.  The injection-to-injection time was only 210 s 

including a 100 s equilibration time. 

Sample Nicotine, µg/m2 

1 110 

2 150 

3 ND 

4 66.8 

5 156 

Table 2.  Nicotine levels obtained for dust-wipe samples.  ND = not detected. 

5. Conclusions 

A method using LC-ED has been successfully developed for the determination of trace levels of 

nicotine in THS dust wipe samples.  The chromatographic separation is achieved using a C18 reversed 

phase column in conjunction with a methanol-phosphate buffer based mobile phase.  Amperometric 

detection using an applied potential of +1.8 V (vs. ss) was employed and well-resolved peak free 

from interferences was obtained with a retention time of only 185 s.  This is an improvement on our 

previously reported liquid chromatographic method utilising UV detection [37] as it is nearly twice as 

fast, is more selective and exhibits a better theoretical limit of detection.  In this investigation levels 

of nicotine of between 66.8 to 156 µg/m2 were found, comparable to those we previously reported 

[37].  The developed method is more economic and simpler compared to LC/MS and related 

approaches, but has been shown to be able to determine levels comparable to those reported by 

other techniques [10,11, 20].  
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Figure 1. Typical cyclic voltammogram, obtained at a scan rate of 50 mV/s, for dashed line, in the 

absence of and solid line in the presence of 2 mM nicotine in 10 % acetonitrile, buffered with 0.1 M 

phosphate at pH 10. Starting potential 0.0 V; switching potential +2.0 V. 
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Figure 2.  Plot of (a) ip vs. pH for the two nicotine oxidation peaks. Voltammetric conditions as Figure 

1.  O1 solid line, O2 dashed line.  Error bars represent ± σ. 
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Figure 3.  Hydrodynamic voltammogram for 2.6 µg injections of nicotine.  Error bars represent ± σ. 
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Figure 4.  Representative chromatograms obtained for THS dust-wipe samples. Dashed line 

procedural blank, solid line THS dust wipe sample. 
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