
This is a pre-copyedited, author-produced version of an article accepted for publication in IMA
Journal of Applied Mathematics following peer review.

Mathematical modelling of a magnetic immunoassay

Lewis Roberts1,2, Thom Griffith1,2,*, Alan Champneys2, Martina Piano1, Janice Kiely1, Richard
Luxton1,

1 Institute of Bio-Sensing Technology, University of the West of England, Bristol, Frenchay Campus,
Coldharbour Lane, Bristol, BS16 1QY, UK
2 Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK

* thom.griffith@uwe.ac.uk

Abstract

A mathematical model is developed to describe the action of a novel form of fluidic biosensor that
uses paramagnetic particles that have been pre-coated with target-specific antibodies. In an initial
phase the particles are introduced to a sample solution containing the target which then binds to
the particles via antigen-antibody reactions. During the test phase a magnet is used to draw the
paramagnetic particles to the sensor surface which is similarly coated with specific antibodies.
During this process, cross-links are formed by the antigens thereby binding the paramagnetic
particles to the sensor surface. After the magnetic field is removed, a voltage change across
an inductor below the sensor surface is recorded, which is deemed to depend on the number of
magnetic particles that have been bound to the sensor surface. The fundamental question addressed
is to explain the range of experimentally observed dose-response curves, and how this depends
on the various parameters of the problem. In particular, observations have shown both rising and
falling dose-reponse curves, as well as ‘hooked’ dose-response curves possessing local maxima.

Initially a particle-dynamics computational model is produced to determine the time scales of the
key processes involved, but is shown to be unable to produce differently shaped dose-response
curves. The computational model suggests spatio-temporal effects are unimportant, therefore a
homogenized rate-equation model is developed for each of the key phases of the immunoassay
process. Binding rates are shown to depend on various geometric factors related to the diameter
of the paramagnetic particles and the size of the sensor surface. The dose-response is shown to
depend crucially on various saturation effects during each phase, and conditions can be derived,
in some cases analytically, for each of the three qualitatively different curve types. Furthermore,
non-dimensionalization reveals 5 key dimensionless parameters and the dependence of these curve
shapes on each is revealed. The results point to future quantitative approaches to sensor design and
calibration.

Author keywords: Biosensor, antibody, paramagnetic particle, particle dynamics, rate equa-
tions, asymptotic analysis

1 Introduction

Immunoassay techniques exploiting the high specificity of antigen-antibody pair binding are
regularly used as biosensors to determine the amount of target protein present in a sample. In a
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magnetic immunoassay, reactive magnetic particles (particles that have been coated with antibodies)
provide the means for separating the target antigen from the sample as well as the signal by which
the target antigen is quantified. The targeted protein may represent an important biomarker in the
early detection of disease, therefore the potential for fast separation and quantification of target
antigen makes the development of magnetic immunoassays important in the field of biomedical
diagnostics (Koh & Josephson, 2009).

Many different types of biosensor technology have been developed for the detection and measure-
ment of magnetic particles; see and Kokalj et al. (2015) and Jamshaid et al. (2016) for recent
reviews. In immunoassay design, to ensure the assay is sensitive to the required range of target
antigen concentrations, there are several experimental parameters that need to be optimized. Such
parameters include the number of magnetic particles per assay, the capture-antibody density on the
magnetic particle surface, and, if a sensor surface is employed, the density of capture antibodies on
the sensor surface. The key is to ensure that the output signal has maximal sensitivity in the range
of target concentrations that is clinically important, see for example Barnett et al. (2014); Xu et al.
(2006).

Also important is to eliminate signal interferences such as the high-dose hook effect where large
analyte concentrations block the immobilization of particles at the sensor surface. The hook effect
is particularly problematic for the practical application of immunoassay technology in biomedical
diagnostics since it can cause false negatives and hence potential misdiagnoses. However, the hook
effect can be avoided through careful design and optimization of the experimental parameters in
the assay (Cole et al., 2001).

As is common in commercial assay development, the typical approach used to optimize exper-
imental parameters is painstaking and involves many trial-and-error repeats. However, unlike
high-throughput techniques, the design of an assay for a new biomarker, is typically carried out by
hand in a laboratory, and therefore each repeat is both time consuming and costly.

So far, mathematical modelling techniques have been used only sparingly within the magneto-
immunoassay field. For example, the coating of magnetic particles used in such assays have
recently been modelled using random sequential adsorption theory (Mackey et al., 2016). Also,
simple Langmuir kinetics have been applied in order to understand the process of antigen capture
(Saha et al., 2014). At the other scale of complexity, computational fluid dynamics (CFD) models
have been used to model the motion of the magnetic particles in an assay when under the influence
of external magnetic fields; see, for example, Munir et al. (2011).

The purpose of this paper is to describe the construction of an end-to-end mathematical model of a
magnetic immunoassay. Specifically, we shall describe a novel assay, developed at the University
of the West of England (Richardson et al., 2001) and further developed in Barnett et al. (2014);
Sharif et al. (2013), that uses inductive sensors to determine the amount of magnetic particles that
have been cross-linked to the sensor surface through antibodies attached to both the particles and
the sensor surface. We seek a model that is simple enough to provide rapid insight into how the
output signal depends on all the design parameters, yet is sufficiently complex that all the key
processes are captured. We shall proceed in two steps. First a stochastic, computational model
of the dynamics of the magnetic particles will be constructed. This takes the form of a particle
dynamics model; essentially a continuous-time-and-space agent-based model. The purpose of that
model is to test the hypothesis that a spatially homogenized approximation is likely to describe the
physics with sufficient accuracy. Then we proceed to derive rate equations in the form of systems
of ordinary differential equations (ODEs). Analysis of these ODEs then leads to predictions for
the signal dependency on all design parameters. Our overall objective is to demonstrate the power
of the modelling approach to produce a quantitative tool that can rapidly circumvent the current
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time-consuming approach to immunoassay design and calibration.

The rest of the paper is outlined as follows. Section 2 describes the particular magnetic immunoassay
we seek to model, and presents typical laboratory output. Section 3 then describes and presents
results from the computational model. Section 4 develops the deterministic model, and performs
non-dimensionalization to identify several dimensionless parameters. Section 5 presents results
from the deterministic model in which under certain simplifying assumptions, an asymptotic
analysis leads us to an analytical approximation of the signal output. These results are then
compared with numerical simulations of the same model. The corresponding dose-response
curves are computed and their dependence on each of the dimensionless parameters is revealed.
Finally Section 6 provides concluding remarks, interpreting the results from the model, along with
suggestions for the future work.

2 The magnetic immunoassay

The immunoassay under consideration is depicted schematically in Figure 1 and, as described in
(Barnett et al., 2014; Richardson et al., 2001; Sharif et al., 2013), uses antibody-coated paramagnetic
particles (PMPs) and a reaction vessel whose surface is also coated with antibodies. The target
antigen must bind to both the PMP and the sensor surface in order for a signal to be recorded. Such
a modality requires that the target antigen has multiple epitopes (parts of the molecule to which
antibodies may become attached), which is typical of most complex proteins.

The procedure for carrying out the assay is as follows. First, antibody-coated PMPs are added to
the test solution containing the target antigen, as illustrated schematically in Fig. 1. This solution
is then left for an incubation period of approximately one minute to allow a sufficient amount of
target to fix onto the antibodies on the PMP surface. We shall refer to a PMP that has become
bound by a target protein as ‘active’. The solution containing the target antigen and antibody-coated
PMPs is then introduced to the antibody-coated sensor surface. A PMP becomes bound to the
sensor surface if enough cross-links are made between itself and the sensor surface. A cross-link is
formed when a target antigen that is bound to a PMP binds to an antibody on the sensor surface via
an antibody-antigen reaction. The number of such bound PMPs is measured by a magnetometer,
which consists of a inductor coil and a permanent magnet that is an adjustable vertical distance z
from the sensor surface, as indicated in Fig. 1. In order to bring the PMPs in close proximity to the
sensor surface, the permanent magnet is moved close to the sensor surface (at what we shall call
the ON position) to attract the PMPs. When the magnetic field is removed (i.e. the magnet is moved
away from the sensor surface to the OFF position such that the magnetic field at the sensor surface
becomes negligible) the unbound particles drift away from the surface via Brownian motion. Once
a sufficient number of PMPs have bound to the sensor surface, they exhibit a net magnetization that
will change the inductance of the coil and hence the output voltage of the magnetometer. For the
particular magnetometer used, the voltage signal is proportional to the number of PMPs bound to
the sensor surface (see Section 2.1 below).

The underlying measurement principle then is that the number of immobilized PMPs on the surface
will depend on the initial concentrations of the target molecule. In essence, the target is acting
as the glue that binds the two forms of antibody together. The more glue, the more binding, and
hence the more magnetic particles that will be captured by the sensor surface once the magnetic
field is turned off. In turn, the more bound PMPs the higher the signal in the inductor. Hence we
should expect to see a dose-response curve by plotting the signal from the magnetometer against
the concentration of the target molecule in the original solution.
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Figure 1. A schematic depiction of the magnetic immunoassay. Antibody-coated PMPs are added to the sample
containing the target antigen T . The target antigen binds to the antibody-coated PMPs fixing it to the particle surface.
When the magnetic field is applied, the PMPs are attracted to the surface. Once the PMPs are close enough to the sensor
surface, target antigen molecules bound to the PMPs can cross-link with free antibodies on the sensor surface S. A
blocking agent is used to prevent any target binding to the particle itself or the sensor surface. If enough cross-links
are made, the particle is bound to the surface. When the magnetic field is removed, the free particles PF drift away but
the bound particles P remain, changing the self-inductance of the sensor coil from its initial state. At any time, a free
binding site on the sensor surface can also be occupied by a free target molecule T inhibiting the binding of active PMPs.
This is more likely to occur when the target analyte concentration is high. To accommodate the sensor coil, the magnet
stops at a minimum distance z0 from the sensor surface. The radius of the sensor surface is a.

It is important though to note that the relationship between the magnetometer signal and the
target-antigen concentration need not necessarily be described by a positive monotonic function.
If the amount of target introduced to the assay is greater than the number of binding sites or the
incubation time is too short to allow the number of binding sites on the PMPs to saturate, then
there will be some free target T in the assay when the solution containing the PMPs is added to
the reaction vessel. These target molecules can bind to a free antibody site S on the sensor surface
and thus no cross-link can form there, reducing the chance of immobilizing a PMP on the sensor
surface. This can result in a type of interference in the dose-response of the immunoassay known
as the hook effect where high concentrations of analyte produce lower signals (Tate & Ward, 2004).
This phenomenon is frequently observed in one-sided immunoassays, such as the one considered
here, and is due to the competition for available sensor binding-sites between active PMPs and
target-antigen molecules.

2.1 The bio-sensor system

The magnetometer-based biosensor system we are modelling is essentially an LC circuit and was
described by Richardson et al. (2001) who used circuit theory to show that the output signal of
the magnetometer is linearly dependent on the number of immobilized PMPs. Their argument
can be summarized as follows. Consider a planar inductor, with self-inductance L0; if there are n
immobilized PMPs on the sensor then its inductance will be given by

L = L0 + kn,

where k is a constant of proportionality. The change in self-inductance of the inductor is due to
the net magnetic field from the immobilized PMPs which interacts with the magnetic field of
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the inductor. From circuit theory, an LC circuit has natural frequency that is dependent upon the
inductance via a relationship of the form

f0 = (L0C)−
1
2 .

Therefore, if there are n bound particles, the frequency of the LC circuit can be written as

fn = (LC)−
1
2 = ((L0 + kn)C)−

1
2 = (L0C)−

1
2

(
1+

kn
L0

)− 1
2

.

Assuming that kn/L0� 1, we obtain

fn ≈ f0

(
1− 1

2
kn
L0

)
,

and so the change in the natural frequency is given by

∆ f = fn− f0 ≈− f0
1
2

kn
L0

. (1)

The magnetometer has been designed such that, over the active frequency range for the experiment,
there is a positive linear relationship between the change in the LC circuit’s natural frequency and
the change in magnetometer output voltage. If all experiments are conducted within this frequency
range, then the change in voltage

|∆V | ∝ |∆ f |. (2)

Using (1) and (2), we can say that the change in voltage output has a linear dependence upon the
number of immobilized PMPs:

|∆V | ∝ n.

2.2 Magnetometer output signal

Figure 2 shows a typical time profile for the magnetometer output signal during the measurement
process in the immunoassay. After a lead time tL, which allows the assay to settle, the magnetic
field is applied for a fixed time time tON, resulting in a step change in the magnetometer output
signal. The magnetic field is then turned off for a time tOFF. This process is repeated several
times (typically about three) before a final relaxation time tR. The magnetic field is ‘turned off’ by
moving a permanent magnet between two positions, one in close proximity to the sensor surface z0
and the other at a set distance z0 + z from the sensor surface such that there is negligible effect from
its magnetic field on the PMP dynamics.

Panel Fig. 3(a) shows the observed time course of the magnetometer output signal during a particular
experimental immunoassay measurement. Note how this output shares some of the signal features
illustrated in Fig. 2. The large step changes in the output signal are produced by the movement of
the magnet. However, following application of the magnetic field, there are additional, small but
measurable changes in the voltage output. It is these changes that are used to measure the number
of immobilized PMPs for a given set of assay parameters and target concentration.

In panels Fig. 3(b–c), we have plotted the lower and upper parts of the signal on a finer scale,
thus ignoring the large jump in the signal due to the change in the external magnetic field. For
the lower part of the signal in (b), notice that the voltage varies nonlinearly with time when the
magnetic field is present. Despite the potential interest of these dynamics, similar nonlinearities are
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Figure 2. Schematic time profile for the magnetic field at the sensor surface during an assay.

observed during assays both with and without PMPs. Therefore we cannot attribute this trend to
the dynamics of binding particles. For the upper part of the signal in (c), notice that the voltage
monotonically decreases with time when the magnetic field is not present. In addition, note that
the gradient of both these upper and lower portions of the signal decrease with each pull of the
magnet. In order to produce a dose-response curve from such a signal, an appropriate difference in
voltage must be computed from the signal to measure the number of bound particles for a particular
concentration of target. For a given set of assay parameters, the signal (response) will vary due to
the change in concentration of the target (dose). By obtaining measurements for multiple different
concentrations of target, we can plot a dose-response curve.

There are several time instances within the signal that could potentially be used to measure a change
in voltage. As in Sharif et al. (2013), the voltage change ∆V is taken as the difference between the
initial voltage and the voltage immediately preceding the second application of the magnetic field,
i.e., ∆V =V4−V0 (Fig. 4).

Figure 5 shows three such experimental dose-response curves. These represent a combined analysis
of historical and recently collected data and are produced here in order to be illustrative of typical
responses; a systematic quantitative anlysis is left for future work. The y-axis of each point on this
plot represents a measure of the signal ∆V =V4−V0.

Note that the dose-response in panel Fig. 5(a) shows a large jump in the voltage signal from the
control condition (no antigen present in sample) followed by an approximately linear increase as the
target concentration is increased. By contrast, the dose response in panel Fig. 5(b) (from the same
analyte as that in panel Fig. 5(a) but over a wider concentration range) illustrates the hook effect.
Specifically, there is a continuous increase in response with dose, up to a maximum value followed
by a decrease at larger analyte concentrations. The dose response in panel Fig. 5(c), is from a
different analyte and demonstrates a linear response over the range of tested analyte concentrations.

In summary, experiments show that observed magnetometer dose-response curves can take various
forms and are dependent upon the particular analyte and analyte concentration range to be measured.
The purpose of constructing a mathematical model of this magnetic immunoassay is to inform the
design and optimization of future assays for new biomarkers. Most importantly, in any design we
must ensure that any calibrated dose response is sensitive to the clinically relevant concentration
range for that biomarker. We would also like to be able to explain and quantify the hook effect.
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Figure 3. (a) Typical observed voltage output signal over time from the magnetometer during an assay. (b–c) The lower
and upper parts of the signal in (a) plotted on a finer y-axis scale.
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Figure 4. Schematic of a typical output signal illustrating the measurement of the voltage change ∆V for a given
concentration.

3 A computational model

As an initial model, we have constructed a particle-dynamics simulation that considers the physical
motion of the PMPs only and uses a simplified probabilistic binding model for the immobilization
of the PMPs on the sensor surface. We aim to show that this approach is able to produce output
signals and dose-response curves characteristic of those found experimentally in Figs 3 and 5.

3.1 PMP dynamics

We consider the physical motion of the PMPs in the presence of a changing magnetic field. We
assume that each PMP undergoes Brownian motion and so, in the absence of an external magnetic
field, the motion of an individual PMP can be modelled using the stochastic ODE

mẍ =−λ ẋ+ εζ (t), (3)

where x = [x,y,z]T , m is the particle mass, λ is the coefficient of the viscous force, ζ (t) is a 3D
stationary Gaussian process where 〈ζi(t)〉= 0 and 〈ζi(t)ζi(t ′)〉= δ (t− t ′) for i = 1,2,3 where δ (t)
is the Dirac-delta function.

According to Shevkoplyas et al. (2007), the additional force on a magnetic particle in an external
magnetic field in the z-direction is F = [0,0,Fz(z)] where

Fz(z) =
VP∆χ

µ0
Bz(z)

∂

∂ z
Bz(z). (4)

Here, VP is the volume of an individual PMP, ∆χ = χP−χm is the difference between the magnetic
susceptibility of the particle χP and the medium χm, µ0 is the permeability of free space and Bz(z) is
the magnetic field along the axis of a permanent magnet as a function of height z. From Biot-Savart
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Figure 5. Typical observed dose-response curves: (a) dose response from an immunoassay of C-reactive protein
(CRP) marker (n = 2, red curve is double exponential fit), (b) dose response from an immunoassay of CRP marker
demonstrating the hook effect (n = 1, red curve is double exponential fit), and (c) dose response from immunoassay of
neutrophil elastase (NE) marker (n = 2, red curve is linear fit). All error bars are ± SEM.

9



theory (Griffiths, 1998), the latter can be modelled by the magnetic field produced by an equivalent
circular current ring given by

Bz(z) =
B0

[(z+ z0)2 +a2]
3
2
, (5)

where z0 is the distance from the sensor surface to the centre point of the magnet, a is the radius of
the magnet and B0 is a constant of proportionality. Differentiating this function with respect to z,
we get

∂

∂ z
Bz(z) =−

B0(z+ z0)

[(z+ z0)2 +a2]
5
2
. (6)

Substituting (5) and (6) into (4), we can write the force on a PMP explicitly as a function of z:

Fz(z) =−c
(z+ z0)

[(z+ z0)2 +a2]4
,

where c = VP∆χB2
0

µ0
is a constant of proportionality.

In order to simplify this model, we consider the motion of a PMP in two dimensions, x and z, such
that its dynamics are modelled by

mẍ =−λ ẋ+ εζ (t),

mz̈ =−λ ż+ εζ (t)+κ(t)Fz(z),

where

κ(t) =

{
0 when the magnet is OFF,

1 when the magnet is ON.

3.2 Magnetization dynamics

The magnetization of a PMP is dependent on its height z from the sensor surface (z = 0). For
simplicity, the magnetization of a PMP is assumed to be in one of three magnetic field-dependent
states. These three states correspond to the magnetic field being any of ON, OFF after an ON period,
or OFF having never previously been applied. The magnetization of the particle is written as a
vector M(t) = |M|(t)M̂(t) = M(t)M̂(t) where |M|(t) = M(t).

We present a heuristic model for the state of the magnetization by considering the strength of the
magnetic field at the particle’s position z, and how much rotation the particle experiences while in
the assay. We assume that a PMP far from the magnet rotates more freely than a PMP close to the
magnet and hence the random direction of that PMP’s magnetic dipole is less constrained at greater
heights, z. When the magnet is ON, we assume that a PMP gains magnetization instantly and the
subsequent dynamics for the magnetization are given by

M̂on(t) =
(

sinθon(t)
cosθon(t)

)
, Mon(t) ∝ Bz(z(t)), (7)

where

θon(t) = ξon

[
1−q

Bz(z(t))
Bz(0)

]
, (8)

and ξon is a random number taken from the uniform distribution unif
(
−π

2 ,
π

2

)
at each time-step.

The choice of the value of q is arbitrary, but theoretically, it should be in the range 0.5 < q < 1. We
choose q = 0.7. The magnitude of the magnetization can then be written

Mon(t) = M0
Bz(z(t))
Bz(0)

. (9)
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When the magnetic field is removed, the magnitude of the particle’s magnetization will decay over
time. The orientation of the magnetization with respect to the z-axis is affected by the natural decay
of the magnetization over time but will be affected more by the rotational motion of the particle.
Another heuristic model can be proposed to model the dynamics when the magnetic field is not
present. The magnitude of the magnetization is assumed to be

Moff(t) = Mtr e
−t/τ , (10)

where Mtr = Mon(tr), τ is a decay constant and t is the time from when the magnetic field was
removed (t = tr). For the direction of the magnetization of a particle,

M̂off(t) =
(

sinθoff(t)
cosθoff(t)

)
(11)

with
θoff(t) = ξoff

(
1−qe−t/τ

)
(12)

and ξoff is a random number taken from the distribution unif(−π,π) at each time step. The values
of all the parameters of the model can be found in Table 1.

3.3 Immobilization of PMPs

A PMP is captured on the sensor surface through the cross-linking of bound antigens on the particle
and antibodies on the sensor surface. Once a PMP is captured it is stationary and remains in the
same orientation. If a particle is within a feasible distance ` of the sensor surface such that it is
physically possible for it to bind (i.e. the length of the protein can stretch from the surface of the
PMP to the sensor surface) then we can attribute a non-zero probability for the particle binding to the
sensor surface. This probability will be a function of many things including the target concentration,
distribution of the target on the PMPs and density of the antibody on the assay surface. For the
purposes of this simple model though, we consider that a particle has a fixed probability p of being
immobilized on the assay surface if it is within a distance ` of the assay surface. Therefore, at
each time step, a random number xrand from the uniform distribution unif(0,1) is generated and if
xrand < p then the particle is immobilized, otherwise it is not immobilized during that time step.

If a particle has been immobilized it maintains its current x-position for the remainder of the
simulation, with its z-position fixed at z = 0. We assume that the direction of magnetization of an
immobilized particle is

M̂ =

(
0
1

)
(13)

and the magnitude of the magnetization is always M0, given by (10).

3.4 Simulation details

Restricting ourselves to a computationally feasible number of particles, we consider a thin cylindri-
cal region of the assay with radius D� a and height L where the radius and height of the reaction
vessel are a and h respectively. The average number of PMPs in this cylinder np is given by

np = PT

(
πD2h
πa2h

)
= PT

(
D
a

)2

, (14)
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Table 1. Parameters used in the computational model.

Property Symbol Default value

Number of PMPs in assay PT 106

Assay radius a 5 mm

Sample diameter D 0.05 mm

Assay height L 2 mm

Viscous constant λ 0.01

Stochastic constant ε 0.01

Magnet strength B0 10

PMP mass m 1

Minimum distance from centre of magnet to assay surface z0 1 mm

Magnetization decay constant τ 10 s

Minimum normalized alignment of particle magnetization with field q 0.7

where PT is the total number of particles in the assay. For the dynamics of the PMPs in this thin
cylinder, we assume, for simplicity, periodic boundary conditions in the x-direction, and inelastic
collisions with the assay surface at z = 0. The simulation was implemented in MATLAB and
carried out on Blue Crystal, the University of Bristol supercomputer.

3.5 Results

Figure 6 depicts a typical output signal from the computational model using the parameter values
in Table 1. The plotted signal is an average of 2000 simulations. There are several features in
this signal that are comparable to the observed signal in Fig. 3. For example, when the magnet
is turned on or off, the signal undergoes an immediate large jump and during intervals when the
magnet is on the signal increases, whereas when it is off the signal decreases. Another feature of
the simulated signal that is similar to the observed signal is that for the times when the magnet is on
the signal time profile displays significant nonlinearity and the slope decreases between subsequent
ON intervals. This is due to the gradual fixing of magnetic dipole orientations in the z-direction as
PMPs become immobilized. Moreover, during the OFF periods, the initial gradient becomes more
negative during subsequent intervals (compare for example 50 < t < 60 and 80 < t < 90). This is
due to the Brownian motion of unbound particles drifting away from the sensor surface as well as
the exponential decay of the particles’ magnetisation.

In addition, it can be observed in the simulation (data not shown) that the PMPs are attracted to
the sensor surface over a shorter time scale (< 1s) than displayed by the nonlinearities. Since the
non-linearities are due to binding processes at the sensor surface, a key conclusion then is that the
spatio-temporal effects of the magnet pull between on and off would seem to be rapid and so —
assuming no aggregation of the PMPs — we can in principle make well-mixed assumptions during
each of the magnet-on and magnet-off time intervals.
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Figure 6. Typical time profile of the output signal from the computational model. In this case the number of particles
PT = 106 and the probability of binding is p = 0.019. The output is a linear function of the net magnetic field Bz at
z = 0, chosen so that the model output resembles the observed magnetometer voltage signal.
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3.6 Dose-response curves

We can use the model to produce dose-response curves by measuring the number of bound PMP
particles on the surface after the first pull of the magnet, which serves as a proxy for the change in
voltage which would be obtained experimentally. The number of PMPs immobilized at this time
can be measured for different values of the probability p, where the change in probability is a proxy
for the change in the concentration of the target given the same assay conditions. In Fig. 7, we
show how a dose-response curve can be produced as we vary the binding probability p. There are
two dose-response curves for two different assay conditions; where the number of PMPs in the
assay is either PT = 105 or PT = 106. The model successfully produces a monotonically increasing
signal, whose slope decreases at higher p values, but does not replicate the hook effect. The lack of
a hook effect is because our modelling of the binding process as a single probabilistic coefficient is
too simplistic to capture the confounding effect of the free antigen binding to the sensor surface at
higher initial antigen concentration rates.

Nevertheless, the overall effect of the computational model is to produce a Boltzman-like or
sigmoidal response function, which is exactly what one would expect from a simple spatially
lumped model that ignored the angular motion of the PMPs and any variation in the x-direction.
Essentially it would seem that a spatially lumped model under a well-mixed assumption could
easily produce the same results.

4 Rate-equation model

We now consider separately the the biochemical binding process of the target antigen to antibodies
on the PMPs and the sensor surface, as well as the process by which PMPs become bound to the
sensor surface. To do this we use the law of mass action to derive rate equations of the key species
within the assay, namely free PMPs, antigen-bound PMPs, surface-bound PMPs, free antigen,
surface-bound antigen and free surface antibodies. Applying simple mass balance to each of these
species leads to a coupled system of ODEs that can be simulated over the three experimental time
periods.

In the model, all antibody concentrations should be considered as effective antibody concentrations.
This is because in reality, only a small fraction of antibodies immobilized on a particle or sensor
surface will be capable of antigen capture. The majority of immobilized antibodies will be oriented
such that their antigen binding sites are unavailable – it has been reported that only up to 4% of
antibodies immobilized on a particle surface will actually be functional (Saha et al., 2014).

4.1 Dynamics during each experimental step

We consider three distinct time intervals during the testing procedure; the incubation period
0 ≤ t < tinc, the lead period tinc ≤ t < t2, and the period that the magnet is applied for the first
time t2 ≤ t < t3. We write t2 = tinc + tlead and t3 = tinc + tlead + tON where tinc, tlead and tON are the
durations that the assay is in the incubation, lead and magnet-on periods respectively. The total
amount of simulated time is thus

tend = tinc + tlead + tON.

In principle, we can then apply further periods of the magnet being off and on again, but we shall
assume in what follows that the signal is proportional to the number of bound PMPs at the end of
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the first magnet ON period.

Antigen-antibody interactions can be described using the Langmuir kinetic model (Saha et al.,
2014), which assumes binding occurs via a simple reversible reaction scheme. That is

A + L k+

k– AL,

where A and L are the antibody and ligand antigen respectively and k+ and k− are the forward and
reverse rate constants for the reaction. Antigen-antibody binding generally occurs with high affinity
(k−/k+� 1), therefore to simplify analysis of the model we consider antigen-antibody binding to
be irreversible and use the reaction scheme

A + L
k0 AL, (15)

which proceeds according to some rate constant k0.

We define the model variable b to be the average concentration of antigen-bound PMP antibodies
in the assay if only one PMP were present. The total concentration of PMP binding sites in the
assay is therefore given by PTb where PT is the total number of PMPs in the assay. According to
the reaction scheme (15), and using mass-action kinetics, the rate of change of b and the free target
concentration T during the incubation period are given by

ḃ = k0T (A−b),

Ṫ =−k0PTT (A−b),
(16)

where A > 0 is the average capture-antibody concentration if only one PMP were present and
PT > 0 is the total number of PMPs in the assay. For initial conditions T (0) = T0 and b(0) = 0, the
equations (16) have the solution

b(t) =
AT0(exp([T0−APT]k0t])−1)
T0 exp([T0−APT]k0t)−APT

,

T (t) = T0−PTb(t),

During the lead time, the solution containing the PMPs and target analyte is introduced to the sensor
surface. In addition to a continuation of the dynamics occurring in the incubation period, we must
consider the change of concentration of unbound antibody S on the sensor surface. We thus get a
coupled ODE system of the form

ḃ = k0T (A−b),

Ṫ =−k0PT T (A−b)− k1ST,

Ṡ =−k1ST,

where k1 is a rate constant determining the velocity of the target-antigen/sensor-antibody binding
reaction. For t > t2, when the magnetic field is ON we must additionally consider the change
in the number of PMPs P that become immobilized on the sensor surface. We also introduce a
function f that places a threshold on the number of cross-links formed per PMP before PMPs start
to immobilize. We explain the form of this function in more detail below. The ODE system now
becomes

ḃ = k0T (A−b),

Ṫ =−k0PT T (A−b)− k1ST,

Ṡ =−k1ST − rk2(PT −P) f (α1b) f (α2S),

Ṗ = k2(PT −P) f (α1b) f (α2S),

(17)
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Table 2. Variables in the mathematical model and their initial values.

Variable Meaning Initial value Units

b Volume concentration of antigen-bound antibodies on one PMP b0 = b(t0) = 0 µM

T Volume concentration of free Target in the assay T0 = T (t0) = 0.3 µM

S Free Ab binding sites on assay surface as volume concentration S0 = S(t0) = 0.1 µM

P Number of bound particles on surface P0 = P(t0) = 0 -

where k2 is a rate constant describing the velocity of the cross-linking reaction between an individual
PMP-bound antigen and a surface antibody and r, α1 and α2 are geometric constants that will be
defined shortly. The function f takes the form of a linear relationship with a deadband for small
argument:

f (x) := xH(x−Q), (18)

where H is the Heaviside function

H(x−Q) =

{
1 if x≥ Q
0 otherwise.

Here the constant Q is the threshold value for α1b and α2S required for a PMP to become immobi-
lized. This threshold is due to there being a minimum number of cross links per PMP for the PMP
to bind securely to the sensor surface. Q will depend on a number of geometric factors.

The key idea in defining r, α1, α2 and Q is to recognize that the diameter of a PMP is an important
factor in determining how many PMP binding-sites will be in physical proximity to the sensor
antibodies once the PMP has moved into contact with the sensor surface. Binding sites on the
opposite side of the PMP to that which is in contact, will not in general be able to bind to sensor
antibodies. The parameters α1 and α2 are therefore geometric factors that determine which
proportion of the PMP binding sites and the sensor antibodies can contribute to the rate of PMP
immobilization (see Fig. 8). We also assume that the PMP mass density is uniform and constant
across all PMPs. Therefore, the minimum force required to immobilize a PMP is proportional to
its volume. In addition, we also assume that the force required to hold the PMP to the surface is
proportional to the number of cross-links Q.

Given these assumptions we obtain,
Q = Q0d3, (19)

where d is the diameter of the PMP and Q0 is a constant of proportionality which depends on
the density of the PMPs. From experimental experience the number of cross-links required
to immobilize a typical PMP is ∼ 102 (Barnett et al., 2014; Sharif et al., 2013) which, given
the other parameters in Table 3, corresponds to Q ∼ 102

NAVa
∼ 10−12µM, where NA and Va are

Avogadro’s constant and the assay volume respectively. Therefore the expected order of magnitude
for Q0 ∼ 10−12/(10−6)3 ∼ 106.

The constant α1 represents the proportion of the binding sites on a PMP that contribute to PMP
immobilization. This corresponds to the ratio of the surface area of a region of a PMP we shall call
the binding zone (illustrated by the solid green area in Fig. 8) and the total surface area of the PMP.
Geometrically, the binding zone is a spherical cap with depth h on a PMP with diameter d, thus the
area of the binding zone is given by πhd. Hence we can write

α1 =
πdh

4π(d/2)2 =
h
d
.
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Figure 8. Schematic of a PMP immobilized on the sensor surface. The binding zone (green area) on a PMP is where
binding sites can physically bind to the sensor surface.

Table 3. Parameters in the mathematical model with the values used in this paper. The values used are typical to an
order of magnitude.

Parameter Meaning Value Units

k0 Rate constant for target binding to PMPs 1 µM−1s−1

k1 Rate constant for target binding to Ab on sensor surface 0.1 µM−1s−1

k2 Rate constant for PMP binding to Ab on sensor surface (magnet on) 1019 µM−2s−1

A Average Ab concentration per PMP 4×10−10 µM

PT Total number of PMPs in assay 106 -

h Binding zone depth 10−8 m

d Diameter of particle 10−6 m

a Radius of assay 5×10−3 m

Q0 Constant of proportionality 2×106 µM−1m−3

tinc Incubation time 60 s

tlead Lead time 60 s

tON Time magnet is ON 20 s

The constant α2, represents the proportion of sensor-surface antibodies that contribute to the PMP
immobilization. It is the ratio of the circular area πR2 to the area of the assay surface (see Fig. 8).
Therefore, we have

α2 =
πR2

πa2 , (20)

where a is the radius of the vessel. From Pythagoras’s theorem, R2 = h(d−h), and substituting
this expression into (20) we get

α2 =
h(d−h)

a2 .

Additionally, when a PMP has attached to the sensor surface, the average concentration of binding
sites on the sensor surface that are no longer active is given by r = S2

(d/2)2

a2 where S2 = S(t2). The
variables and parameters used in this model are summarized in Tables 2 and 3.
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4.2 Non-dimensionalization

The rate-equation model can be non-dimensionalized through selection of appropriate scales as
follows:

b∗ =
b
A

T ∗ =
T
T0

S∗ =
S
S0

P∗ =
P
PT

t∗ =
1

k1S0
. (21)

The characteristic scale factors we have chosen for the dependent variables are the maximum
values determined by the relevant model parameter. Substituting the scales into the original
model and dropping the asterisk notation for the remainder of this paper, yields the following
non-dimensionalized model. During the incubation period, (0≤ t < t1), where t1 = tinc we have

ḃ = κ0τ0T (1−b),

Ṫ =−κ0νT (1−b). (22)

During the lead period, (t1 ≤ t < t2), where t2− t1 = tlead we have

ḃ = κ0τ0T (1−b),

Ṫ =−κ0νT (1−b)−ST,

Ṡ =−τ0ST. (23)

Finally, during the magnet-on period, (t2 ≤ t < tend), where tend− t2 = tON we have

ḃ = κ0τ0T (1−b),

Ṫ =−κ0νT (1−b)−ST,

Ṡ =−τ0ST −κ2η(1−P) f̂1(b) f̂2(S),

Ṗ = κ2(1−P) f̂1(b) f̂2(S). (24)

The function f from the unscaled model is replaced by f̂1 and f̂2 which are defined

f̂1(x) := xH(x−χ1), f̂2(x) := xH(x−χ2) (25)

where

χ1 =
Q0d3

α1A
, χ2 =

Q0d3

α2S0
. (26)

Finally, dimensionless parameter groups are given by

κ0 =
k0

k1
, τ0 =

T0

S0
, ν =

PT A
S0

, κ2 =
k2α1α2A

k1
, η =

rPT

S0
. (27)

The values of the dimensionless parameters according to the default parameter values in Table
3 are given in Table 4. Here κ0 is a parameter that determines the rate of antigen/PMP binding
relative to antigen/sensor binding during the incubation period. The parameter τ0 determines the
initial amount of target antigen relative to the initial amount of sensor antibody. The ratio ν is
the total amount of PMP antibody in the assay divided by the total amount of sensor antibody.
The parameter κ2 determines the rate of PMP immobilization at the sensor surface relative to the
antigen/sensor binding rate. Finally, η determines the proportion of sensor antibody (at t = t2)
which is obscured if all PMPs are immobilized. The parameter η is a slightly complicated parameter
group since it contains the parameter r = S2

(d/2)2

a2 and so can only be calculated after the lead period
has completed. For physically realistic parameter values, η will be very small.
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Table 4. Dimensionless parameters in the mathematical model with the default values used in this paper.

Parameter Physical interpretation Value

κ0 Target antigen/PMP Ab binding rate relative to target/sensor binding rate 10

τ0 Initial target antigen relative to initial sensor antibody 0.33

ν Total PMP antibodies relative to total sensor antibodies 0.0014

κ2 Rate of PMP immobilization relative to rate of target to sensor binding 0.064

η Ratio of sensor occupancy for complete PMP immobilization to initial sensor 0.04×S2

χ1, χ2 Scaled versions of threshold value for PMP immobilization Q 0.5, 0.013

From Section 2.1 we know that the voltage response from the magnetometer is linearly related to
the number of immobilized PMPs at time t = tend. Therefore we can treat the predicted number of
PMPs immobilized on the surface after time t = tend as a proxy for the observed change in voltage
in a real experiment (see Fig. 4, data point (t4,V4)). The change in the voltage signal from the
magnetometer is due only to the net magnetic field from the immobilized PMPs since the free
PMPs diffuse away from the sensor surface and therefore have negligible contribution to the change
in self-inductance of the inductor.

5 Results

We can simulate a dose-response curve for the immunoassay by numerically integrating equations
(22) - (24) to determine P(tend) over a range of values for τ0. The results are shown in Fig. 9. These
and all subsequent simulations were performed in MATLAB.

The results show that with increasing τ0 the model produces no response from P until a critical
value τ0 = Q0d4PT/(hS0) is reached. This is followed by an abrupt rise in P(tend) and a continued
increase as τ0 increases until the amplitude of the response reaches a peak value.

As the amount of initial target relative to sensor antibody becomes greater, P(tend) decreases. This
decrease is because at high τ0, the number of free sensor binding sites at t = t2 will be small,
reducing the likelihood of PMPs becoming immobilized. If the value of τ0 is such that at t = t2, the
number of binding sites on the sensor surface S(t2)< Q/α2 then it is not possible for PMPs to bind
to the sensor surface and the response is zero. These observations demonstrate that the model is
capable of replicating the hook effect, as illustrated in the lower panel of Fig. 9.

5.1 Asymptotic analysis

We can derive an analytical approximation of the dose-response curve that is produced by the
full model (22)–(24). We do this by letting t1→ ∞ and approximating b and T at t = t1 by their
asymptotic values. For example, panel Fig. 9(c) shows the average number of binding sites per
particle b swiftly reaching saturation (b = A) within the incubation time tinc. However, panel
Fig. 9(a) shows that with lower values of τ0, b does not saturate. Despite this, we will show that our
analytical expression for a dose-response curve can provide an adequate approximation of the full
model’s dose response given certain conditions for the model parameter values.

Our goal is to derive an expression for the number of bound particles on the sensor surface at
the conclusion of the assay P(t = tend). We proceed by considering the three time periods we are
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modelling in turn.

INCUBATION PERIOD (0≤ t < t1):

If we assume that the incubation period, tinc, is long enough for b to saturate, then after the
incubation time, we can use asymptotic values of these variables given by

lim
t1→∞

b(t1)→

{
τ0/ν if τ0 < ν ,

1 if τ0 ≥ ν ,
(28)

and

lim
t1→∞

T (t1)→

{
0 if τ0 < ν ,

1−ν/τ0 if τ0 ≥ ν .
(29)

LEAD PERIOD (t1 ≤ t < t2):

During the lead time, we use the asymptotic values found in (28) and (29) as the initial conditions
for (23). If τ0 < ν , then T (t1) = 0 and thus there is no change in variables during the lead time.
In this case, the initial conditions for the magnet-on period are the asymptotic values from the
incubation period, [b(t2),T (t2),S(t2),P(t2)] = [τ0/ν ,0,1,0]. However, if τ0 ≥ ν , then T and S will
depend upon time. In this case, since b is saturated, (23) reduces to

Ṫ =−ST, (30)

Ṡ =−τ0ST, (31)

with initial conditions [T (t1),S(t1)] = [1−ν/τ0,1]. The solution for (31) can be written in the form

S(t) =
δ

(δ +1)eδ t −1
,

T (t) =
1
τ0

(S (t)+δ ) , (32)

where δ is a constant, which is given by

δ = τ0−ν−1.

MAGNET-ON PERIOD (t2 ≤ t ≤ tend):

The Heaviside functions present in (24) render them unsolvable in closed form. However, if they
are removed (i.e. we write (25) as f̂i(x) = x) and we consider the asymptotic approximations (17),
the equations in (24) can be made analytically tractable. The ODE system for this period depends
on relative size of τ0 to ν . If τ0 < ν , then the initial conditions are [b(t2),T (t2),S(t2),P(t2)] =
[τ0/ν ,0,1,0] and (24) reduces to

Ṡ =−κ2η (1−P)S,

Ṗ = κ2(1−P)S.
(33)
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We note that (33) is analytically solvable and that the solution can be written as

S(t) = 1−ηP(t),

P(t) =
e(η−1)κ2τ0t/ν −1

ηe(η−1)κ2τ0t/ν −1
,

which gives us the expression for P(t) we wish to derive.

However, if τ0 ≥ ν , then initial conditions for T and S are calculated from (32) and the derivation
of an expression for P(t) becomes more involved. In this case, the initial conditions are

[b(t2),T (t2),S(t2),P(t2)] = [1,T2,S2,0], (34)

and the ODE system (24) reduces to

Ṫ =−ST,

Ṡ =−τ0ST −κ2η(1−P)S,

Ṗ = κ2(1−P)S.

(35)

A solution for (35) cannot be found analytically. However we can still find an expression of the
form Ṗ = f (P) by noting that

Ṡ = τ0Ṫ −ηṖ, (36)

and therefore
S(t) = τ0T (t)−ηP(t)+ c, (37)

where c is a constant. Using the initial conditions at t = t2, we can write c = S2− τ0T2. Now,
dividing Ṡ by Ṗ from (35) gives

dS
dP

=
−τ0T −κ2η(1−P)

κ2(1−P)
, (38)

and then eliminating T from (38) by substitution from (37) gives

dS
dP

=
c−S−ηP−κ2η(1−P)

κ2(1−P)
. (39)

Rearranging (39) we recognize it as a linear first-order ODE with initial condition S(0) = S2,

dS
dP

+
1

κ2(1−P)
S =

c−ηP−κ2η(1−P)
κ2(1−P)

. (40)

The solution for S as a function of P can be written

S(P) = c−ηP+ τ0T2(1−P)1/κ2 . (41)

Substituting (41) into the expression for Ṗ from (35) gives the time derivative of P written entirely
as a function of P

Ṗ = κ2(1−P)
(

c−ηP+ τ0T2(1−P)1/κ2
)
. (42)

The nonlinearities in (42) prevent it from being solvable in closed form. However, considering the
full expression for c and using an alternative expression for η = S2r0PT (where r0 =

(d/2)2

a2 ) we can
rewrite (42) as

Ṗ = κ2(1−P)
(

τ0T2(1−P)1/κ2− τ0T2 +S2(1− r0PT P)
)
. (43)
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Note that r0PT P ≤ r0PT ∼ 10−2 (where PT ∼ 106) and thus 1− r0PT P ≈ 1. Therefore we can
rewrite (43) as

Ṗ≈ κ2(1−P)
(

τ0T2(1−P)1/κ2− τ0T2 +S2

)
, (44)

which is analytically solvable; the solution is

P(t)≈ 1−
(

S2− τ0T2

S2ect − τ0T2

)κ2

. (45)

Equation (45) is an analytical approximation for P as a function of time during the first pull of the
magnet (t2 ≤ t < t3). At the end of this period t = tend, the value of P gives us the predicted scaled
number of PMPs bound on the sensor surface P(tend).

SUMMARY:

An approximation for a dose-response curve from the full model equations (22) – (24) can be
calculated as follows:

When τ0 < ν :

P(tON) =
e(η−1)κ2τ0tON/ν −1

ηe(η−1)κ2τ0tON/ν −1
, (46)

where tON is the magnet-on time. When τ0 ≥ ν :

P(T2,S2, tON) = P(T2(tlead),S2(tlead), tON)≈ 1−
(

S2− τ0T2

S2ectON− τ0T2

)κ2

, (47)

where

S2(tlead) =
δ

(δ +1)eδ tlead−1
,

T2(tlead) =
1
τ0

(S2 (tlead)+δ ) ,

where tlead is the lead time and δ = τ0−ν−1.

5.2 Dose-response curves

By calculating P(tend) for different values of τ0 (using parameter values in Table 4 unless otherwise
indicated) we are able to obtain dose-response curves for the model using either direct simulation
or the asymptotic formulae.

Figure 10 shows the dose-response curves over the range 10−4 < τ0 < 102 for the full model
equations, the analytical approximation and a number of other modified versions of the full model
for different values of κ0. The dose-response curves from the variations of the full model are
included to show the effect of the assumptions made in the analytical approximation on the
dose-response relationship.

The ‘Full’ curve (blue line, plus sign markers) shows the dose-response relationship obtained by
numerically integrating the full model (equations (22) – (24)) over the time period 0 < t < tend and
the ‘Analytical’ curve (green line, square markers) shows the dose-response relationship obtained
by calculating P(tend) from equations (46) and (47).
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Figure 10. Simulated dose responses from the model. The non-dimensional model variable P plotted against the
dimensionless parameter group τ0 for variations of the model including the approximate analytical expression for P,
derived in Section 5.1. Model variants are explained in the main body text.

The ‘No HS’ curve (red line, circle markers) shows the dose-response relationship when the
Heaviside function in (24) is relaxed such that (25) becomes f (x) = x. Comparing the ‘Full’ and
‘No HS’ curves shows that inclusion of the Heaviside function results in an abrupt increase in P as
τ0 is increased beyond a critical value. By contrast, relaxing the Heaviside function results in a
gradual increase in P as τ0 is increased. The analytical dose response does not have the sensitive
response from P around the critical value of τ0 since the Heaviside functions are not included in its
derivation.

The ‘Full’ curve and ‘No HS’ curve approach the analytical approximation for the dose response as
κ0 is increased. This is because a larger value for κ0 corresponds to a larger value for the antigen to
PMP antibody binding rate relative to the antigen to sensor antibody binding rate which therefore
means that the PMP antibody saturation assumption in the derivation of the approximation becomes
increasingly valid.

The “Sat” curve (yellow line, asterisk markers) represents the dose response of the full model equa-
tions but where we have assumed that the incubation time is sufficient for the average concentration
of binding sites on a single PMP b and the amount of free target T is close to the limits they would
reach as t→ ∞. The “Sat, no HS” model (purple line, cross markers) is a combination of the Sat
and No HS models. Both curves illustrate how over a wide range of τ0 the analytic approximation
is pretty good given a long incubation time.

As would be expected, the Sat, no HS model and the analytical model are in good agreement, at
least over the range of model parameters explored.
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5.3 Parameter sensitivity

To investigate the sensitivity of the simulated dose response to the other dimensionless parameter
groups in the model we ran simulations of the full model equations (corresponding to “Full” in
Fig. 10) across a range of parameter values. The results are shown in Fig. 11 (solid lines) as well as
the corresponding analytical approximation (dashed lines).

Figure 11(A) illustrates how the dose-response curve varies with the parameter κ0, which represents
the ratio between target binding affinities of the PMP antibodies to that of the sensor surface
antibodies. Similarly to Fig. 10, the simulated dose response is in good agreement with the
analytical approximation at large values of κ0. This is because as κ0 gets larger, the validity of the
saturation assumption in the approximation is increased. Only one dashed line is visible since the
analytical formula is not dependent on the parameter κ0. Note also that at higher values of κ0, there
is more dose sensitivity at low τ0; for lower κ0-values, the dose-response curve represents a sudden
switch from zero response to maximum. This would suggest that high κ0 would be a good regime
for sensing, especially at low dose levels.

Figure 11(B) illustrates the how the dose-response curve varies with the parameter ν , which
represents the ratio of PMP antibodies to sensor antibodies. The results show that the range of
initial target concentration τ0 that produces a response from the model increases as the value for ν

decreases. The switch-on point of the immunoassay increases as the number of PMP antibodies
relative to sensor antibodies increases. This suggests that ν could be a good parameter to vary in
order to control the assay’s limit of detection.

Figure 11(C) shows how the dose-response curve varies with the parameter κ2, which measures the
ratio of the rate of immobilization to the rate of antigen to sensor antibody binding. Note that this
dimensionless parameter is somewhat complex in that it depends on the geometric constants α1 and
α2 and the density of the antibodies on each PMP. It would seem that for a given antibody-antigen
binding affinity and PMP antibody concentration, this parameter can be treated as a proxy for
PMP size, since κ2 increases linearly with PMP volume. The results show that as κ2 increases the
magnitude of the model response increases, while the range of τ0 to which the response is sensitive
does not change. Nevertheless, treating this result as representing what happens as particle size
increases is problematic, because the variables χ1 and χ2 would also increase with particle size,
which means that there would presumably also be a higher value of τ0 at which the sensor is first
switched-on for larger particle sizes. It may therefore be appropriate to fix the particle size for a
given antibody-antigen binding affinity and manipulate the amplitude of the model response by
changing the average antibody concentration for a single PMP, parameter A.

Figure 11(D) shows that over the range of parameter values simulated (which incorporates the
full range one would expect due to physical limitations on the real system) the dose response is
insensitive to the somewhat complex parameter η . In short, this suggests that if the number of
PMPs is kept within a suitable range relative to the size of the sensor surface, then the obscuring
of sensor antibodies by immobilized PMPs should not be a significant factor in the efficiency or
sensitivity of the assay.

5.4 Comparison with experimental data

In practical usage, for a particular target antigen, the clinically relevant range of τ0 will likely
be over one or two orders of magnitude. Here we look at the form of simulated dose-response
curve over narrower windows within the full range of values for τ0 simulated. Figure 12a shows
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Figure 11. Simulated dose responses from numerical integration of the full equations (solid lines) and analytical
approximation from Section 5.1 (dashed lines). The non-dimensional model variable P is plotted against the dimensionless
parameter group τ0 for different parameter values. In all simulations other than those in panel (A), κ0 = 104. (A) shows
the convergence of the full model solution with the analytical approximation as κ0 is increased. Only one approximate
solution is visible as it is not dependent upon κ0 and therefore solutions overlap. (B) Increasing the value of ν reduces
the sensitivity of the model response but does not effect the decreasing portion of the dose-response curve. (C) Increasing
κ2 increases the amplitude of the model response. (D) η is a dimensionless parameter group which includes model
variable S2 = S(t2). Therefore we systematically vary the value of η/S2 =

(d/2)2PT
a2S0

to investigate the effect on the model
response. Within parameter values that would practically be used in experiment, there is no effect on the model response.
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a simulated dose response along a linear x-axis and the different panels within Fig. 12b show
narrower ranges of τ0 at different points along the curve.

Figure 12b(A) shows a region of the dose-response curve that demonstrates the model’s ability
to replicate experimental dose-response curves such as that shown in Fig. 5a. Here at very low
concentration of target antigen there is zero response from the model, followed, as τ0 increases,
by a sudden switch-like, large increase in the response amplitude. This is then followed by a slow
decrease in the signal for higher doses. Such a dose response would be good for an assay, such as
pregnancy testing, where a binary response is required for the presence of antigen in significant
quantity.

Figure 12b(B) shows that the model is capable of generating a dose-response curve demonstrating
the so-called hook effect – as target antigen concentrations become large, the competition between
target antigen and PMP binding at the sensor antibody surface results in a decrease in the measured
response. Such responses are generally to be avoided when designing immunoassays because there
is no one-to-one mapping between output signal and target concentration.

In general, we found that the model does not readily generate the type of rising linear response seen
in experimental data from Fig. 5c. Nevertheless, panel C of Figure 12b shows how over a narrow
range of τ0 the model could replicate a roughly linear response, but only if the heaviside function is
ignored. This would correspond in the model to choosing low values of χ1 and χ2, which would
represent particularly ‘strong’ antibody-antigen pair binding meaning that fewer cross-links would
be required to immobilize a PMP. Interestingly, the data in Fig. 5c contains arguably the largest
uncertainty, as evidenced in the large error bar at 60 ng/ml.

Figures 10 and 11 show that the most robust region of the dose-response curve produced by the
full model is the decreasing region following the peak response to τ0. This region of the curve
would therefore be the best region to use for the immunoassay if the main concern is to understand
in a single assay the effect of dosage strength beyond an intial signal that represents presence.
Such assays would be good for quantifying biomarkers indicative of an infection. The slightly
perverse nature of this kind of assay though is that the strongest signal is obtained with the weakest
detectable dose. Such a feature might not be desirable however, because a weak response could
represent either a strong dose or simply the noise floor in the absence of any detectable target.
Nevertheless, this form of assay is not susceptible to the hook effect and the curve of this shape
seems resistant to calibration other than by manipulating the value of the initial sensor antibody
concentration S0.

6 Conclusion

This paper has constructed for the first time an end-to-end mathematical model of a particular
biosensor that is typical of well-mixed particle-based immunoassays. The need for modelling is
clear in this case because of the multi-physics involved in the assay so that it is not obvious which
effect dominates the dose response. We have accounted for particle diffusion, magnetization and
immobilization, as well as different affinities of antigen-antibody binding and the geometric effects
that occur when a particle is cross-linked. We first developed a computational particle-dynamics
model. The results from this indicated that the movement of particles due to the magnetic field is
rapid and dominates any diffusion effects. The model is able to replicate the shape of the voltage
output signal over time during the assay (compare Figs 3 and 6). Moreover the model is able to
offer an explanation for the growth and decay of the signal during the magnet ON and OFF periods,
respectively. The disadvantage of the particle-based model though is that it does not capture the
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Figure 12. (a) Full and No HS model simulated dose response plotted on a linear-scale x-axis. (b) Panels A–D each
show detail of the dose-response curve plotted in (a) over different value ranges for τ0.
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chemistry of binding, other than via a simple probability of a particle being bound, and so it is
not readily possible to explain the sensitivity of dose-response curves to assay parameters, nor to
capture the hook effect. One key conclusion of the model though is that there are limited spatial
effects, so that a well-mixed hypothesis can be used.

To capture the varied shapes of observed dose-response curves and how they depend on assay
parameters, we secondly produced a spatially-lumped rate-equation model based on the law of mass
action. This ODE model was able to produce dose-response curves that emulate all shapes of dose-
response curve seen in the the experimental results in Fig. 5b, including the hook effect. Another
key contribution has been non-dimensionalization, which enables us to identify dimensionless
groupings that can enable a scientific approach to parameter modification during experimental
design.

Moreover, under the conditions where r0PT � 1 and the dimensionless parameter κ0 is sufficiently
large, we have shown how the output of the nonlinear ODE model can be well approximated by an
analytical expression for an appropriate range of target concentration. Analytic expressions have the
advantage over computational results in that they enable direct experimental design without the need
for simulation. These results show promise because the qualitative effect on the immunoassay’s
dose-response curve can be easily estimated by changing key assay parameters as demonstrated in
Figs 10 and 11.

We should stress though that the main focus of this paper has not been to precisely match experi-
mental data. Rather we have merely sought to illustrate that the model is capable of reproducing the
full range of qualitatively distinct dose-response curves that have been observed in the laboratory
and to identify how assay parameters can affect these. In essence, we have merely shown that the
model has descriptive power; whether or not it has predictive power remains to be seen. A detailed
comparison between our model and a carefully designed experimental campaign, will form the
subject of future work. We also would like to adapt the modelling principles developed here to
seek to understand particle-based immunoassays that utilise microfluidic channels and lateral flow
through porous media. In these cases, spatio-temporal reaction kinetics and fluid mechanic effects
are likely to be significant.
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