MATHEMATICAL MODEL OF ELECTROMAGNETIC FIELD
WITH SKIN-EFFECT IN CLOSED ELECTRICAL CONTACTS
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Abstract: The mathematical model describing electromagnetic field in closed electrical
contacts is elaborated. It takes into account a non-uniformity of the current density on
the contact spot which can be explained by three factors: 1) physical phenomena of the
constriction, 2) influence of the contact cross-section radius, 3) skin effect in the case of the
alternative current. The effect of each above factors in dependence of given parameters is
discussed. The model is based on the Maxwell equations which are reduced then to the
solution of dual integral equations and series. It is shown that the skin-effect should be taken
into consideration at the current frequencies which are greater than 10* Hz and for the contact

forces which are greater than 10°N .

AMS Subject Classification: T74Nxx
Key Words: electrical contacts, Maxwell equations, skin-effect, dual integral equations and

series

1. Introduction

Mathematical models describing electromagnetic field in electrical contacts are
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based as a rule on the assumption about the uniformity of the current density on
the contact spot. This assumption enables one to reduce the problem of finding
of component of the el3ectrical field to the solution of the Neumann problem for
the Laplace equation, which can be solved by standard methods [1]. Such model
is approximate and can be used for the calculation of the contact resistance or
for the estimation of an average temperature in the constriction zone only. But
if the contact heat transfer is essentially non-stationary, for example, welding at
high range of the current, then the local overheating at the edge of the contact
spot can be explained by a non-uniformity of the current density along the
radius of the contact spot only. Corresponding mathematical models describing
electromagnetic and temperature fields in contacts are presented in the papers
[2]-[4]. However the general model taking into account all factors responsible
for the non-uniformity of electromagnetic field including the skin-effect should
be elaborated.

Such non-uniformity can be stipulated by three factors: 1) physical phe-
nomena of the constriction, 2) influence of the contact cross-section radius, 3)
skin effect in the case of the alternative current. Let us estimate of an influence
of each factor on the contact electromagnetic field.

At first we consider two semi-cylinders of the radius i occupying the regions
Di(0<r < R, —o0o<z<0)and Dy(0 <7 < R, 0 < z < oo) which
have the common current conducting contact spot Dy(0 < r < r9, 2z = 0).
Electromagnetic field in electrical contacts can be described by the Maxwell
equations

rotk = —,upm% (1)
- 1

rotH = —-F 2

. (2)

divH = 0 (3)

where £ and H are electrical and magnetic strength, ., 0, p are magnetic
permeability, magnetic constant and electrical resistivity correspondingly. The
vector of the electrical field E in the axisymmetric case has two components,
the radial component F,. and the axial component E,, while the vector of the
magnetic field has the angle component H, only.

It can be derived from the Maxwell equations (1)-(3) that H, is satisfied
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oHy 1 o oHY\ 0 (pd _u
ot pop [E (‘O 5. ) Tar\ o e )




Here the index i = 1 and 7 = 2 correspond to the cathode D)y and the anode
Dy respectively.
The boundary conditions can be written in the form
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Ué?"_g?"o
: I
(2) -
Hl”'s z=0 2mr (7)
ro<r<Bi
3H_('i)
o =0 (®)
r=H
6H(f)
5> =0 )

where [ is the electrical current. These conditions are obvious. In particular,
the condition (7) states the law of the total current.
The electrical field can be found from the magnetic field due to the Maxwell
equations as
B0 = _,, aH;’j g P9 o
" 0z
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2. Influence of the Current Constriction on the Electromagnetic
Field

Let us suppose that p; = const, I = const and R = oo because rg << R. Then
the equation (4) takes the same form for both i = 1 and ¢ = 2:

°H, 9 (18

The condition (5) should be omitted. The solution of this equation with the
conditions (6)-(9) can be represented in the form of the integral

Hy(r,z) = /000 erap(—Az)J1(Ar)v(A) dA (12)



which kernel corresponds to the eigenfunctions of the equation (11) and v () is
unknown function. The equation (11) and the condition (9) are satisfied for any
v(A). To satisty the conditions (6) and (7) we get the dual integral equations
for the function v(A):

Ty (A (M)A dA =0, 0<r<mnr
0
(13)
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The solution of these equations can be found using Wiener-Hopf method [5]:

v(\) = —

Sro sin(rgA) (14)

After substitution of (14) into (12) and calculation of integral we get

I z
where £ = £(r, z) is an equipotential defined from the equation
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i.e.
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Substituting the expression (15) into formulas (10) and using the relationship
(16) we get the components of the electrical field:
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Using the relationship between the vector of electrical field E, electric potential
¢ and current density j
E = —grady = pj



it is not difficult now to write the expressions for the components of the current
density in contacts :
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Using these formulas we can now to find the expressions for the power density
of the Joule heat sources
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In the neighborhood r» = 0 it is more convenient another representation of the
function qo(r, z, )
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It can be concluded from these expressions that maximum of the current density
and the power density of the Joule heat sources are situated at the edge of the
contact spot z = 0, r = rg, where they are not bounded , however they have an
integrable singularity. Such contact model is able to explain the phenomena of
the ring-shape contact welding in the range of high current and high contact
forces in contrast to the model with constant current density across a contact
spot.
The components of current density on the contact plane are defined by the
expressions:

(24)
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It can be derived from the relationships:
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It follows from these expressions that the portion of the current I passing
through the circle of the radius », 0 < r;1 < r, r < rg can be defined by

the formula
I [T ridr
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In particular, 0.5 is passing through the circle of the radius r = v/3rg/2 =
0.8667¢

The picture of the electric field (and also the same picture of the station-
ary temperature field due to well-known Holms theorem about electrical-heat
analogies [6]) in the constriction region corresponding cylindrical coordinate
system is presented in Fig. 1
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Fig.1 Electric field and stationary temperature field in the contact constriction
region 1-passing heat flux (electrical current), 2-isotherms(equipotentials)

The contact circle of the radius is reproduced in the form of infinitely thin disk
for the electrical current passing into semi-bounded contact. In the contrast to
the radial spherical model equipotential and isothermal surfaces of contacting
electrodes are the family of ellipsoids of revolution 1, while passing heat flux
and electrical current 2 correspond to the confocal family of hyperboloids of
revolution.

3. The Electric Potential and the Constriction Resistance

To get more information about considered electromagnetic system we find also
the distribution of the electric potential ¢;(r, z) and the constriction resistance
e



The boundary conditions for the potential far away from the contact zone
can be written in the form

u
=—=, ¢2(r2) == (27)
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Then the potentials can be calculated by the expressions
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The constriction resistance Rg
formula [1]:

of a semi-contact D; can be defined by the

o _2m [
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Taking into account the expressions (18), (26), (7) we get

i) Pi P

R()_&/m—d‘” _
“ 27 o -r\/?'g—*rg 4rg

The total constriction resistance R, and the contact voltage u. can be found
using the formulas

(1) (2) _ PLT P2 _ _ p1+p2
RV + R} R u. = IR, I, (30)

In the case of homogeneous contact materials (p; = pg) we get from (28)-(29)
the well-known formula for the potential distribution
U
@i(r,z) = (—1)*— arctan s (31)
m 0
One can conclude from the expressions (20)-(21) that the current density is the
same in each semi-contact [);, while the power density of the Joule heat sources
is different, andit will be greater in a semi-contact with greater value of p;.



4. Influence of the Contact Cross-Section Radius

Let us consider now the situation when it is important to take into account the
influence of the cross-section radius R of the contact on the electromagnetic
field, for example by the modeling of the skin-effect. One can suppose approx-
imately that the expressions (10), (15), (16) describe the field only inside the
domain bounded by the contact cross-section z =0, 0 < r < R and the sup-

ported ellipsoid % - R+2T7 = 1. Outside of this domain the magnetic field is
A

radial and the electric field is axial (Fig.2)
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Fig2. The model for the correction of the electromagnetic field due to the
bounded radius of the contact cross-section

To verify the correctness of this model we calculate the axial component of the
electrodynamic force P, using the basic well-known formula

_ 1
Peg =,u,uo/ —[EH]dV
DP

In accordance to this formula we get for the considered model
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That coincides with the well-known formula obtained by Dwight [7].

To estimate the influence of the radius R on the electromagnetic field more
accurately one should consider the equation (4) with the conditions (5)-(9) in
the bounded domain. In this case the magnetic field should be written in the
form of Bessel series

H,(r2) :—Qirgcnexp( A —)J1 ()\n%) (33)

where A, are the roots of the equation

J(Aa) =0, a==2
and the coefficients C, should be found by the solution of the equations of dual
series

Znoc;lcnuﬁ()\n%) =1 0<r<R
(34)
an;1CnJ1()\n%) =0, 0<r<m

Such type of the equations is considered in the paper [4]. Using its results one
can find that the coefficients C), can be calculated by the formula

2\/_ 2 J3;’2()‘ﬂ) 1
ﬁ \/TJQ( nja)l— (47r2)(1,368a + 0.216052)

with the error not greater than o?.

If R — oo, then the series (33) can be summarized and transforms into the
expression (15).

Cp = (35)



5. Skin Effect

Let us consider now the case of the alternative periodic current I (¢) = Iy exp(iwt)
passing through homogeneous contact with constant resistivity (p; = p2 = p =
const). We suppose also that R = co. Then the equation (4) takes the form

(36)
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where k2 = p/(upo). If the time of passing of the current is sufficiently long,
then this equation should be considered without initial condition (5) but with
the boundary conditions (6)-(8) where R = oc.

We represent, a solution of this problem in the form

Hy(r,2,t) = ;—iexp(iwt) /D Y eV AN A (37)

where k? = —iw/k? and p(lambda) is an unknown function determined from
the conditions (6)-(7), which give the dual integral equations

JEVIE TR L (A )p(\)dA =0, 0<r<rg

(38)
I7 Ji(Ar)pu(N)dh = %, rg <1 < 00
The project of a solution of these equations can be represented in the form
ro :
u(A) = Jo(Aro) + f o(t) (S”;\t ~ cos At) dt (39)
0

It is not difficult to conclude that the second equation in (38) is satisfied auto-
matically for any function ¢(¢) due to the properties of a discontinuous integral
of the Weber-Shaftheitlin type. Substituting (39) into the first equation of (38)
and using the formula

A2 Ji(Ar) = % [-rgfz()\-r)}

we get
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Integrating with respect r from to 0 to r , changing the order of integration
and calculating the inner integral we get

] T T o ydr f " Kolrt)p(t)dt (40)
0 0

re—t 0

where

oo 2
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The left side of the equation (40) contains the integral operator of the Abel
type capable the conversion, thus we get

o) = [ Ke0pltde = Fr) (42)
where .
K(rt) = %dir ) Vr2—u Wdu (43)

and F'(r) after simplification takes the form

21d/\/_9_5

F(r)=- e J5/2(,\r)Jg(Ar0}— (44)

The equation (42) belongs to the type of second-order Fredholm integral equa-
tions which can be solved by the iterations:

o(r) =3 n(r), po(r) = F(r), pu(r) = F(r) + /0 " K(r oo (t)d. (45)
n=0

Thus the solution of the problem (36), (6)-(8) is given by the expressions (37),

(39), (45), (44), (43), (41).

In the case of a week skin-effect
|krg| << 1 (46)

which is usually related to an ordinary real situation in electrical contacts it is
more convenient to replace the expression (39) by the following expression

sin Arg r=0 sin At
pn(A) = o +/0 rp(t)( v —cos).t).




Taking into account that in this case p(\) ~ k?/(2)\?) and integrating the
expression (37) we get the following formula for the magnetic field

I(] it ]_ z kQZ 2 2 2
Hy(r,z,t) = —Eem [;(1 — E) + @(26 — 226+ 2"+ )}
If w = 0, then this expression transforms to the expression (15). Substituting
it into the formula (10) we can find the components of the electrical field, thus
the component of the current density. In particular, the current density on the
contact spot due to (26) is defined by the expression

, 10
Jz (?",D,t] = ;ETH{P(nOatj — (47)
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Here the second term in the square brackets gives the additional component for
the increasing of the current density at the edge of the contact spot due to the
skin-effect. Let us estimate now the range of the correctness of the condition
(46). Taking into account that electrical resistivity has approximately the order
from 1078Q - m to 1077Q - m and p = 1 for non-magnetic materials we can
conclude that the thickness of the skin-layer is

1_\/ P _\/ P ¢
k wtflo 2mvppg v

where 0.03 < ¢ < 0.1.

If the current frequency v = 50H z and 10~%m < 5 < 10~*m, then 7.1077 <
|krg| < 3-1072, thus the condition (40) is satisfied. The same conclusion remains
to be correct for ferromagnetics when their temperature is lower than the Curie
point. Thus the skin effect in this situation is negligible. However if the current
frequency has the order of 103 Hz or the contact force has the order of 10*N,
i.e. the radius of the contact spot r has the order greater than 10~2m, then
the skin-effect should be taken into consideration.

Brief abstract of this work has been published in the Materials of the work-
shop ”Differential operators and modeling of complex systems” (April 7-8, 2017,
Almaty, Kazakhstan) [8].
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