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Abstract 

In this study, a new terminal converging adaptive control approach with bounded control inputs is developed for 

the 6 degree of freedom (DOF) parallel robot manipulator. The non-smooth feedback control principle is 

combined with particular bounded functions to define both the control input and associated adaptive law. The 

Lyapunov method is used to present a stability analysis in order to prove that the error trajectories are 

semi-globally asymptotically stable. Numerical simulation results relating to a 6 DOF parallel robot are presented 

to validate the effectiveness of the proposed approach and to compare the performance obtained with other 

candidate control schemes. It is shown that the proposed scheme achieves more rapid error convergence and 

exhibits improved robustness whilst guaranteeing that the control signal remains within known bounds. 

Keywords: Non-smooth control, Saturation control, Robot manipulator, Parallel robot 

1 Introduction 

The 6 DOF parallel robot manipulator has some superior properties when compared with its serial counterpart   

such as higher accuracy, higher stiffness and higher load-carrying capacity [1, 2]. By virtue of these merits, they 

can be used as actuators for high precision operation of heavy payload such as a flight simulator, an astronomical 

telescope or machine-tools [3, 4]. Such applications require high performance control, which means the designed 
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control algorithm should achieve high precision and a fast convergence speed.  

From the point of view of systems and control, the 6 DOF parallel robot manipulator is a typical multi-input 

multi-output (MIMO), strongly coupled nonlinear system. Due to the complex dynamics and application 

environment, modeling error cannot be avoided. It is very challenging to design high performance control 

algorithms and this has attracted extensive interest in the control problem from both academia and industry.  

Adaptive control algorithms are designed to deal with parameter uncertainties [5, 6]. Robust control approaches 

are used to overcome the effects of system uncertainty and of external disturbances [7, 8]. Synchronized control 

strategies are developed to enhance the control performance of parallel robot manipulators [9, 10]. All the above 

mentioned algorithms seek to improve the control performance of parallel robot manipulators but they do not 

consider the effects of possible saturation of the control input. It should be noted that the actuators of parallel 

robot manipulators’ are typically servo motors or hydraulic cylinders, and these cannot produce unbounded 

control torque. Therefore, control input saturation is a practical issue of relevance to controller design for parallel 

robots. The control performance will seriously degrade or the actuators will be damaged if the limitations of the 

control inputs are not considered appropriately in the algorithm design [11, 12]. In serial robot manipulator control, 

saturation functions are used in the controller design to avoid control input limitations [13, 14]. However, the 

speed of convergence of the tracking error will decrease due to the use of the saturation functions.  

Non-smooth control has important advantages such as high precision, rapid speed of convergence and stronger 

robustness when compared with conventional smooth control methods [15, 16]. The mentioned merits render the 

approach particularly appropriate for control of mechanical systems [17-20].  

A novel terminal converging control approach has been proposed which uses non-smooth feedback for the 6 

DOF parallel robot manipulator [21, 22]. However this approach has not considered control input saturation. By 

using fractional powers of the tracking error, a novel saturation PD with gravity compensation control approach is 

proposed for 6 DOF parallel robot manipulators, which improves the control performance [23]. However, this 

method requires an accurate model of the gravity vector which is difficult to obtain in practice due to parameter 

uncertainty.  

To address the high performance control requirements for 6 DOF parallel robot manipulators with bounded 

control inputs, this study proposes a new adaptive PD control approach using the Lyapunov method, incorporating 

a fractional power of the tracking error and the properties of the hyperbolic tangent function. The bounds on the 

control input can be computed a priori to avoid actuator saturation. The gravity vector can be estimated online by 

using an adaptive law. By using a fractional power of the tracking error in the controller design, the proposed 

approach prescribes rapid terminal convergence which prescribes higher precision, faster convergence speed and 



stronger robustness than exhibited by conventional approaches [13, 14].  

The paper is organized as follows: in Section 2, the problem is formulated and some key properties and 

definitions are introduced. In Section 3, the proposed control algorithm is described and the stability analysis is 

presented. Numerical simulation studies are given Section 4 and the proposed approach is compared with the 

conventional approach. Finally, in Section 5, some concluding remarks are presented.  

2 Problem formulation 

A 6 DOF parallel robot manipulator is composed of two bodies connected by six extendable legs, where the 

configuration is shown in Figure 1. The work space coordinates of the centre of mass of the moving platform can 

be written as: 

  
T

X Y Z   q   (1) 

where X , Y , Z  denote translations and  ,  ,   denote rotations. In terms of the Euler-Lagrange method, 

the dynamic model of the 6 DOF parallel robot manipulator can be described as [1, 24]: 

        ,  M C G Jq q q q q q q    (2) 

 

Figure 1 The structure of 6 DOF parallel robot manipulator 

where   6 6R M q  is the positive definite symmetric inertia matrix,   6 6, R C q q  is the Coriolis and 
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centrifugal force vector,   6RG q  is the gravity force vector,   6 6R J q  is the Jacobian matrix and 
6R  

is the control input.  

Notation: For matrix 
n nR A , min max  denotes the minimum/maximum eigenvalue of A .   denotes the 

2L  norm for a vector and matrix, 

  denotes the infinity norm of a matrix and I  is an appropriately 

dimensioned identity matrix. 

The following properties are assumed: 

Property 1: For 0m   and 0m  ,  m m I M Iq . 

Property 2: For 0M  ,   MM q . 

Property 3: For 0C  ,  , CC q q q . 

Property 4: For 0G  ,   GG q . 

Property 5: Matrix    2 ,q M C q q  is skew-symmetric, that is, for 6Rx ,    2 , 0T    M Cx q q q x . 

Property 6: The gravity vector can be linearly parameterized as:  

    G Yq q    (3) 

where   6 rR Y q  is the regression matrix and 
rR  is the system parameter vector.  

Property 7: For 0M  ,   MM q q . 

Property 8: For 0J  , 
1

J



J . 

The control objective is to design a terminal converging control algorithm with bounded control input which 

can achieve semi-global asymptotic stability. The proposed approach can make the tracking error converge to zero 

as time approaches infinity.  

To facilitate the controller design and the corresponding stability analysis, the following definitions are given 

for nRx   [13, 14]: 

        1 2tanh , tanh , , tanh
T

nTanh x x x   x   (4) 

        1 2ln lncosh , lncosh , , lncosh
T

nCosh x x x 
 

x  (5) 

        2 2 2 2

1 2sech ,sech , ,sech
T

nSech x x x   x  (6) 

      1 1sgn , sgn
T

n nsig x x x x
   

 
x   (7) 



         1

11 1 1 1
0 0

tanh sgn , , tanh sgn
n

T
x x

nn n n nTanh sig d k x x dx k x x dx
     

    0
K

n

x

x x


  (8) 

         1

11 1 1 1
0 0

tanh sgn , , tanh sgn
n

T
x x

nn n n nTanh sig d k x x dx k x x dx
    

  
 

  K
x

0
x x



  (9) 

where 
n nR K  is a positive definite diagonal matrix, 

iik , 1, ,i n  is the ith diagonal element, 
ix  is the 

ith element of x  and R . 

It is straightforward to show that the following inequalities hold for , nRx y  and 
n nR  : 

       
2 2

1

2 ln cosh tanh
n

i

i

x Tanh


  x x   (10) 

      
2

min

T Tanh Tanhx x x    (11) 

 
 

1
tanh

 
x

x
x

  (12) 

 
2 2

 x y x y   (13) 

  Tanhx x   (14) 

3 Terminal converging adaptive control with bounded inputs 

Several assumptions are first given to facilitate the controller design [1-4]: 

Assumption 1: q  and q  are measurable; they can be measured by using an exteroceptive sensor [27].  

Assumption 2: The desired set point position is given by 
6Rdq , for 0 0c  , 0cdq , 0dq .  

Assumption 3: The system parameters are bounded as: 

 
i i i     (15) 

where ,i i R    are the ith element of vectors , rR  , respectively.  

Assumption 4: 
Yi



Y  for 0Y  . 

Defining the following tracking error as: 

   dq q q  (16) 

According to Properties 1-8 and under Assumptions 1-4, the adaptive control law is designed as follows: 

       1 ˆ Tanh Tanh sig Tanh
     

 P1 P1 P2 P2 D DJ Y L K L K L Kq q q      (17) 



where ˆ rR  is the estimate of  and 
6 6, , , , , R P1 P2 D P1 P2 DK K K L L L  are positive definite diagonal gain 

matrices.  

Remark 1: If the desired position is selected appropriately, the 6 DOF parallel robot manipulator can operate in a 

singularity free work space and 
1

J  will always exist. Recently, a complete set of necessary conditions have been 

derived for enabling parallel robots to pass through type II singular configurations while maintaining stable 

motion [28].  This contribution increases the potential applicability of the approach proposed in this paper. 

Define the estimation error as: 

 ˆ      (18) 

where 
rR  denotes the estimation error vector.  

The adaptive law is designed as: 

  ˆ proj      (19) 

where 
rR  is the auxiliary term, which is designed as: 

   T Tanh  Y q q    (20) 

where 
r rR   is a positive definite diagonal gain matrix and R  . The function  proj   is defined as 

follows [14]: 

  

ˆ

ˆ 0

ˆ0 0

ˆ0 0

ˆ 0

ˆ

i i i

i i i i

i i i

i

i i i

i i i i

i i i

if

if and

if and
proj

if and

if and

if

 

 

 

 

 

 

 

   


  
  

  

   
 

  (21) 

where  ˆ 0i i i    , 
i  is the ith elements of  , 1, ,6i  . 

An adaptive control law has been designed for serial robots with bounded control input [14]. This control law is 

given by: 

    ˆ Tanh Tanh  P DY L Lu q q    (22) 

where u
nR  is the joint torque, , n nR P DL L  are positive definite diagonal gain matrices, 

n mR Y  is the 

regression matrix and ˆ mR  is the estimated system parameter vector which is updated online by using a 

similar adaptive law (19-21). 



Comparing (17) and (22), the control proposed in (17) is different to that presented in (22) and developed in [13, 

14] in the following ways: 

 J  appears in (17) however it does not appear in (22). This difference is because the dynamic model of the 

parallel robot is constructed in the task space, however the dynamic model of the series robot is constructed 

in joint space. 

   Tanh sig


P2 P2L K q  is used in (17). For example, if 
iq R  , with 1iq  , i iq q


   , this 

means that as the tracking error 
iq  approaches zero, the proposed control involving iq


  produces a 

larger control signal than the control in (22) involving iq . This means that the proposed control (17) 

provides terminal convergence characteristics. By incorporating this term, the proposed approach has higher 

precision, faster convergence speed and stronger robustness when compared to the strategy presented in [14].  

 In the control (17) , ,P1 P2 DL L L  are used to tune the magnitude of the control signal providing an explicit 

control gain to prescribe any control input limitations. , ,P1 P2 DK K K  have been embedded in the saturation 

function  tanh   and are used to tune the control signals in the saturation function. However, in (22) only 

,P DL L  are available to tune the controller. Comparing (22) and (17), the proposed approach includes the 

additional gains , ,P1 P2 DK K K  in the controller design which provides greater tuning flexibility.  

Substituting (17) into (2), the closed-loop system becomes: 

             ˆ, Tanh Tanh sig Tanh


     P1 P1 P2 P2 D DM C G Y L K L K L Kq q q q q q q q q     (23) 

The following result relating to the stability of the proposed scheme can now be presented. 

Theorem 1: Under Assumptions 1-4, if the following conditions are satisfied, the closed loop dynamic equation 

(23) will be semi-globally asymptotically stable, that is, lim 0
t

q . 

Condition 1:    2 -1

min minm   P1 P1L K  

Condition 2: 
   

 
min min

min

 





-1

P1 D

D

L K

L
  

Condition 3: 
     

2

min min 0
1

2 2

MV

m

 



 
  
 
 

D DL K
  

where MV  is specified as: 



 

     

      

2
2 -1

max max

2
1

max max

1
ln

2

1

2

q

0

q q q q

r r

M MV m Cosh

Tanh sig d


  

  

  

 

P1 P1 P1 P1

P2 P2

K L K K

L K


 

 

 

Proof: To prove stability, the following nonnegative scalar Lyapunov function is selected [13, 14]: 

 

      

     

     

-1

1

1

2

ln ln

1

2

P

q q

P
0 0

q q q q q q

q L q

r r L r r

TT

T

T

T

V Tanh

Cosh Cosh

Tanh sig d Tanh sig d
 





 



   
    
   
 

P1

P1 1 P1 P1

P2 2 P2

M K M

K K K

K K
 



 

 

  (24) 

First, it should be proved that the Lyapunov function (24) is positive definite and bounded. Completing the 

squares in (24): 

 

     

     

     

     

2

-1

1

1

2

1

2

ln ln

1

2

P

q q

0 0

q q q q q

q q q

q L q

r r r r

T

T

T

T

T

V Tanh Tanh

Tanh Tanh

Cosh Cosh

Tanh sig d Tanh sig d
 

 





         

   



   
    
   
 

P1 P1

P1 P1

P 1 P1 P1

P2 P2 P2

K M K

K M K

K K K

K L K
 

 

 

 

 

  (25) 

Considering Property 1 and equation (10), the Lyapunov function (25) satisfies the following inequality: 

 

 

       

      

2

2 22 -1

min min

2
1

min min

1

2

1 1

2 2

1

2
m

V m Tanh

m Tanh Tanh

Tanh sig d V




  

  

 

 

  

P1

P1 P1 P1 P1

P2 P2
0

K

K L K K

L K
n

q

q q

q q

r r 




 



  (26) 

If Condition 1 holds, 0V  . It can be seen that 0V   if and only if , , mq q
T

T T T    120   . Hence V  is 

positive definite. Considering Properties 1-2 and equation (14), the Lyapunov function (25) satisfies the 

following inequality: 

      

      

2

2
-1

max max

2
1

max max

1

2

ln

1

2

q

0

q q q

q

r r

MV m

Cosh

Tanh sig d




 

  

 



 

P1

P1 P1 P1

P2 P2

K

L K K

L K






 

 (27) 

Hence, V  is bounded as m MV V V  .  

Differentiating (24) with respect to time yields: 



 

   

         

      

  

2

1

1

2

ˆ

q q q q q q

q q q q q q q

q q q q q

q q

T T

TT

T T

T T

V

diag Sech Tanh

Tanh Tanh

Tanh sig


 





 

 

 

 

P1 P1 P1

P1 P1 P1

P2 P2

M M

K K M K M

K M L K

L K

 

 

  

  (28) 

Using Property 5 and considering equation (23), (28) can be written as: 

 

 

    

         

  

      

2

ˆ

ˆ

q q q q

q q q q

q q q q q q q

q q q

q q q q q q

q

T T T

T T

TT

T T

T T T

T

V Tanh

Tanh sig Tanh

diag Sech Tanh

Tanh

Tanh Tanh sig Tanh

Tanh





 



   

 

 

   


  




P1 P1

P2 P2 D D

P1 P1 P1

P1

P1 P1 P2 P2 D D

P1

Y Y L K

L K L K

K K M K M

K C Y Y

L K L K L K

L





 



 

 

 

     1 ˆq q q
T TTanh sig

  P1 P2 P2K L K   

  (29) 

Let           2
q q q q q q q q

TT diag Sech Tanh   P1 P1 P1K K M K M C  , (29) can be written as: 

 

 

    

     

      1 ˆ

T

T

T

T T

V Tanh

Tanh Tanh

Tanh Tanh sig

Tanh Tanh









 

  





  

D D

P1 P1 P1

P1 P2 P2

P1 D D

L K

K L K

K L K

K L K

q q

q q

q q

q q

 

 

   

  (30) 

The above equality satisfies: 

 

   

      

      

min

min min

min

q q

q q

q q

T

T

T

V Tanh

Tanh Tanh

Tanh Tanh

 

 



  





D D

P1 P1 P1

D P1 D

L K

L K K

L K K

 



  (31) 

Let  mina  DL ,  minb  P1L  and  minc  DL , (31) can be written as: 

 
      

    

q q q q

q q

TT

T

V a Tanh b Tanh Tanh

c Tanh Tanh

   



D P1 P1

P1 D

K K K

K K

 



  (32) 

Considering Properties 3 and 7 and inequalities (4-8), it is obvious that 
2

q  , then (32) can be written 

as: 



 

     

     

2 22-1

min

2 2
2

2

2 2

q q q

q q q

b
V a Tanh Tanh

b c c
Tanh Tanh Tanh

b b

    

  

D D P1

P1 D D

K K K

K K K





  (33) 

 

     

       

2 22-1

min

2 2
2-1

min

2 2

2 2 2

q q q

q q q

a b
V Tanh Tanh

b c a c
Tanh Tanh Tanh

b b

 
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   

 
    

 

D D P1

P1 D D D

K K K

K K K K





  (34) 

If the following inequalities hold, 0V  : 

  
2

-1

min 0
2 2

a c

b
  DK   (35) 

  
2 2

0
2

q q
a

Tanh   DK   (36) 

It is obvious that if Condition 2 holds, (35) will be satisfied. In terms of (12), if the following inequality holds, 

(36) will also hold: 

  
2

1
2

q
a


    (37) 

If Condition 3 is satisfied, (37) will hold and 0V  . Thus the closed loop system (23) is semi-globally stable 

under Conditions 1-3. Let      ,y q q
T

T T

Tanh Tanh 
 D P1K K  , there exists 0   such that the 

following inequality holds: 

 
2

yV     (38) 

Because 0V  , V L . Then, , , ,q q y L  . Due to q LΔ  and dq  is bounded, q L . 

According to (15) and (18-21), ˆ ˆ, , L   . In light of Property 1 and (23), ,q y L . Hence y  is uniformly 

continuous. By using Barbalat’s Lemma [25],  lim 0y
t

t


 , then lim 0q
t

 . □ 

The bound on the control input  is given by: 

       1

max max maxii
  


   P1 P2 PDJ Y L L L    (39) 

In the controller design the bound on   can be determined from  max P1L ,  max P2L  and  max PDL .  

Remark 2: The Lyapunov function and the corresponding stability analysis are different from the analysis in [14]. 

The fractional power of the tracking error is used in particular to enhance the control performance in this paper. 

Remark 3: The contribution of     min

P

0
r rTanh sig d


 P2 P2L K



 to the positive definite of V  and the 



contribution of       0q q
T

Tanh Tanh sig


 P1 P2 P2K L K   to 0V   is not explicitly considered. Hence, 

conservation exists in the controller design. This does not however affect the stability of the closed loop. 

According to Conditions 1-3 and by using a trial and error method, one can find a set of appropriate controller 

parameters. 

Remark 4: If 
1 J I  , the proposed approach can be used to control a serial robot manipulator. Further, if 

1  ,   P1 P2 DK K K I ,  P1 P2 PL L K , D DL K , (17) reduces to (22), which shows that (22) is a special 

case of (17). The proposed approach is more general than the one in [14]. 

4 Numerical illustration 

In this section, a 6 DOF Stewart Platform is used to test the proposed approach [26]. The system is modeled 

using SimMechanics in Matlab. The parameters are given as follows: the mass and mass moment of inertia values 

of upper platform are 1216.9m kg ,   2, 304.48(608.46)X Y ZI I I kg m  , the mass moment of inertia values of the 

upper and lower part of the ith leg are     2, 24.17 0.023uXi uYi uZiI I I kg m   and   2, 43.02(0.156)dX dY dZI I I kg m  , the 

mass of the upper/ lower part of the ith leg are    / 51.81/ 92.11u di i
m m kg . In the simulation, it is assumed that 

the actuator control input for each leg is bounded by 
55 10i N   . The desired position is chosen to be

 0.3 0.2 0.6 0.2 0.5 1
T

m m m rad rad raddq  and the initial position is given by 

 0.6 0.4 1.2 0.4 1 2m m m rad rad radq .  The Jacobian matrix is given in the Appendix and further 

details can be found in [29, 30]. The estimated parameters are selected as the mass of upper platform and the mass 

of the upper/ lower part of leg 1, whose bounds are given as: 1 1000  , 2 62  , 3 31  , 1 1300  , 

2 108  , 3 72  . The initial value of the estimated parameters are selected as:  1 0 1000  ,  2 0 62  , 

 3 0 31  . The performance of the proposed terminal converging adaptive control (TCAC) was compared with 

the existing adaptive control (AC) [14] to validate its effectiveness. The control parameters are given in Table 1. 

From Table 1 it is clear that the parameter selection supports a fair comparison. 

Table 1 Controller parameters 

TCAC  61 10diag P1L ,  61 10diag P2L ,  44.5 10diag DL ,  1diagP1K , 

 1diagP2K ,  1diagDK , 0.6  ,  5diag , 500   



AC  62 10diag PL ,  44.5 10diag DL ,  5diag , 500   

Figure 2 shows the tracking errors in the 6 DOF robot system, where the solid line denotes the AC performance 

and the dashed line describes the TCAC performance. It is clear that the TCAC has a more rapid speed of 

convergence than the AC implementation. Figure 3 shows the control input. Neither the TCAC nor the AC exceed 

the control input limitation. Figures 2 and 3 validate that the TCAC has better performance, particularly in the 

terminal converging phase. This can be attributed to the nonsmooth feedback term  qsig


P2K   which 

prescribes a rapid terminal convergence capacity. Figure 4 illustrates the parameter estimates obtained from the 

adaptive law for both the TCAC and AC. The estimates are all bounded. The simulation results confirm the 

effectiveness of the proposed approach.  

To further test the proposed approach, an impulsive external disturbance was added to the actuators during the 

time period 0.4 0.41s  with amplitude 50000N . Figure 5 shows the position tracking error and Figure 6 the 

control input in this case. Both of the approaches exhibit a bounded control input which does not exceed the 

actuator limitations. Again, the simulation results show that the TCAC exhibits better control performance than 

the AC.  

To summarise, the simulation studies demonstrate that the proposed TCAC provides more rapid convergence 

and higher control precision in addition to improved robustness properties.



 

 

Figure 2 Position tracking errors in the absence of an external disturbance 
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Figure 3 Control input in the absence of an external disturbance 
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Figure 4 Performance of the adaptive law 
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Figure 5 Position tracking errors in the presence of an impulsive external disturbance applied at time 0.4 seconds. 
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Figure 6 Control input in the presence of an impulsive external disturbance applied at time 0.4 seconds.
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5 Conclusion 

By resorting to the hyperbolic tangent function and nonsmooth feedback, a novel terminal converging adaptive 

control with bounded control input has been developed. The proposed approach can achieve semi-global 

asymptotic stability and provides an effective control solution for parallel robot manipulators. Theoretical analysis 

and numerical simulation results have been presented to support the arguments presented in the paper. 

Comprehensive bench tests are now required to further develop and assess the proposed approach. Future work 

will consider implementation on an industrial manipulator and will assess the trade-off between complexity of 

implementation and performance by comparing the proposed scheme with the control scheme implemented 

commercially for common tasks. 
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Appendix  

The Jacobian matrix for a general six degree of freedom parallel robotic is given by the following equations 

where full details can be found in [29, 30] 

   
2 2 2

1 1 1 12 3 3 2T T TL X d b Y d Z                          (A1) 

   
2 2 2

2 1 1 12 3 2 3 2 2T T TL X d b Y d b Z                       (A2) 

   
2 2 2

3 2 2 23 2 3 2T T TL X d b Y b Z                        (A3) 

   
2 2 2

4 2 2 23 2 3 2T T TL X d b Y b Z                        (A4) 

   
2 2 2

5 3 3 32 3 2 3 2 2T T TL X d b Y b d Z                     (A5) 



   
2 2 2

6 3 3 32 3 3 2T T TL X d b Y d Z                       (A6) 
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33

T Y
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Y p
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