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Abstract

Infants imitate behavior flexibly. Depending on the circumstances, they
copy both actions and their effects or only reproduce the demonstrator’s in-
tended goals. In view of this selective imitation, infants have been called
rational imitators. The ability to selectively and adaptively imitate behavior
would be a beneficial capacity for robots. Indeed, selecting what to imitate is
one of the outstanding unsolved problems in the field of robotic imitation. In
this paper, we first present a formalized model of rational imitation suited for
robotic applications. Next, we test and demonstrate it using two humanoid
robots.

1 Introduction

Imitation is a very important form of social learning in humans and has been sug-
gested to underlie human cumulative culture (Legare and Nielsen, 2015; Tomasello,
2009). In keeping with its importance in human development, the ability to im-
itate emerges early in human infants. From their second year on, infants can
imitate actions and their intended goals from demonstrators (e.g., Gariépy et al.,
2014; Jones, 2009). Critically, infants imitate the demonstrated actions and their
effects in a flexible way. Depending on the circumstances, they copy both actions
and effects or only reproduce intended goals. In view of this selective imitation,
infants have been called rational imitators (Gergely et al., 2002).

In a landmark paper, Meltzoff (1988) showed that 14-month-old children switch
on a light by bending over and touching it with their head, if they have seen an ex-
perimenter do so. Later studies showed that if the experimenter’s hands are occu-
pied children tend to switch on the light using their hands (Gergely et al., 2002).
The percentage of copied head-touch actions also declines when the demonstra-
tor’s hands are physically restrained (Zmyj et al., 2009; Gellén and Buttelmann,
2017). Apparently, when the experimenter’s hand are occupied or restrained, the
children deem the head touch to be irrelevant to the outcome. These results have
been replicated by Beisert et al. (2012) and Paulus et al. (2011), albeit with a
different interpretation.
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Another aspect of rational imitation was demonstrated in a study by Carpen-
ter et al. (2005). A demonstrator moved a toy mouse to a target position either
using a sliding or hopping motion. If a toy house was present at the goal location,
children were less likely to copy the motion than if no house was present. The
authors assumed that the presence of the house induced the children to adopt the
goal of placing the mouse in the house whilst disregarding the demonstrated mo-
tion. In the absence of the toy house, the children presumably perceived motions
as being the goal, and therefore, as relevant.

In summary, young children (act as if they) are able to distinguish between
relevant and irrelevant aspects of demonstrated behaviour. They seem to copy
the actions more often if relevant for attaining the goal. In particular, they seem
to (1) take into account the constraints of the demonstrator and (2) discount ac-
tions in favour of goals.

Since the advent of robotics, imitation has been suggested as a method for
learning in robots. Billard et al. (2008) list two advantages of imitation learning.
First, learning from a demonstrator greatly simplifies the search solutions to
sensorimotor problems, which are typically hard. In addition, imitating robots
would be programmable by lay-persons using the same methods they employ to
teach other people. Robotic imitation faces a number of challenges (Dautenhahn
and Nehaniv, 2002). One of the most fundamental issues is determining what to
imitate (Carpenter and Call, 2006; Breazeal and Scassellati, 2002). Among other
aspects, this involves determining the relevant parts of a demonstrated action
and only copying those. Hence, the selective and rational imitation shown by
children would be a beneficial capacity for robots (Gergely, 2003). Unfortunately,
in spite of the considerable body of experimental data, the cognitive mechanisms
underlying rational imitation remain elusive. In particular, no satisfactory and
computationally explicit model of rational imitation in infants is available.

Initially, authors explained the results of experiments by assuming that in-
fants reason teleologically about the goals and actions demonstrated (See Zmyj
and Buttelmann, 2014, for references). Children are assumed to infer that (1) the
demonstrator uses his or her head to switch on the lamp because his or her hands
are constrained and (2), as such, the head touch is not necessary to successfully
switch on the lamp. Therefore, when asked to switch on the lamp, the infant
uses his or her hands. In contrast, when the demonstrator’s hands are free, the
infants are assumed to reason that the head touch is instrumental in obtaining
the goal.

More recently, competing accounts have been advanced (See also Gellén and
Buttelmann, 2017, for an overview). In particular, it has been proposed that
many experimental results can be explained by differences in the difficulty for
the infants to copy the demonstrator’s actions (Zmyj and Buttelmann, 2014). Ac-
cording to this account, bending forward to touch a lamp with restrained hands
is more difficult than doing so with free hands available to support the body.
As such, an increased difficulty in exactly copying the demonstrated motion —
termed a lack of ‘motor resonance’ (Paulus et al., 2011) — is assumed to reduce
the extent to which infants copy a demonstrated action. Beisert et al. (2012) ad-
vanced yet another account of rational imitation in infants. These authors have
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claimed that attentional processes can fully explain selective imitation.

While it is undoubtedly (and unsurprisingly) true that both the feasibility
of the demonstrated actions and attentional processes determine the fidelity of
action copying, neither account fully accommodates the experimental findings
(Zmyj and Buttelmann, 2014). For example, even in the absence of obvious dif-
ferences in action difficulty, 12-month old infants copy a model with constrained
hands less often (Zmyj et al., 2009). In addition, 12-month old — but not 9-month
old — infants ignored the head touch action of a model with hands fixed to the ta-
ble (Zmyj et al., 2009). It is difficult to see how infants would be susceptible to ‘a
lack of motor resonance’ at 12 months but not at 9 months. Likewise, attentional
mechanisms cannot explain effects across conditions that do not seem to recruit
different levels of attention (Paulus et al., 2013; Kolling et al., 2014).

While the motor resonance and attention theories fall short in accommodat-
ing for some data, the reasoning hypothesis suffers mainly from being under-
specified — although it can be noted that the idea of ‘motor resonance’ is less than
fully specified either (Zmyj and Buttelmann, 2014). As a result, the reasoning ac-
count can be made to accommodate most findings post facto. For example, Paulus
et al. (2011) conducted an experiment to distinguish between the reasoning ac-
count and the motor resonance model. They concluded that findings were more
in line with the predictions of the motor resonance model. However, it is unclear
whether the predictions these authors derive for the teleological reasoning ac-
count are the only interpretation possible (See Zmyj and Buttelmann (2014) for
a similar remark).

In the absence of a complete and computationally explicit model, we propose
a novel model for rational imitation, i.c. the Cost Difference Model (CDM). In
particular, we aim for a model that supports rational imitation in robots. In
contrast to the accounts discussed above — and in accord with our goal to exploit
rational imitation to optimize the imitation behaviour in robots — we depart from
a normative analysis of imitation learning. That is, we postulate the desirable
properties of rational imitation and build a model satisfying these requirements.

2 The Cost Difference Model

2.1 Rationale

In agreement with current views on its adaptive value (e.g., Laland, 2004; Erbas
et al., 2013), we propose that imitation is a method for acquiring better action
policies (Argall et al., 2009). Action policies can be thought of as a series of sub-
goals that lead towards attaining the final goal. For example, an action policy for
making spaghetti (final goal) are the steps (subgoals) as set out in the recipe.
Assuming that imitation is a learning strategy for adopting better action poli-
cies for satisfying goals, imitation has the possible advantage of being a cheaper
(less risky) route to policy learning than individual, asocial learning. Neverthe-
less, indiscriminately copying behaviour is unlikely to result in better policies
(Laland, 2004). Ideally, agents should only copy behaviour when an observed



policy is better than the current existing action policy. Initially, we can assume
better policies to be those requiring less energy. However, other optimization
criteria could be imagined, including risk and time. In biological agents, better
action policies are those ultimately resulting in increased fitness.

In this light, experimental findings on imitation in infants are somewhat puz-
zling. Infants copy demonstrated head touches in spite of clearly being able to
switch on the light using their hands (which seems to be a better policy). In-
deed, in control conditions, children spontaneously switch on the light using their
hands. Moreover, even when infants eventually copy the head touch, most often
they switch on the light using their hands first (Paulus et al., 2013, 2011; Gergely,
2003). So why do children copy the ineffective head touch policy given they have
an alternative policy that seems more efficient?

In our view, this discrepancy can be explained by assuming that an agent
observing a demonstrated action policy has only limited knowledge about its en-
ergetic cost. The agent might be able to estimate the energy requirement of the
demonstrated policy, for example, using its own action planner (or internal sim-
ulation, Hesslow (2002, 2012)). However, this will yield an approximate estimate
at best — especially when the demonstrated policy includes unfamiliar actions. In
addition, the agent can estimate or retrieve the cost of its existing action policy
and compare this to the estimated value of the demonstrated action policy. In
agreement with this assumption, infants expect demonstrators to minimize the
costs of actions (Liu and Spelke, 2017, and references therein). Moreover, actions
that violate this assumptions recruit more attention from the infants.

Theoretically, the agent should reject the demonstrated policy whenever its
cost is higher than that of the existing policy. However, the cost of the demon-
strated policy is not directly accessible and is only an estimate. As such, seeing
someone executing a costly action policy might indicate that the estimated cost
is inaccurate. If so, it would be reasonable to actually execute the demonstrated
policy and obtain a corrected estimate of its cost. Indeed, the potential long-term
gain of chancing on an innovative policy would generally outweigh the cost of
testing out the action.

In summary, we propose that the rational imitation observed in infants is the
overt outcome of uncertainty about the cost of the demonstrated action policy.
This is, when copying an action policy they are exploring its cost by physically
executing it. This overt action will result in a better estimate of its real cost.
Critically, our hypothesis predicts that explorative copying of actions should oc-
cur more often if the demonstrator is deemed trustworthy (Laland, 2004; Van-
derelst et al., 2009). This is corroborated in experiments. Infants more often
copy ineffective behaviour from trusted (Zmyj et al., 2010; Poulin-Dubois et al.,
2011) or familiar (Beisert et al., 2012) demonstrators. In addition, the notion of
imitation as a method for exploring an action’s cost is supported by the finding
(mentioned above) that, even when infants eventually copy head touches, most
often they switch on the light using their hands first. Hence, when copying the
head touches, they actually perform both actions most of the time (Paulus et al.,
2013, 2011; Gergely, 2003). This would allow them to directly compare the cost of
both action policies. Moreover, our account predicts that children should have a



tendency to over-imitate irrelevant actions as they result in an unexpected high
cost estimate triggering explorative imitation of the demonstrated actions. This
has been confirmed in a series of experiments (Lyons et al., 2007; Keupp et al.,
2013). In agreement with our thesis, infants seem to assume that demonstra-
tors will minimize the costs of their actions. When demonstrators fail to do so,
this recruits increased levels of attention (Liu and Spelke, 2017) which could the
mechanism that leads to increased imitation (or over-imitation).

Finally, it should be pointed out that our functional description of rational
imitation suggests similar adaptive advantages are to be gained by other species.
As such, it is interesting that both chimpanzees (Buttelmann et al., 2007) and
dogs (Range et al., 2007) have found to be selective imitators in much the same
way as human infants.

Having outlined a functional account of rational imitation, we proceed to de-
scribe the computations we assume to underlie the selection of action policies for
imitation. We propose this proceeds in three steps: (1) parsing the continuous
stream of sensory input, (2) solving the correspondence problem, (3) comparing
the costs of the existing and the demonstrated action policies.

2.2 Formalization
2.2.1 Parsing behaviour

Behaviour consists of dynamic and continuous motions, and their effects. Hence,
the first challenge for an imitating agent is parsing this stream of sensory input
into meaningful chunks of actions and resulting effects. Indeed, young infants
have been shown to parse behaviour into goal oriented chunks (e.g., Baldwin
et al., 2001). In principle, they might use a wealth of task-related knowledge
to solve this problem. However, they could also exploit low-level sensory cues
signalling the boundaries between behavioural units, especially in early develop-
mental stages (Baldwin et al., 2001). Indeed, adults will often explicitly capture
the child’s attention before initiating a demonstration. Likewise, they use verbal
cues to signal the action has been completed. Verbal cues are commonly used
in experimental investigations of imitation to denote the start and ending of a
demonstration (e.g., Paulus et al., 2011; Schwier et al., 2006; Zmyj et al., 2009).
In addition, more basic sensory cues could be salient changes in visual and audi-
tory input or object motion.

In our experiments, we assume the robot can use either task-related knowl-
edge or low-level sensory cues to parse the behaviour of a demonstrator and do
not model this step explicitly.

2.2.2 Solving the correspondence problem

The second computational step concerns solving the correspondence problem.
That is, the module converts the observed behaviour into the coordinate sys-
tem of the observer. The correspondence problem is far from trivial (Nehaniv
and Dautenhahn, 2001), in particular when the body plan of the demonstrator



and observer are different. Indeed, errors made in solving the correspondence
problem are assumed to be an important bottleneck preventing successful infant
imitation (Gattis et al., 2002). However, in the field of robotics, a substantial
amount of research has resulted in a number of methods for solving this problem
(e.g., Argall et al., 2009; Schaal et al., 2003; Nehaniv, 2007). Hence, in this pa-
per, we assume the problem can possibly be solved using the methods proposed
earlier. The output of this computational step, a sequence of states in the ob-
server’s coordinate system, will be denoted by as 6; with ¢ indexing the time,
with ¢ =[0,T1.

2.2.3 Inferring the demonstrator’s policy

In order to model imitation based on the assumptions introduced above, we need
to propose a mechanism that allows agents to infer the demonstrated action pol-
icy from the observed sequence of states 6;. This is, the imitator needs to infer
from 6; which intermediate goals the demonstrator satisfies en route to the final
goal. To the best of our knowledge, no account of the method used by infants to
select relevant subgoals from observed actions is available. Hence, in what fol-
lows, we present an approach that is suitable for the current robotic experiments.
It should be understood that this method is a first approach and could be refined
in further work to suit other contexts.

In more formal terms, inferring the demonstrator’s action policy can be thought
of as selecting the minimal number of intermediate states from 6; required to ex-
plain the observed behaviour 6;. This set of minimal required states, denoted as
05, are assumed to be the subgoals of the demonstrator. Below, we explain our
current approach to selecting this minimal set of states d.

We suggest the robot should select an iteratively expanding set of states
0s ={0g...0,...07} from the observed states 6;. For each set 65, the robot uses
its own action planner to compute an action sequence d; leading from oq to o7
through the intermittent states o, in d;. In planning the action sequence a;,
the robot should take into account the physical constraints C experienced by the
demonstrator. Hence, the action sequence @; is the action plan the robot would
come up with itself (1) if it were in the same situation as the demonstrator and (2)
wanted to attain each of the selected subgoals in 6. As such, the notation for the
planned action sequence, d;, should be considered as shorthand for a; = f(35,C)
indicating that the planned action sequence is a function of (1) the currently
selected action states 65 and (2) the physical constraints C. In terms of the be-
havioural experiments discussed above, physical constraints could include the
fact that the demonstrator’s hands are occupied (e.g. as in Gergely et al., 2002).

For each set of selected states 65 and resulting action sequence d;, the imita-
tor estimates the cost of @;. We tentatively suggest the cost is expressed in terms
of energy expenditure. The estimated energetic cost E(d@;) is compared with the
estimated cost of the demonstrated action sequence E(3;) calculating the cost
difference AE as,

AE = |E(3;)—E(G,)|-S(3;) 1



In equation 1, the parameter S(o;) indicates the saliency of the demonstrated
state d;. This weighing allows discounting part of the demonstrated action se-
quence 0; in favour of salient action outcomes. The saliency of (part of) a demon-
stration could be computed using existing approaches to visual saliency meth-
ods developed in the field of human-machine interaction (e.g. Scassellati, 2002;
He et al., 2014). In the experiments reported in the current paper, we do not
vary this parameter and fix it at a value of 1. However, experimental evidence
strongly suggests saliency is an important factor (e.g., Carpenter et al., 2005; Liu
and Spelke, 2017) and we plan to expand the model in this direction.

At first, the set of selected states J; only contains the initial and final observed
states, i.e., 05 = {09, 07}. However, the set is iteratively expanded by adding more
intermediate states. Therefore, the set of selected states 6 will eventually ap-
proach the observed action sequence 6;. In consequence, AE approaches zero as
the set 05 is expanded. When the value of AE is below a certain threshold g, ex-
panding dJ is terminated and the current set 65 (with the exception of the initial
state o) is taken to contain the subgoals in the observed behaviour. The set d,
contains the minimum number of subgoals that are required to explain the (cost
of the) observed behaviour ;. Also, notice that the iterative process implies that
when AE(3; = {0g,07}) < Tg, the imitator will simply plan an action sequence to
attain the final state demonstrated — hence, no imitation of any intermediate goal
will take place. In this case, the imitator assumes that the observed behaviour 6,
can be inadequately explained by assuming the demonstrator is simply attempt-
ing to reach the final goal. No subgoals need to be assumed.

Obviously, expanding the set 65 can be done in many ways. Here, we pro-
pose that on each iteration additional states are selected at time instances inter-
mediate between the currently selected states. At first, only two states will be
selected,

05 ={o0,07}. (2)

On the next iteration, an additional state in between these two will be added:
0s = {0g,0r,07}. Next, the set will be expanded to 5 = {0g,0r,07,03r,07}. In
2 4 2 4

other words, at the nth iteration the length of &, is given by || =1+ 2" 1.

In equation 1, d; denotes the action sequence planned to attain the selected
states 6;. Hence, we assume that the agent can plan an action sequence passing
through a number of selected goal states. In addition, we assume that the agent
can plan this taking into account the physical constraints C of the demonstra-
tor. This assumption represents the most challenging cognitive ability supposed
under our model. However, evidence suggests that infants are capable of plan-
ning actions under physical constraints (Upshaw and Sommerville, 2015; Claxton
et al., 2003).

Figure 1 illustrates the process outlined above. Figure 1b depicts a hypo-
thetical path followed by a demonstrator (depicted as a black line) from start to
goal. Observing this path, an imitator iteratively selects an increasing number of
states (here: n = 2, 3 and 4, respectively) from the demonstrated path. Selecting
only the start and goal position (fig. 1¢) leads to a large cost difference AE (fig. 11).
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Figure 1: Illustration of the process of selecting states 65 of the demonstrated
action sequence 0;. (a) flow chart depicting the process of selecting 6. (b) The
hypothetical path taken by a demonstrator (black line) from start to goal. Notice
the demonstrated path consists of both an unnecessary curve (first) and neces-
sary curve (to negotiate the black obstacle). (d) This panel illustrates the planned
path a; for 05 containing only the initial state and final state. Notice that this
results in a discrepancy between the paths d; and 6;. In particular, the first
curve is not included in d@;. This will result in a value for AE that is larger than
T7r. Hence, additional states will be added to 65. This is illustrated in panels
d-e where G5 contains 3 and 4 selected states respectively. By selecting a single
additional state in panel d, the match between paths d; and 6; increases (and
AE < 1, panel f). At this point, the iterative expansion of 6, is terminated and
adding further states does not markedly decrease AE (panels e and f). Finally,
panel g depicts the path the imitator would follow (note, it starts from a different
location than the demonstrator). Omitting state o¢ from d;, it goes to op via o1,
thereby imitating the unnecessary (and energetically demanding) detour shown
by the demonstrator.



The reason is that the planned action d; does not include the deviation present
in the demonstrator’s path. However, by including an additional third state (fig.
1d), the imitator’s planned action sequence d@; better matches the demonstrated
path (and energetic cost). Adding more states does not improve the match (fig. 1
e and f). Hence, the imitator will copy the three states (depicted in fig. 1d). The
imitated path is shown in fig. 1g.

2.3 Accounting for experimental data

In this section, we explain how the CDM can account for the relevant findings in
the literature on rational imitation in human infants. In particular, we discuss
the results of Carpenter et al. (2005) mentioned above because these allow us to
illustrate all aspects of the CDM. The relevant findings of these authors are de-
picted in figure 2. To recapitulate, these authors reported (among other results)
that 18-month old children were most prone to copy the actions demonstrated by
an experimenter when a toy mouse was moved across a table top using a hopping
motion (Figure 2a, condition 1). They copied the action less faithfully when the
mouse was slid across the table (Figure 2a, condition 2) and even less so when a
small toy house was present at the final location (Figure 2a, condition 3). Finally,
moving the mouse to the toy house using a hopping motion was more likely to
be copied (Figure 2a, condition 4) than when it was moved in a sliding motion
(Figure 2a, condition 3).

First, the CDM accounts for the increased action copying associated with the
hopping motion with respect to the sliding motion (conditions 1 and 3 vs. 2 and
4) by assuming that the former is more energetically demanding. In other words,
the hopping motion is assumed to result in a large value for the first term in
equation 1 if not faithfully modelled using sufficient number of states 6;. Hence,
the CDM predict the hopping motion should be more faithfully copied.

Second, the CDM can account for the reduction in copying due to the intro-
duction of the house (conditions 1 and 2 vs. 3 and 4) in terms of the saliency
parameter, S(o;). We assume that the event of inserting the toy into the house is
more salient than the preceding actions. Hence, the saliency function S(o;) dis-
counts the preceding action. In absence of the house, no such discounting occurs
(see fig. 2b).

Finally, we briefly discuss how the CDM accommodates the experimental re-
sults using the popular head touch paradigm. The model assumes that whenever
a demonstrator with free hands performs a head touch, the first term of equation
1 will be large. Indeed, the energetic demand of the head touch will be compared
with that of a simple hand touch. In contrast, when the demonstrator’s hands are
occupied Gergely et al. (2002), the infant is assumed to plan an action taking into
account these constraints (remember that @; in equation 1 should be regarded as
shorthand for @; = f(d,,C) with C representing the physical constraints of the
demonstrator). We assume that this will result in infants covertly planning a
head-touch themselves. As such, this will result in lower values for the first term
of equation 1 and, therefore, a lower degree of action copying. It could be objected
that is unlikely that children come up with a head touch as a way of dealing
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10



359

with the constraints. However, a small percentage of infants who have not been
shown the head touch still choose to touch the lamp with their heads (Paulus
et al., 2013), especially younger infants (Zmyj et al., 2009). Hence, it is not be-
yond plausibility that the apparatus used in these experiments spontaneously
elicits head pushing as a solution to deal with the constraint of occupied hands.
Incidentally, perceiving the lamp being switched might induce discounting the
preceding action through the saliency. However, this would not result in head
touch being ignored as the end state in these experiments involves the experi-
menter touching the lamp with her head. Hence, even if the saliency parameter
results in only the final state of the demonstration to be copied, the head touch
will still be imitated.

In contrast to an account based on attentional processes (Beisert et al., 2012),
the CDM does not require conditions to recruit different levels of attention for
rational imitation to occur (Paulus et al., 2013; Kolling et al., 2014). However, at-
tentional processes can be accounted for using the term S(3;) (eq. 1). Our model
also differs in its predictions with the ‘motor resonance’ account of rational imi-
tation (Paulus et al., 2011). As mentioned, 12-month old — but not 9-month old —
infants have been shown to ignore the head touch action of a model with hands
fixed to the table (Zmyj et al., 2009). Our model could explain these findings by
assuming that 12-month olds are better at accounting for a model’s constraints.
In contrast, the motor resonance account would need to account for this by as-
suming that infants are more susceptible to ‘a lack of motor resonance’ at 12
months than at 9 months. This would imply that infants are less good at copying
motor behavior at 12 months than at 9 months.

3 Methods

We used two NAO humanoid robots (Aldebaran) in this study, a blue and a red
version. The blue robot was assigned the role of the demonstrator. The red robot
was assigned the role of the imitator. Experiments were carried out in a 3 by
2.5 m arena. An overhead 3D tracking system (Vicon) consisting of 4 cameras
was used to monitor the position and orientation of the robots at a rate of 30 Hz.
The robots were equipped with a clip-on helmet fitted with a number of reflective
beads used by the tracking system to localize the robots. In addition to the robots,
the arena contained three small tables each with a unique pattern of reflective
beads. These served as obstacles and a target position.

The custom-written Python software controlling the robots implemented a
path planning algorithm (figure 7). This algorithm overlaid the arena with a
rectangular graph with nodes spaced 10 cm apart (Schult and Swart, 2008).
Nodes closer than 0.5 m to an obstacle were removed from the graph. A path
between the current position of a robot and the desired goal location was planned
by finding the shortest path of connected nodes between the node closest to the
robot’s current position and the node closest to the goal position. By removing
the nodes closer than 0.5 m to an obstacle, the path planning algorithm ensured
the robots steered well clear of obstacles. In the current paper, the estimated en-
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ergetic costs E(3;) and E(@,) are approximated by the length of the planned and
observed paths, respectively. For robots moving at a constant speed, this is a fair
approximation.

4 Experiment 1: Modelling Experimental Find-
ings

Figure 3 illustrates the four conditions of experiment 1. In the first condition,
the demonstrator is not hampered by obstacles. Hence, it moves towards the goal
position using a direct path (fig. 3a). In the second condition (fig. 3b), the demon-
strator could approach the goal using a direct path. However, the demonstrator
approaches the goal by a detour. In the third condition, obstacles between the
demonstrator and the goal prevent a direct path. The path planning algorithm
yields a path circumventing the obstacles (fig. 3¢). Finally, in the fourth condition
(fig. 3d), the demonstrator was sent to the goal by the same path as in condition 2.
Hence, in condition 4, the detour was not planned by the path planner but explic-
itly programmed. Condition 3 and 4 should lead to the same outcome. However,
methodologically, condition 4 confirms that differences between conditions 1 & 2
and 2 & 3 are not due to the way the motion of the demonstrator is planned. In
other words, condition 4 demonstrates that the (internal) intention of the demon-
strator is not taken into account by the imitator.

The critical conditions, in modelling the experimental results regarding ratio-
nal imitation in infants (e.g., Gergely et al., 2002; Meltzoff, 1988), are conditions
2 and 3. In both conditions, the demonstrator does not take the direct path to
the goal. The difference between these conditions, however, is the presence of an
obstacle in condition 3. In this condition, the obstacle forces the demonstrator to
take the longer path. This is analogous to a demonstrator switching on the lamp
with her head when her hands are occupied in the sense that the constraints
of the situation necessitate the less direct (and energetically inefficient) mode of
operation. Critically, the CDM assumes that the robot (infant) plans an indirect
path (head touch) to cope with the constraints introduced by the obstacle (occu-
pied hands). Hence, the robot (infant) is predicted not to imitate the indirect
path (head touch). In contrast, in condition 2, given no obstacle (analogous to the
free hands condition in behavioural experiments) the imitator will plan a direct
path (a hand touch). The planned direct path (head touch) is assumed to differ
sufficiently (in terms of energy expenditure) from the demonstrated indirect path
(head touch) to incur imitation.

Figure 4 depicts the results of experiment 1. In condition 1, the demonstrator
takes the direct route to the goal position (fig 4a). Calculating Ag for 6; with two
states results in a value lower than 7g (fig 4e and fig. 6). Hence, imitator only
retains the final goal o7 as policy. Therefore, the imitator proceeds directly to the
goal, using a direct path (fig 41).

In condition 2, the demonstrator takes a detour to the goal, in spite of a direct
path being possible (fig 4b). Calculating Ag for 6; with two states results in a

12



Figure 3: Illustration of the four conditions in experiment 1. The blue robot is the
demonstrator. The red robot is the imitator. The green arrows depict the path
taken by the demonstrator. Note that in panel ¢ the demonstrator cannot pass
between the two round obstacles. Details in text.
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Figure 4: Results of experiment 1. Panels a-d: traces of the paths taken by the
demonstrator for conditions 1-4, respectively. The black circles denote the posi-
tion of two obstacles. Panels e-h depict the process of iteratively expanding 6;. In
red, the planned path d; is shown for 65 with two states, i.e., 6; = {0¢g,o7}. In blue,
the planned path a; is shown for 65 with three states, i.e., 05 = {09,07/9,07}. In
conditions 1,3 & 4, the red path d; matches the demonstrated path 6; well. This
is, AE < 7g. In condition 2 red path a; does not match the demonstrated path 6;
(AE > tg). In contrast, the blue path d; satisfies the requirement AE < 7. Here
only the resulting paths d; for |6s| equal to 2 and 3 are shown. However, the da;
for |04| equal to 5, 9 and 17 were also evaluated. Their resulting weighted cost
differences Ag are plotted in figure 6. Panels i-1 depict the imitated behaviour for
each of the four conditions. Notice that the imitator does not start from the same
position as the demonstrator. In conditions 1, 3 & 4, the imitator proceeds to the
goal (i.e., o) by a direct path. In condition 2, the set of selected states contains
three states. Hence, the imitator proceeds to oy via an intermediate state, i.e.,
00 — 0T/2 = OT.
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value higher than 7z (fig 4f and fig. 6). In contrast, calculating Ag for 6; with
three states results in a value lower than 75 (fig 4f and fig. 6). Hence, the policy
copied will include an additional sub goal en route to the goal. The imitator
proceeds to this intermediate goal before going to the final goal (fig 4j). The
blue path d;, based on 6; with three states, in fig. 4e satisfies the requirement
AE < tg. Hence, the policy copied will include an additional subgoal en route to
the goal. The imitator proceeds to this intermediate goal before going to the final
goal (fig. 4h).

In conditions 3 & 4, the demonstrator reaches the goal by a detour fig 4c & d).
However, the presence of an obstacle makes this necessary. Indeed, the planned
path a@; from og to op will also contain this detour. As such, the value of Ag
will be small, even for 65 = {0g,07} (fig 4g & h and fig. 6). As such, the imitator
proceeds directly to the final goal (fig 4k & 1).

In condition 3, the demonstrator reaches the goal via a detour fig. 4c). How-
ever, the presence of an obstacle makes this necessary. Indeed, the path a;
planned by the imitator from og to o7 (i.e. |ds| = 2) will also contain this de-
tour. As such, the value of AE will be small, even for |05 = 2 (fig. 4f and j). The
red path a; for |65] = 2 (fig. 4f) matches the demonstrated path 6; sufficiently.
As a result, the imitator proceeds directly to the final goal (fig. 4i), as it did in
condition 1.

Experiment 1 was aimed at modelling the basic findings of the behavioural ex-
periments regarding rational imitation in infants (Meltzoff, 1988; Gergely et al.,
2002; Zmyj et al., 2009; Beisert et al., 2012; Paulus et al., 2011). As mentioned
above, these authors showed that children copy the head-touch demonstrated by
adults only if the adult’s hands were unrestricted. In our robot experiments, the
imitator only copied the demonstrated detour if the demonstrator was not forced
to take this detour by the obstacles (Condition 2, fig. 4b, e and h). In contrast,
when the demonstrator took the same path — but was forced to do so on account
of an obstacle — the imitator disregarded the detour (Condition 3, fig. 4c, f and i).
As such, conditions 2 and 3 reveal our robots modelling the behaviour of infants
in the behavioural experiments discussed above.

5 Experiment 2: Learning Better Policies

In our view, the behavioural experiments concerning rational imitation cited
above can be considered as cases of pathological imitation (Winfield and Erbas,
2011). That is, the behavioural experiments are set up to induce imitation in
spite of the behaviour being inefficient, i.e., the head touch is a less efficient way
of switching on the light than a hand touch. The experiments of Lyons et al.
(2007) and Keupp et al. (2013) illustrate how easily children can be tricked into
imitating inefficient behaviour. In these experiments, the demonstrating adult
exhibited a range of action irrelevant to attain a given goal. Nevertheless, the
infants tended to copy these actions — even when explicitly instructed not to copy
any ‘silly’ behaviour. However, when not experimentally controlled, adults’ be-
haviour can generally be assumed to be more efficient or more adaptive than
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Figure 5: Results of experiment 2. The paths of both the imitator (red paths) and
demonstrator (blue paths) for three trials are plotted.The grids in the background
of panels a-c represent the graph used in path planning by the imitator (panels
a & c¢) and the demonstrator (panel b). Panel a: the initial policy of the imitator
in reaching the goal position involves a detour. Part of the graph used by the
imitator for path planning has been taken out (the hatched region). Panel b: the
demonstrator approaches the goal in a straight line (its path planning graph has
not been lesioned). Panel c: the imitator, based on observing the demonstrator’s
policy, adopts a more efficient policy. Panel d: cost difference AE as a function of
the number of states in 65 averaged over the three trials

that of infants. Under these conditions, as will be shown below, the mechanism
proposed above for selecting policies for imitation is adaptive.

In this section of the paper, we present a robotic experiment showing that the
CDM can also select more efficient policies if these are observed in a demonstra-
tor. Indeed, by virtue of equation 1, the CDM can select policies for explorative
imitation that are less costly than the current policy. The current policy of the
robot amounts to the planned route a; for 65 with only two states (og and o). For
|0s| = 2, the robot will generate a plan reaching the end goal without taking into
account the demonstrated behaviour. If the observed policy 6; is significantly less
costly than the currently held policy, AE will be larger than 7g (by virtue of the
absolute value operator in equation 1). This will trigger the expansion of the set
of intermediate goals 05 until AE is smaller than 7.

In experiment 2, the imitator starts with a policy that is clearly not optimal.
When going from the start position to the goal, the imitator takes an unnecessary
detour (fig. 5a). This detour is caused by the imitator’s path planning algorithm
not considering the locations in the hatched area (fig. 5a). In effect, the hatched
area is not part of the search space considered by the path planning algorithm.
In contrast, panel b of figure 5 shows the demonstrator moving in a straight
line from start to goal — as depicted in this panel, the whole arena is part of
the demonstrator’s search space. As such, the demonstrator can find a shorter
path to the goal. Considering the observed behaviour d;, the imitator iteratively
expands a set of selected states 65 from the demonstrated states 6;. Each state
0s in 04 corresponds to a position of the demonstrator in the arena. By adding
states os to 05 the imitator effectively expands its path planning search space.
Iteratively expanding the set of selected states 65 will eventually lead to filling
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in the part of the search space that was initially not available to the imitator
(in panel a). Indeed, in effect, a corridor between start and goal position is built
(figure 5¢). When this corridor is established the value AE < 1z (at |65| = 5, panel
d) and expansion of 3, is stopped. Eventually, the imitator imitates the shorter
path, as shown in fig. 5c.

6 Discussion

Selective and rational imitation shown by children would be a beneficial capac-
ity for robots (Gergely, 2003). Unfortunately, no computationally explicit model
of rational imitation in infants is available. In this paper, we have presented a
formalization that captures the most relevant aspects of the behaviour of infants
in experiments. The CDM can be considered as a formalized version of the teleo-
logical reasoning hypothesis, which is underspecified (See Zmyj and Buttelmann,
2014, for references). As such, the CDM is explicit enough to be implemented on
robots, as demonstrated above.

While our model is primarily conceived as a practical method for support-
ing rational imitation in robots, it can also be evaluated for its ability to explain
infant behavior. Considering the CDM as a psychological model of rational imi-
tation in infants allows making a number of predictions. First, the CDM predicts
that the surface structure of the observed action is not important in determining
whether the action will be imitated by infants. Observed actions that have sim-
ilar associated predicted costs, E(3,;), will induce similar levels of imitation. Ex-
perimental work, using paradigms akin to those used to evaluate over-imitation
(Lyons et al., 2007; Keupp et al., 2013), could test this prediction. These ex-
periments use arbitrary complex action sequences and evaluate the extent to
which they are copied by the child. According to the CDM, changing the order
of the actions in a sequence should not influence the level of imitation. A sec-
ond prediction that follows from our model is that the sign of the cost difference,
E3,)—E(d,), does not influence the level of imitation. Indeed, we postulated that
only the absolute value of the difference is taken into account in calculating AE.
Therefore, the CDM predicts that both actions that are more costly and more effi-
cient than the current strategy known to infants should lead to imitation. Again,
this is a testable prediction of the CDM. A third prediction of the CDM is that
the two previous predictions can be modulated by targeted manipulations of the
saliency of parts of the action sequences used.
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Figure 6: The values of AE as function of the number of selected states in 65 for
the four conditions in experiment 1.
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Figure 7: Plot illustrating the path planning algorithm used by the robots. The
plot depicts a hypothetical arena featuring 4 obstacles. The path planning algo-
rithm overlay the arena with a graph of closely nodes spaces. The path planning
algorithm searches for the shortest path of graph nodes between (1) the node
closest to the current position of the robot and (2) the node closest to the goal
position. Nodes that are too close near an obstacle are removed from the network
to force the path planning to steer clear of obstacles.

23



