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Abstract1

Infants imitate behavior flexibly. Depending on the circumstances, they2

copy both actions and their effects or only reproduce the demonstrator’s in-3

tended goals. In view of this selective imitation, infants have been called4

rational imitators. The ability to selectively and adaptively imitate behavior5

would be a beneficial capacity for robots. Indeed, selecting what to imitate is6

one of the outstanding unsolved problems in the field of robotic imitation. In7

this paper, we first present a formalized model of rational imitation suited for8

robotic applications. Next, we test and demonstrate it using two humanoid9

robots.10

1 Introduction11

Imitation is a very important form of social learning in humans and has been sug-12

gested to underlie human cumulative culture (Legare and Nielsen, 2015; Tomasello,13

2009). In keeping with its importance in human development, the ability to im-14

itate emerges early in human infants. From their second year on, infants can15

imitate actions and their intended goals from demonstrators (e.g., Gariépy et al.,16

2014; Jones, 2009). Critically, infants imitate the demonstrated actions and their17

effects in a flexible way. Depending on the circumstances, they copy both actions18

and effects or only reproduce intended goals. In view of this selective imitation,19

infants have been called rational imitators (Gergely et al., 2002).20

In a landmark paper, Meltzoff (1988) showed that 14-month-old children switch21

on a light by bending over and touching it with their head, if they have seen an ex-22

perimenter do so. Later studies showed that if the experimenter’s hands are occu-23

pied children tend to switch on the light using their hands (Gergely et al., 2002).24

The percentage of copied head-touch actions also declines when the demonstra-25

tor’s hands are physically restrained (Zmyj et al., 2009; Gellén and Buttelmann,26

2017). Apparently, when the experimenter’s hand are occupied or restrained, the27

children deem the head touch to be irrelevant to the outcome. These results have28

been replicated by Beisert et al. (2012) and Paulus et al. (2011), albeit with a29

different interpretation.30
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Another aspect of rational imitation was demonstrated in a study by Carpen-31

ter et al. (2005). A demonstrator moved a toy mouse to a target position either32

using a sliding or hopping motion. If a toy house was present at the goal location,33

children were less likely to copy the motion than if no house was present. The34

authors assumed that the presence of the house induced the children to adopt the35

goal of placing the mouse in the house whilst disregarding the demonstrated mo-36

tion. In the absence of the toy house, the children presumably perceived motions37

as being the goal, and therefore, as relevant.38

In summary, young children (act as if they) are able to distinguish between39

relevant and irrelevant aspects of demonstrated behaviour. They seem to copy40

the actions more often if relevant for attaining the goal. In particular, they seem41

to (1) take into account the constraints of the demonstrator and (2) discount ac-42

tions in favour of goals.43

Since the advent of robotics, imitation has been suggested as a method for44

learning in robots. Billard et al. (2008) list two advantages of imitation learning.45

First, learning from a demonstrator greatly simplifies the search solutions to46

sensorimotor problems, which are typically hard. In addition, imitating robots47

would be programmable by lay-persons using the same methods they employ to48

teach other people. Robotic imitation faces a number of challenges (Dautenhahn49

and Nehaniv, 2002). One of the most fundamental issues is determining what to50

imitate (Carpenter and Call, 2006; Breazeal and Scassellati, 2002). Among other51

aspects, this involves determining the relevant parts of a demonstrated action52

and only copying those. Hence, the selective and rational imitation shown by53

children would be a beneficial capacity for robots (Gergely, 2003). Unfortunately,54

in spite of the considerable body of experimental data, the cognitive mechanisms55

underlying rational imitation remain elusive. In particular, no satisfactory and56

computationally explicit model of rational imitation in infants is available.57

Initially, authors explained the results of experiments by assuming that in-58

fants reason teleologically about the goals and actions demonstrated (See Zmyj59

and Buttelmann, 2014, for references). Children are assumed to infer that (1) the60

demonstrator uses his or her head to switch on the lamp because his or her hands61

are constrained and (2), as such, the head touch is not necessary to successfully62

switch on the lamp. Therefore, when asked to switch on the lamp, the infant63

uses his or her hands. In contrast, when the demonstrator’s hands are free, the64

infants are assumed to reason that the head touch is instrumental in obtaining65

the goal.66

More recently, competing accounts have been advanced (See also Gellén and67

Buttelmann, 2017, for an overview). In particular, it has been proposed that68

many experimental results can be explained by differences in the difficulty for69

the infants to copy the demonstrator’s actions (Zmyj and Buttelmann, 2014). Ac-70

cording to this account, bending forward to touch a lamp with restrained hands71

is more difficult than doing so with free hands available to support the body.72

As such, an increased difficulty in exactly copying the demonstrated motion –73

termed a lack of ‘motor resonance’ (Paulus et al., 2011) – is assumed to reduce74

the extent to which infants copy a demonstrated action. Beisert et al. (2012) ad-75

vanced yet another account of rational imitation in infants. These authors have76
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claimed that attentional processes can fully explain selective imitation.77

While it is undoubtedly (and unsurprisingly) true that both the feasibility78

of the demonstrated actions and attentional processes determine the fidelity of79

action copying, neither account fully accommodates the experimental findings80

(Zmyj and Buttelmann, 2014). For example, even in the absence of obvious dif-81

ferences in action difficulty, 12-month old infants copy a model with constrained82

hands less often (Zmyj et al., 2009). In addition, 12-month old – but not 9-month83

old – infants ignored the head touch action of a model with hands fixed to the ta-84

ble (Zmyj et al., 2009). It is difficult to see how infants would be susceptible to ‘a85

lack of motor resonance’ at 12 months but not at 9 months. Likewise, attentional86

mechanisms cannot explain effects across conditions that do not seem to recruit87

different levels of attention (Paulus et al., 2013; Kolling et al., 2014).88

While the motor resonance and attention theories fall short in accommodat-89

ing for some data, the reasoning hypothesis suffers mainly from being under-90

specified – although it can be noted that the idea of ‘motor resonance’ is less than91

fully specified either (Zmyj and Buttelmann, 2014). As a result, the reasoning ac-92

count can be made to accommodate most findings post facto. For example, Paulus93

et al. (2011) conducted an experiment to distinguish between the reasoning ac-94

count and the motor resonance model. They concluded that findings were more95

in line with the predictions of the motor resonance model. However, it is unclear96

whether the predictions these authors derive for the teleological reasoning ac-97

count are the only interpretation possible (See Zmyj and Buttelmann (2014) for98

a similar remark).99

In the absence of a complete and computationally explicit model, we propose100

a novel model for rational imitation, i.c. the Cost Difference Model (CDM). In101

particular, we aim for a model that supports rational imitation in robots. In102

contrast to the accounts discussed above – and in accord with our goal to exploit103

rational imitation to optimize the imitation behaviour in robots – we depart from104

a normative analysis of imitation learning. That is, we postulate the desirable105

properties of rational imitation and build a model satisfying these requirements.106

2 The Cost Difference Model107

2.1 Rationale108

In agreement with current views on its adaptive value (e.g., Laland, 2004; Erbas109

et al., 2013), we propose that imitation is a method for acquiring better action110

policies (Argall et al., 2009). Action policies can be thought of as a series of sub-111

goals that lead towards attaining the final goal. For example, an action policy for112

making spaghetti (final goal) are the steps (subgoals) as set out in the recipe.113

Assuming that imitation is a learning strategy for adopting better action poli-114

cies for satisfying goals, imitation has the possible advantage of being a cheaper115

(less risky) route to policy learning than individual, asocial learning. Neverthe-116

less, indiscriminately copying behaviour is unlikely to result in better policies117

(Laland, 2004). Ideally, agents should only copy behaviour when an observed118
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policy is better than the current existing action policy. Initially, we can assume119

better policies to be those requiring less energy. However, other optimization120

criteria could be imagined, including risk and time. In biological agents, better121

action policies are those ultimately resulting in increased fitness.122

In this light, experimental findings on imitation in infants are somewhat puz-123

zling. Infants copy demonstrated head touches in spite of clearly being able to124

switch on the light using their hands (which seems to be a better policy). In-125

deed, in control conditions, children spontaneously switch on the light using their126

hands. Moreover, even when infants eventually copy the head touch, most often127

they switch on the light using their hands first (Paulus et al., 2013, 2011; Gergely,128

2003). So why do children copy the ineffective head touch policy given they have129

an alternative policy that seems more efficient?130

In our view, this discrepancy can be explained by assuming that an agent131

observing a demonstrated action policy has only limited knowledge about its en-132

ergetic cost. The agent might be able to estimate the energy requirement of the133

demonstrated policy, for example, using its own action planner (or internal sim-134

ulation, Hesslow (2002, 2012)). However, this will yield an approximate estimate135

at best – especially when the demonstrated policy includes unfamiliar actions. In136

addition, the agent can estimate or retrieve the cost of its existing action policy137

and compare this to the estimated value of the demonstrated action policy. In138

agreement with this assumption, infants expect demonstrators to minimize the139

costs of actions (Liu and Spelke, 2017, and references therein). Moreover, actions140

that violate this assumptions recruit more attention from the infants.141

Theoretically, the agent should reject the demonstrated policy whenever its142

cost is higher than that of the existing policy. However, the cost of the demon-143

strated policy is not directly accessible and is only an estimate. As such, seeing144

someone executing a costly action policy might indicate that the estimated cost145

is inaccurate. If so, it would be reasonable to actually execute the demonstrated146

policy and obtain a corrected estimate of its cost. Indeed, the potential long-term147

gain of chancing on an innovative policy would generally outweigh the cost of148

testing out the action.149

In summary, we propose that the rational imitation observed in infants is the150

overt outcome of uncertainty about the cost of the demonstrated action policy.151

This is, when copying an action policy they are exploring its cost by physically152

executing it. This overt action will result in a better estimate of its real cost.153

Critically, our hypothesis predicts that explorative copying of actions should oc-154

cur more often if the demonstrator is deemed trustworthy (Laland, 2004; Van-155

derelst et al., 2009). This is corroborated in experiments. Infants more often156

copy ineffective behaviour from trusted (Zmyj et al., 2010; Poulin-Dubois et al.,157

2011) or familiar (Beisert et al., 2012) demonstrators. In addition, the notion of158

imitation as a method for exploring an action’s cost is supported by the finding159

(mentioned above) that, even when infants eventually copy head touches, most160

often they switch on the light using their hands first. Hence, when copying the161

head touches, they actually perform both actions most of the time (Paulus et al.,162

2013, 2011; Gergely, 2003). This would allow them to directly compare the cost of163

both action policies. Moreover, our account predicts that children should have a164
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tendency to over-imitate irrelevant actions as they result in an unexpected high165

cost estimate triggering explorative imitation of the demonstrated actions. This166

has been confirmed in a series of experiments (Lyons et al., 2007; Keupp et al.,167

2013). In agreement with our thesis, infants seem to assume that demonstra-168

tors will minimize the costs of their actions. When demonstrators fail to do so,169

this recruits increased levels of attention (Liu and Spelke, 2017) which could the170

mechanism that leads to increased imitation (or over-imitation).171

Finally, it should be pointed out that our functional description of rational172

imitation suggests similar adaptive advantages are to be gained by other species.173

As such, it is interesting that both chimpanzees (Buttelmann et al., 2007) and174

dogs (Range et al., 2007) have found to be selective imitators in much the same175

way as human infants.176

Having outlined a functional account of rational imitation, we proceed to de-177

scribe the computations we assume to underlie the selection of action policies for178

imitation. We propose this proceeds in three steps: (1) parsing the continuous179

stream of sensory input, (2) solving the correspondence problem, (3) comparing180

the costs of the existing and the demonstrated action policies.181

2.2 Formalization182

2.2.1 Parsing behaviour183

Behaviour consists of dynamic and continuous motions, and their effects. Hence,184

the first challenge for an imitating agent is parsing this stream of sensory input185

into meaningful chunks of actions and resulting effects. Indeed, young infants186

have been shown to parse behaviour into goal oriented chunks (e.g., Baldwin187

et al., 2001). In principle, they might use a wealth of task-related knowledge188

to solve this problem. However, they could also exploit low-level sensory cues189

signalling the boundaries between behavioural units, especially in early develop-190

mental stages (Baldwin et al., 2001). Indeed, adults will often explicitly capture191

the child’s attention before initiating a demonstration. Likewise, they use verbal192

cues to signal the action has been completed. Verbal cues are commonly used193

in experimental investigations of imitation to denote the start and ending of a194

demonstration (e.g., Paulus et al., 2011; Schwier et al., 2006; Zmyj et al., 2009).195

In addition, more basic sensory cues could be salient changes in visual and audi-196

tory input or object motion.197

In our experiments, we assume the robot can use either task-related knowl-198

edge or low-level sensory cues to parse the behaviour of a demonstrator and do199

not model this step explicitly.200

2.2.2 Solving the correspondence problem201

The second computational step concerns solving the correspondence problem.202

That is, the module converts the observed behaviour into the coordinate sys-203

tem of the observer. The correspondence problem is far from trivial (Nehaniv204

and Dautenhahn, 2001), in particular when the body plan of the demonstrator205
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and observer are different. Indeed, errors made in solving the correspondence206

problem are assumed to be an important bottleneck preventing successful infant207

imitation (Gattis et al., 2002). However, in the field of robotics, a substantial208

amount of research has resulted in a number of methods for solving this problem209

(e.g., Argall et al., 2009; Schaal et al., 2003; Nehaniv, 2007). Hence, in this pa-210

per, we assume the problem can possibly be solved using the methods proposed211

earlier. The output of this computational step, a sequence of states in the ob-212

server’s coordinate system, will be denoted by as ~ot with t indexing the time,213

with t = [0,T].214

2.2.3 Inferring the demonstrator’s policy215

In order to model imitation based on the assumptions introduced above, we need216

to propose a mechanism that allows agents to infer the demonstrated action pol-217

icy from the observed sequence of states ~ot. This is, the imitator needs to infer218

from ~ot which intermediate goals the demonstrator satisfies en route to the final219

goal. To the best of our knowledge, no account of the method used by infants to220

select relevant subgoals from observed actions is available. Hence, in what fol-221

lows, we present an approach that is suitable for the current robotic experiments.222

It should be understood that this method is a first approach and could be refined223

in further work to suit other contexts.224

In more formal terms, inferring the demonstrator’s action policy can be thought225

of as selecting the minimal number of intermediate states from~ot required to ex-226

plain the observed behaviour ~ot. This set of minimal required states, denoted as227

~os, are assumed to be the subgoals of the demonstrator. Below, we explain our228

current approach to selecting this minimal set of states ~os.229

We suggest the robot should select an iteratively expanding set of states230

~os = {o0 . . . on . . . oT } from the observed states ~ot. For each set ~os, the robot uses231

its own action planner to compute an action sequence ~at leading from o0 to oT232

through the intermittent states on in ~os. In planning the action sequence ~at,233

the robot should take into account the physical constraints C experienced by the234

demonstrator. Hence, the action sequence ~at is the action plan the robot would235

come up with itself (1) if it were in the same situation as the demonstrator and (2)236

wanted to attain each of the selected subgoals in ~os. As such, the notation for the237

planned action sequence, ~at, should be considered as shorthand for ~at = f (~os,C)238

indicating that the planned action sequence is a function of (1) the currently239

selected action states ~os and (2) the physical constraints C. In terms of the be-240

havioural experiments discussed above, physical constraints could include the241

fact that the demonstrator’s hands are occupied (e.g. as in Gergely et al., 2002).242

For each set of selected states ~os and resulting action sequence ~at, the imita-243

tor estimates the cost of ~at. We tentatively suggest the cost is expressed in terms244

of energy expenditure. The estimated energetic cost Ê(~at) is compared with the245

estimated cost of the demonstrated action sequence Ê(~ot) calculating the cost246

difference ∆E as,247

∆E = |Ê(~ot)− Ê(~at)| ·S(~ot) (1)
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In equation 1, the parameter S(ot) indicates the saliency of the demonstrated248

state ~ot. This weighing allows discounting part of the demonstrated action se-249

quence~ot in favour of salient action outcomes. The saliency of (part of) a demon-250

stration could be computed using existing approaches to visual saliency meth-251

ods developed in the field of human-machine interaction (e.g. Scassellati, 2002;252

He et al., 2014). In the experiments reported in the current paper, we do not253

vary this parameter and fix it at a value of 1. However, experimental evidence254

strongly suggests saliency is an important factor (e.g., Carpenter et al., 2005; Liu255

and Spelke, 2017) and we plan to expand the model in this direction.256

At first, the set of selected states~os only contains the initial and final observed257

states, i.e.,~os = {o0, oT }. However, the set is iteratively expanded by adding more258

intermediate states. Therefore, the set of selected states ~os will eventually ap-259

proach the observed action sequence ~ot. In consequence, ∆E approaches zero as260

the set~os is expanded. When the value of ∆E is below a certain threshold τE , ex-261

panding ~os is terminated and the current set ~os (with the exception of the initial262

state o0) is taken to contain the subgoals in the observed behaviour. The set ~os263

contains the minimum number of subgoals that are required to explain the (cost264

of the) observed behaviour ~ot. Also, notice that the iterative process implies that265

when ∆E(~os = {o0, oT }) < τE , the imitator will simply plan an action sequence to266

attain the final state demonstrated – hence, no imitation of any intermediate goal267

will take place. In this case, the imitator assumes that the observed behaviour~ot268

can be inadequately explained by assuming the demonstrator is simply attempt-269

ing to reach the final goal. No subgoals need to be assumed.270

Obviously, expanding the set ~os can be done in many ways. Here, we pro-271

pose that on each iteration additional states are selected at time instances inter-272

mediate between the currently selected states. At first, only two states will be273

selected,274

~os = {o0, oT }. (2)

On the next iteration, an additional state in between these two will be added:275

~os = {o0, o T
2

, oT }. Next, the set will be expanded to ~os = {o0, o T
4

, o T
2

, o 3T
4

, oT }. In276

other words, at the nth iteration the length of ~os is given by |~os| = 1+2n−1.277

In equation 1, ~at denotes the action sequence planned to attain the selected278

states ~ot. Hence, we assume that the agent can plan an action sequence passing279

through a number of selected goal states. In addition, we assume that the agent280

can plan this taking into account the physical constraints C of the demonstra-281

tor. This assumption represents the most challenging cognitive ability supposed282

under our model. However, evidence suggests that infants are capable of plan-283

ning actions under physical constraints (Upshaw and Sommerville, 2015; Claxton284

et al., 2003).285

Figure 1 illustrates the process outlined above. Figure 1b depicts a hypo-286

thetical path followed by a demonstrator (depicted as a black line) from start to287

goal. Observing this path, an imitator iteratively selects an increasing number of288

states (here: n = 2, 3 and 4, respectively) from the demonstrated path. Selecting289

only the start and goal position (fig. 1c) leads to a large cost difference∆E (fig. 1f).290
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Figure 1: Illustration of the process of selecting states ~os of the demonstrated
action sequence ~ot. (a) flow chart depicting the process of selecting ~os. (b) The
hypothetical path taken by a demonstrator (black line) from start to goal. Notice
the demonstrated path consists of both an unnecessary curve (first) and neces-
sary curve (to negotiate the black obstacle). (d) This panel illustrates the planned
path ~at for ~os containing only the initial state and final state. Notice that this
results in a discrepancy between the paths ~at and ~ot. In particular, the first
curve is not included in ~at. This will result in a value for ∆E that is larger than
τE . Hence, additional states will be added to ~os. This is illustrated in panels
d-e where ~os contains 3 and 4 selected states respectively. By selecting a single
additional state in panel d, the match between paths ~at and ~ot increases (and
∆E < τE , panel f). At this point, the iterative expansion of ~os is terminated and
adding further states does not markedly decrease ∆E (panels e and f). Finally,
panel g depicts the path the imitator would follow (note, it starts from a different
location than the demonstrator). Omitting state o0 from ~os, it goes to oT via o1,
thereby imitating the unnecessary (and energetically demanding) detour shown
by the demonstrator.
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The reason is that the planned action ~at does not include the deviation present291

in the demonstrator’s path. However, by including an additional third state (fig.292

1d), the imitator’s planned action sequence ~at better matches the demonstrated293

path (and energetic cost). Adding more states does not improve the match (fig. 1294

e and f). Hence, the imitator will copy the three states (depicted in fig. 1d). The295

imitated path is shown in fig. 1g.296

2.3 Accounting for experimental data297

In this section, we explain how the CDM can account for the relevant findings in298

the literature on rational imitation in human infants. In particular, we discuss299

the results of Carpenter et al. (2005) mentioned above because these allow us to300

illustrate all aspects of the CDM. The relevant findings of these authors are de-301

picted in figure 2. To recapitulate, these authors reported (among other results)302

that 18-month old children were most prone to copy the actions demonstrated by303

an experimenter when a toy mouse was moved across a table top using a hopping304

motion (Figure 2a, condition 1). They copied the action less faithfully when the305

mouse was slid across the table (Figure 2a, condition 2) and even less so when a306

small toy house was present at the final location (Figure 2a, condition 3). Finally,307

moving the mouse to the toy house using a hopping motion was more likely to308

be copied (Figure 2a, condition 4) than when it was moved in a sliding motion309

(Figure 2a, condition 3).310

First, the CDM accounts for the increased action copying associated with the311

hopping motion with respect to the sliding motion (conditions 1 and 3 vs. 2 and312

4) by assuming that the former is more energetically demanding. In other words,313

the hopping motion is assumed to result in a large value for the first term in314

equation 1 if not faithfully modelled using sufficient number of states ~ot. Hence,315

the CDM predict the hopping motion should be more faithfully copied.316

Second, the CDM can account for the reduction in copying due to the intro-317

duction of the house (conditions 1 and 2 vs. 3 and 4) in terms of the saliency318

parameter, S(ot). We assume that the event of inserting the toy into the house is319

more salient than the preceding actions. Hence, the saliency function S(ot) dis-320

counts the preceding action. In absence of the house, no such discounting occurs321

(see fig. 2b).322

Finally, we briefly discuss how the CDM accommodates the experimental re-323

sults using the popular head touch paradigm. The model assumes that whenever324

a demonstrator with free hands performs a head touch, the first term of equation325

1 will be large. Indeed, the energetic demand of the head touch will be compared326

with that of a simple hand touch. In contrast, when the demonstrator’s hands are327

occupied Gergely et al. (2002), the infant is assumed to plan an action taking into328

account these constraints (remember that ~at in equation 1 should be regarded as329

shorthand for ~at = f (~os,C) with C representing the physical constraints of the330

demonstrator). We assume that this will result in infants covertly planning a331

head-touch themselves. As such, this will result in lower values for the first term332

of equation 1 and, therefore, a lower degree of action copying. It could be objected333

that is unlikely that children come up with a head touch as a way of dealing334
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Figure 2: (a) Data from Carpenter et al. (2005). The statistical tests are our post-
hoc tests, i.c., t-tests based on the reported means and standard deviations. (b)
Examples of assumed salience functions, S(ot). See text for details.
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with the constraints. However, a small percentage of infants who have not been335

shown the head touch still choose to touch the lamp with their heads (Paulus336

et al., 2013), especially younger infants (Zmyj et al., 2009). Hence, it is not be-337

yond plausibility that the apparatus used in these experiments spontaneously338

elicits head pushing as a solution to deal with the constraint of occupied hands.339

Incidentally, perceiving the lamp being switched might induce discounting the340

preceding action through the saliency. However, this would not result in head341

touch being ignored as the end state in these experiments involves the experi-342

menter touching the lamp with her head. Hence, even if the saliency parameter343

results in only the final state of the demonstration to be copied, the head touch344

will still be imitated.345

In contrast to an account based on attentional processes (Beisert et al., 2012),346

the CDM does not require conditions to recruit different levels of attention for347

rational imitation to occur (Paulus et al., 2013; Kolling et al., 2014). However, at-348

tentional processes can be accounted for using the term S(~ot) (eq. 1). Our model349

also differs in its predictions with the ‘motor resonance’ account of rational imi-350

tation (Paulus et al., 2011). As mentioned, 12-month old – but not 9-month old –351

infants have been shown to ignore the head touch action of a model with hands352

fixed to the table (Zmyj et al., 2009). Our model could explain these findings by353

assuming that 12-month olds are better at accounting for a model’s constraints.354

In contrast, the motor resonance account would need to account for this by as-355

suming that infants are more susceptible to ‘a lack of motor resonance’ at 12356

months than at 9 months. This would imply that infants are less good at copying357

motor behavior at 12 months than at 9 months.358

3 Methods359

We used two NAO humanoid robots (Aldebaran) in this study, a blue and a red360

version. The blue robot was assigned the role of the demonstrator. The red robot361

was assigned the role of the imitator. Experiments were carried out in a 3 by362

2.5 m arena. An overhead 3D tracking system (Vicon) consisting of 4 cameras363

was used to monitor the position and orientation of the robots at a rate of 30 Hz.364

The robots were equipped with a clip-on helmet fitted with a number of reflective365

beads used by the tracking system to localize the robots. In addition to the robots,366

the arena contained three small tables each with a unique pattern of reflective367

beads. These served as obstacles and a target position.368

The custom-written Python software controlling the robots implemented a369

path planning algorithm (figure 7). This algorithm overlaid the arena with a370

rectangular graph with nodes spaced 10 cm apart (Schult and Swart, 2008).371

Nodes closer than 0.5 m to an obstacle were removed from the graph. A path372

between the current position of a robot and the desired goal location was planned373

by finding the shortest path of connected nodes between the node closest to the374

robot’s current position and the node closest to the goal position. By removing375

the nodes closer than 0.5 m to an obstacle, the path planning algorithm ensured376

the robots steered well clear of obstacles. In the current paper, the estimated en-377
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ergetic costs Ê(~ot) and Ê(~at) are approximated by the length of the planned and378

observed paths, respectively. For robots moving at a constant speed, this is a fair379

approximation.380

4 Experiment 1: Modelling Experimental Find-381

ings382

Figure 3 illustrates the four conditions of experiment 1. In the first condition,383

the demonstrator is not hampered by obstacles. Hence, it moves towards the goal384

position using a direct path (fig. 3a). In the second condition (fig. 3b), the demon-385

strator could approach the goal using a direct path. However, the demonstrator386

approaches the goal by a detour. In the third condition, obstacles between the387

demonstrator and the goal prevent a direct path. The path planning algorithm388

yields a path circumventing the obstacles (fig. 3c). Finally, in the fourth condition389

(fig. 3d), the demonstrator was sent to the goal by the same path as in condition 2.390

Hence, in condition 4, the detour was not planned by the path planner but explic-391

itly programmed. Condition 3 and 4 should lead to the same outcome. However,392

methodologically, condition 4 confirms that differences between conditions 1 & 2393

and 2 & 3 are not due to the way the motion of the demonstrator is planned. In394

other words, condition 4 demonstrates that the (internal) intention of the demon-395

strator is not taken into account by the imitator.396

The critical conditions, in modelling the experimental results regarding ratio-397

nal imitation in infants (e.g., Gergely et al., 2002; Meltzoff, 1988), are conditions398

2 and 3. In both conditions, the demonstrator does not take the direct path to399

the goal. The difference between these conditions, however, is the presence of an400

obstacle in condition 3. In this condition, the obstacle forces the demonstrator to401

take the longer path. This is analogous to a demonstrator switching on the lamp402

with her head when her hands are occupied in the sense that the constraints403

of the situation necessitate the less direct (and energetically inefficient) mode of404

operation. Critically, the CDM assumes that the robot (infant) plans an indirect405

path (head touch) to cope with the constraints introduced by the obstacle (occu-406

pied hands). Hence, the robot (infant) is predicted not to imitate the indirect407

path (head touch). In contrast, in condition 2, given no obstacle (analogous to the408

free hands condition in behavioural experiments) the imitator will plan a direct409

path (a hand touch). The planned direct path (head touch) is assumed to differ410

sufficiently (in terms of energy expenditure) from the demonstrated indirect path411

(head touch) to incur imitation.412

Figure 4 depicts the results of experiment 1. In condition 1, the demonstrator413

takes the direct route to the goal position (fig 4a). Calculating ∆E for~ot with two414

states results in a value lower than τE (fig 4e and fig. 6). Hence, imitator only415

retains the final goal oT as policy. Therefore, the imitator proceeds directly to the416

goal, using a direct path (fig 4i).417

In condition 2, the demonstrator takes a detour to the goal, in spite of a direct418

path being possible (fig 4b). Calculating ∆E for ~ot with two states results in a419

12



a b

c d

Figure 3: Illustration of the four conditions in experiment 1. The blue robot is the
demonstrator. The red robot is the imitator. The green arrows depict the path
taken by the demonstrator. Note that in panel c the demonstrator cannot pass
between the two round obstacles. Details in text.
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Figure 4: Results of experiment 1. Panels a-d: traces of the paths taken by the
demonstrator for conditions 1-4, respectively. The black circles denote the posi-
tion of two obstacles. Panels e-h depict the process of iteratively expanding~ot. In
red, the planned path~at is shown for~os with two states, i.e.,~ot = {o0, oT }. In blue,
the planned path ~at is shown for ~os with three states, i.e., ~os = {o0, oT/2, oT }. In
conditions 1,3 & 4, the red path ~at matches the demonstrated path ~ot well. This
is, ∆E < τE . In condition 2 red path ~at does not match the demonstrated path ~ot
(∆E > τE). In contrast, the blue path ~at satisfies the requirement ∆E < τE . Here
only the resulting paths ~at for |~os| equal to 2 and 3 are shown. However, the ~at
for |~os| equal to 5, 9 and 17 were also evaluated. Their resulting weighted cost
differences ∆E are plotted in figure 6. Panels i-l depict the imitated behaviour for
each of the four conditions. Notice that the imitator does not start from the same
position as the demonstrator. In conditions 1, 3 & 4, the imitator proceeds to the
goal (i.e., oT ) by a direct path. In condition 2, the set of selected states contains
three states. Hence, the imitator proceeds to oT via an intermediate state, i.e.,
o0 → oT/2 → oT .
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value higher than τE (fig 4f and fig. 6). In contrast, calculating ∆E for ~ot with420

three states results in a value lower than τE (fig 4f and fig. 6). Hence, the policy421

copied will include an additional sub goal en route to the goal. The imitator422

proceeds to this intermediate goal before going to the final goal (fig 4j). The423

blue path ~at, based on ~os with three states, in fig. 4e satisfies the requirement424

∆E < τE . Hence, the policy copied will include an additional subgoal en route to425

the goal. The imitator proceeds to this intermediate goal before going to the final426

goal (fig. 4h).427

In conditions 3 & 4, the demonstrator reaches the goal by a detour fig 4c & d).428

However, the presence of an obstacle makes this necessary. Indeed, the planned429

path ~at from o0 to oT will also contain this detour. As such, the value of ∆E430

will be small, even for ~os = {o0, oT } (fig 4g & h and fig. 6). As such, the imitator431

proceeds directly to the final goal (fig 4k & l).432

In condition 3, the demonstrator reaches the goal via a detour fig. 4c). How-433

ever, the presence of an obstacle makes this necessary. Indeed, the path ~at434

planned by the imitator from o0 to oT (i.e. |~os| = 2) will also contain this de-435

tour. As such, the value of ∆E will be small, even for |~os| = 2 (fig. 4f and j). The436

red path ~at for |~os| = 2 (fig. 4f) matches the demonstrated path ~ot sufficiently.437

As a result, the imitator proceeds directly to the final goal (fig. 4i), as it did in438

condition 1.439

Experiment 1 was aimed at modelling the basic findings of the behavioural ex-440

periments regarding rational imitation in infants (Meltzoff, 1988; Gergely et al.,441

2002; Zmyj et al., 2009; Beisert et al., 2012; Paulus et al., 2011). As mentioned442

above, these authors showed that children copy the head-touch demonstrated by443

adults only if the adult’s hands were unrestricted. In our robot experiments, the444

imitator only copied the demonstrated detour if the demonstrator was not forced445

to take this detour by the obstacles (Condition 2, fig. 4b, e and h). In contrast,446

when the demonstrator took the same path – but was forced to do so on account447

of an obstacle – the imitator disregarded the detour (Condition 3, fig. 4c, f and i).448

As such, conditions 2 and 3 reveal our robots modelling the behaviour of infants449

in the behavioural experiments discussed above.450

5 Experiment 2: Learning Better Policies451

In our view, the behavioural experiments concerning rational imitation cited452

above can be considered as cases of pathological imitation (Winfield and Erbas,453

2011). That is, the behavioural experiments are set up to induce imitation in454

spite of the behaviour being inefficient, i.e., the head touch is a less efficient way455

of switching on the light than a hand touch. The experiments of Lyons et al.456

(2007) and Keupp et al. (2013) illustrate how easily children can be tricked into457

imitating inefficient behaviour. In these experiments, the demonstrating adult458

exhibited a range of action irrelevant to attain a given goal. Nevertheless, the459

infants tended to copy these actions – even when explicitly instructed not to copy460

any ‘silly’ behaviour. However, when not experimentally controlled, adults’ be-461

haviour can generally be assumed to be more efficient or more adaptive than462
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Figure 5: Results of experiment 2. The paths of both the imitator (red paths) and
demonstrator (blue paths) for three trials are plotted.The grids in the background
of panels a-c represent the graph used in path planning by the imitator (panels
a & c) and the demonstrator (panel b). Panel a: the initial policy of the imitator
in reaching the goal position involves a detour. Part of the graph used by the
imitator for path planning has been taken out (the hatched region). Panel b: the
demonstrator approaches the goal in a straight line (its path planning graph has
not been lesioned). Panel c: the imitator, based on observing the demonstrator’s
policy, adopts a more efficient policy. Panel d: cost difference ∆E as a function of
the number of states in ~os averaged over the three trials

that of infants. Under these conditions, as will be shown below, the mechanism463

proposed above for selecting policies for imitation is adaptive.464

In this section of the paper, we present a robotic experiment showing that the465

CDM can also select more efficient policies if these are observed in a demonstra-466

tor. Indeed, by virtue of equation 1, the CDM can select policies for explorative467

imitation that are less costly than the current policy. The current policy of the468

robot amounts to the planned route~at for~os with only two states (o0 and oT ). For469

|~os| = 2, the robot will generate a plan reaching the end goal without taking into470

account the demonstrated behaviour. If the observed policy~ot is significantly less471

costly than the currently held policy, ∆E will be larger than τE (by virtue of the472

absolute value operator in equation 1). This will trigger the expansion of the set473

of intermediate goals ~os until ∆E is smaller than τE .474

In experiment 2, the imitator starts with a policy that is clearly not optimal.475

When going from the start position to the goal, the imitator takes an unnecessary476

detour (fig. 5a). This detour is caused by the imitator’s path planning algorithm477

not considering the locations in the hatched area (fig. 5a). In effect, the hatched478

area is not part of the search space considered by the path planning algorithm.479

In contrast, panel b of figure 5 shows the demonstrator moving in a straight480

line from start to goal – as depicted in this panel, the whole arena is part of481

the demonstrator’s search space. As such, the demonstrator can find a shorter482

path to the goal. Considering the observed behaviour ~ot, the imitator iteratively483

expands a set of selected states ~os from the demonstrated states ~ot. Each state484

os in ~os corresponds to a position of the demonstrator in the arena. By adding485

states os to ~os the imitator effectively expands its path planning search space.486

Iteratively expanding the set of selected states ~os will eventually lead to filling487
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in the part of the search space that was initially not available to the imitator488

(in panel a). Indeed, in effect, a corridor between start and goal position is built489

(figure 5c). When this corridor is established the value ∆E < τE (at |~os| = 5, panel490

d) and expansion of ~os is stopped. Eventually, the imitator imitates the shorter491

path, as shown in fig. 5c.492

6 Discussion493

Selective and rational imitation shown by children would be a beneficial capac-494

ity for robots (Gergely, 2003). Unfortunately, no computationally explicit model495

of rational imitation in infants is available. In this paper, we have presented a496

formalization that captures the most relevant aspects of the behaviour of infants497

in experiments. The CDM can be considered as a formalized version of the teleo-498

logical reasoning hypothesis, which is underspecified (See Zmyj and Buttelmann,499

2014, for references). As such, the CDM is explicit enough to be implemented on500

robots, as demonstrated above.501

While our model is primarily conceived as a practical method for support-502

ing rational imitation in robots, it can also be evaluated for its ability to explain503

infant behavior. Considering the CDM as a psychological model of rational imi-504

tation in infants allows making a number of predictions. First, the CDM predicts505

that the surface structure of the observed action is not important in determining506

whether the action will be imitated by infants. Observed actions that have sim-507

ilar associated predicted costs, Ê(~ot), will induce similar levels of imitation. Ex-508

perimental work, using paradigms akin to those used to evaluate over-imitation509

(Lyons et al., 2007; Keupp et al., 2013), could test this prediction. These ex-510

periments use arbitrary complex action sequences and evaluate the extent to511

which they are copied by the child. According to the CDM, changing the order512

of the actions in a sequence should not influence the level of imitation. A sec-513

ond prediction that follows from our model is that the sign of the cost difference,514

Ê(~ot)−Ê(~at), does not influence the level of imitation. Indeed, we postulated that515

only the absolute value of the difference is taken into account in calculating ∆E.516

Therefore, the CDM predicts that both actions that are more costly and more effi-517

cient than the current strategy known to infants should lead to imitation. Again,518

this is a testable prediction of the CDM. A third prediction of the CDM is that519

the two previous predictions can be modulated by targeted manipulations of the520

saliency of parts of the action sequences used.521

Acknowledgements522

This work was supported by grant EP/L024861/1 (‘Verifiable Autonomy’) from the523

Engineering and Physical Sciences Research Council (EPSRC).524

17



References525

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot526

learning from demonstration. Robotics and autonomous systems, 57(5):469–527

483.528

Baldwin, D. A., Baird, J. A., Saylor, M. M., and Clark, M. A. (2001). Infants Parse529

Dynamic Action. Child Development, 72(3):708.530

Beisert, M., Zmyj, N., Liepelt, R., Jung, F., Prinz, W., and Daum, M. M. (2012).531

Rethinking ’rational imitation’ in 14-month-old infants: A perceptual distrac-532

tion approach. PLoS ONE, 7(3):1–5.533

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). Robot programming534

by demonstration. In Handbook of robotics, pages 1371–1394.535

Breazeal, C. and Scassellati, B. (2002). Robots that imitate humans. Trends in536

Cognitive Sciences, 6(11):481–487.537

Buttelmann, D., Carpenter, M., Call, J., and Tomasello, M. (2007). Enculturated538

chimpanzees imitate rationally. Developmental Science, 10(4):F31–F38.539

Carpenter, M. and Call, J. (2006). The question of ‘what to imitate’: inferring540

goals and intentions. In Nehaniv, C. L. and Kirstin, D., editors, Imitation541

and Social Learning in Robots, Humans and Animals Behavioural, Social and542

Communicative Dimensions, pages 135–152. Cambridge University Press.543

Carpenter, M., Call, J., and Tomasello, M. (2005). Twelve- and 18-month-olds544

copy actions in terms of goals. Developmental Science, 8(1):13–20.545

Claxton, L. J., Keen, R., and McCarty, M. E. (2003). Evidence of motor planning546

in infant reaching behavior. Psychological Science, 14(4):354–356.547

Dautenhahn, K. and Nehaniv, C. (2002). Challenges in Building Robots That548

Imitate People, pages 363–390. MIT Press.549

Erbas, M. D., Winfield, A. F., and Bull, L. (2013). Embodied imitation-enhanced550

reinforcement learning in multi-agent systems. Adaptive Behavior, page551

1059712313500503.552

Gariépy, J.-F., Watson, K. K., Du, E., Xie, D. L., Erb, J., Amasino, D., and Platt,553

M. L. (2014). Social learning in humans and other animals. Frontiers in Neu-554

roscience, 8(58).555

Gattis, M., Bekkering, H., and WohlSchlager, A. (2002). Goal-directed imita-556

tion. In Meltzoff, A. N. and Prinz, W., editors, The Imitative Mind: Develop-557

ment, Evolution and Brain Bases Edited, pages 183–205. Cambridge Univer-558

sity Press.559

Gellén, K. and Buttelmann, D. (2017). Fourteen-Month-Olds Adapt Their Imita-560

tive Behavior in Light of a Model ’ s Constraints. 2017.561

18



Gergely, G. (2003). What should a robot learn from an infant? Mechanisms of ac-562

tion interpretation and observational learning in infancy. Connection Science,563

15(4):191–209.564

Gergely, G., Bekkering, H., and Kiraly, I. (2002). Rational imitation in preverbal565

infants. Nature, 415(6873):755.566

He, H., Ge, S. S., and Zhang, Z. (2014). A saliency-driven robotic head with bio-567

inspired saccadic behaviors for social robotics. Autonomous Robots, 36(3):225–568

240.569

Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception.570

Trends in Cognitive Sciences, 6(6):242–247.571

Hesslow, G. (2012). The current status of the simulation theory of cognition.572

Brain Research, 1428:71–79.573

Jones, S. S. (2009). The development of imitation in infancy. Philosophical Trans-574

actions of the Royal Society B: Biological Sciences, 364(1528):2325–2335.575

Keupp, S., Behne, T., and Rakoczy, H. (2013). Why do children overimitate? Nor-576

mativity is crucial. Journal of Experimental Child Psychology, 116(2):392–406.577

Kolling, T., Óturai, G., and Knopf, M. (2014). Is selective attention the basis for578

selective imitation in infants? An eye-tracking study of deferred imitation with579

12-month-olds. Journal of Experimental Child Psychology, 124:18–35.580

Laland, K. N. (2004). Social learning strategies. Animal Learning & Behavior,581

32(1):4–14.582

Legare, C. H. and Nielsen, M. (2015). Imitation and innovation: the dual engines583

of cultural learning. Trends in cognitive sciences, 19(11):688–699.584

Liu, S. and Spelke, E. S. (2017). Six-month-old infants expect agents to minimize585

the cost of their actions. Cognition, 160:35–42.586

Lyons, D. E., Young, A. G., and Keil, F. C. (2007). The hidden structure of overimi-587

tation. Proceedings of the National Academy of Sciences, 104(50):19751–19756.588

Meltzoff, A. N. (1988). Infant imitation after a 1-week delay: Long-term memory589

for novel acts and multiple stimuli. Developmental Psychology, 24(4):470–476.590

Nehaniv, C. L. (2007). Nine billion correspondence problems. In Nehaniv, C. L.591

and Dautenhahn, K., editors, Imitation and Social Learning in Robots, Hu-592

mans and Animals, pages 35—-46. Cambridge University Press.593

Nehaniv, C. L. and Dautenhahn, K. (2001). Like me?-measures of correspondence594

and imitation. Cybernetics & Systems, 32(1-2):11–51.595

19



Paulus, M., Hunnius, S., and Bekkering, H. (2013). Examining functional mech-596

anisms of imitative learning in infancy: does teleological reasoning affect in-597

fants’ imitation beyond motor resonance? Journal of experimental child psy-598

chology, 116(2):487–98.599

Paulus, M., Hunnius, S., Vissers, M., and Bekkering, H. (2011). Imitation in600

infancy: Rational or motor resonance? Child Development, 82(4):1047–1057.601

Poulin-Dubois, D., Brooker, I., and Polonia, A. (2011). Infants prefer to imitate a602

reliable person. Infant Behavior and Development, 34(2):303–309.603

Range, F., Viranyi, Z., and Huber, L. (2007). Selective imitation in domestic dogs.604

Current Biology, 17(10):868–872.605

Scassellati, B. (2002). Theory of mind for a humanoid robot. Autonomous Robots,606

12(1):13–24.607

Schaal, S., Ijspeert, A., and Billard, A. (2003). Computational approaches to608

motor learning by imitation. Philosophical Transactions of the Royal Society609

B: Biological Sciences, 358(1431):537–547.610

Schult, D. A. and Swart, P. (2008). Exploring network structure, dynamics, and611

function using networkx. In Proceedings of the 7th Python in Science Confer-612

ences (SciPy 2008), volume 2008, pages 11–16.613

Schwier, C., Maanen, C. V., Carpenter, M., and Tomasello, M. (2006). Rational614

Imitation in 12-Month-Old Infants. Infancy, 10(3):303–311.615

Tomasello, M. (2009). The cultural origins of human cognition. Harvard Univer-616

sity Press.617

Upshaw, M. B. and Sommerville, J. A. (2015). Twelve-month-old infants antici-618

patorily plan their actions according to expected object weight in a novel motor619

context. Frontiers in public health, 3.620

Vanderelst, D., Ahn, R. M., and Barakova, E. I. (2009). Simulated trust: A cheap621

social learning strategy. Theoretical population biology, 76(3):189–196.622

Winfield, A. F. and Erbas, M. D. (2011). On embodied memetic evolution and the623

emergence of behavioural traditions in robots. Memetic Computing, 3(4):261–624

270.625

Zmyj, N. and Buttelmann, D. (2014). An integrative model of rational imitation626

in infancy. Infant Behavior and Development, 37(1):21–28.627

Zmyj, N., Buttelmann, D., Carpenter, M., and Daum, M. M. (2010). The reliability628
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Figure 6: The values of ∆E as function of the number of selected states in ~os for
the four conditions in experiment 1.
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Figure 7: Plot illustrating the path planning algorithm used by the robots. The
plot depicts a hypothetical arena featuring 4 obstacles. The path planning algo-
rithm overlay the arena with a graph of closely nodes spaces. The path planning
algorithm searches for the shortest path of graph nodes between (1) the node
closest to the current position of the robot and (2) the node closest to the goal
position. Nodes that are too close near an obstacle are removed from the network
to force the path planning to steer clear of obstacles.
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