Machine Learning with Python

Knowledge Transfer Partnership between University of West of England (UWE) and Paxport

by Pedro Ferreira

April 28, 2017

Outline

- Case Study
- Approach
- Implementation
- Results

University of the West of England

• paxport

Innovate UK

Case Study

- Bring Artificial Intelligence to Paxport
 - Travel industry
 - Back-end service for searches and bookings of flights and accommodations
 - 3 years of stored bookings data
 - Improve holiday searches relevance/performance

Case Study

Challenges

- Scale, millions of daily searches
- Seasonality, preferences change overtime
- No user tracking
- Main Tools
 - Framework Python (3.5.1) with Jupyter (4.0.6)
 - Data manipulation Pandas (0.17.1)
 - Machine Learning resources Scikit learn (0.16.1)
 - Supporting Numpy (1.11), Scipy (0.16.0)

Approach

Collaborative Filtering

- Data organized in a User, Item,
 Preference matrix
- Preference can be either **explicit** or **implicit**
- Predict using the majority of similar users preferences for that particular item

Approach

- Advantages
 - Does not need extra data other than preferences to be effective
 - Very scalable (Matrix Factorization)
- Disadvantages
 - Needs a good amount of data as a starting point
 - Requires at least one observation for any given user/item before being able to make a prediction (**cold-start** problem)

Approach – Key Aspects

- "Super user" representation that utilizes search details as a way to group users (party info, dates, etc.)
 - i.e. 2 adults with no children for less than 3 days on a weekend (romantic trip?)
- Usage of **implicit** data (bookings)
- Matrix Factorization as the base algorithm (iALS *)
- Evaluation done by ranking searches from 2015-2016 in a weekly window and verifying the % of times the selected booking was in the Top 5 results provided

* http://yifanhu.net/PUB/cf.pdf

Implementation

Data overview

- 840,030 bookings (2014-2016), 371,540 searches (2015-2016)
- Over 99.80% sparsity (preference matrix)
- Model overview (iALS)
 - Represents implicit feedback as **observations** and **confidence**
 - Confidence adapted to make the model robust to seasonality
 - Ranking obtained by multiplying the resulting Latent Factors

Implementation

Performance

- Python vs Cython (11 minutes and 45 seconds vs 7.65 seconds) build time per model
- Sparse matrix representation vs 83705x17508x64 full memory footprint
- Re run model and evaluate rankings for over 100 weeks
 - Pandas dataframes key for easy data manipulation

Results

Overall performance highlighting

	2015				2016			
	First Half		Second Half		First Half		Second Half	
Model	Top1 %	Top5 %	Top1 %	Top5 %	Top1 %	Top5 %	Top1 %	Top5 %
Baseline	7.947	26.935	11.261	33.219	14.759	40.387	16.377	44.581
SU1_Base	14.197	42.874	15.458	44.312	14.527	43.376	14.400	43.055
SU1_Base_Temporal	14.860	43.506	16.302	46.341	15.866	46.337	16.919	48.215
SU1_TFIDF_Temporal	14.659	42.753	15.912	45.447	15.351	44.365	16.121	45.835
SU1_BM25	14.466	42.516	15.352	44.879	14.473	42.958	15.103	44.211
SU1_BM25_Temporal	15.425	44.508	16.564	47.129	15.681	45.669	16.412	47.477
SU2_Base	14.310	42.697	15.375	44.667	14.650	43.602	14.478	43.394
SU2_Base_Temporal	15.091	44.352	16.401	46.939	15.899	46.395	16.920	48.243
$SU2_TFIDF_Temporal$	14.491	43.094	14.622	44.563	14.285	42.821	14.578	43.888
SU2_BM25	13.434	41.368	13.471	42.427	14.426	41.112	13.336	41.296
SU2_BM25_Temporal	15.436	44.754	16.046	46.499	15.067	45.074	15.774	47.103

Results

Performance by regions (countries)

Results

- Proof of Concept deployed on a Virtual Machine
 - Single 2.20 GHz cpu
 - 4Gb ram
 - Hosted in France
 - 10,000 requests over
 15 threads (83
 seconds total)

Takeaway

- Global model
- Necessity for adaptability
 - Use of super users
 - Seasonality
- Notebooks are great for exploration
- Pandas is awesome!

Pedro Ferreira

Ped.j.ferreira@gmail.com

Chris Simons

Chris.Simons@uwe.ac.uk

