
1

 Machine Learning with Python

Knowledge Transfer Partnership between University
of West of England (UWE) and Paxport

by Pedro Ferreira

April 28, 2017

2

Outline

● Case Study
● Approach
● Implementation
● Results

3

Case Study

● Bring Artificial Intelligence to Paxport
– Travel industry

● Back-end service for searches and bookings of flights and
accommodations

– 3 years of stored bookings data
– Improve holiday searches relevance/performance

4

Case Study

● Challenges
– Scale, millions of daily searches

– Seasonality, preferences change overtime

– No user tracking

● Main Tools
– Framework - Python (3.5.1) with Jupyter (4.0.6)

– Data manipulation - Pandas (0.17.1)

– Machine Learning resources - Scikit learn (0.16.1)

– Supporting - Numpy (1.11), Scipy (0.16.0)

5

Approach

● Collaborative Filtering
– Data organized in a User, Item,

Preference matrix
– Preference can be either explicit

or implicit
– Predict using the majority of

similar users preferences for
that particular item

6

Approach

● Advantages

– Does not need extra data other than preferences to be
effective

– Very scalable (Matrix Factorization)
● Disadvantages

– Needs a good amount of data as a starting point
– Requires at least one observation for any given user/item

before being able to make a prediction (cold-start problem)

7

Approach – Key Aspects

– “Super user” representation that utilizes search details as a
way to group users (party info, dates, etc.)
● i.e. 2 adults with no children for less than 3 days on a

weekend (romantic trip?)
– Usage of implicit data (bookings)
– Matrix Factorization as the base algorithm (iALS *)
– Evaluation done by ranking searches from 2015-2016 in a

weekly window and verifying the % of times the selected
booking was in the Top 5 results provided

* http://yifanhu.net/PUB/cf.pdf

8

Implementation

● Data overview
– 840,030 bookings (2014-2016), 371,540 searches (2015-2016)

– Over 99.80% sparsity (preference matrix)

● Model overview (iALS)
– Represents implicit feedback as observations and confidence

● Confidence adapted to make the model robust to seasonality
– Ranking obtained by multiplying the resulting Latent Factors

9

Implementation

● Performance
– Python vs Cython (11 minutes and 45 seconds vs 7.65

seconds) build time per model
– Sparse matrix representation vs 83705x17508x64 full

memory footprint
– Re run model and evaluate rankings for over 100 weeks

● Pandas dataframes key for easy data manipulation

10

Results

Overall performance highlighting

11

Results

Performance by regions (countries)

12

Results

● Proof of Concept
deployed on a Virtual
Machine

– Single 2.20 GHz cpu
– 4Gb ram
– Hosted in France
– 10,000 requests over

15 threads (83
seconds total)

13

Takeaway

● Global model
● Necessity for adaptability

– Use of super users
– Seasonality

● Notebooks are great for exploration
● Pandas is awesome!

14

Questions

Pedro Ferreira

Ped.j.ferreira@gmail.com

Chris Simons

Chris.Simons@uwe.ac.uk

mailto:Ped.j.ferreira@gmail.com
mailto:Chris.Simons@uwe.ac.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

