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ABSTRACT 
Standard western notation supports the understanding and 
performance of music, but has limited provisions for 
revealing overall musical characteristics and structure. 
This paper presents several visualisers for highlighting 
and providing insights into musical structures, including 
rhythm, pitch, and interval transitions, also noting how 
these elements modulate over time. The visualisations are 
presented in the context of Shneiderman’s Visual Infor-
mation-Seeking Mantra, and terminology from the Cog-
nitive Dimensions of Music Notations usability frame-
work. Such techniques are designed to make understand-
ing musical structure quicker, easier, less error prone, and 
take better advantage of the intrinsic pattern recognition 
abilities of humans.  

1.!INTRODUCTION 
Standard western notation serves as a strict, formal set of 
instructions for the performance of composed music. 
However, it omits explicit representation of a rich amount 
of hidden data that exists between individual notes, and 
the location of the notes within an overarching musical 
structure. One way to understand this structure is to ana-
lyse the music: either manually, requiring an experienced 
musicologist; or via computer, resulting in several multi-
dimensional data fields, which may be difficult to repre-
sent and comprehend. Representing this data visually 
utilises the brain’s pattern detection abilities, supporting 
easier and faster comprehension of material to enable 
insight and speculation that can inform further formal 
analysis. 

 Visualisation presents non-visual data in a visual 
format, usually as 2D/3D images or video. Shneiderman 
[1] introduces a framework for guiding the design of 
information visualisation systems, known as the Visual 
Information-Seeking Mantra (VISM). The framework 
consists of seven tasks for presenting information in a 
visual form to a user (Table 1). Craft and Cairns [2] elab-
orate on this by stating the VISM serves as inspiration 
and guidelines for practitioners designing visual infor-
mation systems.  

 
Task Description 
Overview Gain an overview of the data. 
Zoom Zoom in on items of interest. 
Filter Filter out uninteresting items. 
Details-on-
Demands 

Selected an item or group and get details 
when needed. 

Relate View relationships between items. 
History Keep a history of actions to support undo, 

replay, and progressive refinement. 
Extract Allow extraction of sub-collections and 

of the query parameters. 

Table 1.  The 7 tasks of the VISM. 

 
Shneiderman emphasises that humans have remarkable 
perceptual abilities, allowing them to easily detect chang-
es of and patterns in size, colour, shape, movement or 
texture in visual media. Such advanced and robust feature 
extraction capabilities are considerably more difficult to 
encode as automated analysis using computer systems. 

In a musical context, visualisers also enable rapid, au-
tomated methods for visualising not only a single piece of 
music, but an entire corpus - allowing understanding and 
comparisons of musical material at a higher and more 
generalised level to that of manual score analysis. 

The level meter which features in the majority of con-
sumer audio products, represents a ubiquitous visualisa-
tion method, whereby the current sound level is visual-
ised using vertical bars, and for the majority of situations 
a more useful presentation than a display of audio sample 
values (amplitudes). Digital audio is stored as a series of 
numbers, a sequence of amplitude measurements with 
respect to time. Sonograms convert this information to 
visualise the distribution of frequency content. An exam-
ple of this is illustrated in Figure 1, whereby the musical 
score has been synthesized using piano samples on a 
computer and analysed with a sonogram.  

This paper focuses on visualizing scores at the note-
level (e.g. MIDI), avoiding the many difficulties of audio 
feature extraction. Sequenced music, encoded as MIDI, 
by contrast allows for rapid and reproducible analysis [3].  
The aim of the paper is to present novel techniques that 
support the analysis of music. Copyright: © 2017 Samuel Hunt et al. This is an open-access article 

dis- tribute under the terms of the Creative Commons Attribution Li-
cense 3.0 Unported, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source 
are credited. 



 

 
Figure 1. Sonogram plot of the score. 

 
The remainder of the paper is broken down as fol-

lows. Section 2 presents relevant prior work and theory, 
followed by a brief discussion in Section 3 of the soft-
ware system developed to support this research. Section 4 
reviews visualisation techniques for pitch, contours, in-
tervals and key, followed by Section 5 looking at rhyth-
mic elements. Section 6 discusses visualisation tech-
niques that integrate both pitch and rhythmic elements. 
The final section considers future work for the area and 
proposes evaluation techniques. 

2.!RELATED WORK 
Prior work in music visualisation can be broadly catego-
rised into two groups: those exploring sampled audio data 
and those exploring sequenced music data (scores and 
MIDI). Soriano et al [4] present methods for browsing an 
audio-based music collection, using graphical metaphors 
designed to convey the underlying song structure. This 
analysis is performed via feature extraction from MIDI 
files, enabling easy identification of simple and meaning-
ful musical structure, such as pitch and rhythm.  

Foote [5] and Wolkowicz & Brooks [6] both used self-
similarity matrix visualisations to reveal similarity in 
music. This visualisation approach relies on the meas-
urement of pitch content at quantised time intervals, and 
plotting this against all other intervals. Figure 2 shows a 
self-similarity matrix visualisation, whereby the music 
proceeds through time from the bottom left to the top 
right, with regions of similar patterns appearing as clus-
ters of squares. Both axes represent the same input vec-
tor. The music example uses a repeating motif of one bar, 
with a modulation at bars 2 and 4. 

Bergstrom [7] presents several visualisers that convey 
information about interval quality, chord quality, and the 
chord progressions in a piece of music, helping users to 
comprehend the underlying structure of music.  
 

 

 
Figure 2. Self-Similarity visualisation of the score   

 
Feedback from engagement with the system revealed 
users who having quickly understood the basics, wanted 
to compare music from multiple genres and composers. 
Holland [8] presents a similar system (Harmony Space) 
to allow beginners to interact with harmony using a visu-
al grid. 

Jeong and Nam [9] discuss a system that visualises 
audio streams, to show audio features such as, volume, 
onset density, and dissonance. The authors also state that 
as music is an auditory art, visual representations can 
contain information that cannot be transferred or per-
ceived accurately with sound. Herremans and Chew [10] 
use visualisation to highlight tonal tension in music, cre-
ating an explicit representation of something that is not 
easily quantifiable, presenting graphics alongside the 
scored elements. 

Established analytical frameworks for music, such as 
the Generative Theory of Tonal Music (GTTM) [11] and 
Schenkerian analysis [12], also present ways to annotate 
music and reveal structure. The GTTM proposes a series 
of preference rules for determining the different musical 
structures that underlie the perception of western music. 
Schenkerian analysis is an established musical analysis 
technique that aims to explicitly reveal hidden dependen-
cies and structures implicit in the music. This analysis 
primarily aids score reading by marking it with elements 
of musical structure. Both of these theories have been 
mechanised in software [13][14]. 

Nash [4] presents research that adapts the Cognitive 
Dimensions of Music Notations framework (CDMN) 
[15], for use in designing and analyzing music notations 
and user interfaces for digital and traditional music prac-
tice and study. This paper utilises the framework as a 
vocabulary for comparing visualised music content and 
metadata against western notation and other forms of 
visualisation. However not all of the 16 core dimensions’ 
originally specified are of relevance here. A list of the 
terms and their definitions relevant in this research are 
listed in Table 2.  



 
Dimension Description 
Visibility How easy is it to view and find ele-

ments of the music during editing? 
Juxtaposabillity How easy is it to compare elements 

within the music? 
Hidden De-
pendencies 

How explicit are the relationships 
between related elements in the nota-
tion? 

Hard Mental 
Operations 

How difficult is the task to work out in 
your head? 

Conciseness How concise is the notation? 
Provisionality 
 

How easy is it to experiment with 
ideas? 

Consistency Where aspects of the notation mean 
similar things, is the similarity clear in 
the way they appear? 

Viscosity Is it easy to go back and make chang-
es? 

Role Expres-
siveness 

Is it easy to see what each part of the 
notation means? 

Error Prone-
ness 

How easy is it to make annoying mis-
takes? 

Closeness of 
mapping. 

Does the notation match how you 
describe the music yourself? 

Table 2. Terms of the Cognitive Dimensions of 
Music Notations framework used in this paper [4]. 

 
Using the self-similarity visualisation in Figure 2 as 

an example of the terms used in the table, the visibility of 
the figure is good, showing a clear overview of the entire 
piece, likewise the juaxtaposability scores highly as the 
patterns can be compared much more easily than se-
quences in the score. There are high hidden dependences 
as the original information has been transformed, with 
each square representing a smaller amount of infor-
mation. The simplistic nature of the visualiser scores high 
on provisionality, consistency and conciseness. The visu-
alisation does not have any meaning unless related to the 
score, with the underlying notated elements looked up, so 
has a poor closeness of mapping. Comparing sequences 
using just the notation would require both hard mental 
operations, and would be prone to error (error proness), 
whereas the automated analysis used to build the self-
similarity visualisation is easily reproducible and more 
accurate. 

A core concept of visualisation for notated music is its 
ability to reduce the hard-mental operations arising from 
manual score analysis [4]. Computer aided analysis also 
reduces the error proneness of operations. Visualisation 
can remove un-needed details (filtering [1]) from the 

score, for example performance markings, therefore im-
proving the conciseness of the results. 

Temperley [16, 17] uses visualisation to inform, ex-
plain, and evaluate formal analysis by computer. Often 
using these techniques when analysing a large corpus of 
music, to immediately show data that would otherwise be 
difficult to extract from looking directly at the score, or in 
fact thousands of individual pieces. Temperley also uses 
these as a way of comparing and refining models for 
music analysis. 

3.!INTERACTIVE VISUALISATION 
This paper discusses visualisers developed for an original 
software package (Figure 3), the design of which has 
been influenced by the seven principles of the VISM 
(listed in Table 1). In general, it allows different pieces of 
music in MIDI format, to be opened and visualised quick-
ly, in order to support high provisionality and enable 
rapid experimentation with analysis techniques. The 
software can analyse and compare entire corpora or indi-
vidual pieces, as well as sub-sections or voices (tracks). 
A historic list of analyses is kept so these can be recalled 
and modified, retaining low levels of viscosity and com-
mitment, therefore further facilitating experimentation 
and evaluation (provisionality). 

Software and automated analysis has the advantage of 
processing large amounts of data quickly (compared to 
manual techniques), but takes considerable amounts of 
time and care to design and implement. Visualisation 
tools, such as that described, allow a user to speculatively 
interrogate data, before committing to more detailed and 
formal music analysis methods, be they traditional (e.g. 
Schenkerian) or computer-based (e.g. machine learning 
see Section 4.4). 

4.!VISUALISING PITCH 
The set of visualisers presented in this section focus on 
elements of pitch, contour, and melodic interval. Some 
techniques present the material as overviews of the piece 
as a whole, others present excerpts in time. For the pur-
poses of discussion and comparison, the majority of visu-
alisations present Bach’s Two-part Invention No. 1 (BWV 
772) [18], but can be applied to many other examples and 
genres of music, including non-Western. 

4.1! Melodic Contours 

A contour representation of music can simply be defined 
as information about the up and down pattern of pitch 
changes, regardless of their exact size [19]. Melodic con-
tours are also a key psychological part of music, one that 
aids the recollection of musical themes [20]. 



Melodic contours themselves can be illustrated using 
a score, where it is usually clear in which direction the 
pitch is going (Figure 4, top). However, once accidentals 
are introduced (Figure 4, bottom), it becomes less visual-
ly distinct. A piano roll (Figure 5) provides a clearer 
representation of melodic contour. This provides im-
proved closeness of mapping [2], and increases the ease 
with which sequences can be compared (improving jux-
taposability). Piano rolls provide ways for shapes, pat-
terns and contours to be identified. Wood [21] presents 
related research in which the standard note head is visual-
ly modified to show the pitch degree in a more role ex-
pressive way, and reports improved speed for sight-
reading when compared with standard note heads. 

 

 
Figure 4. Score with clear melodic contour (top) 

and obfuscated melodic contour (bottom). 

 
This type of visualisation can also be used to reduce a 

search space, allowing sequences represented as contours 
to be visually clustered. The items in Figure 6 show a 
series of monophonic melodies extracted from Bach’s 
BWV 772. Visually, we can see that the first two patterns 

are similar, and that pattern 14 is the same pattern invert-
ed. This kind of visualisation allows the viewer to employ 
the gestalt principles of visual perception, in this case 
similarity, to group together similar shapes [22]. In this 
situation the data has filtered out everything but the con-
tour, giving a better overview of the types of contours, 
which can then be easily related against one another. 

 

 
Figure 5. Piano roll representation of Figure 4. 

 
Figure 6. Selection of melodic contours from 

Bach’s BMW 772. 

Figure 3. Software created to support visualisation tasks. 



4.2! Intervals 

The contour plots provide an overview of the melodic 
patterns present in the music, but reduce the visibility and 
role expressivity of the intervals. Temperley [16, 17] uses 
a histogram of melodic intervals to show the distribution 
of interval leaps between melodic note sequences within 
an entire corpus of music material, revealing wider pat-
terns and trends in music. In-so-doing, this hides depend-
encies in the music, such as the local context and note-to-
note relationships (i.e. certain pitches are more unlikely 
to transition to those depicted in the figure because of 
their relation to the home key and sensitivity to tonal 
context). The diagram in Figure 7 shows the interval 
profile for Bach’s BWV 772.  

 

 
Figure 7. Interval distribution over two octaves in 

Bach’s BWV 772. 

A different way to analyse this data, in a way that al-
lows interpretation of pitch, intervals and range, is to use 
a Markov type model, defining the transition probability 
between any given notes, in a numeric table format. This, 
however produces a data table of size 127x127 elements, 
which is difficult to comprehend in a numeric format, but 
easily visualised to reveal musical trends and characteris-
tics – as illustrated in Figure 8. The design of this once 
again takes an overview of the data, filtering out the 
timed elements of the music, to give a detailed overview 
of the pitch and interval elements. Parts of the plot can be 
further inspected to reveal exact transition probabilities 
(details on demand). 

From the plot, it can be noted that the intervals in the 
upper ranges are more likely to jump down in interval, 
while the opposite effect can be observed in the lower 
range. Towards the middle the width of the melodic 
jumps are slightly larger. The yellow line along the lead-
ing diagonal represents the unison interval (repeated 
notes), the horizontal deviation from which reflects tran-
sitions to subsequent notes. The brighter the marker, the 
more likely the transition. The diagram can also be 
thought of as a layered series of melodic interval distribu-
tions (as in Figure 7), given different starting notes (y-
axis). 

 
 Figure 8. 2D Markov plot of Bach’s BWV 772. 

Two more plots are shown in this style, but illustrat-
ing trends in, and differences between, larger corpora of 
music: respectively, a collection of 100 pieces of baroque 
music (Figure 9) and jazz music (Figure 10), selected 
randomly from a larger corpus. The visualisation process 
helps to reveal differences between the corpora that 
would otherwise be harder to discover or articulate. For 
example, the range of intervals in the jazz corpus is far 
wider, whereas the baroque is limited to mostly to an 
octave, and multiples thereof and appears more uniform 
throughout the range.  

 

 
Figure 9. 100 randomly-selected common reper-

toire Baroque pieces. 
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Figure 10. 100 randomly-selected common reper-

toire Jazz pieces. 

4.3! Pitch Distribution 

It is instructive to consider pitch usage in general terms. 
Temperley [16,17] considers the distribution of pitches 
within a piece to be an intrinsic element that grounds the 
overall tonality and key in western music. Key is some-
thing that musicians are trained to detect [16], but for 
which Temperley has developed automated methods. To 
illustrate, Figure 11 shows an ideal key profile describing 
the average distribution of pitches within a piece in C 
major, which can also be considered a coarse measure of 
pitch-class appropriateness in relation to key. For com-
parison Bach’s BWV 772 (Figure 12) is also visualised. It 
is easy to visually infer the similarity of the distribution 
within the piece (known to be in the key of C) and the 
generalised representation (Figure 11). Smaller more 
nuanced details are also visible, such as the fact that the 
piece, although in C major, has more instances of D than 
the tonic C. Such details can be enough to fool automated 
analysis, as detailed in the next section, but things are 
clearer to the eye. 
 

 
Figure 11. Major Key Profile.  

Other metadata can also loosely be inferred. A less 
pronounced distribution may indicate a piece that uses 
several different keys or tonalities beyond the diatonic. 
Atonal music, such as serialism, may confound such 
analysis and appear entirely different when visualised, 
such as Schoenberg Op.11-1 (Figure 13). 

 
 

 
Figure 12. Pitch distribution in Bach’s BWV 772 

 

 
Figure 13.   Pitch Distribution in Schoenberg 

Op.11-1 [24]. 

4.4! Key 

Visualisation can help guide and test formal analysis. For 
example, a machine learning algorithm was developed 
that could infer the key based on the pitch profile of a 
piece. Bach’s Well-tempered Clavier (Book 2) [23] was 
chosen as a test set, as it has two pieces in each of the 24 
keys, providing an ordered pattern of tonality.  
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Figure 14 presents the detection results of the model, 
for each piece, ordered by their BWV number. The re-
sults of this experiment show that the algorithm is mostly 
able to predict each of the keys, and the graph can be 
inspected to find the relative confidence of each predic-
tion – as well as identify anomalies and deviations from 
the expected results. Bach’s methodical progression 
through alternating major and minor keys within the 
collected work produces a visual pattern in the plot (dis-
cernable from the gestalt law of good continuance [22]), 
the deviations from which identify errors in the key 
detection model – and, in turn, nuances in Bach’s ap-
proach to key. 

The algorithm makes three mistakes, out of a total of 
48 predictions, corresponding to the anomalies circled in 
the figure. In one instance, the algorithm has predicted a 
key of D minor when the nominal key is C-Major. By 
visualizing the pitch profile of the piece (Figure 15), 
using the techniques suggested in Section 4.3 it can be 
observed that the overall ratio of pitch D, is higher than 
the tonic and 5th compared with an ideal plot (Figure 11), 
Indeed, this detection anomaly is attributable to Bach’s 
actual use of D minor (and other keys) in the piece. [23] 
This indicates a limitation of the analysis technique, in 
conflating the pitch profile of an entire piece without 
sensitivity to modulation, but nonetheless raises an inter-
esting musicological question of why this and not other 
pieces from the set fall foul of this limitation. 

 

 
Figure 15. Pitch Distribution for Bach’s BWV 870. 

 

5.!VISUALISING TIME 
Visualisation can also be used to reveal patterns in 

musical time, as in the case of rhythm, tempo, and densi-
ty. Time also provides the metrical structure to a se-
quence of pitches. Taking the Bach piece BWV 772 as 
before, and visualizing the rhythmic aspects of the piece, 
several patterns are revealed. The elements under consid-
eration are Note Onset, Note Length, and Density. 

5.1! Note Onset 

The basic rhythmic plot, note onset (Figure 16) shows 
the ratio of note onsets in each position of the bar for the 
entire piece. The events are first quantised to 1/32nd of a 
note, to remove noise caused by micro variations in time. 

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0.16"

0.18"

1" #1/b2" 2" #2/b3" 3" 4" #4/b5" 5" #5/b6" 6" #6/b7" 7"

Di
st
rib

u(
on

+

Scale+Degrees+

Bach's+BWV+870+:+C+Major+

Figure 14. visualisation of a machine learning algorithms prediction of the 48 pieces of Bach’s well-tempered clavier 
book 2 [23]. The 3 mistakes are BWV numbers 870 part 1, 871 part 1 and 880 part 1. The red highlighting shows the mis-
takes and the green shows the actual keys. 



The plot shows us, that simpler divisions of the bar are 
more likely to contain notes than more complex ones, 
shown by the regular distribution and preponderance of 
quavers and semi-quavers. The middle of the bar has the 
least note activity in general, whereas the 1st quaver beat, 
and 4th quaver beat have the most. Comparing this to 
Beethoven’s piano sonata No.21 Op. 53 (Figure 17), a 
piece from a much later period, shows a complete con-
trast in the structure, with a much more uniform distribu-
tion of note onsets, with the second semi-quaver bar posi-
tion (3/32) being the most likely place for a note to be 
played. 
 

 
Figure 16. Distribution of rhythm for Bach’s BWV 

772. 

 
Figure 17. Distribution of rhythm for Beethoven’s 

Op. 53. 

5.2! Note Length. 

Note length visualisation (Figure 18) does not reveal 
as much information as some other techniques, but con-
firms this piece uses mostly note lengths of a semi-quaver 
in length. Roughly four times as many as using a quaver 
note. However, comparing this with other examples of 
music, for example Beethoven’s piano sonata No.21 Op. 
53 (Figure 19), shows for example the use of a dotted 
semi-quaver (3/32) note length is more common than 
either a quaver or crotchet, and a value not even used in 
the Bach piece. 

 

 
Figure 18. Distribution of note length in Bach’s 

BWV 772. 

 
Figure 19. Distribution of note length in Beetho-

ven’s Op. 53. 

5.3! Rhythmic Density. 

Rhythmic density can be defined as the number of note 
onsets that happen during a beat or other window of time. 
The analysis is computed by calculating the number of 
onsets in each density window, and plotting the changes 
over time for each voice (note that only the first 12 
measures are shown in Figure 20). Using Bach’s BWV 
772 again, several repeating patterns are visually observ-
able between the two voices.   

Figure 20 shows that only three of 48 windows have 
both voices indicating a density reading of 4 simultane-
ously. The sharp peak in Voice 1 at 23-24, is indicated as 
the most intense, a result of the piece using demi-semi-
quavers (see figure 21). From windows 25 to 41, the 
voices are alternating in a strict pattern. This representa-
tion provides a concise overview, but does not differenti-
ate between chords and rapid melodic phrases, reducing 
the visibility and juxtaposability of data. However, while 
a finer resolution could reveal more detail, it would also 
reduce conciseness, with four times as many data points. 
This represents a common trade-off between the dimen-
sions, as observed in other notations [4].  

In general, the techniques discussed in this section 
show that one method will reveal certain information at 
the sake of obscuring others, and that sometimes multiple 
perspectives are needed to fully understand the data. 
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figure 21. Demi-semi-quavers in bars 6. Relative to 

points 23-24 on figure 20. 

 

6.!INTEGRATED VISUALISATIONS 
Previous sections considered elements of music in isola-
tion, but visualisations can also reveal relationships be-
tween different dimensions of music. The ability to inte-
grate musical characteristics and model the complex 
interwoven principles between them is a prime objective 
of music analysis and visualisation. The diversity and 
variety of such interconnections makes this difficult, but 
it is possible to combine multiple dimensions of charac-
teristics to reveal more complex and interesting patterns. 

Two related elements of music that can be integrated 
for visualisation and analysis are rhythm and pitch. A 
sequence of notes can be considered a pitch change after 
a given length of time, and it is possible to build up the 
frequency of these different event combinations and dis-
play the result. Given a standard composition the number 
of options is vast, and represents a complex problem. 
However, this is relatively easy to visualise (Figure 22) 
by plotting the change in interval against the difference 
between note onset, with the colour level (brightness) 

showing the ratio. In the example (Figure 22), a visualisa-
tion of Bach’s Brandenburg concerto BWV 1046 [23] is 
shown, using this method.  

 

 
Figure 22. Visualisation of change in interval vs 

time between note onsets for Bach’s BWV 1046. TPQ 
is defined as the number of ticks per quarter (crotchet) 
note. 

Looking at the analysis, it is clear how consistent the 
timing of the piece is, with most events falling on quaver 
note divisions. There is some evidence of quaver-triplets 
as shown between 12 TPQ (Ticks Per Quarter Note or 
Crotchet) equivalent to a semi-quaver and 24 TPQ (Cro-
chet), with these taking a value of 16 TPQ. Looking at 
the overall pitch range the widest range of pitch intervals 
is a note following on a quavers length after the previous 

Figure 20. Density visualisation of the fist 12 bars of Bach’s BWV 772, quantised to 1/4 (crotchet) note.  



note, with events ranging from +24 semitones, to -17 
semitones. This is also where the most events are likely 
to be played, shown by the density of red dots. At the 1 
and 2 semi-quaver duration (12 and 24 TPQ) the pitch is 
more likely to increase, on any value greater than this, the 
pitch is likely to decrease. At the semiquaver difference, 
almost all intervals are present, but compare this to longer 
duration differences, and intervals start to disappear. An 
interval change of +4 semitones (major 3rd) does not 
happen following a previous note whose duration was a 
quaver. This is quite possibly linked to the rules of strict 
counterpoint, a technique regularly employed by the 
composer, but further investigation is subsequently re-
quired before drawing specific conclusions. Finally, at 
the 3-semi quaver duration (32 TPQ) interval, a pitch 
increase is more likely, but at the crotchet level (48 TPQ) 
a pitch decrease is more likely.  

7.!CONCLUSIONS 
This paper has reviewed a variety of basic music visuali-
sations to demonstrate their utility to reveal implicit de-
tails, patterns, and structures in musical phrases, pieces 
and broader corpora. Although the visualisations have 
been informally evaluated with reference to the CDMN 
framework, another way to evaluate the use of visualisa-
tion is to establish whether or not it revealed something 
that was either not known before or complicated to reveal 
using other methods. As several of these techniques have 
made such novel observations about musical structure, 
they can therefore be considered successful. 

Other further types of studies are also planned in this 
area, including embedding these visualisation techniques 
inside music composition software. Such investigations 
will explore the pedagogical benefits of alternative visual 
representations of music, looking at how visualisations 
can inform students understanding of musical process and 
structure. 

Visualisation techniques can also inform the design of 
generative musical techniques. They allow the identifica-
tion of characteristics that can become factors of a com-
puter composition models, such as the parameters of a 
machine learning process. It also allows a degree of quan-
titative evaluation and comparison between music gener-
ated algorithmically and the target musical result. Vick-
ery [25] advocates re-sonifying visualised music repre-
sentations, formed through analysis of the original music. 

While this review of visualisation techniques only 
scratches the surface of both visual and musical possibili-
ties, it is clear the visual domain can be exploited to pro-
vide different perspectives on musical patterns and struc-
tures, and make hidden information and insights more 
accessible to musicians and scholars. 
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