Genotoxicity and functionality assessment of a bone marrow stromal cell line following chemotherapy in an *in vitro* model of multiple myeloma.

Simon William Andrews

This thesis is submitted in partial fulfilment of the requirements of the University of the West of England for the degree of Doctor of Philosophy in Biomedical Science

Faculty of Health and Applied Sciences, University of the West of England

Abstract

Multiple myeloma (MM) is a haematological malignancy characterized by terminally differentiated plasma cells and their accumulation in the bone marrow (BM). Despite significant advances in therapeutic strategies it incurable. The interactions currently remains between the BM microenvironment and malignant plasma cells have been pivotal to understanding this disease. Previous reports have shown that patients with a haematological malignancy sustain "damage" to their BM, but how much of this is due to the disease and/or the treatment is currently unknown. Furthermore MM plasma cells have been documented to harness the BM microenvironment to their advantage, improving their growth and survival. However, little is known about the functionality of BM mesenchymal stem cells (MSC) in patients with MM disease which form an essential compartment of the BM microenvironment. It was hypothesised that MSC altruistically protect MM cells from therapy and consequently become phenotypically and genetically compromised.

To facilitate the study of the effects of chemotherapeutic agents and MM cells on MSC, a non-contact co-culture model was developed that allowed the investigation of functional and genetic damage. In line with previous studies, the MM cell line, U266B1 were found to be protected from drug-induced cell death when in co-culture with the stromal cell line HS5. However, the promoting effects of the BM appear to be at the detriment to their own survival. HS5 cells were found to have lower viability, altered morphology and disrupted differentiation when in a non-contact co-culture with U266B1 cells.

Results from this study have revealed that interactions of MSC with MM cells lead to an altruistic protection of MM cells by the BM. This work demonstrates that U266B1 cells have an improved viability following exposure to chemotherapy when in a non-contact co-culture with MSC/HS5. Furthermore, genotoxic assays also revealed that HS5/MSC interactions with U266B1 cells protect U266B1 from the genotoxic effects of melphalan in co-culture, whilst for the first time HS5 morphology was shown to be severely altered following exposure to chemotherapy and when in co-culture with U266B1 cells. This work has demonstrated, for the first time, the cytotoxic effects of novel agents bortezomib and carfilzomib on HS5 cells when in co-culture with U266B1 cells. Results from this study also demonstrate that melphalan severely effects the ability of HS5 cells to differentiate in an osteogenic lineage with a further deficiency in differentiation when in co-culture with U266B1. Adipogenic differentiation of HS5 was unable to take place when in co-culture with MM cells and was again further impaired by chemotherapy. This is the first study to reveal that primary MSC secrete significantly high concentrations of IL-6 compared to the stromal cell line HS5. A further increase in expression of IL-6 was also shown when in co-culture with U266B1 cells.

Increased multi-nucleation was also identified in both HS5 and U266B1 cells when exposed to either thalidomide, lenalidomide and bortezomib with abnormalities providing possible explanations for the therapy related malignancies and neurotoxicity that is seen in some patients. Genotoxicity to the MSC/HS5 compartment of the co-culture measured by the micronucleus assay was also found to be reduced suggesting that the BM is protected from the DNA damaging effects of some agents when in co-culture with MM cells.

Combined work on the functionality and genotoxicity of the interactions between the BM and MM reveal a tropism of MSC and HS5 towards the MM cell line U266B1. With this research being conducted in a non-contact coculture, it has indicated that cell-cell contact is not essential to provide protection of both the BM and MM cells against chemotherapy. This research provides further understanding of the MSC and MM interactions' impact on the functionality of the BM and their protection from genotoxic damage. Elucidating the consequence of cytotoxic and genotoxic damage to MSC via chemotherapy treatment and/or through haematological disease may allow for the development of effective therapies and improve the quality of life for patients with MM.

Acknowledgements

This thesis could not have been accomplished without the support and encouragement of numerous people including my family, friends and colleagues. It is my great pleasure to acknowledge all those people who made this thesis possible and an unforgettable experience for me.

Firstly I must acknowledge the invaluable guidance, understanding, and unceasing assistance that I have received from my director of studies, Dr Ruth Morse, and from which I have benefitted throughout my time at UWE. I am so grateful for her having constantly made time to discuss extensively my research, giving valuable suggestions and constructive criticism, whilst always providing encouragement. I also express my sincere gratitude to my supervisors Dr Craig Donaldson and Dr Jennifer May for all the help and guidance that they have afforded throughout my study.

In addition I would like to express my appreciation for the assistance and technical advice provided by Mr David Corry and Dr Jeff Davey. I am grateful to Dr David Patton, for his assistance with scanning electron microscopy, Mr Scott Lake for his involvement in the development of the ELISA for IL-6 and Ms Jennifer Razik for her contribution and help with the study of immunomodulatory agents on TK6 cells. My research would not have been possible without their help.

I am most grateful to UWE for providing the funding of this research. My time here was made enjoyable in large part by members of the CRIB lab and in particular the PhD students who were a source not only of friendship, but also sound advice and encouragement. You have all made the lab and the university a great place to work.

This PhD would not have been possible without the unfailing support of my family. Foremost, an enormous thank you to my parents for their love, unwavering support and immeasurable sacrifice. I am grateful for their having allowed me to move back home these last two years to complete my thesis and for their financial support. Thank you to my sister Kate and brother in law Steve, who have also encouraged me through the ups and downs of these last

few years. I am deeply indebted to my late grandparents, for their everlasting love, care and encouragement. Together they had always been enthusiastic supporters of my education and will always be remembered. Finally but definitely not least, I express my deep gratitude to my girlfriend Abbie. I am so appreciative of all her love and patience over the last few years and who has always been there to cheer me up and stood by me through the good times and bad. I would not have been able to do this without you.

Contents

Abstract	i
Acknowledgements	iii
Contents	v
List of Figures	х
List of Tables	xv
Abbreviations	xvi

Chapter 1:	Introduction	1
1.1	Multiple Myeloma	1
	1.1.2 Clinical features	1
	1.1.3 Epidemiology	3
	1.1.4 Aetiology	5
	1.1.5 Prognosis and staging	5
1.2	Bone marrow microenvironment.	7
	1.2.1 Mesenchymal stem cells	8
	1.2.2 Effects of chemotherapy on MSC	10
	1.2.3 Effects of MM cells on MSC	11
1.3	Adhesion molecules and cytokines	12
1.4	Multiple myeloma bone disease	16
	1.4.1 Normal bone remodelling	16
	1.4.2 Bone remodelling in multiple myeloma	18
1.5	Treatment of multiple myeloma	20
	1.5.1 Autologous stem cell transplant	21
	1.5.2 Melphalan and prednisone	22
	1.5.3 Thalidomide	24
	1.5.4 Lenalidomide	25
	1.5.5 Proteasome inhibitors	27
	1.5.5.1 The ubiquitin proteasome system	27
	1552 Bortezomib	28
	1553 Carfilzomib	30
	1.5.6 Bisphosphonates	31
	1.5.7 Monoclonal antibodies	31
	1.5.8 HSP90 Inhibitors	32
	1.5.9 Side effects of treatment	32
16	Drug resistance	33
1.0	Genotoxic effects following chemotherapeutic insult	35
	1.7.1 DNA Damage	35
	1.7.2 DNA renair mechanisms	37
	1.7.3 Therapy related malignancy	30
1.8	Current culture systems	40
1.0	Aims and objectives	13
1.5		40
Chapter 2:	Materials and Methods	44
2.1	General methods	44
	2.1.1 Materials	44
	2.1.2 Samples	44
	2.1.3 MSC sample collection	44
	2.1.4 Cell lines.	45

	2.1.5 Resistant cells 4
2.2	Cell culture 4
	2.2.1 MSC isolation 4
	2.2.2 MSC and HS5 standard culture conditions
	2.2.3 Multiple myeloma and TK6 cell lines standard culture
	conditions
	2.2.4 Thawing of cryopreserved cells
	2.2.5 Trypsinisation of the adherent MSC/HS5 cells
	2.2.6 Cryopreserving cells 4
	2.2.7 Establishment of culture conditions 4
2.3	Chemotherapeutic agents
	2.3.1 Treatment conditions
	2.3.2 Trypan blue exclusion assay
2.4	Microscope examination
	2.4.1 Light and phase contrast microscopy
	2.4.2 Scanning electron microscope
	2.4.3 Confocal microscopy
2.5	Genotoxic assays
	2.5.1 In vitro micronucleus assay
	2.5.1.1 Cell preparation
	2.5.1.2 Slide preparation and staining
	2.5.1.3 Slide analysis
	2.5.1.4 Scoring of micronuclei
	2.5.2 Comet assay
	2.5.2.1 Harvesting cells for comet analysis
	2.5.2.2 Electrophoresis
	2.5.2.3 Comet evaluation/analysis
	2.5.2.4 Positive quality control: hydrogen peroxide (H ₂ O ₂)
2.6	Enzyme linked immunosorbent assay (ELISA)
2.7	Functionality assays
	2.7.1 Cell differentiation
	2.7.2 Flow cytometry
2.8	Mitotic analysis
	2.8.1 Thymidine double block for cell synchronisation
	2.8.2 Propidium iodide staining for cell cycle analysis
2.9	Statistical analysis
Chapter	Development of an <i>in vitro</i> model of MM
3.	
31	Introduction 6
0.1	3 1 1 Culture medium 6
	31.2 Aims of chapter 3
3.2	Methods 6
0.2	3 2 1 Culture medium assessment 6
	3.2.2 Trypan blue exclusion assav
	323 Microscopy 6
	3 2 4 Statistical analysis
33	Results 7
0.0	3.3.1 Evaluation of MSC_HS5 and MM culture medium 7
	3.3.1.1 U266B1 and RPMI 8226
	3312 BM_MSC 7
	3.3.∠ Establishing a co-culture model of myeloma bone
	Marrow
	s.s.s INSC seeding density for the co-culture model

	3.3.4 H	S5 seeding density for the co-culture model	86
	3.3.5 B	M-MSC seeded on the underside of the insert	89
	3.3.6 S	canning electron microscopy assessment of the co-	02
	337 II		92
0.4			101
3.4		I	101
25	S.4.1 L		107
Chapter	Eurotion	ality of USE call ling in MM	110
	Function		
4:	Introductio		111
4.1	Mothodo	//1	111
4.2			112
	4.2.1	l'eressenv	112
	4.2.2 IV	Nifferentiation of UCE	112
	4.2.3 L		113
	4.2.4 F		113
	4.2.5 E	:LISA	113
4.0	4.2.6 S	statistical analysis	113
4.3		mmon blue accompant of animon. MOO, LIOF, and	114
	4.3.1 1	Typan blue assessment of primary MSC, HSS and	111
	4211		114
	4.3.1.1	1 MSC sultured along and expanded to malphalan	114
	4.3.1.1.	1 MSC cultured alone and exposed to melphalan	114
	4.3.1.1.	2 U200BT cultured with U200B4 and exposed to	110
	4.3.1.1.	molector cultured with 0266BT and exposed to	117
	1211	1 U266B1 co cultured with MSC and exposed to	117
	4.3.1.1.4	melobalan	110
	4311	5 MSC bystander model	121
	4311	6 LI266B1 bystander model	123
	4311	7 HS5 cells cultured alone and exposed to melohalan	125
	4.3.1.1	Melobalan resistant LI266B1 cultured alone and	120
	4.0.1.1.	exposed to melphalan	126
	4.3.1.1.	9 HS5 cells co-cultured with U266B1 sensitive and	120
		melphalan resistant U266B1 cells	128
	4.3.1.1.1	0 Melphalan resistant U266B1 cells in co-culture with	
		HS5 cells	130
	4.3.1.2	Immunomodulatory agents	132
	4.3.1.2.1	HS5 cells cultured alone treated with thalidomide or	
		lenalidomide	132
	4.3.1.2.2	U266B1 cultured alone and treated with thalidomide or	
		lenalidomide	134
	4.3.1.2.3	HS5 cells co-cultured with U266B1 and exposed to	
		thalidomide or lenalidomide	135
	4.3.1.2.4	U266B1 cells co-cultured with HS5 cells and exposed to	
	4040-	thalidomide or lenalidomide	136
	4.3.1.2.5	HS5 bystander model	138
	4.3.1.2.6	U266B1 bystander model	140
	4.3.1.3	Proteasome inhibitors	142
	4.3.1.3.1	HS5 cells cultured alone and exposed to bortezomib or carfilzomib	142

	4.3.1.3.2	U266B1 cultured alone and exposed to bortezomib or	
	40400	carfilzomib	144
	4.3.1.3.3	HS5 Cells co-cultured with 0200B1 Cells and exposed to	1/5
	43134	U266B1 cells co-cultured with HS5 cells and exposed to	140
	1.0.1.0.1	bortezomib or carfilzomib	147
	4.3.1.3.5	HS5 bystander model	149
	4.3.1.3.6	U266B1 bystander model	151
	4.3.2 Ph	ase contrast microscopy	153
	4.3.2.1	HS5 morphology when cultured independently	153
	4.3.2.2	HS5 morphology when co-cultured with U266B1 cells	158
	4.3.3 HS	S5 Cell Differentiation	163
	4.3.3.1	Osteogenic differentiation	163
	4.3.3.2	Adipogenic differentiation	168
	4.3.4 HS	S5 CD expression following chemotherapy exposure	172
	4.3.5 EL	ISA.	175
	4.3.5.1	Levels of II -6 in the MM model	175
	4352	II -6 measured in MSC following exposure to	
	1.0.0.2	melphalan	175
	4.3.5.3	Levels of IL-6 in MSC and HS5 cells when cultured	
		alone	177
	4.3.5.4	IL-6 in HS5 cells following exposure to chemotherapy	
		when cultured alone	178
	4.3.5.5	IL-6 in U266B1 cells following exposure to	
		chemotherapy when cultured alone	179
	4.3.5.6	IL-6 in a non-contact co-culture of HS5 and U266B1	
	D :	cells	180
4.4	Discussion.		182
	4.4.1	Cytotoxic assessment of MM model	182
	4.4.2	HS5 Morphology following chemotherapy exposure	189
	4.4.3	HS5 Cell differentiation	192
	4.4.4	HS5 CD expression after chemotherapy treatment	197
	4.4.6	Expression of IL-6 in the MM model	199
4.5	Conclusion		201
Chapter	Genotoxic	c assessment of MM	202
5:			
5.1	Introduction	1	202
5.2	Methods		203
	5.2.1	Aikaline comet assay	203
	5.2.2 5.2.2.1	Cuteshelesin P. protocol	203
	523	Cell cycle analysis	204
	524	Statistical analysis	204
5.3	Results		205
0.0	5.3.1 Alk	caline comet assav results	205
	5.3.1.1	Melphalan	205
	5.3.1.2	Thalidomide	215
	5.3.1.3	Lenalidomide	218
	5.3.1.4	Bortezomib	221
	5.3.1.5	Carfilzomib	224
	5.3.2 Mi	cronucleus assay results	227
	5.3.2.1	Cytochalasin-B treatment of U266B1 cells	227

	5.3.2.2 Non cytochalasin-B micronucleus assay 5.3.3 Synchronisation of TK6 lymphoblast cells	228 252
	5.3.4 Cell synchronisation impact on induction of multi-nucleation	
E 4	following exposure to thalidomide and lenalidomide	253
5.4		257
	5.4.1 Assessment of genotoxic damage following	
	chemotherapeutic treatment using the comet assay	258
	5.4.2 Detection of genotoxicity following chemotherapy using the	
	micronucleus assay	261
	5.4.3 Genotoxic effects of immunomodulatory agents on TK6	
	lymphoblast cells following cell synchronisation	265
55	Conclusion	266
Chanter	Final Discussion	267
Chapter	Final Discussion	267
Chapter 6:	Final Discussion.	267
Chapter 6: 6.1	Final Discussion. Overall summary of research findings.	267 267
Chapter 6: 6.1 6.2	Final Discussion. Overall summary of research findings. Limitations of the study.	267 267 275
Chapter 6: 6.1 6.2 6.3	Final Discussion. Overall summary of research findings. Limitations of the study. Future considerations.	267 267 275 276
Chapter 6: 6.1 6.2 6.3 6.4	Final Discussion. Overall summary of research findings. Limitations of the study. Future considerations. Thesis summary and conclusion.	267 267 275 276 277
Chapter 6: 6.1 6.2 6.3 6.4 Reference	Final Discussion Overall summary of research findings Limitations of the study Future considerations Thesis summary and conclusion	267 267 275 276 277 279
Chapter 6: 6.1 6.2 6.3 6.4 Reference	Final Discussion Overall summary of research findings Limitations of the study Future considerations Thesis summary and conclusion	267 267 275 276 277 279
Chapter 6: 6.1 6.2 6.3 6.4 Reference	Final Discussion Overall summary of research findings Limitations of the study Future considerations Thesis summary and conclusion	267 267 275 276 277 279 339
Chapter 6: 6.1 6.2 6.3 6.4 Reference Appendix.	Final Discussion Overall summary of research findings Limitations of the study Future considerations Thesis summary and conclusion	267 267 275 276 277 279 339
Chapter 6: 6.1 6.2 6.3 6.4 Reference Appendix.	Final Discussion. Overall summary of research findings. Limitations of the study. Future considerations. Thesis summary and conclusion. s Research Output.	267 275 276 277 279 339 339
Chapter 6: 6.1 6.2 6.3 6.4 Reference Appendix.	Final Discussion. Overall summary of research findings. Limitations of the study. Future considerations. Thesis summary and conclusion. s Research Output. Publications.	267 267 275 276 277 279 339 339 339

List of Figures

Figure 1.1:	Radiographs from patients with multiple myeloma	2
Figure 1.2:	Average number of new cases of multiple myeloma per year and	
	age-specific incidence rates of multiple myeloma in males and	
Figure 1 3	temales in the UK.	4
Figure 1.5.	gender	4
Figure 1.4:	Confluent bone marrow mesenchymal stem cells in culture	9
Figure 1.5:	Cell-cell interactions in MM	13
Figure 1.6:	Schematic diagram depicting Ras/Raf/MAPK/ERK and JAK/STAT signalling pathways that are activated in MM	16
Figure 1.7:	Mechanisms of bone remodelling in health	18
Figure 1.8:	Chemical structure of melphalan	22
Figure 1.9:	Schematic image indicating the formation of DNA crosslinks as a result of melphalan treatment	23
Figure 1.10:	Chemical structure of thalidomide and lenalidomide	26
Figure 1.11:	Diagram of the structure and function the ubiquitin-proteasome protein degradation pathway	28
Figure 1.12:	Chemical structures of major proteasome inhibitors used in the treatment of MM.	30
Figure 2.1:	The experimental set up of a 12 well culture plate used in this study.	52
Figure 2.2:	Photomicrographs of the typical morphologies seen when scoring MN slides	57
Figure 3.1:	Morphology of U266B1 cells in different culture media	71
Figure 3.2:	Proliferation of U266B1 cells in different culture media	72
Figure 3.3:	Morphology of RPMI 8226 cells in different culture media	73
Figure 3.4:	Proliferation of RPMI 8226 cells in different culture media	74
Figure 3.5:	Morphology of primary MSC cells in different culture media	75
Figure 3.6:	Proliferation of MSC in different culture media	76
Figure 3.7:	Morphology of HS5 cells in different culture media	77
Figure 3.8:	Proliferation of HS5 in different culture media	78
Figure 3.9:	Cell viability of HS5 in different culture medium	79
Figure 3.10:	Images of initial co-culture of adhered MSC/HS5 and suspended U266B1 cells in complete DMEM/F12 medium	81
Figure 3.11:	Schematic diagram indicating the construction of a non-contact model of co-culture.	82
Figure 3.12:	Determination of confluency of MSC seeded in a 12 well plate	84
Figure 3.13:	Determination of confluency of MSC seeded in a 12 well plate 6 days post initial seeding	85
Figure 3.14:	Comparison of cell size of BM-MSC vs HS5 stromal cell line	86
Figure 3.15:	Determination of confluency of HS5 seeded in a 12 well plate	87
Figure 3.16:	Determination of confluency of HS5 seeded in a 12 well plate 6	
_	days post initial seeding	88
Figure 3.17:	Schematic diagram of the contact model of co-culture	89
Figure 3.18:	Co-culture set up of MSC/HS5 seeded on the underside of an insert	90

Figure 3.19:	Representative image of MSC in the base of a 12 well plate, 24 hrs after the insert was returned to its original position	90
Figure 3.20:	Lipophilic tracer images of MSC on the underside of a $0.4 \mu\text{m}$ pore	00
Figure 3.21:	Representative image of HS5 in the base of a 12 well plate, 24 hrs	91
Figure 3.22:	after the insert was returned to its original position SEM image of an MSC on the underside of a 0.4 μ m pore insert (x 2013 magnification)	92 93
Figure 3.23:	SEM images of U266B1 in the basket of a 0.4 μ m pore insert (A – x 400, B – x 6396 magnification, C x 25600 magnification)	94
Figure 3.24:	IL-6 ELISA titration assay set up.	95
Figure 3.25:	Comparison of three ELISA plates with four standard curves on	
Figure 3.26:	each plate Comparison images of plates and standard curves produced using streptavidin peroxidase (A) and Pierce™ Streptavidin Poly-HRP	98
Figure 3.27:	Comparison of HQC and LQC IL-6 concentrations from standard curves produced using streptavidin peroxidase (A) and Pierce™	99
	Streptavidin Poly-HRP (B)	100
Figure 3.28:	Schematic diagram comparing the detection methods of streptavidin peroxidase (A) and poly HRP (B)	109
Figure 4.1:	Total cell numbers (A) and viability (B) of MSC after exposure to	
Figure 4.2:	Total cell numbers (A) and viability (B) of U266B1 cells after	115
Figuro 4 3:	Total call numbers (A) and viability (B) of MSC after exposure to	110
Figure 4.5.	melphalan when in co-culture with U266B1 cells	118
Figure 4.4:	Total cell numbers (A) and viability (B) of U266B1 cells after exposure to melphalan when in co-culture with MSC	120
Figure 4.5:	Total cell numbers (A) and viability (B) of MSC after exposure to melphalan either directly or when in culture with previously	
Figure 4.6:	Total cell numbers (A) and viability (B) of U266B1 cells after	122
	exposure to melphalan either directly or when in culture with	
Eiguro 4 7	previously exposed MSC	124
Figure 4.7.	to melohalan when cultured alone	125
Figure 4.8:	Total cell numbers (A) and viability (B) of melphalan resistant U266B1 compared to non-resistant (sensitive) U266B1 cells following	120
	alone	127
Figure 4.9:	Total cell numbers (A) and viability (B) of HS5 cells after exposure	121
U	to melphalan in co-culture with melphalan resistant U266B1	120
Figure 4.10:	Total cell numbers (A) and viability (B) of U266B1 sensitive and melphalan resistant U266B1 after exposure to melphalan when in	129
	co-culture with HS5 cells.	131
Figure 4.11:	I otal cell numbers (A) and viability (B) of HS5 cells cultured alone and after exposure to immunomodulatory agents	133
Figure 4.12:	Total cell numbers (A) and viability (B) of U266B1 cells after	
	exposure to immunomodulatory agents alone	134
⊢ıgure 4.13:	to immunomodulatory agents while in co-culture with U266B1	105
		133

Figure 4.14:	Total cell numbers (A) and viability (B) of U266B1 cells after exposure to immunomodulatory agents when in co-culture with HS5 cells	137
Figure 4.15:	Total cell numbers (A) and viability (B) of HS5 cells after exposure to immunomodulatory agents either directly or indirectly via culture with treated U266B1 cells	139
Figure 4.16:	Total cell numbers (A) and viability (B) of U266B1 cells after exposure to immunomodulatory agents either directly or indirectly via culture with treated HS5 cells	141
Figure 4.17:	Total cell numbers (A) and viability (B) of HS5 cells after exposure	1/2
Figure 4.18:	Total cell numbers (A) and viability (B) of U266B1 cells after	143
Figure 4.19:	Total cell numbers (A) and viability (B) of HS5 cells after exposure to proteasome inhibitors in co-culture with U266B1	144
Figure 4.20:	Total cell numbers (A) and viability (B) of U266B1 cells after exposure to proteasome inhibitors when in co-culture with HS5	140
Figure 4.21:	Total cell numbers (A) and viability (B) of HS5 cells after exposure to proteasome inhibitors either directly or when co-cultured with	140
Figure 4.22:	Total cell numbers (A) and viability (B) of U266B1 cells after exposure to proteasome inhibitors either directly or when co-	150
Figure 4.23:	Representative images of HS5 morphology following 1 hr exposure to melphalan at the clinically relevant dose compared to an untroated control	152
Figure 4.24:	Representative Images of HS5 morphology following 1 hr exposure with immunomodulatory agents at the clinically relevant	155
Figure 4.25:	Representative Images of HS5 morphology following 1 hr exposure with proteasome inhibitors compared to an untreated	100
Figure 4.26:	Phase contrast images of HS5 cells following co-culture with U266B1 with and without treatment with melphalan at the	157
Figure 4.27:	Phase contrast images of HS5 cells following co-culture with U266B1 with and without treatment with immunomodulatory	160
Figure 4.28:	Phase contrast images of HS5 cells following co-culture with U266B1 with and without treatment with proteasome inhibitors at	101
Figure 4.29:	biologically relevant concentrations for 1 hr Representative images of HS5 cells cultured independently and differentiated along osteogenic lineages following chemotherapy	162
Figure 4.30:	exposure Representative images of HS5 cells co-cultured with U266B1 and differentiated along osteogenic lineage following chemotherapy	165
Figure 4.31:	Images depicting HS5 cells cultured alone, differentiated along	107
Figure 4.32:	Images depicting HS5 cells co-cultured with U266B1, differentiated along adipogenic lineages following chemotherapy	169
	exposure	171

Figure 4.33:	Representative histogram plots of CD makers on HS5 cells not	172
Figure 4.34:	Median fluorescence intensity (MFI) of CD markers on HS5 cells	172
Figure 4.35:	following 1 hr exposure of chemotherapeutic agents Concentration of IL-6 in primary MSC following exposure to melphalan when cultured alone or in co-culture (non-contact) with	173
Figure 4.36:	Comparison of the levels of IL-6 in primary MSC and HS5 cells when cultured independently and left untreated	170
Figure 4.37:	Concentration of IL-6 in the supernatant of HS5 cells when cultured alone following exposure to chemotherapy	178
Figure 4.38:	Levels of IL-6 in U266B1 cells following exposure to chemotherapy when cultured alone	170
Figure 4.39:	Concentration of IL-6 in a non-contact co-culture of HS5 and U266B1 cells compared to when cells are cultured alone (A) and concentration of IL-6 in a non-contact co-culture of HS5 and	175
Figure 5.1:	DNA damage as measured by comet assay following melphalan	181
Figure 5.2:	exposure Representative images of DNA damage in MSC following	207
	melphalan exposure when cultured alone as assessed by alkaline comet assay	209
Figure 5.3:	Representative images of DNA damage in U266B1 cells following melphalan exposure when cultured alone as assessed by comet	
Figure 5.4:	DNA damage as measured by comet assay following melphalan	210
Figure 5.5:	DNA damage as measured by comet assay in HS5 stromal cells and melphalan resistant U266B1 cells following melphalan	212
Figure 5.6:	DNA damage as measured by comet assay following melphalan exposure either directly or by the indirect exposure of melphalan resistant U266B1 or US5	213
Figure 5.7:	DNA damage as measured by comet assay following thalidomide	214
Figure 5.8:	exposure DNA damage as measured by comet assay following thalidomide exposure either directly or by the indirect exposure of U266B1 or	216
Figure 5.9:	HS5 DNA damage as measured by comet assay following lenalidomide	217
Figure 5.10:	exposure DNA damage as measured by comet assay following lenalidomide exposure either directly or by the exposure of U266B1 or	219
Figure 5.11:	HS5 DNA damage as measured by comet assay following bortezomib	220
Figure 5.12:	DNA damage as measured by comet assay following bortezomib exposure either directly or by the indirect exposure of U266B1 or	222
Figure 5.13:	DNA damage as measured by comet assay following carfilzomib	223
Figure 5.14:	exposure DNA damage as measured by comet assay following carfilzomib exposure either directly or by the indirect exposure of L266B1 or	225
	HS5	226

Figure 5.15:	Representative image of U266B1 cells following exposure to cvtochalasin-B.	228
Figure 5.16:	Numbers of micronuclei (MN) in primary MSC and HS5 stromal cells over a 72 hr period following exposure to Melphalan	230
Figure 5.17:	Numbers of micronuclei (MN) in U266B1 sensitive and melphalan resistant cells over a 72 hr period following exposure to Melphalan	232
Figure 5.18:	Representative images of micronuclei in HS5 cells following exposure to chemotherapy	233
Figure 5.19:	Numbers of micronuclei (MN) in HS5 stromal cells over a 72 hr period following exposure to chemotherapy	234
Figure 5.20:	Numbers of micronuclei (MN) in U266B1 cells over a 72 hr period following exposure to chemotherapy	237
Figure 5.21:	Representative images of bi-nucleated HS5 and U266B1 cells	238
Figure 5.22:	Numbers of bi-nucleated (BN) cells over a 72 hr period in HS5 stromal cells following exposure to chemotherapy	240
Figure 5.23:	Numbers of bi-nucleated (BN) cells over a 72 hr period in U266B1	
Figure 5 24	cells following exposure to chemotherapy	242
Figure 5.24:	Numbers of multi-nucleated HS5 cells following exposure to	243
i igure 5.25.	chemotherapy over a 72 hr period.	245
Figure 5.26:	Numbers of multi-nucleated cells over a 72 hr period in U266B1	
_	cells following exposure to chemotherapy	247
Figure 5.27:	Representative images of multi-nucleated U266B1 cells following exposure to chemotherapy	248
Figure 5.28:	Numbers of multi-nucleated HS5 cells following exposure to chemotherapy either directly or when in culture with previously	
	exposed U266B1 cells over a 72 hr period	250
Figure 5.29:	Numbers of multi-nucleated U266B1 cells following exposure to chemotherapy either directly or when in culture with previously	
	exposed HS5 cells over a 72 hr period	251
Figure 5.30:	Flow cytometry analysis of cell cycle in TK6 cells	252
Figure 5.31:	Frequency of bi-nucleation on TK6 cells following cell	
	synchronisation and exposure to immunomodulatory agents	254
Figure 5.32:	Frequency of multi-nucleation on TK6 cells following cell	055
Figuro 5 22:	synchronisation and exposure to immunomodulatory agents	255
rigule 5.55.	synchronised TK6 cells following the lidomide or lenglidomide	
	exposure	256
		200

List of Tables

Table 1.1:	The Durie-Salmon staging system for MM	6
Table 1.2:	The International Staging System of MM	7
Table 2.1:	The cell lines analysed in this study	46
Table 2.2:	Details of antibodies used for ELISA in this study	62
Table 3.1:	Representative data from antibody titration	96
Table 3.2:	Plate format/template during the standard curve development	97
Table 5.1:	RICC of MSC and HS5 cells cultured independently or in co-culture with U266B1 sensitive or melphalan resistant cells	229
Table 5.2:	RICC of U266B1 sensitive and U266B1 melphalan resistant cells cultured independently or in co-culture with either MSC or HS5	231
Table 5.3:	RICC of HS5 cells either cultured independently or in co-culture with U266B1 cells	233
Table 5.4:	RICC of U266B1 cells cultured independently or in co-culture with HS5 cells	236
Table 5.5:	RICC of HS5 cells in bystander model	250
Table 5.6:	RICC of U266B1 cells in bystander model	251
Table 5.7: Table 5.8:	Percentage of TK6 cells in each phase of cell cycle RICC of TK6 cells treated with chemotherapy following cell	253
	synchronisation	254

Abbreviations

°C	Degree Celsius
hð	Microgram
μΙ	Microlitre
μM	Micro molar
μm	Micrometre
nM	Nanomolar
g/l	Grams per litre
g/dl	Grams per decilitre
pg/ml	Picograms per millilitre
µg/ml	Micrograms per millilitre
cm	Centimetre
I.U	International unit
U/ml	International unit per millilitre
V/cm	Volt per centimetre
mA	Milliamperes
mmol/L	Millimoles per litre
2D	Two dimensional
3D	Three dimensional
Ab	Antibody
ALP	Alkaline phosphatase
AOC	Avon Orthopaedic Centre
ASCT	Autologous stem cell transplant
ATCC	American Type Culture Collection
β2M	Beta 2 microglobulin
BER	Base excision repair
BM	Bone marrow

BM-MSC	Bone marrow mesenchymal stem cell
BSA	Bovine serum albumin
bFGF	Basic fibroblast growth factor
CAM-DR	Cell adhesion mediated drug resistance
CFU-F	Colony forming unit fibroblast
CD	Cluster of differentiation
LFA-1/CD18	Lymphocyte function associated antigen / CD marker 18
VLA-4/CD49d	Very late antigen 4 / CD marker 49d
NCAM/CD56	Neural cell adhesion molecule / CD marker 56
VCAM-1/CD106	Vascular cell adhesion molecule 1 / CD marker 106
Dil/DiO	Long chain dialkylcarbocyanine lipophilic tracer
Dkk1	Dickkopf 1
DMEM/LG	Dulbecco's Modified Eagle Medium low glucose
DMEM/HG	Dulbecco's Modified Eagle Medium high glucose
DMEM/F12	Dulbecco's Modified Eagle Medium and Ham's F-12 Nutrient Mixture
DMSO	Dimethyl sulphoxide
DNA	Deoxyribonucleic acid
DSB	Double strand break
ECACC	European Collection of Cell Culture
EBV	Epstein Barr virus
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme Linked Immunosorbent Assay
FITC	Fluorescein isothiocyanate
FBS	Foetal bovine serum
H2O2	Hydrogen peroxide
HDT	High dose therapy
Hsp90	Heat shock protein 90

HQC	High quality control
HMDS	Hexadimethylsilazane
Hr	Hour (s)
HR	Homologous repair
HRP	Horseradish peroxidase
IL	Interleukin
lg	Immunoglobulin
ISCT	International Society for Cellular Therapy
JAK	Janus kinase
LFA-1	Lymphocyte function associated antigen-1
LMA	Low melt agarose
LQC	Low quality control
M-CSF	Macrophage colony stimulating factor
MDR	Multidrug-resistant
MGUS	Monoclonal gammopathy of undetermined significance
MNC	Mononuclear cells
MSC	Mesenchymal stem cell
MM	Multiple myeloma
MIP1-α	Macrophage inflammatory protein 1-alpha
Min	Min (s)
NaCl	Sodium chloride
NCAM	Neural cell adhesion molecule
NER	Nucleotide excision repair
NF-кВ	Nuclear factor κB
NHEJ	Non-homologous end-joining
NRES	National Research Ethics Service
OECD	Organisation for Economic Co-operation and Development

OPG	Osteoprotegerin
PBS	Phosphate buffered saline
PE	Phycoerythrin
PI	Propidium iodide
PN	Peripheral neuropathy
RANK	Receptor activator of nuclear factor kappa-B
RANKL	Receptor activator of nuclear factor kappa-B ligand
RPMI	Roswell Park Memorial Institute
ROS	Reactive oxygen species
SE	Standard error
SEM	Scanning electron microscopy
SSB	Single strand break
STAT3	Signal transducer of transcription 3
SMM	Smouldering multiple myeloma
TGFβ	Transforming Growth Factor-Beta
TNF-α	Tumour necrosis factor alpha
UPS	Ubiquitin-proteasome system
UREC	University of the West of England Ethics Committee
VEGF	Vascular endothelial growth factor
ZOL	Zoledronic acid