
Mobile Netw Appl
DOI 10.1007/s11036-017-0899-5

Modeling and Reasoning about Preference-Based
Context-Aware Agents over Heterogeneous Knowledge
Sources

Ijaz Uddin1 ·Abdur Rakib2 ·Hafiz Mahfooz Ul Haque3 · Phan Cong Vinh4

© The Author(s) 2017. This article is an open access publication

Abstract This paper presents a conceptual framework
and multi-agent model for context-aware decision support
in dynamic smart environments based on heterogeneous
knowledge sources. A Protégé plug-in for rules extrac-
tion from distributed ontologies has been developed, which
allows us to model context-aware agents using the notion of
multi-context systems. Extracted rules can be annotated to
match the users’ needs and to develop a preference model to
support their preferences so as to provide a user with a more
personalized services. The use of the proposed framework

A preliminary version of this work under the title “Modelling
and Reasoning About Context-Aware Agents over Heterogeneous
Knowledge Sources” has appeared in the proceedings of the 5th
International Conference on Context-Aware Systems and Applica-
tions (ICCASA’16) November 24–25, 2016, Vietnam.

� Abdur Rakib
Rakib.Abdur@uwe.ac.uk

Ijaz Uddin
khyx4iui@nottingham.edu.my

Hafiz Mahfooz Ul Haque
mahfoozul.haque@cs.uol.edu.pk

Phan Cong Vinh
pcvinh@ntt.edu.vn

1 School of Computer Science, The University of Nottingham
Malaysia Campus, Semenyih, Malaysia

2 Department of Computer Science and Creative Technologies,
The University of the West of England, Bristol, UK

3 Department of Computer Science and Information
Technology, The University of Lahore, Lahore, Pakistan

4 Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

is illustrated using a simple fact-based preference model
developed from ontologies considering two different smart
environment domains.

Keywords Context-aware agents · Multi-context system ·
Rule-based distributed reasoning · Ontology · User
preference

1 Introduction

There is no doubt that with an increasing number of smart
devices such as smartphones in use, the vast amounts of
contextual data being generated has great influence on
context-aware mobile computing research. Smartphones
have a variety of embedded sensors that can be used to auto-
mate data collection and provide a platform to infer rich
contextual data about users, including location, time, and
environmental condition, among others. This is known as
customized information according to the specific context.
To be more precise, these sensors can be used to gather the
contextual information of a user or to manipulate the con-
text. Different notions of context have been studied across
various fields of computer science and various physical and
conceptual environmental aspects can be included in the
notion of context [1]. Among others, Dey et al. [2] define a
context-aware system as a system which uses context to pro-
vide relevant information and/or services to its user based
on the user’s tasks. The formal context modeling and rea-
soning about context is one of the fundamental research
areas in context-aware computing. In the literature, various
context modeling and reasoning approaches have been pro-
posed, including ontology and rule-based approach [3–5].
In our previous work [4, 5], we have developed formal log-
ical frameworks and shown how context-aware systems can

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-017-0899-5&domain=pdf
http://orcid.org/0000-0001-5430-450X
mailto:Rakib.Abdur@uwe.ac.uk
mailto:khyx4iui@nottingham.edu.my
mailto:mahfoozul.haque@cs.uol.edu.pk
mailto:pcvinh@ntt.edu.vn


Mobile Netw Appl

be modeled as multi-agent reasoning agents. A formal log-
ical model allows us to capture a system’s behavior in a
systematic and precise way. This is because a formal logic
has simple unambiguous syntax and semantics, which also
allows automated reasoning. Our approach to context mod-
eling was based on a domain specific centralized ontology,
which allows a formal representation of domain knowl-
edge and advancing contextual knowledge sharing among
the agents. However, in a real context-aware deployment
setting, a coalition of heterogeneous domains often require
to mutually share/exchange context knowledge. This needs
different modeling approach to deal with distributed con-
textual knowledge considering more than one domain. In
this connection, the notion of multi-context systems has
been used for interlinking different knowledge sources in
order to enhance the expressive capabilities of heteroge-
neous systems. A multi-context system (MCS) includes a
set of contexts and a set of inference rules that allows infor-
mation to flow among different contexts [7]. In MCS, each
context is defined as a self-contained knowledge source
which includes the set of axioms and inference rules to
model the system and perform local reasoning. In the liter-
ature, many definitions of multi-context systems have been
proposed (see e.g., [8, 9]). In [8], Brewka et al. define multi-
context system as a number of people, agents, databases etc.
to describe the available information from a set of contexts
and inference rules and specify the information flow among
these contexts. In [9], Benslimane et al. have described
ontology as a context, which is itself an independent self-
contained knowledge source having a set of axioms and
inference rules with its own reasoner to perform reason-
ing. In this work, we consider the concept of context in
two levels. The first level is based on multi-context sys-
tem to model heterogeneous systems similar to contextual
ontologies studied by [9]. For the second level, we follow
the approach proposed in our previous work [4, 5], where a
context is formally defined as a (subject, predicate, object)
triple that states a fact about the subject where — the sub-
ject is an entity in the environment, the object is a value or
another entity, and the predicate is a relationship between
the subject and object.

The main contributions of this paper are: first, we extend
our previous work [5] by introducing a different modeling
approach to deal with distributed context handling consid-
ering more than one domain. This approach is novel in
a sense that context-aware agents use contextual informa-
tion which are extracted from different knowledge sources.
Second, an implementation of a Protégé plug-in for rules
extraction from distributed ontologies. This allows us devel-
oping context-aware systems that share different ontologies
as heterogeneous knowledge sources. Third, we propose a
fact-based preference model, which can be applied in order
to give user a personalized service and to reduce load of an

agent’s inference engine by selecting a sub-set of available
rules based on the user preference.

The rest of the paper is structured as follows. In Section 2,
we briefly review distributed description logic, and present
related work focusing on context-aware systems incorporat-
ing multiple ontologies, and preferences in context-aware
systems. In Section 3, we present a Protégé plug-in that
allows a user to select OWL 2 RL ontology files augmented
with SWRL rules and translates them into a set of plain text
Horn clause rules. In Section 4, we present a conceptual
framework for modeling context-aware reasoning agents
using the notion of MCS incorporating user preferences. In
Section 5, we present a simple case study developed from
ontologies considering two different smart environment
domains, focusing our discussion on fact-based preference.
Finally, we conclude this paper in Section 6.

2 Background study and related work

In the background study our main focus remains on the
interoperability of different ontologies, context-aware sys-
tems that incorporate multiple ontologies, and how pref-
erences can be integrated into it. It requires some human
intervention especially when talking about the preferences.
The sections below introduce some related work and give
us more insight into extracting rules from heterogeneous
knowledge sources and personalizations in context-aware
systems.

2.1 Distributed description logics

Recent developments in the field of semantic web have led
to a renewed interest in the distributed knowledge bases
[11–13]. A growing body of research realizes the signifi-
cance of extending the OWL based formalism by provid-
ing inter-ontology mappings through distributed description
logics. Distributed description logic (DDL) is a formal log-
ical framework which combines different description logics
(DLs) knowledge bases to express heterogeneous infor-
mation. A DDL is basically a generalization of the DL
framework, which is designed to formalize multiple ontolo-
gies interconnected by semantic mappings [11]. One of the
reasons for interconnecting ontologies is to preserve their
own identity and specify their independence [12]. DDLs
have introduced the notion of multiple ontologies with dis-
tributed reasoning where each local ontology has its own
local knowledge base. Each local ontology knowledge base
consists of TBox and ABox axioms. The correspondence of
different ontology axioms is called inter-ontology axioms
or bridge rules. Bridge rules map the TBox axioms of one
ontology with the TBox axioms of other ontology in an
implicit manner. In other words, distributed TBox expresses



Mobile Netw Appl

the semantic relations among local TBoxes via bridge rules.
These bridge rules allow concepts of an ontology to sub-
sume a concept from another ontology, and they express the
semantic mappings among different ontologies. A bridge
rule is an inter-ontology axiom having one of the follow-
ing forms: Ci �−→Dj ; Ci �−→Dj ; where Ci , Dj are concepts of

ontologies Oi and Oj respectively. A distributed DL knowl-
edge base (DKB) is a set of different DL knowledge bases,
expressed as a pair 〈T,A〉, which consists of distributed
TBoxes and ABoxes. Let us assume that we have a collec-
tion of DLs and each DL is represented by {DLi}, where
i ∈ I is an element of a non empty set of indexes used to
identify ontologies.

A distributed TBox (DTBox) defines TBoxes {Ti}i∈I of
all local DLs from their corresponding domain ontologies,
and bridge rules between these TBoxes which are of the
form B = {bij } (which states a set of bridge rules B

from DLi to DLj and {∀i, j (i 	= j) ∈ I }). So, DTBox is
represented as T = 〈{Ti}i∈I ,B〉.

A distributed ABox (DABox) A = 〈{Ai}i∈I , C〉 consists
of ABoxes {Ai}i∈I of all local DLs from their correspond-
ing domain ontologies, and a set of individuals that may
either be partial or complete are of the form C = {cij } which
means the individuals corresponds from DLi to DLj and
{∀i, j (i 	= j) ∈ I }.

2.2 Multi-context systems

There has been a renewed research interest in making
multiple heterogeneous ontologies interoperate. For exam-
ple, the work by [11] has introduced a system which can
carry out reasoning services with multiple ontologies. The
authors have discussed the reasoning problem in multiple
ontologies interrelated with semantic mappings, where the
results of local reasonings performed in single ontologies
are combined via semantic mappings to reason over dis-
tributed ontologies. In [14], a framework is presented for
multi-context reasoning systems, which allows combining
arbitrary monotonic and nonmonotonic logics and non-
monotonic bridge rules are used to specify the information
flow among contexts. In [15], authors have proposed a dis-
tributed algorithm for query evaluation in a Multi-Context
Systems framework based on defeasible logic. In their work,
contexts are built using defeasible rules, and the proposed
algorithm can determine for a given literal P whether P is
(not) a logical conclusion of the Multi-Context Systems, or
whether it cannot be proved that P is a logical conclusion.

2.3 Context-aware systems incorporating multiple
ontologies

In the literature, there has been considerable work on
context-aware systems that incorporate multiple ontologies.

In [16], Weiβenberg et al. have developed FLAME2008,
a prototype system for intelligent personalized Web ser-
vices for the Olympics 2008 in Beijing. This is basically
an integration platform for service customization by using
the information based on individual situations and personal
demands of users. In [17], Sheshagiri et al. have developed a
prototype semantic web environment known as MyCampus,
which allows users acquiring different sets of task-specific
agents that help them with different tasks. These agents
require knowledge of one or more contextual attributes of
users and the sources of contextual information are modeled
as semantic web services that can be automatically discov-
ered and accessed by agents. In [18], Bouzeghoub et al. have
presented a context aware semantic recommend system. The
proposed system considers situation aware adaptive recom-
mendation of information to assist mobile users in a campus
environment. The recommendations are based on a multi-
dimensional ontology that models people, buildings, events
and available resources. In [19], Garcia-Sola et al. have
proposed a context-aware systems development architecture
using distributed semantic web reasoning. The framework
is based on modular ontologies and the reasoning process
considers SWRL rules.

These reviewed systems consider complementary tech-
nological mechanisms and modeling approaches, such as
the notion of context-awareness, incorporating multiple
ontologies, and mobile technology. However, our proposed
approach to context-aware system modeling and reasoning
is quite different in a sense that heterogeneous knowl-
edge sources are translated into a set of Horn-clause rules.
The translated rules are then used to model context-aware
non-monotonic rule-based agents.

2.4 Preferences in context-aware systems

In context-aware computing, user preferences play an
important role in adapting the behaviour of systems to sat-
isfy the individual user’s need. There have been numerous
attempts to incorporate preferences in context-aware appli-
cations, particularly in manipulating the context, storing,
management and its use in future (see, e.g., [20–23]). Fur-
thermore, preference or personalization has seen its way
in database queries, where a query result also depends on
the current contexts available [24]. However, the databases
are used for quite large storage and the authors have used
the OLAP paradigm for storage of user preferences. The
model also keeps track of the previous results and store
them in a context tree, indicates the abundance of memory
availability. Personalization in context aware or intelligent
homes/spaces has been in research for quite some time.
For example, IBM blue space [25], in which office spaces
are personalized based on the user preferences. A user has
to carry his active badge, which is detected by a sensor



Mobile Netw Appl

installed at the office space. Once the user is identified, his
preferences are applied to the sitting place that may include
the temperature, ambiance, air flow etc. This system only
provides preferences to the user at some particular location
and does not have any inference engine. It is more like a pro-
file saving system which is applied automatically whenever
required. Furthermore, it can notify the other users via a
panel about his current status as busy or available, and in
case of busy status when will he change his status to avail-
able. IBM had implemented this smart space in 2002 with
both positive and negative responses, as for the employees
it was a good idea and everyone was interested to install the
smart space at their places. However, the companies were
more into the productivity rate instead of user privacy etc.
As they argued that all employees will mostly use the do
not disturb signs when using the smart space and stay per-
manently. Another such example is Intelligent Home [26],
the primary concern of this project is to find the resource
coordination among autonomous home controlled agents,
installed in distributed way. The protocol used for the com-
munication or allocation of resources is SHARP. The results
are based on simulations. The authors have concluded to
use better protocols for better results, but its not appar-
ent if the system is based on rules or otherwise. In project
AURA [27], the author intended to lower the distraction of
the users’ attention and to create an environment that can
adapt to users’ contexts and needs. As an example, it pro-
vides a scenario of a user walking from his office towards
a presentation room and all his works are carried with him
from a desktop to the handheld PC, and from handheld
PC to the projection screen. It integrates a lot of variables
such as face detection in audience and give feedback to
the user about the audience. It also provides a user mobil-
ity and avoiding the resources variations. It can shift a user
work into new environment while trying to keep the users
resources available at best. Some other works based on the
preferences a user may provide include [28]. It uses tech-
niques that observe the environment and learn the users’
anticipation. The author argues that, the techniques can be
better where a user do not want cumbersome programmable
agents or dashboards to provide user preferences. Further-
more, it is believed to be operating transparent to the user.
In [29], authors have presented a working mechanism that
is mainly based on the prediction algorithms. It uses vari-
ous techniques and meta-predictor to anticipate the future
for the user. These methods try to keep the user control
minimum. Some recent works on preference, including [30]
use the profiling of a user. Different profiles are maintained
to store the context for each user. Profiles define the ser-
vices and context for every context available. Furthermore,
the preferences are provided in terms of context and ser-
vices. The matching mechanism adopted in this approach
uses redundant variable substitution unless all the variables

and combination of variables are achieved. Rules are mod-
ified by a adjust profile module. It checks all the instances
with the working memory facts. Based on the context, the
profile is loaded. This approach uses a lot of memory space,
as it substitutes the variables and checks instances of rules in
the working memory. Another approach [31] also uses pro-
filing, the framework is able to capture and process context
dependent preferences. It uses different level of certainty
and based on the certainty it provides results to a tourist
or a user. It can alter the query of a user by removing the
least certain query in order to get more results. It needs pref-
erence registration and profile creation for a user, and the
user has to interact actively to update the profile and for
reasoning purposes. Another approach is proposed in [32],
which focuses on implicitly building and maintaining pref-
erence set by monitoring and learning mechanism for a user.
It uses IF-THEN-ELSE preference interface for user con-
trol. It requires extensive preference set to be created for a
user. Continuous monitoring of the user is required to record
the actions a user performs. Every action is attached with
the context snapshot (attribute, op, value), e.g., (location, =,
home) if a user is doing some action while at home. Short
term memory (STM) stores an action which is transformed
to long term memory (LTM) for further training. In [33],
a multi-layered model is proposed which actually based on
the context history and predicts the preferences of the user.
This model has four main layers such as data gathering,
context management, preference management, and applica-
tion layer. The users have profiles for saving their context
histories and related information.

Above literature demonstrate significant progress on
preference based context-aware research, however, none of
the proposed system considers resource constraints while
modeling and/or developing the systems in mobile compu-
ing environment. This paper considers a preference model
to personalization of resource-bounded context-aware appli-
cations, and provides services based on user’s preference
of mobile device combined with environmental contexts in
use. In the following sections, we first introduce Protégé
plug-in development to extract Horn-clause rules from mul-
tiple ontologies. The extracted rules will be used to design
our rule-based non-monotonic context-aware agents.

3 D-Onto-HCR Protégé plug-in

To extract the rules from different ontologies, we have
developed a Protégé plug-in. It allows a user to select OWL
2 RL ontology files augmented with SWRL rules and trans-
lates them into a set of plain text Horn clause rules. Once
translated, the user can further edit the rules e.g., to inset
priorities, flags or preferences. Once the editing has been
completed, the translated Horn clause rules could be used to



Mobile Netw Appl

Fig. 1 Distributed semantic
knowledge translation process

model the desired context-aware system. Over all, the plug-
in is a few step process. First, it allows the user to select
the downloaded ontologies which are in OWL/XML for-
mat. Next, the OWL parser parses the ontologies into OWL
API objects, which gathers the ABox and TBox axioms.
After that, it translates the TBox axioms into Horn-clause
rules as the rest are already in the Horn-clause rule format.
Finally, the user selects the generated file for editing, once
the edits are done the resulting file can be used to create
any sematic web rule based application (Fig. 1). Figures 2,
3 and 4 show the various steps involved in translating the
ontologies. This step can be repeated for different ontolo-
gies which will be translated into a single file containing the
plain text Horn-clause rules extracted from multiple ontolo-
gies. The following subsections describe the relevant details
of various aspects of the plug-in.

3.1 Development environment

The development of Protégé plug-in is carried out in the
Eclipse IDE for Protégé version 3.4.1. In order to develop
a plug-in, there are quite a few steps involved. First, we
setup the project and named it after the plug-in as Donto-
HCR. Once a project has been setup, we need to add all the
external libraries that are required by the plug-in, by adding
external JAR’s within the IDE to our project. Since we have
developed a tabbed plug-in, we had to create a Java plug-in
class. To create a tab widget, we extended the AbstractTab-
Widget class from the protege.jar to implement the initial-
ize() method. This method runs when the plug-in starts on
the Protégé main interface. This gives us a place where we
can put our code that can appear in the Protégé as a tabbed
plug-in. However, in order to run it on Protégé environment,
we first set the manifest file which makes the Protégé to
recognize the new plug-in. For testing, we had to change
the run configuration and set the working directory besides
some other changes to the Protégé main directory. This way

when we try to run the program it launches the Protégé inter-
face from where we can run the plug-in and check its func-
tionalities. So far, we have generally discussed the plug-in,
the technical components of the plug-in are described below.

3.2 Working mechanism of the plug-in

The plug-in is an OWL-API based translator, to extract
rules from different ontologies. It is a high level Java based

Fig. 2 Enabling the plug-in in Protege



Mobile Netw Appl

Fig. 3 Selecting ontology for
translation

API that supports the creation of OWL ontologies and also
enables us to manipulate the ontologies. The OWL API
enables third party developers, to create and/or customize
different implementations for their components. It is helpful
in loading, saving, parsing and serializing ontologies in dif-
ferent syntaxes such as, OWL/XML, RDF/XML, functional
syntax, Manchester syntax, KRSS, Turtle syntax, etc. Fur-
thermore, it has set of interfaces for probing, manipulating

and reasoning with OWL ontologies. Some of the main
features of OWL API are axiom-centric abstraction, rea-
soner interfaces, validations for different OWL 2 profiles
and first class change support. In terms of functionalities
the plug-in input is the ontology. Which translates the set of
axioms into Horn-clause rule. The set of of axioms can be
OWL 2RL and SWRL form. The plugin translates DL-safe
rules axioms into Horn-clause rules. In addition to that, it

Fig. 4 Editing the translated file



Mobile Netw Appl

extracts concepts from multiple ontologies and maps them
correspondingly in the form of bridge rules. These bridge
rules are first converted into OWL 2 RL rule format and
then into Hron-Clause rules. Figure 1 shows the process
of translation. When the plug-in is loaded, an ontology file
is provided as an input. OWL parser is used then to parse
the ontology into OWL API objects which then extracts the
set of TBox and ABox axioms. The resultant set of TBox
and ABox axioms is then translated into Horn-clause rules.
The bridge rules are extracted from different ontologies
and translated into Horn-clause rules format. The process is
repeated for any number of ontologies and the final output
is a single file which contains a set of plain text Horn-clause
rules.

4 Multi-agent model over heterogeneous
knowledge sources

We extend the logical framework presented in [5] by incor-
porating the notion of multi-context systems where rules are
derived from heterogeneous semantic knowledge sources.
The system consists of nAg(≥ 1) individual agents Ag =
{1, 2, ...., nAg}. Each agent i ∈ Ag has a program, con-
sisting of a finite set of strict, defeasible, and bridge rules,
and a working memory, which contains facts. Each agent
in the system is represented by a triple (�,F, �), where
F is a finite set of facts contained in the working mem-
ory, � = (�s , �d , �br ) is a finite set of strict, defeasible,
and bridge rules, and � is a superiority relation on �. Strict
rules (�s) are non-contradictory whereas defeasible rules
(�d ) can be defeated based on contrary evidence. Bridge
rules (�br ) are non-contradictory rules which represent the
distributed knowledge base concepts. In this framework,
each context-aware agent is designed to solve a specific
problem. Agents in the system acquire contextual informa-
tion from domain specific ontologies (rules and facts of an
agent can be derived from one or multiple ontologies), per-
form reasoning (based on the information they have in their
knowledge bases), communicate with each other, and adapt
the system behaviour accordingly.

4.1 Preference based multi-agent model

In [10], we have extended the logical framework presented
in [5] to accommodate rules that are derived from heteroge-
neous semantic knowledge sources. In this paper, we further
extend our previous work [10] to practically implement the
plug-in and incorporate preferences of users and provid-
ing the personalized services. The structure of inference
engine and setup remain the same with a minor change to
the input rules only. A typical rule format of our framework
can be found in [5], while some changes are made when

preferences are intended. The typical structure of the rules
after adding the preference is as follows:

m : P1, P2, . . . , Pn → P0 : F : CS where n ≥ 0.

where m is the rule priority. Each Pi is an atomic
formula of the form p(t1, t2), Ask(i, j, p(t1, t2)) or
T ell(i, j, p(t1, t2)), where i and j (i 	= j ) represent agents,
p is a predicate symbol and the tk are terms. Where Ask and
T ell are special atoms used for communication between the
agents [5]. The flag F , a placeholder, associated with every
rule is used to specify the type of the rule. For instance,
the character ‘G’ is used to represent a rule containing a
Goal statement, which indicates that a certain rule execution
results in goal achievement. The character ‘C’ represents
the communication rules, which can trigger a communica-
tion between agents (devices). The character ‘D’ represents
the deduction rules. The indicator CS can be a literal(s), a
fact(s), or –, indicating which set the rule belongs to, and is
mainly used for the preference set generation. It is explained
in more detail in the following. To incorporate the prefer-
ence, an extra preference manager layer has been added to
the actual framework presented in [6], while keeping the rest
of the core system intact. The general idea of the preference
is to create a subset of rules based on certain preferences
defined by the user, doing so will make the process exe-
cute faster as the inference engine only needs to go through
selected rules instead of the whole rule base. Different mod-
ules under the preference manager layer work together to
achieve the overall design objective. The preference man-
ager layer is composed of Preference Set Generator (PSG),
Context Monitor (CM), Context Set (CS), and Context of
Interest (COI). While COI is provided in advance to the sys-
tem before a subset of the rules is selected. Figure 5 shows
the relationship between these components.

Context set (CS) is an addition to the rule base. It carries
literals, - or facts to represent a relationship of a rule with
any context or user preference. For example, Person(?p),
OfficeRoom(?o), hasLocation(?p, ?o) → inOffice(?p, ?o)
having indicator “L” in CS suggests the relationship of the
rule is with location, all the rules having the literal “L”
means they represent a group of rules belonging to location
as preference. More than one literal as indicators are also
allowed in which case a single rule can belongs to various
preference sets of rules. If a rule does not carry any literals
or facts, it means that it is a general rule represented with “-”
in the context set, and will be added to every subset that is
created for the preference set.Context monitor (CM) com-
ponent holds the Context of Interests (COI) of a user, i.e., it
holds the values provided by the user. Context monitor after
reading the values passes them to the Preference Set Gen-
erator(PSG). The PSG defines a sub set of rules based on
the user preferences, called a preference set. This subset is
then passed to the inference engine for processing. Context



Mobile Netw Appl

Fig. 5 Preference generation
overview

monitor actively monitors the contexts of interests. Any
change in it’s contents results in a new preference set. Pref-
erence set generator (PSG) gives the framework an ability
to provide personalized services. PSG receives instructions
from the CM to generate a subset of personalized rules. In
order to generate a subset of the rules, the PSG considers
the contexts that are of interest to the user. The values car-
ried by the CM give the PSG instructions to which rules to
be selected.

4.2 Working mechanism of preference

The above discussed components work together to provide
personalized services to the user. The rule-base of an agent
contains all the rules provided by the system designer. When
the reasoning process starts, the CM component retrieves
the values provided by the user in terms of COI, which
are forwarded to the PSG. PSG then communicate with the
rule-base and selects a subset of the available rules, which
will be provided to the inference engine. The PSG in reality
looks for the CS indicator in each rule and select those rules
required by the user in terms of preferences provided. The
whole system still works as described in [6], however the
rules in memory are actually replaced with the preference
set.

This is fine as far as we can group up the rules based
on a wide notion of preference, e.g., all rules that belong to
the location preference. However, we can further narrow it
down to the extent that we can actually split the context into
its fact based value, e.g., selecting rules that are related to a
particular location The University of Nottingham Malaysia
Campus (UNMC) only, we call such a preference as the

fact-based preference. Usually, a general indicator will only
select rules having something to do with the location. How-
ever, a location can be home, office, hospital, university or
any other places. Thus, general preference will still select
unnecessary rules. To make the preference set smaller, we
need to use the facts. For instance, rules related to the loca-
tion UNMC will only pick those rules which are required
when the user location is at UNMC. Thus discarding all the
other location based rules, saving memory and providing a
light weight rule set to an agent’s inference engine. We dis-
cuss fact-based preference in more detail in the following
section.

4.3 Fact based user preference

As discussed above, apart from the general preference, a
user might also need to prefer some specific location rather
than all the available locations. As a simple example con-
sider a person traveling from location A to location C, and
he needs to check at hospital in location B. He can then
enable preference for location B only. This can be achieved
by using the facts received from the GPS device. Since the
system designer is already aware of the set of rules and
the expected outcomes of facts, the indicators used for the
fact based preferences are instances of concepts defined in
the domain ontology. For example, Location(UNMC) can be
used as an indicator if it is also defined in the ontology. It
is not necessary that the same predicate must be used in the
rule to be considered for preferences. Once the preference is
found, it can reload a new set of rules to match the user pref-
erence. For this reason, we introduce the Preference Level
Monitor (PLM).



Mobile Netw Appl

4.4 Preference level monitor (PML)

Preference levels give user a choice of what type of pref-
erences are desired and upto which level the preferences
are desired. The PLM can accommodate both the simple
preference along with the fact-based preferences. In fact-
based preference, we need to validate the provided facts
before they can be considered for preference set genera-
tion. In simple preference, a CS determines which rules
should be chosen, it does not require any validation. For
instance, when we enable a preference corresponding to
location, it simply put all the rules that are associated with
the context set of location. But when we assume that a loca-
tion is UNMC or when the location is detected as UNMC,
it needs to check if the user’s current location is indeed
UNMC. To achieve this, we need to capture the facts before
those are added to an agent’s working memory. In Fig. 6, it
can be observed that, between the CM and PSG we added
another PLM layer. This layer validates the facts with the
COI, and upon validation it forwards them to the PSG.
This layer first checks the type of the preference whether
it is a simple preference or fact-based preference, as also
shown in Algorithm 2. The algorithm runs on startup and
then if any change is detected within the PLM, it re-initiate
the algorithm. The available contents of the PLM produce
a distinct code at state S, if at S ′ the code is changed
i.e., Sc 	= S′

c. This ensures that the contents to be vis-
ited only when a change is detected. In this algorithm, we
define the distinct code so that it can help in re-initiating
the algorithm while generating a preference set. Its work-
ing mechanism is simple, it generates a code which can
be a Hash code based on the elements within PLM. As an
example, we consider that given COI as {GPS(Home)} and
external facts as {GPS(UNMC)}, a MD5 hash code could be
produced as 08ef88c567c2de7eb44166841cb26c59. Now in
the next state if we assume that the {GPS(UNMC)} has
been replaced with the {GPS(Home)} then a new Hash
code 43e3bbf9eab28646ad2d35a77716a856 will be gener-
ated. This is clearly a different code, and hence Scd 	=
S′

cd . When this change of code is detected it indicates a
change within the contents of external facts or in COI,
and ultimately re-initiating the algorithm for further pro-
cessing. Note that a simple flag can not be used here. As
a flag can only indicate any new COI or received exter-
nal facts, however, it can not identify if the newly received
facts or COI are already members of PLM or not. Thus
a flag will indicate a change detection every time a new
external fact is received. For example, if we have exter-
nal facts as {GPS(Home)} and we again receive the same
fact from the GPS, the simple flag will indicate a change
while the distinct code will not. This is because the code
will remain the same for the same set of external facts and
COI. These algorithms have been developed to incorporate

the preferences and the whole system works as described
in [6].

Algorithm 1 Checking PLM states

Input: : Distinct code at state S, Distinct code
at state

Output: Invoke PLM Algorithm 2
1 START
2 do
3 Invoke Algorithm 2
4 while ;
5 END

Algorithm 2 PLM working
Input: COI: Current Context of Interest,R: Rules, F :

Facts from external agents or sensors, CS:
Context Set, Regex: regular expression

Output: Preference Set based on COI
1 START
2 if Regex(COI)==[a-zA-Z] then
3 Fetching Simple preference

for r [R] do
4 then
5 Add to Preference Set
6 end
7 end
8 end
9 else if Regex(COI)==[a-zA-Z]+([a-zA-Z0-9]+) OR
[a-zA-Z]+([a-zA-Z0-9]+,[a-zA-Z0-9]) then

10 Fact-based preference of the form A(b) or B(b,c)
for r [R] do

11 if COI such that CS[r] AND F
then

12 Add to Preference Set
13 end
14 end
15 end
16 else if CS[r]== “-” then
17 Add to general rule
18 end
19 END

if COI such that CS[r]

In this work, since a context-aware system is modeled as
a multi-agent system, the agents in the system interact with
each other while achieving a goal. That is, agents exchange
contexts and perform some common tasks. This behavior
makes it easier for a designer or knowledge expert to design
rules which are expected to fire at certain state. Similarly,
when designing the system for a particular domain, we can
always know in advance the expected output while cer-
tain rules are fired. For example, given a set of rules and
appropriate facts related to blood pressure measurement, the



Mobile Netw Appl

Fig. 6 Facts based preference
validation

outcome after firing rules can either be HIGH, NORMAL,
or LOW blood pressure. Thus, these values can be used in
preference modeling. For example, only rules that generate
HIGH blood pressure could be of user’s interest to notify
appropriate personnel so that action can be taken in case of
an emergency situation.

4.5 Preference selection

As discussed earlier, the knowledge expert can define the
normal as well as fact-based preferences whenever the
requirements are met. This, however, gives a user less con-
trol. Alternatively, the preferences selected for the system
can be further filtered by mapping the CS to a distinct
check boxes, which gives a user to enable/disable certain
preferences and override the designer preference model,
as shown in Fig. 7. In order to effectively use the fact-
based preference, currently the working model supports
preferences with external facts received from sensors and
other agents. For example, facts received from the GPS, BP
and Heart monitoring devices can be used to enforce the
preferences of a patient care device. Agents also derive facts
during execution which are stored in the working mem-
ory, however, in this discussion we do not consider those
facts to be used in the preferences. Instead, the modeling is
more focused on effective usage of the facts received from
external sensors/agents.

5 Case study: heterogeneous smart environment
modeling

We model a smart environment facilitator system consid-
ering two domain ontologies, namely Smart Office and
Patient Care. The purpose is to model context-aware reason-
ing agents in healthcare environments which require sharing

of knowledge across the domains, including data generated
by embedded sensors and wearable smart badges in that
environments, while dealing with semantic heterogeneity
that exists across the knowledge sources. Fragments of the
ontologies are depicted in Figs. 8 and 9 and the correspond-
ing translated Horn-clause rules using the Protégé plug-in
are shown in Fig. 4. These OWL 2 RL ontologies are aug-
mented with a number of SWRL rules. Additionally, we
construct the bridge rules which are semantically mapped
using distributed DL knowledge bases. Some of the bridge
rules are given below:

OPCO :Doctor �−→ OSOO :Employee

OPCO :Nurse �−→ OSOO :Employee

Fig. 7 Preferences selection interface



Mobile Netw Appl

Fig. 8 Smart office ontology

Fig. 9 Patient care ontology



Mobile Netw Appl

Table 1 Example rules for
agent 1 with identifiers Id Rule Identifier

R1 Tell(2,1,hasBloodPressure(?p, Normal))−→ hasBloodPressure(?p, Normal) GPS(Home)

R2 Tell(2,1,hasBloodPressure(?p, High))−→ hasBloodPressure(?p, High) GPS(Home)

R3 Patient(?p), hasBloodPressure(?p, Normal)−→ ∼hasSituation(?p, Emergency) GPS(Home)

R4 Patient(?p), hasBloodPressure(?p, High)−→ hasSituation(?p, Emergency) GPS(Home)

R5 Person(?p), GPS(?loc) −→ hasLocation(?p, ?loc) –

R6 Tell(3,1,hasOccupancy(?p, Yes)) −→ hasOccupancy(?p,Yes) GPS(UNMC)

R7 hasOccupancy(?p, Yes) −→ Tell(1, 4, hasAircon(?p, On)) GPS(UNMC)

OSOO :Employee �−→OPCO :Patient

OSOO :GPS �−→ OPCO :Device

In [10], we have discussed how we model context-aware
agents as multi-agent reasoning systems over heterogeneous
knowledge sources. Here we limit our discussion more on
the preference side, and how the preference sets are gen-
erated, while the execution of the rules remains the same
as described in [10]. In our recent work [34], we have
presented initial experiment on a real world scenario con-
sidering the basic preferences and not the fact-based prefer-
ence. In this system modeling, we focus our discussion on
fact-based preference. Let us consider the set of seven
rules in Table 1 that models a Patient/Person agent (1).
For the sake of simplicity, rule priorities have been omit-
ted and the Id column simply representing rule numbers to
identify rules. This agent interacts with other agents as well
as receives information from various embedded sensors.
For example, it receives blood pressure information from
the the BloodPressure measurement agent (2), it receives
occupancy status from a Occupancy sensor (3), and it also
interacts with the Aircon agent (4) to make it On or Off as
appropriate. For illustration purposes, we assume that Air-
con is available only at the office located in UNMC. It can
be observed that rules R6 and R7 are not useful when the
person is at home. Therefore, we can annotate the rules
to provide preferences based on the user choices. In this

scenario we assume that a user wants to have different set of
preferences at home and at UNMC. He may want to switch
on the Aircon whenever he is available in his office, and
he wants to monitor his blood pressure when at home and
in case of an emergency situation he wants to be notified.
Thus, the preference for the user at home is to check his
blood pressure and not to include the rules that deal with
the UNMC environment. This will give user a personalized
service and to reduce the overall rules of the agent 1’s infer-
ence engine by considering only relevant rules applicable to
a given situation.

In Table 2, we explain how the preference sets are gen-
erated for a given COI and received external facts. We
assume that the user moves from the location Home towards
UNMC. The COI column defines the preferences provided
by the user, which we assume to be constant throughout
the execution and can only be changed on demand. The
Externally Received Facts column represents the high level
contexts received form the GPS sensor. The Preference Set
column represents selected subset of rules as a result of
given the COI and the externally received fact(s). When-
ever an externally received fact(s) matches with the COI, the
corresponding preference set is generated. In this table, we
assume a whole cycle when a user moves from his Home to
UNMC and back to Home. Where, T2, T3, and T5 represent
locations when a user is neither at his Home nor at UNMC.

Table 2 Preference set
generation COI Externally Received An element of COI found in Preference Set

Facts Externally Received Facts

T1 {GPS(Home),GPS(UNMC)} {GPS(Home)} Yes R1,R2,R3,R4,R5

T2 {GPS(Home),GPS(UNMC)} {GPS(Semenyih)} No R5

T3 {GPS(Home),GPS(UNMC)} {GPS(TTS)} No R5

T4 {GPS(Home),GPS(UNMC)} {GPS(UNMC)} Yes R5,R6,R7

T5 {GPS(Home),GPS(UNMC)} {GPS(BTK)} No R5

T6 {GPS(Home),GPS(UNMC)} {GPS(Home)} Yes R1,R2,R3,R4,R5



Mobile Netw Appl

6 Conclusion and future work

In this paper, we presented a conceptual framework
and multi-agent model for context-aware systems based
on heterogeneous knowledge sources. We have devel-
oped a Protégé plug-in for rules extraction from dis-
tributed ontologies, which allows us to model personal-
ized resource-bounded context-aware applications. The pro-
posed modeling approach emphasizes on the knowledge
expert/designer’s role to get preference from the user to be
integrated into the system’s rule base. This actually gives
an end user a bit less control. To overcome this issue, upto
certain level, a user can be provided with preference check
boxes in which the CS contents from the rule base can be
mapped to check boxes. Using such check boxes will enable
user to select/deselect different preferences. However, a user
still depends on the system designer to include or remove
more preferences from the rule base. In future work, we
would like to implement an interface to overcome this issue
and let the user add/delete preferences from the CS column
directly. We would also like to further narrow down the pref-
erence level so that it can be applied to the derived contexts
of an agent’s working memory. In that case, it will not only
be applied before hand but any context that a user expects to
be derived can also be opted for preferences.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Lieberman H, Selker T (2000) Out of context: computer systems
that adapt to, and learn from, context. IBM Syst J 39(3-4):617–
632

2. Dey AK (2001) Understanding and using context. Pers Ubiquit
Comput 5(1):4–7

3. Esposito A, Tarricone L, Zappatore M, Catarinucci L, Colella R
(2010) A framework for context-aware home-health monitoring.
IJAACS 3(1):75–91

4. Rakib A, Haque HMU, Faruqui R (2014) A temporal descrip-
tion logic for resource-bounded rule-based context-aware agents.
In: Context-aware systems and applications. Lecture notes of the
institute for computer sciences, social informatics and telecommu-
nications engineering, volume 128. Springer, pp 3–14

5. Rakib A, Haque HMU (2014) A logic for context-aware non-
monotonic reasoning agents. In: Proceedings of the 13th Mexican
international conference on artificial intelligence, MICAI 2014.
Lecture notes in computer science, vol 8856. Springer, pp 453–
471

6. Uddin I, Rakib A, Haque HMU (2017) A framework for imple-
menting formally verified resource-bounded smart space systems.
Mobile Networks and Applications 22(2):289–304

7. Eiter T, Fink M, Schüller P, Weinzierl A (2014) Finding expla-
nations of inconsistency in multi-context systems. Artif Intell
216:233–274

8. Brewka G, Roelofsen F, Serafini L (2007) Contextual default rea-
soning. In: Proceedings of the 20th international joint conference
on artifical intelligence, pp 268–273

9. Benslimane D, Arara A, Falquet G, Zakaria M, Thiran P, Gargouri F
(2006). In: Contextual ontologies. Lecture notes in computer
science, vol 4243. Springer

10. Haque HMU, Rakib A, Uddin I (2016) Modelling and reason-
ing about context-aware agents over heterogeneous knowledge
sources. In: International conference on context-aware systems
and applications. Springer, pp 1–11

11. Serafini L, Tamilin A (2005) Drago: distributed reasoning archi-
tecture for the semantic web. In: Proceedings of the second
european semantic web conference. Lecture notes in computer
science, vol 3532 . Springer, pp 361–376

12. Grau BC, Parsia B, Sirin E (2004) Working with multiple ontolo-
gies on the semantic web. In: Proceedings of the third international
semantic web conference. Lecture notes in computer science, vol
3298. Springer, pp 620–634

13. Borgida A, Serafini L (2002) Distributed description log-
ics: directed domain correspondences in federated information
sources. In: Proceedings of the confederated international confer-
ences on the move to meaningful internet systems. Lecture notes
in computer science, vol 2519 . Springer, pp 36–53

14. Brewka G, Eiter T (2007) Equilibria in heterogeneous nonmono-
tonic multi-context systems. In: Proceedings of the twenty-second
AAAI conference on artificial intelligence. AAAI Press, pp 385–
390

15. Bikakis A, Antoniou G, Hasapis P (2011) Strategies for contextual
reasoning with conflicts in ambient intelligence. Knowl Inf Syst
27(1):45–84

16. Weißenberg N, Voisard A, Gartmann R (2004) Using ontologies
in personalized mobile applications. In: Proceedings of the 12th
annual ACM international workshop on geographic information
systems, GIS, pp 2–11

17. Sheshagiri M, Sadeh N, Gandon F (2004) Using semantic
web services for Context-Aware applications. In: Proceedings of
mobisys2004 workshop on context awareness

18. Bouzeghoub A, Ngoc K, Krug L (2009) Situation-aware adaptive
recommendation to assist mobile users in a campus environ-
ment. In: Proceedings IEEE international conference on advanced
information networking and applications, pp 503–509

19. Garcia-Sola A, Garcia-Valverde T, Botia JA, Munoz A (2014)
Reasoning with modular ontologies for context-aware applica-
tions. J Res Pract Inf Technol 46(4):235–261

20. Stefanidis K, Pitoura E, Vassiliadis P (2006) Modeling and storing
context-aware preferences. Springer, Berlin, pp 124–140

21. Coutand O (2009) A framework for contextual personalised appli-
cations. Kassel University Press GmbH

22. Hong J, Suh EH, Kim J, Kim S (2009) Context-aware system for
proactive personalized service based on context history. Expert
Syst Appl 36(4):7448–7457

23. Barkhuus L, Dey A (2003) Is context-aware computing taking
control away from the user? Three levels of interactivity examined.
Springer, Berlin, pp 149–156

24. Stefanidis K, Pitoura E, Vassiliadis P (2006) Modeling and storing
context-aware preferences. In: Advances in databases and infor-
mation systems: 10th east European conference, ADBIS 2006,
Thessaloniki, Greece, September 3–7, 2006, Proceedings, Berlin,
Heidelberg. Springer, Berlin, pp 124–140

25. Lai J, Levas A, Chou P, Pinhanez C, Viveros M (2002) Bluespace:
personalizing workspace through awareness and adaptability. Int
J Hum Comput Stud 57(5):415–428

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Mobile Netw Appl

26. Lesser V, Atighetchi M, Benyo B, Horling B, Raja A, Vincent
R, Wagner T, Xuan P, Zhang SX (1999) The umass intelligent
home project. In: Proceedings Of the third annual conference on
autonomous agents. AGENTS ’99. ACM, New York, pp 291–298

27. Garlan D, Siewiorek DP, Smailagic A, Steenkiste P (2002) Project
aura: toward distraction-free pervasive computing. IEEE Pervasive
Comput 1(2):22–31

28. Mozer M (2005) The adaptive house. The IEE Seminar on Intelli-
gent Building Environments

29. Cook DJ, Youngblood GM, Heierman EO III, Gopalratnam K,
Rao S, Litvin A, Khawaja F (2003) Mavhome: an agent-based
smart home. In: PerCom, vol 3, pp 521–524

30. Hoque MR, Kabir MH, Seo H, Yang SH (2016) Pare: profile-
applied reasoning engine for context-aware system. Int J Distrib
Sens Netw 12(7)

31. Confalonieri R, Inan H, Palau M (2012) Handling uncertain
user preferences in a context-aware system. In: International
conference on information processing and management of uncer-
tainty in knowledge-based systems. Springer, pp 88–97

32. McBurney S, Papadopoulou E, Taylor N, Williams H (2008)
Adapting pervasive environments through machine learning and
dynamic personalization. In: 2008 IEEE international symposium
on parallel and distributed processing with applications, IEEE,
pp 395–402

33. Hong JY, Suh EH, Kim SJ (2009) Context-aware systems: a litera-
ture review and classification. Expert Syst Appl 36(4):8509–8522

34. Uddin I, Rakib A (2017) A preference-based application frame-
work for resource-bounded context-aware agents. In: Proceedings
of the 4th international conference on mobile and wireless tech-
nology (ICMWT’17). (to appear)


	Modeling and Reasoning about Preference-Based Context-Aware Agents over Heterogeneous Knowledge Sources
	Abstract
	Introduction
	Background study and related work
	Distributed description logics
	Multi-context systems
	Context-aware systems incorporating multiple ontologies
	Preferences in context-aware systems

	D-Onto-HCR Protégé plug-in
	Development environment
	Working mechanism of the plug-in

	Multi-agent model over heterogeneous knowledge sources
	Preference based multi-agent model
	Working mechanism of preference
	Fact based user preference
	Preference level monitor (PML)
	Preference selection

	Case study: heterogeneous smart environment modeling
	Conclusion and future work
	Open Access
	References


